
2022 European Conference on Computing in Construction
Ixia, Rhodes, Greece

July 24-26, 2022

GENERATING GEOMETRIC DIGITAL TWINS OF BUILDINGS: A REVIEW
Viktor Drobnyi, Yasmin Fathy, and Ioannis Brilakis

University of Cambridge, Cambridge, UK

ABSTRACT
Generation of geometric Digital Twins of existing build-
ings relies on point cloud datasets and is still a manual-
intensive and time-consuming process. This paper identi-
fies the most frequent object types in buildings, analyses
how current commercial software and state-of-the-art re-
search methods to generate these objects. We summarise
the main advantages of these methods and highlight limi-
tations that limit these methods from broader adoption by
the industry. Later, we identify the open challenges and
discuss future directions to enable automating geometric
Digital Twin generation.

INTRODUCTION
Digital Twins (DTs) are digital replicas of real-world
buildings, which integrate real-time data from physical
objects to a virtual environment to improve the building
operation (Tao et al., 2019). Geometric Digital Twin
(gDT) is a geometry representation of a DT. Generating
gDT refers to generating individual objects of a Physical
Twin and relations between these objects.

More than half of buildings currently in service in the UK
were built more than 20 years ago (GOV.UK, 2020, 2021).
Their design models are not available (Enterprises, 2020),
and often their physical assets are not fully representative
(Mahdjoubi et al., 2015); therefore, PCD (Point Cloud
Dataset) has been used for creating DTs. A growing
number of buildings and infrastructure are currently being
repaired, while others will soon require major renovations.
It is estimated that 85-95% of buildings will remain in
use by 2050 (Commission", 2021), many of them will be
renovated. Some of the older buildings were constructed
prior to the age of emerging digital technologies where
their as-designed models are unavailable; they do not have
as-built and as-designed digital models.

The generation of DTs for existing buildings when
as-designed or as-built models are unavailable is a
manual, labour-intensive process whose labour costs are
perceived to counteract the value of the resulting DT
(Hossain and Yeoh, 2018; McArthur, 2015). In principle,
every square metre of a building takes up to 5 minutes
of labour time (Qu et al., 2014), leading to months of
work for generating geometry from a PCD. For example,
manual geometry generation for 420 square metres of
a pumping facility took 166 hours (Qu et al., 2014).
Commercial software tools for DTs generation such as

Revit do not provide automatic geometry generation from
PCDs. This indicates the lack of automation in geometric
DT generation. According to the NBS survey on BIM
adoption by the industry, 46% of British professionals
in the construction sector reported that high costs and
time consumption were barriers to creating data enriched
building models for newly designed assets (Enterprises,
2020). The portion of those who adopt it for already built
facilities is notably smaller based on this study.

The value of automating geometry generation stems from
the fact that the geometry of a DT is a core part of the build-
ing data and a prerequisite in the broader asset digitisation
process. DTs are the outcome of digitisation and have the
potential to improve the efficiency of many processes in
building management, maintenance and renovation. Au-
tomating the generation of DT geometry (geometric Dig-
ital Twin or gDT) of already built buildings from PCD is
essential to facilitate the further digitisation of the con-
struction sector, especially for old buildings to plan for
deep renovation and/or major repairs.

PROBLEM DEFINITION
It is essential to identify the most frequent components
of buildings to understand what object types need
to be generated to digitise building’s geometry. The
authors analysed sufficiently complete building models
on the design, construction and operation phases to
identify object types that appear more often than the
others. The purpose of the frequency analysis was
to narrow down further analysis to object types that
are more likely to appear during geometry generation
but not to identify average frequencies with high precision.

The dataset of 24 Industry Foundation Classes (IFC) mod-
els consisted of 105k total object counts were gathered
for the analysis. These models represented a variety of
buildings, including office buildings, university’s build-
ings, hospitals and residential buildings. Table 1 shows ten
most frequent object types in buildings in the IFC dataset.
Together, these object types account for almost 80% of all
objects from the dataset. This entails that the majority of
the effort for the geometry digitisation of a building will
be spent on the generation of one of these ten object types.

BACKGROUND
The generation of the geometry of a DT when an
as-designed model is unavailable relies on PCDs, which



Table 1: Top 10 most frequent object types in buildings.

Object type Fraction(%)

Round Pipe Segment 23.43

Wall 10.87

Round Elbow 10.85

Beam 7.82

Column 5.02

Slab 5.02

Light Fixture 4.52

Plumbing or Heating
Terminal

4.04

Cylindrical Joint 3.88

Rectangular Duct
Segment

3.44

are a set of points. Each point is represented by its
Cartesian coordinates and their colours (or intensities)
sampled from a real-world object. This representation of
geometry is not directly usable for DTs because it lacks
semantics and structure. The application of DTs requires
a highly structured representation of geometry. This
includes decomposing the space into individual objects
with their geometry representation and relations between
them. If the as-designed models are not available, which
is the case for most old buildings, we can not infer
the decomposition of a PCD from the design intent.
This entails that a pre-processed point cloud should be
enriched by the semantic and object relations such that the
pre-processed PCD should be decomposed into objects
with their geometry and relations between these objects.

The geometrical properties of every type of object can be
described by its shape, colour and the context in which
it appears. The geometry of most of the frequent object
types in buildings, such as walls, slabs and pipes, is a
combination of planar or cylindrical patches. However,
the geometry of some other objects, such as beams,
can also be described as an extrusion of a profile along
a line. For example, I-beam can be described as a
combination of 8 (or 12) planar patches or an I-shaped
2D profile swept along its axis. The geometry of a
building can also be viewed as a hierarchy of spaces
and objects. For example, a building usually consists of
multiple stories. Stories have rooms and corridors; rooms
have wall surfaces, doors, furniture; doors have knobs, etc.

The following section describes current commercial soft-
ware for generating gDTs from PCDs, its current function-
ality and limitations. The later section briefly discusses
the state of research in this area. Finally, the discussion
section summarises the capabilities of the state of research
and states the main challenges for future research for gen-
erating gDTs from PCDs automatically.

STATE-OF-THE-ART IN PRACTICE
The state-of-the-art software for gDT generation from
PCDs aim to assist a human modeller by providing
convenient tools to detect shapes in PCDs, isolate PCDs
of individual objects and fit objects into them. Examples
of these software include "EdgeWise", "Faro as-built
modeller", "Pointfuse", "Scantobim.xyz", "InfiPoints",
"Point Cab", "Vision Lidar", "Leica Cyclone Model" and
"Leica Cloudworx", "E3D Design", "Trimble Realworks",
among others. Many of these software were initially
designed for industrial assets and, therefore, have richer
functionality to generate piping networks since piping ele-
ments are more important for plants (Agapaki et al., 2018).

Some of these software provides the functionality to
detect planar patches automatically. These planar surfaces
can then be used to model walls, slabs, etc. For example,
"Pointfuse" can detect and classify planes into wall sur-
faces, slab surfaces and other objects. The differentiation
between classes is based on normal orientation; it consid-
ers that vertical planes are parts of walls and horizontal
planes are parts of floors and ceilings (Figure 1). Other
software, such as "EdgeWise", can automatically combine
detected vertical planes into parallelepipeds to generate
walls (Figure 2).

Figure 1: Automatic wall surface extraction and classification
in PointFuse. A human modeller needs to manually combine

these surfaces and manually introduce new surfaces to generate
wall objects.

Figure 2: Automatic wall extraction in "EdgeWise". The set of
detected walls is incomplete and contains wrong cuboids.

Besides, the accuracy of wall dimensions is not perfect and a
human needs to adjust wall length manually.

Similarly, "EdgeWise" detects cylinders in a PCD to



detect piping networks. It automatically detects cylinders
in point clouds that are then used as pipe segments.
Then, pipe endings that are closely located are detected,
as they are most likely to be connected; based on that,
pipe fittings are proposed. The quantitative study shows
that EdgeWise achieves 62% precision and 75% recall in
detecting cylinders (Agapaki et al., 2018).

Other software, such as "Faro as-built", use the iterative
semi-automatic approach to detect pipe segments and
fittings. This requires a user to pick a point on one of
the pipes in the PCD. The software then automatically
detects a cylinder that this point belongs to. After that,
the software searches for the next piping element on the
end of the detected pipe. This process iterates until no
new pipes or fittings can be detected. Manual intervention
during each iteration is necessary to adjust the fitting and
its classification of elements from a catalogue.

Commercial software also use human involvement to
detect and generate shapes of extrusion. In the first step, a
user should specify a plane containing the profile, which
should be perpendicular to the extrusion axis. After
that, the software automatically detects and classifies the
profile (Figure 3) and finds the appropriate length of the
object. Lastly, if objects of the same type and shape are
located in a regular grid, some software may use this
information to automatically detect copies of a modelled
object (such as "EdgeWise").

Figure 3: I-beam profile fitting in "Faro as-built"

Template matching is another approach to detect objects
that have a less regular structure. This usually requires
a user to select a PCD that represents one of the objects
manually. Then the software can automatically detect
similar PCD patches. The main shortcoming of this
approach is that it works for relatively small PCDs or when
the search space is limited. For example, "EdgeWise"
allows selecting templates for door and window detection
but requires to specify a plane on which they are located.

Objects with complex shapes, such as machinery, are often
hard to detect. The generation requires coarse positions
for fitting a given model into the PCD automatically.
The input location can be provided in two ways: directly
specifying a 3D point in a software’s viewer or selecting a

PCD part representing the given object.

Overall, commercial software for generating a building’s
geometry from a PCD can significantly reduce manual
effort. The software are able to detect basic shapes and
combine them into objects with relatively simple shapes,
such as walls. However, there is still a substantial amount
of manual work required. The user must verify every object
detected automatically, manually adjust details (such as
boundaries of objects), and generate objects that were not
detected, which is time-consuming.

STATE-OF-THE-ART IN RESEARCH

Figure 4: Generalised framework for gDT from PCD generation

Researchers have attempted to step beyond the state of
practice and automate the generation of main object types
for buildings. While some attempt to achieve superb
quality in detecting and generating objects, others try to
formulate the problem in broader terms and reconstruct
buildings in terms of more high-level abstractions, such
as available spaces and floor plans.

Object detection approaches in PCDs can be classified into
two groups: bottom-up and top-down (Figure 4). Methods
of the first group start from detecting local features, such
as planar patches, cylinders, corners, etc. After that, prim-
itives are combined to form building elements. This group
of methods represents bottom-up approaches because they
create a DT going from local features and combine ele-
ments to form the final DT. In contrast, methods that start
from detecting high-level features and iteratively split a
PCD into a set of lower-level features, such as going from
floors to rooms to walls to doors, are top-down approaches
because they gradually decompose a building into smaller
and smaller elements. The following sections will discuss
each group.

Bottom-up
The bottom-up approaches require finding primitives and
detecting local features. One of the most popular methods
that find primitives in PCDs is RANSAC (Fischler and
Bolles, 1981) and its variants, for example, multiBaySAC
(Kang and Li, 2015). This algorithm randomly samples
a minimum number of points to form a hypothesis, verify



the hypothesis (i.e. how many points from the input align
with this hypothesis - inliers), and repeat the process to
maximise the number of inliers. RANSAC can be used
to detect planar patches or cylinders in PCDs to detect
objects. For example, this has been successfully applied
to detect wall surfaces (Anagnostopoulos, Patraucean,
Brilakis and Vela, 2016). Later, the authors detected
connections between perpendicular walls to adjust wall
lengths by enlarging them to touch each other and form
rooms (Anagnostopoulos, Belsky and Brilakis, 2016).
Interested readers in RANSAC-based methods can be
referred to the review of Raguram et al. (2008).

The same goal can be achieved using Hough transform for
primitive shape detection (Hough, 1959). This algorithm
goes through each point from the input and computes
all possible hypotheses that explain this point, and picks
the most frequent hypothesis. It is also used to detect
primitive geometry. For example, this can be used to
detect cylinders for pipe generation (Patil et al., 2017).
Both of these methods require a tolerance threshold to be
defined; they are sensitive to clutter and occlusions and
are hardly scalable due to computational inefficiency on
large inputs.

Planar and cylindrical surfaces have homogeneous or
constant local curvature. For instance, a plane has zero
curvature, while pipes’ curvature equals the pipe’s radius.
A PCD with curvature can be clustered to detect various
homogeneous patches. For example, a region growing
algorithm can be used to detect planar and cylindrical
surfaces Dimitrov and Golparvar-Fard (2015). This algo-
rithm can handle larger PCDs but is more sensitive to noise.

Many objects have more complicated shapes, such as
I-beams or machinery, and the methods mentioned above
cannot be directly used to detect them. Wang et al. (2021)
proposed the method to search for objects that have a
geometry of a 2D profile extruded along a line. They
suggested slicing the PCD along an axis and searching
for the desired profile in each slice (Figure 5). This
converts the problem from 3D to 2D; similar methods are
used to detect lines and circles on a plane. The authors
showed that this approach could find various objects of
extrusion with more complex shapes, such as I-beams,
rectangular ducts, etc. In addition, they showed that
template matching in 2D is a computationally feasible
problem, and it can be used to match arbitrary profiles to
detect arbitrarily shaped machinery. The method requires
objects to be oriented parallel to main axes only.

The alternative approach to detect objects with complex
shapes is to combine primitives together to form object
surfaces. This includes using predefined rules to connect
surfaces together, such as combining nearly parallel
vertical planes located near each other to form a wall.
Another approach is to use data-driven methods to

Figure 5: 2D slicing for shape detection (Wang et al., 2021).
The algorithm searches for a profile shape in the slice to detect
a shape of extrusion or template to detect complex machinery.

construct parametric models from the set of primitives,
for example, using random forests (Zhang et al., 2014).

Recent advancements in deep learning allow using
neural networks to perform PCD understanding. Using
supervised learning, neural networks are used to split
PCDs with multiple objects of different types inside into
point clusters of particular object types or individual
objects. Later, these point clusters can be transformed
into meshes or predefined models from a catalogue using
RANSAC or similar methods. A few examples would be
(Chen et al., 2019; Armeni et al., 2016; Thomas et al.,
2019).

Supervised machine learning methods infer dependencies
and learn features from labelled data. The main benefit is
it avoids exploiting any explicit knowledge of design and
construction practices and patterns. However, this makes
neural networks require large labelled datasets to be trained
to achieve high accuracy of label prediction.

Top-down
Top-down approaches aim to detect high-level objects in
the input PCD, starting from floors to rooms to walls to
doors to windows.. In the first step, they identify floors and
split PCD into multiple smaller ones. The straightforward
approach for ceiling and floor identification is to identify
peaks along the Z-axis. This assumes that the direction
of the gravity is known and Z-axis is collinear with it.
Then, all points are projected on Z-axis and split into
buckets to form a histogram of a number of points on
multiple heights. Given that points sufficiently cover
floors and ceilings, they should be located on the peaks
of the histogram. The height of peaks and the knowledge
of the approximate width of slabs and floor height allow
identifying each floor and ceiling.

In the next step, rooms can be identified independently
in each PCD, representing an individual floor. There are
multiple approaches on how to locate rooms. Macher
et al. (2017) proposed identifying rooms on the storey by
computing a discrete occupancy map for the horizontal
slice containing the ceiling followed by a region growing
algorithm (Figure 6). This approach assumes that all
spaces on a storey are disconnected on the top. This
assumption holds if doors and other transitions between



Table 2: Summary of gDT generation approaches

Detector Approach Examples Advantages Limitations
Shape

detector
Primitive shape
detection

(Anagnostopoulos,
Patraucean, Brilakis
and Vela, 2016),
(Patil et al., 2017)

Theoretically ex-
tensible on arbi-
trary shapes; ro-
bust to clutter and
occlusions

Inefficient on large in-
puts or when large num-
ber of objects present

Region-growing (Dimitrov and
Golparvar-Fard,
2015)

Robust, scalable Over-segmentation;
limited number of
shapes

2D Slicing and
projection

(Wang et al., 2021) Objects of extru-
sion, arbitrary and
complex shapes

Objects should be lo-
cated along the limited
number of axes

Deep learning su-
pervised PCD seg-
mentation

(Chen et al., 2019),
(Thomas et al., 2019)

Need only labeled
data to generalise

Need large set of la-
beled data to generalise

Space
detector

Histograms of
#points

(Huber et al., 2011),
(Tran et al., 2018)

Simple Intolerant to clutter and
occlusions

Floor-plan recon-
struction

(Macher et al., 2017),
(Ochmann et al., 2019)

Structured, con-
nected output

Rely explicitly on
knowledge, design pat-
terns; hardly extensible

spaces are lower than the ceiling level. Shi et al. (2019)
suggested computing alpha-shapes of rooms of the ceiling
slice to adjust room shapes. This decomposition allows
splitting the input into multiple PCDs, each representing
only one room. Then these PCDs can be processed
independently for the sake of computational efficiency.

Figure 6: Horizontal slice that contains ceiling points. 2D
room decomposition (Macher et al., 2017)

Another approach to computing room spaces on 2D
projections is to project only boundary points. This is
achieved by keeping only those points that have a normal
perpendicular to Z-axis. The majority of points satisfying
these conditions represent wall surfaces. However, this
method is sensitive to wall occlusions and clutter with
vertical surfaces.

Ochmann et al. (2016) proposed to segment a PCD into
rooms based on the scan locations. They assumed that
one scan of a laser scanner always captures one room.
Scans that captured the same room are merged based on
co-visibility obtained with ray casting (Ochmann et al.,
2019), points are classified with room IDs based on the
scan they belong to. Then, they computed occupancy
bitmaps and produced floor plans. After that, they
detected vertical planes, projected them to the floor
plan and generated wall candidates based on a pair of
close parallel planes. At the last step, they formulated
the wall location problem as an optimisation problem:

they penalised a wall candidate if it split one room and
rewarded if it split different rooms. This method requires
scanner locations and does not work for PCDs captured
with SfM (as scanner location changes continuously).

A similar objective can be achieved using the shape gram-
mar approach (Tran et al., 2018). The space is split into
cubic volumes based on histogram peaks along the main
axes. They then iteratively merged cuboids representing
the same space and classified cuboids representing walls.
However, the last step required the user to specify door
locations to introduce space connections manually.

Void-growing approach for space detection was proposed
by (Pan et al., 2021). The authors tried to find empty
regions of a PCD by growing a cuboid until it touches
a wall or slab. At the first stage, the authors searched
for vertical planes to produce room centre candidates
(they split space by planes parallel to two main axes and
got cube centres). Then, they enlarged each cuboid in
each direction until the points on the boundary of the
cuboid face occupied a significant part of the face. In the
final step of space detection, they discarded thin cuboids
(walls) and merged overlapping spaces to account for
non-rectangular rooms, such as L-shaped rooms.

The next step is decomposing PCDs that represent individ-
ual rooms into various objects, such as walls and openings
in walls. Shi et al. (2019) proposed automatically detect-
ing doors by searching for empty spaces on wall surfaces.
They computed an occupancy map on each wall surface
to get empty spots on the surface. Then they identified
those voids that might present due to occlusions and iden-
tified doors. This method is limited to open doors only.
Quintana et al. (2018) based their door search on empty
regions and rectangular objects on wall texture. They as-



sumed that a door has a different colour than the wall on
which it is located; therefore, they warped wall points onto
the plane and searched for rectangles using a Canny edge
detector. The drawback of this method is its sensitivity
to wall detection, wall occlusions, lighting conditions and
the colour difference between walls and doors.

DISCUSSION
The state-of-practice software simplifies the generation of
the most frequent object types in buildings to some extent.
The software can automatically detect primitive shapes,
such as planar patches and cylinders in PCDs and provide
a user interface to generate objects and connect them to
create DTs. These tools significantly reduce the manual
effort necessary for digitising the geometry of existing
assets from PCDs.

However, the generation of each object still requires
manual involvement. Objects with planar surfaces
require manual adjustments of dimension sizes. For
example, automatically generated walls and pipes in
"EdgeWise" require a manual extension (or shortening)
along the length. Automatic pipe fitting generation
in this software considers only pipe endings and does
not account for the PCD itself. It results in objects
with wrong parameters (e.g. elbows with the wrong
radius). Semi-automatic pipe run detection implemented
in "Faro", which tries to automatically fit the next
network element, requires manual involvement for each
object. The same holds for the detection of steel structures.

The state-of-the-art software can detect primitive shapes
automatically or fit objects from a catalogue (precisely
defined) semi-automatically. It can also detect relations
between parts of pipe runs. However, users still need to
do manual work to adjust automatically detected objects,
guide semi-automated detection and detect connections.

On the other hand, state of the art in research can detect
primitive shapes automatically and combine them to
generate objects. Bottom-up approaches provide similar
functionality to the mentioned functionality of software. It
gives more agility, allows to detect more primitive shapes,
and combines them with explicit rules and machine
learning, adjusting object dimensions and connecting
them together. However, this group of methods is limited
in generating composite structures due to high variability.
On the other hand, top-down approaches naturally provide
hierarchical relations between objects. These relations are
usually required for DT applications.

Most of the existing methods for generating gDTs from
PCDs are designed to detect particular types of objects or
shapes. These methods are deterministic rule-based. They
use many assumptions about object relations or design
patterns to guide detection, such as the Manhattan-world
assumption. The explicitly exploited knowledge in an

algorithm limits the adoption of the algorithm to other
shapes and contexts.

Summing up, the functionality of commercial software
and state of research automatically detect some of the
object types and compose (or decompose) them to
some extent. To the best of our knowledge, there are
no methods dedicated to detecting relations. Table 2
provides a brief summarisation of available methods for
detecting different objects of buildings in PCDs. We split
the existing methods based on the detection approach:
shape detection and space detection. Methods for shape
detection based on detecting local features, such as
RANSAC and region growing algorithms, are limited
in terms of the variability of shapes it can detect. The
reason is that these methods can only detect geometrically
homogeneous regions. Besides, they require extra steps to
combine multiple surfaces together.

Methods projecting 3D PCDs onto smaller dimensions
reduce the complexity of the detection problem but are
suitable only for a subset of objects such as that objects
of extrusion. They assume that the orientation of objects
is known to some degree. This is because they project
points on a limited number of axes or planes. Otherwise,
the method would be computationally infeasible.

Methods that are based on space decomposition tend
to produce much more connected and structured out-
put, which is more useful for DT applications. On
the other side, these methods typically encode some
knowledge or assumptions about a building explicitly. It
makes these methods good in detecting and generating
particular structures but hardly extensible to buildings
with other design choices. This is particularly true
for systems with high variability: while these types of
methods are used to generate the architectural part of a
building, they are not used to generate the mechanical part.

Some deep learning approaches have been discussed pre-
viously in this paper. These methods extract the implicit
knowledge about buildings through observations. This en-
tails that the extension to other environments with other
design patterns only requires labelled data representing
target distribution. The main drawback is that it requires
large labelled datasets in order to generalise well. Semi-
supervised methods or generating synthetic datasets could
be potentially considered to address this challenge.

Suggestions for the future research
The authors identify the following challenges that should
be tackled to develop an effective method for automatic
gDT generations:

• How to make the methods generic enough to be ex-
tended to other contexts and environments easily?
Authors believe that successful automation of geom-
etry digitisation requires more generic methods to



detect and generate gDT. Current deterministic algo-
rithms are hardly adaptable to environments that dif-
fer from the original assumption of the algorithms’
authors. Supervised and semi-supervised deep learn-
ing are promising approaches to address these chal-
lenges.

• If adopting neural networks, how to sample PCDs
from models to gather training data, how much syn-
thetic data is necessary to generalise to unseen real-
world data? Adopting neural networks is associ-
ated with crafting large labelled datasets for training,
which is hardly feasible for real-world data. Alterna-
tively, researchers can use synthetic datasets sampled
from as-designed models to train neural networks.

• How to detect relations between objects? How to use
them to empower object detection? Authors believe
that current-of-the-art methods lack relation detection
part. Many DT applications also require knowing
what objects are related to each other and how they
influence other objects. Besides, information about
object relations may guide object detection. For ex-
ample, search space for wall detection can be limited,
knowing that walls related to room spaces as their
boundaries.

CONCLUSIONS
Digitising the geometry for existing buildings heavily
relies on PCDs due to the absence of reliable, designed
models. The digitisation process is still semi-manual
and requires substantial manual effort, which limits the
adoption of DTs for the operational phase of the building
life cycle. State of the art is limited in the variety of
objects, relations and their contexts. The industry will
benefit from the automation of gDT generation from PCDs.

This paper showed the most frequent object types in build-
ings that account for about 80% of all objects in buildings
on average. We provided a review of the functionality of
the available software, and current approaches for digitis-
ing geometry in research. It highlighted the advantages
and limitations of different methods and proposed areas
for future research. The authors believe that addressing
the mentioned limitations will significantly reduce the cost
and effort necessary for digitisation, renovation and main-
tenance of existing buildings.
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