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Abstract
Selective segmentation involves incorporating user input to partition an image into foreground and background, by dis-
criminating between objects of a similar type. Typically, such methods involve introducing additional constraints to generic
segmentation approaches. However, we show that this is often inconsistent with respect to common assumptions about the
image. The proposed method introduces a new fitting term that is more useful in practice than the Chan–Vese framework.
In particular, the idea is to define a term that allows for the background to consist of multiple regions of inhomogeneity. We
provide comparative experimental results to alternative approaches to demonstrate the advantages of the proposed method,
broadening the possible application of these methods.

1 Introduction

Image segmentation is an important application of image
processing techniques in which some, or all, objects in an
image are isolated from the background. In other words,
for an image z(x) ∈ R

2, we find the partitioning of the
image domain Ω ⊂ R

2 into subregions of interest. In the
case of two-phase approaches, this consists of the fore-
ground domain ΩF and background domain ΩB, such that
Ω = ΩF ∪ΩB. In this work, we concentrate on approaching
this problem with variational methods, particularly in cases
where user input is incorporated. Specifically, we consider
the convex relaxation approach of [8,14] and many others.
This consists of a binary labelling problem where the aim
is to compute a function u(x) ∈ {0, 1} indicating regions
belonging to ΩF and ΩB, respectively. This is obtained by
imposing a relaxed constraint on the function, u ∈ [0, 1], and
minimising a functional that fits the solution to the data with
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certain conditions on the regularity of the boundary of the
foreground regions.

We will first introduce the seminal work of Chan and Vese
[15], a segmentation model that uses the level set frame-
work of Osher and Sethian [31]. This approach assumes
that the image z is approximately piecewise-constant, but
is dependent on the initialisation of the level set function
as the minimisation problem is non-convex. The Chan–Vese
model was reformulated to avoid this by Chan et al. [14],
using convex relaxation methods, that has the following data
fitting functional

fCV(u) =
∫

Ω

(λ1 f1(x) − λ2 f2(x)) u(x) dΩ, (1)

where f1(x) and f2(x) are data fitting terms indicating the
foreground and background regions, respectively. In partic-
ular, in [14,15] these are given by

f1(x) = |z − c1|2, f2(x) = |z − c2|2. (2)

It should be noted that it is common to fix λ = λ1 = λ2. The
introduction of binary labels to image segmentation was also
proposed byLie et al. [26],with the connections between [14]
and [26] discussed in Wei et al. [44]. The data fitting func-
tional is balanced against a regularisation term.Typically, this
penalises the length of the contour. This is represented by the
total variation (TV) of the function [15,37] and is sometimes
weighted by an edge detection function g(s) = 1/(1+ βs2)
[8,33,35,39]. Therefore, the regularisation term is given as
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TVg(u) :=
∫

Ω

g(|∇z(x)|)|∇u| dΩ. (3)

The convex segmentation problem, assuming fixed constants
c1 and c2, is then defined by

min
u∈[0,1]

{
FCV(u, c1, c2) = TVg(u) + fCV(u, c1, c2)

}
. (4)

In the case where the intensity constants are unknown it
is also possible to minimise FCV alternately with respect
to u, c1, and c2, however, this would make the problem
non-convex and hence dependent on the initialisation of
u. Functionals of this type have been widely studied with
respect to two-phase segmentation [8,14,15], which is our
main interest. Alternative choices of data fitting terms can be
used when different assumptions are made on the image, z.
Examples include [1,2,16,25,40,43].Wenote thatmultiphase
approaches [9,42] are also closely related to this formulation
although in this paperwe focus on the two-phase problemdue
to associated applications of interest. It is also important to
acknowledge analogous methods in the discrete setting such
as [4,18,22,36]. However, we do not go into detail about such
methods here, althoughwe introduce thework of [17] in Sect.
3 and compare corresponding results in Sect. 7.

In selective segmentation, the idea is to apply addi-
tional constraints such that user input is incorporated to
isolate specific objects of interest. It is common for the
user to input marker points to form a set M , where M =
{(xi , yi ) ∈ Ω, 1 ≤ i ≤ k} and from this we can form
a foreground region P whose interior points are inside
the object to be segmented. In the case that M is pro-
vided, P will be a polygon, but any user-defined region
in the foreground is consistent with the proposed method.
Some examples of selective or interactive methods include
[10,17,21,22,27,30,35,38,41,48]. A particular application of
this in medical imaging is organ contouring in computed
tomography (CT) images. This is often donemanually which
can be laborious and inefficient, and it is often not possi-
ble to enhance existing methods with training data. In cases
where learning-based methods are applicable, the work of
Xu et al. [46] and Bernard and Gygli [5] are state-of-the-art
approaches.At this stage,we define the additional constraints
in selective segmentation as follows:

fS(u) = θ

∫
Ω

D(x)u dΩ, (5)

where D(x) is some distance penalty term, such as [34,35,
39], and θ is a selection parameter. Essentially, the idea is
that the selection termD(x) (based on the regionP formed
by the user input marker set) should penalise regions of the
background (as defined by the data fitting term f2(x)) and
also pixels far fromP . In this paper, we choose D(x) to be

the geodesic distance penalty proposed in [35]. Explicitly,
the geodesic distance from the region P formed from the
marker set is given by:

DM (x) = 0 for x ∈ P,

DM (x) = D0
M (x)

||D0
M (x)||L∞

for x /∈ P,

where D0
M (x) is the solution of the following PDE:

|∇D0
M (x)| = q(x), D0

M (x0) = 0, (x0) ∈ P. (6)

The function q(x) is image dependent and controls the rate
of increase in the distance. It is defined as a function similar
to

q(x) = εD + βG |∇z(x)|2, (7)

where εD is a small nonzero parameter and βG is a non-
negative tuning parameter. We set the value of βG = 1000
and εD = 10−3 throughout. Note that if q(x) ≡ 1, then the
distance penalty DM (x) is simply the normalised Euclidean
distance, as used in [39].

A general selective segmentation functional, assuming
homogeneous target regions, is therefore given by:

FS(u, c1, c2) = TVg(u) + fCV(u, c1, c2) + fS(u). (8)

Assuming that the optimal intensity constants c1 and c2 are
fixed, the minimisation problem is then:

min
u∈[0,1] FS(u, c1, c2). (9)

Again, it is possible to alternately minimise FS(u, c1, c2)
with respect to the constants c1 and c2 to obtain the average
intensity in ΩF and ΩB, respectively. However, in selective
segmentation it is often sufficient to fix these according to
the user input. In the framework of (9), the Chan–Vese terms
[14,15,29] have limitations due to the dependence on c2.
In conventional two-phase segmentation problems, it makes
sense to penalise deviances from c2 outside the contour; how-
ever, for selective segmentation we need not consider the
intensities outside of the object we have segmented. Regard-
less of whether the intensity of regions outside the object
is above or below c1, it should be penalised positively. The
Chan–Vese terms cannot ensure this as they work based on a
fixed “exterior” intensity c2 and can lead to negative penal-
ties on regions which are outside the object of interest. It is
our aim in this paper to address this problem.

The motivation for this work comes from observing con-
tradictions in using piecewise-constant intensity fitting terms
in selective segmentation. Whilst good results are possible
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Fig. 1 CT image with ground
truth segmentation shown
(green) and associated average
intensity values (c1 and c2)
(Color figure online)

c1 = 0.15(i) Image with ground truth (ii) Foreground, (iii) Background, c2 = 0.19

with this approach, the exceptional cases lead to severe limi-
tations in practice. This is quite common in medical imaging
as demonstrated in Fig. 1, where the target foreground has
a low intensity. Given that the corresponding background
includes large regions of low intensity, the optimal average
intensities for this segmentation problem are c1 = 0.1534
and c2 = 0.1878. For caseswhere c1 ≈ c2, we see that by (1),
f1− f2 ≈ 0 almost everywhere in the domainΩ . This means
that it is very difficult to achieve an adequate result, without
an over-reliance on the user input or parameter selection.

The central premise for applying Chan–Vese-type meth-
ods is the assumption that the image approximately consists
of

z(x) = c1χF + c2χB + η, (10)

where η is noise,χi is the characteristic function of the region
Ωi , for i = F, B, respectively. The idea of selective seg-
mentation is to incorporate user input to apply constraints
that exclude regions classified as foreground, based on their
location in the image. We use a distance constraint which
penalises the distance from the user input markers. However,
a key problem for selective segmentation is that for cases
where the optimal intensity values c1 and c2 are similar,
the intensity fitting term will become obsolete as the con-
tour evolves. This is illustrated in Fig. 3. The purpose of our
approach is to construct a model that is based on assumptions
that are consistent with the observed image and any homo-
geneous target region of interest. A common approach in
selective segmentation is to discriminate between objects of a
similar intensity [34,35,39].However, the fitting terms in pre-
vious formulations [24,34,35,39] aren’t applicable in many
cases as there are contradictions in the formulation in this
context.Wewill address this in detail in the following section.

In this paper, our main contribution is to highlight a cru-
cial flaw in the assumptions behind many current selective
segmentation approaches and propose a new fitting term in
relation to such methods. We demonstrate how our reformu-
lation is capable of achieving superior results and is more
robust to parameter choices than existing approaches, allow-
ing formore consistency in practice. In Sect. 2,we give a brief
review of alternative intensity fitting terms proposed in the

literature, and detail them in relation to selective segmenta-
tion.We then briefly detail alternative selective segmentation
approaches to compare ourmethod against in Sect. 3. In Sect.
4, we introduce the proposed model, focussing on a fitting
term that allows for significant intensity variation in the back-
ground domain. In Sect. 5, we discuss the implementation of
each approach in a convex relaxation framework, provide the
algorithm in Sect. 6, and detail some experimental results in
Sect. 7. Finally, in Sect. 8 we give some concluding remarks.

2 Related Approaches

Here, we introduce and discuss work that has introduced
alternative data fitting terms closely related to Chan–Vese
[15]. In order to make direct comparisons, we convert each
approach to the unified framework of convex relaxation [14].
It is worth noting that this alternative implementation is
equivalent in some respects, but that the results might dif-
fer slightly if using the original methods. We are considering
these models in the terms of selective segmentation, so all
formulations have the following structure:

min
u∈[0,1]

{
F(u) = TVg(u) + fS(u) + f (u)

}
. (11)

We are interested in the effectiveness of f (u) in this context,
which we will focus on next. In particular, we detail various
choices of f (u) from the literature that are generalisations
of the Chan–Vese approach. In the following, we refer to
minimisers of convex formulations, such as (11), byuγ .Here,
the minimiser of F(u) is thresholded for γ ∈ (0, 1) in a
conventional way [14].

2.1 Region-Scalable Fitting (RSF) [25]

The data fitting term from the work of Li et al. [25], known
as Region-Scalable Fitting (RSF), consistent with the convex
relaxation technique of [14] is given by

fRSF(u) =
∫

Ω

(λ1 f1(x) − λ2 f2(x)) u dΩ, (12)

where
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f1(x) =
∫

Ω

Kσ (x − y) |z − h1(x)|2 dΩ,

f2(x) =
∫

Ω

Kσ (x − y) |z − h2(x)|2 dΩ, (13)

and Kσ (x) is chosen as a Gaussian kernel with scale param-
eter σ > 0. The RSF selective formulation is then given as
follows:

FRSF(u) = TVg(u) + fS(u) + fRSF(u). (14)

The functions h1(x) and h2(x), which are generalisations of
c1 and c2 from Chan–Vese, are updated iteratively by

h1(x) = Kσ (x) ∗ (
uγ z

)
Kσ (x) ∗ uγ

,

h2(x) = Kσ (x) ∗ ((
1 − uγ

)
z
)

Kσ (x) ∗ (
1 − uγ

) . (15)

Using the RSF fitting term, any deviations of z from h1
and h2 are smoothed by the convolution operator, Kσ . This
allows for intensity inhomogeneity in the foreground and
background of target objects.

2.2 Local Chan–Vese (LCV) Fitting [43]

Wang et al. [43] proposed the Local Chan–Vese (LCV)
model. In terms of the equivalent convex formulation, the
data fitting term is given by

fLCV(u) =
∫

Ω

( f1(x) − f2(x)) u dΩ (16)

where

f1(x) = α |z − c1|2 + β
∣∣z∗ − z − d1

∣∣2 ,

f2(x) = α |z − c2|2 + β
∣∣z∗ − z − d2

∣∣2 , (17)

and z∗ = Mk ∗ z. Here, Mk is an averaging convolution with
k × k window. The LCV selective formulation is then given
as

FLCV(u) = TVg(u) + fS(u) + fLCV(u). (18)

The values c1, c2, d1, d2 which minimise this functional for
uγ are given by

c1 =
∫
Ω
zuγ dΩ∫

Ω
uγ dΩ

, c2 =
∫
Ω
z(1 − uγ ) dΩ∫

Ω
(1 − uγ ) dΩ

,

d1 =
∫
Ω (z∗ − z) uγ dΩ∫

Ω
uγ dΩ

, d2=
∫
Ω (z∗−z) (1 − uγ ) dΩ∫

Ω
(1 − uγ ) dΩ

.

(19)

The formulation is minimised iteratively. The LCV fit-
ting term that f1(x) and f2(x) includes an additional term
weighted by the parameters α and β. The principle for the
LCV model is that the difference image z∗ − z is a higher
contrast image than z and a two-phase segmentation on this
image can be computed.

2.3 Hybrid (HYB) Fitting [1]

Based on extending the LCV model, Ali et al. [1] proposed
the following data fitting term,

fHY B(u, c1, c2, d1, d2) =
∫

Ω

( f1(x) − f2(x)) u dΩ (20)

where

f1(x) = α |w − c1|2 + β
∣∣w∗ − w − d1

∣∣2 ,

f2(x) = α |w − c2|2 + β
∣∣w∗ − w − d2

∣∣2 . (21)

Here, z∗ = Mk ∗ z, w = z∗z, and w∗ = Mk ∗ w, with Mk

the averaging convolution as used in the LCV model. The
values c1, c2, d1, d2 are updated in a similar way to [43],
with further details found in [1]. The authors refer to this
approach as the Hybrid (HYB) Model. The HYB selective
formulation is then given as

FHYB(u) = TVg(u) + fS(u) + fHYB(u). (22)

The key aim of the HYB model is to account for inten-
sity inhomogeneity in the foreground and background of the
image through the product image w. In LCV, the presence
of the blurred image z∗ in the data fitting term deals with
intensity inhomogeneity, whilst including z helps identify
contrast between regions. The authors found that the product
image w = z∗z can improve the data fitting in both respects.
Therefore, they construct a LCV-type function with w rather
than the original z. Their results suggest that this approach
is more robust.

2.4 Generalised Averages (GAV) Fitting [2]

Recently, Ali et al. [2] proposed using the data fitting terms
of Chan–Vese in a signed pressure force function framework
[48]. They refer to this approach as Generalised Averages
(GAV) as they update the intensity constants in an alternative
way, detailed below. In the convex framework, we consider
the selective GAV functional:

FGAV(u) = TVg(u) + fS(u) + fGAV(u), (23)

where fGAV(u) = fCV(u). This is identical to the CV
selective formulation (8). However, the authors propose an
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alternative update for the fitting constants c1 and c2, given as
follows:

c1 =
∫
Ω
zβuγ dΩ∫

Ω
zβ−1uγ dΩ

, c2 =
∫
Ω
zβ(1 − uγ ) dΩ∫

Ω
zβ−1(1 − uγ ) dΩ

,

(24)

with β ∈ R. If β = 1, the approach is identical to CV. In
[2], the authors assert that the proposed adjustments have
the following properties. As β → ∞, c1 and c2 approach
the maximum and minimum intensity in the foreground and
background of the image, respectively. Also, as β → −∞,
c1 and c2 approach the minimum intensity in the foreground
and background of the image, respectively. For example, if a
high value of β is set, c1 will take a larger value than in CV
which can be useful for selective segmentation. For example,
if we consider the image in Fig. 1, we can achieve a larger c2
value by setting β > 1 and a smaller value by setting β < 1.
Therefore, there ismoreflexibilitywhenusing this datafitting
term in selective formulations. However, it should be noted
that it involves the selection of the parameter β, which can
be difficult to optimise.

3 Alternative Selective Segmentation
Models

We now introduce two recent methods that incorporate user
input to perform selective segmentation. Each involves input
in the form of foreground/background regions to indicate
relevant structures of interest. An example of this can be
seen in Fig. 18, where red regions indicate foreground and
blue regions indicate background. We compare against the
work of Nguyen et al. [30], which uses a similar convex
relaxation framework to the proposed approach, and Dong et
al. [17], which uses a variation of the randomwalk approach.
We summarise the essential aspects of each approach in the
following.

3.1 Constrained Active Contours (CAC) [30]

The authors use a probability map, P(x), from Bai and
Sapiro [4] where the geodesic distances to the foreground/
background regions are denoted by DF(x) and DB(x),
respectively. An approximation of the probability that a point
x belongs to the foreground is then given by

P(x) = DB(x)

DF(x) + DB(x)
. (25)

Foreground/background Gaussian mixture models (GMM)
are estimated from the user input. The terms Pr(x|F) and
Pr(x|B) denote the probability that a point, x, belongs to

the foreground andbackground, respectively. Thenormalised
log likelihood for each is then given by

PF(x) = − log Pr(x|F)/(− log Pr(x|F) − log Pr(x|B)),

PB(x) = − log Pr(x|B)/(− log Pr(x|F) − log Pr(x|B)).

(26)

GMMs are widely used in selective segmentation [4,17,18,
22,36], and the authors in [30] incorporate this idea into the
framework we consider with the following data fitting term:

hc(x) = α0 (PB(x) − PF(x))+(1−α0) (1 − 2P(x)) , (27)

for a weighting parameter α0 ∈ [0, 1]. It is proposed that α0

is selected automatically as follows:

α0 = 1

N

N∑
i=1

∣∣∣∣ log Pr(xi |F) − log Pr(xi |B)

log Pr(xi |F) + log Pr(xi |B)

∣∣∣∣ , (28)

where N is the total number of pixels in the image. Defining
g0 as the function g(s) applied to the image z(x) and gp
applied to the GMM probability map PF(x), an enhanced
edge function is defined as

gc(x) = β0gp + (1 − β0)g0, (29)

for a weighting parameter β0 ∈ [0, 1], which can be set
automatically in a similar way to (28). Thus, Nguyen et al.
[30] define the Constrained Active Contours (CAC) Model
as

min
u∈[0,1]

{∫
Ω

gc(x)|∇u(x)| dΩ + λ

∫
Ω

hc(x)u(x) dΩ

}
.

(30)

They obtain a solution using the split Bregman method of
Goldstein et al. [19], although other methods are applicable
andwill yield similar results. However, that is not the focus of
this paper, so we omit the details here. In the results section,
Sect. 7, we will compare our method against CAC to see
how our data fitting term compares against a GMM-based
approach.

3.2 Submarkov RandomWalks (SRW) [17]

We now introduce a recent selective segmentation method
by Dong et al. [17] known as Submarkov Random Walks
(SRW). Rather than using the continuous framework of [14],
this approach is based in the discrete setting where each pixel
in the image is treated as a node in aweighted graph. Random
walks (RW) have been widely used for segmentation since
the work of Grady [22]. SRW is capable of achieving impres-
sive results with user-defined foreground and background
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regions. The selective segmentation result can be obtained
by assigning a label to each pixel based on the computed
probabilities of the random walk approach. For brevity, we
do not provide the full details of the method here; however,
further details can be found in [17]. We compare SRW to our
proposed approach on a CT data set in Sect. 7.4.

We now introduce essential notation to understand the
approachof [17]. InRW, an image is formulated as aweighted
undirected graph G = (V , E) with nodes v ∈ V and edges
e ∈ E ⊆ V × V . Each node vi represents an image pixel
xi . An edge ei j connects two nodes vi and v j , and a weight
wi j ∈ W of edge ei j measures the likelihood that a random
walker will cross this edge:

wi j = exp

(
−||Ii − I j ||2

σ0

)
+ ε0, (31)

where Ii and I j are pixel intensities, with σ0, ε0 ∈ R. In
SRW, a user indicates foreground/background regions in
a similar way to CAC, as shown in Fig. 18, and can be
viewed as a traditional random walker with added auxil-
iary nodes. In [17], these are defined as a set of labelled
nodes VM = {V l1, V l2 , . . . , V lK }. A set of labels is defined,
LS = {l1, l2, . . . , lK }, with K the number of labels V lk =
{V l1

1 , V l1
2 , . . . , V lK

MK
}, andMk the number of seeds labelled lk .

The prior is then constructed from the seeded nodes (defined
by the user). Assuming a label lk has an intensity distribu-
tion Hk (based on GMM learning), a set of auxiliary nodes
Hk = {h1, h2, . . . , hK } is added into an expanded graph Ge

to define a graph with prior Ḡ. Each prior node is connected
with all nodes in V and the weight, wihk , of an edge between
a prior node hk and a node vi ∈ V is proportional to uki , the
probability density belonging to Hk at vi .

The authors define the probabilities of each node vi ∈ V
belonging to label lk as the average reaching probability,
denoted r̄ lki . This term incorporates the auxiliary nodes intro-
duced above and is dependent on multiple variables and
parameters, including wi j (31). Further details can be found
in [17]. The segmentation result is then found by solving the
following discrete optimisation problem:

R̄i = argmax
lk

r̄ lki , (32)

where R̄i represents the final label for each node. In other
words, for a two-phase segmentation problem, R̄i is anal-
ogous to the discretised solution of a convex relaxation
problem in the continuous setting. Comparisons in terms of
accuracy can therefore be made directly, which we elaborate
on further in Sect. 7. The authors also detail the optimisation
procedure and aspects of dealing with noise reduction.

4 ProposedModel

In this section, we introduce the proposed data fitting term for
selective segmentation. We consider objects that are approx-
imately homogeneous in the target region. Intrinsically, it is
then assumed that the region P , provided by the user, is
likely to provide a reasonable approximation of the optimal
c1 value and therefore an appropriate foreground fitting func-
tion, f1, is given by CV (2). For this reason, it makes sense to
retain this term in the proposed approach. The contradiction
is in how the background fitting function f2 is defined. Con-
sidering piecewise-constant assumptions of the image, and
many of the related approaches, the background is expected
to be defined by a single constant value, c2. If c1 ≈ c2, then
f2 ≈ f1 everywhere, and therefore the fitting term can’t
accurately separate background regions from the foreground.
It is not practical to rely on fS(u) to overcome this difficulty
as it will produce an over-dependence on the choice of M
and P . This is prohibitive in practice. An alternative func-
tion f2 must therefore be defined which is compatible with
f1 and fS(u). Here, we define a new data fitting term that
penalises background objects in such a way that avoids these
problems by allowing intensity variation above and below
the value c1. In order to design a new functional, we first
look at the original CV background fitting function

f2 = (z(x) − c2)
2.

It is clear that in an approximately piecewise-constant image
this functionwill be small outside the target region (i.e.where
the image takes values near c2) and larger inside the target
region. Our aim in a new fitting term is to mimic this in such
a way that is consistent with selective segmentation, where
regions with a ‘foreground intensity’ are forced to be in the
background. It is beneficial to introduce two parameters, γ1
and γ2, to enforce the penalty on regions of intensity in the
range [c1 − γ1, c1 + γ2], i.e. enforce the penalty asymmetri-
cally around c1.Wepropose the following function to achieve
this:

f̃2(x) =

⎧⎪⎨
⎪⎩
1 + z(x)−c1

γ1
, c1 − γ1 ≤ z(x) ≤ c1

1 − z(x)−c1
γ2

, c1 < z(x) ≤ c1 + γ2

0, else.

(33)

This function takes its maximum value where z(x) = c1 and
is 0 for z(x) > c1−γ1 and z(x) < c1+γ2. In Fig. 2, we pro-
vide a 1D representation of f̃2(x) for various choices of γ1
and γ2, with z(x) ∈ [0, 1] and c1 = 0.5. Here, it can be seen
how the proposed data fitting term acts as a penalty in relation
to a fixed constant c1. It is analogous to CV, whilst account-
ing for the idea of selective segmentation with a data fitting
term. The main advantage of this term is that it replaces the

123



Journal of Mathematical Imaging and Vision (2019) 61:1173–1196 1179

Fig. 2 Three 1D plots of f̃2(x)

whilst varying γ1 and γ2 (with
c1 = 0.5)
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Fig. 3 An image with user input
P shown in red
(c1 = 0.152, c2 = 0.188). Here,
we show the difference between
the CV fitting function and the
proposed approach. The target
region is clearly defined by
negative values in (iii) (Color
figure online)

(i) Image and (ii) CV fitting (iii) New fitting

dependence on c2 in the formulation, which has no mean-
ingful relation to the solution of a selective segmentation
problem. Even when the foreground is relatively homoge-
neous, the backgroundmay have intensities of a similar value
to c1 which will cause difficulties in obtaining an accurate
solution. We detail the proposed fitting term in the following
section.

4.1 New Fitting Term

We define the proposed data fitting functional as follows:

fPM(u) :=
∫

Ω

(λ1 f1(x) − λ2 f̃2(x))u dΩ, (34)

for f1(x) = (z − c1)2 and f̃2(x) as defined in (33). This
is consistent with respect to the intensities of the observed
object and the concept of selective segmentation. In Fig. 3,
we see the difference between CV and the proposed fitting
terms for given user input on a CT image. For the CT image,
the CV fitting terms are near 0 within the target region. This
is despite there being a distinct homogeneous area with good
contrast on the boundary. This illustrates the problem we
are aiming to overcome. With the proposed fitting term, this
phenomenon should be avoided in cases like this. By defining
f̃2 as in (33), there is no contradiction if the foreground and
background intensities of the target region are similar.

For images where we assume that the target foreground is
approximately homogeneous, we have generally found that
fixing c1 according to the user input is preferable. We com-
pute c1 as the average intensity inside the region P formed
from the user input marker point set. We therefore propose to

minimise the following functional with respect to u ∈ [0, 1],
given a fixed c1 :

FPM(u) = TVg(u) + fPM(u) + fS(u). (35)

where fS is the geodesic distance computed as described
earlier using (6). The minimisation problem is given as

min
u∈[0,1] FPM(u) (36)

The model consists of weighted TV regularisation with a
geodesic distance constraint as in [35]. However, alternative
constraints are possible, such as Euclidean [39], or moments
[24]. It is important to note that we have defined the model
in a similar framework to the related approaches discussed
previously. The main idea is to establish how the proposed
fitting term, fPM(u), performs compared to alternative meth-
ods. Next we describe howwe determine the values of γ1 and
γ2 in the function f̃2(x) automatically. This is important in
practice as it avoids any additional user input or parameter
dependence to achieve an accurate result. In subsequent sec-
tions, we provide details of how we obtain a solution for the
proposed model.

4.2 Parameter Selection

For a particular problem, it is quite straightforward to opti-
mise the choice of γ1 and γ2 experimentally, but we would
like a method which is not sensitive to the choice of γ1
and γ2 and would also prefer that the user need not choose
these values manually. Therefore, in this section we explain
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Fig. 4 The histograms of
intensities for some example
images. The red lines are the
automatic thresholds Ti obtained
by Otsu’s thresholding with
N = 3 (Color figure online)
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how to choose these values automatically based on justifiable
assumptions about general selective segmentation problems.
To select the parameters γ1 and γ2, we use Otsu’s method
[32] to divide the histogram of image intensities into N par-
titions.Otsu’s thresholding is an automatic clusteringmethod
which chooses optimal threshold values to minimise the
intra-class variance. This has been implemented very effi-
ciently in MATLAB in the function multithresh for
dividing a histogram such that there are N − 1 thresholds
Ti .

We use the thresholds from Otsu’s method to find γ1 and
γ2 as follows. There are three cases to consider, based on the
value of c1 computed from the user input: i) Ti−1 ≤ c1 ≤ Ti
for some i > 1, ii) 0 ≤ c1 ≤ T1, iii) TN−1 ≤ c1 ≤ 1. For
each case, we set the parameters as follows:

(i) γ1 = c1 − Ti−1, γ2 = Ti − c1
(ii) γ1 = c1, γ2 = T1 − c1
(iii) γ1 = c1 − TN−1, γ2 = 1 − c1

Choosing N too large could mean γ1 and γ2 are too small as
the histogram would be partitioned too precisely. Generally,
we only ever need to consider a maximum of 3 phases for
selective segmentation. If there are a large number of pixels
in the image with intensity above or below c1, the image
can be considered two-phase in practice. Conversely, if a
large number of pixels in the image have intensity above and
below c1, the image can essentially be considered three-phase
in the context of selective segmentation. This is due to the
way f̃2 has been defined. Therefore, we set N = 3 for all
tests. In Fig. 4, we can see the Otsu thresholds chosen for
various images given in this paper. They divide the peaks in
the histogram well, and once we know the value of c1 (the
approximation of the intensity of the object we would like to
segment), we can automatically choose γ1 and γ2 according
to this criteria.

5 Numerical Implementation

We now introduce the framework in which we compute a
solution to the minimisation of the proposed model, as well

the related models introduced in Sects. 1 and 2. All consist
of the minimisation problem

min
u∈[0,1]

{
FX (u) = TVg(u) + fX (u) + fS(u)

}
, (37)

for X = CV, RSF, LCV, HYB, GAV, PM, respectively. Min-
imisation problems of this type (37) have beenwidely studied
in terms of continuous optimisation in imaging, including
two-phase segmentation. A summary of such methods in
recent years is given by Chambolle and Pock [13]. Details
of the introduction of binary labels to image segmentation
can be found in Lie et al. [26] and Chan et al. [14], and our
numerical scheme follows the approach in [14]: enforcing the
constraint in (37) with a penalty function, and deriving the
Euler–Lagrange of the regularised functional. We then solve
the corresponding PDE by following a splitting scheme first
applied to this kind of problem by Spencer and Chen [39].
Whilst the numerical details are not the focus of the work,
it is important to note widely used alternatives. A summary
of such approaches, describing major developments in this
area and the connections between each method, is given in a
review by Wei et al. [44].

It has proved very effective to exploit the duality in the
functional and avoid smoothing the TV term. A prominent
example is the split Bregman approach for segmentation by
Goldstein et al. [19]. This is closely related to augmented
lagrangian methods, a matter further discussed by Boyd
et al. [7]. Analogous approaches also consist of the first-
order primal dual algorithm of Chambolle and Pock [12]
and the max-flow/min-cut framework detailed by Yuan et al.
[47]. There are practical advantages in implementing such
a numerical scheme for our problem, primarily in terms of
computational speed. However, in the numerical tests we
include we’re mainly interested in accuracy comparisons.
For this purpose, the convex splitting algorithm of [39] is
sufficient, and the extension of splitting schemes for convex
segmentation problems may be of interest. Further details
can be found in [35,39]. In the following, we first discuss
the minimisation of (37) in a general sense and then mention
some important aspects in relation to the alternative fitting
terms discussed in Sect. 2.
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5.1 Finding the Global Minimiser

To solve this constrained convex minimisation problem (38),
we use the Additive Operator Splitting (AOS) scheme from
Gordeziani et al. [20], Lu et al. [28] and Weickert et al. [45].
This is used extensively for image segmentation models [34,
35,39]. It allows the 2D problem to be split into two 1D
problems, each solved separately, with the results combined
in an efficient manner. We address some aspects of AOS in
Sect. 6, with further details provided in [35,39].

A challenge with the functional (35), particularly with
respect to AOS, is that this is a constrained minimisation
problem. Consequently, it is reformulated by introducing an
exact penalty function, ν(u), given in [14]. To simplify the
formulation, we define

r(x) = θD(x) + f (x),

f (x) is the function associated with fX (u). We introduce a
new parameter, λ̃, which allows us to balance the data fitting
terms to the regularisation termmore reliably. To be clear, we
still only have twomain tuning parameters (θ and λ̃) as we fix
any variable parameters in f (x) according to the choices in
the corresponding papers. The unconstrained minimisation
problem is then given as:

min
u

{
TVg(u) + λ̃

∫
Ω

r(x)u dΩ + α

∫
Ω

ν(u) dΩ

}
. (38)

We rescale the data term with F (x) = r(x)/||r(x)||∞. In
effect, this change is simply a rescaling of the parameters.
This allows for the parameter choices between differentmod-
els to be more consistent, as the fitting terms are similar
in value. The problem (38) has the corresponding Euler-
Lagrange equation (for fixed c1):

∇ ·
(
g(|∇z|) ∇u

|∇u|ε1

)
− λ̃F (x) − αν′

ε2
(u) = 0. (39)

in Ω and ∂u
∂n = 0 where n is the outward unit normal. The

constraint is enforced for α > λ̃
2 ||r(x)|| by [14]. Two param-

eters, ε1 and ε2, are introduced here. The former is to avoid
singularities in the TV term, and the latter is associated with
the regularised penalty function νε2(u) from [39]:

νε2(u) = Hε2

(
bε2(u)

) [
bε2(u)

]
, (40)

with bε2(u) = √
(2u − 1)2 + ε2 − 1 and regularised Heavi-

side function

Hε2(u) = 1

2

(
1 + 2

π
arctan

(
u

ε2

))
. (41)

The viscosity solution of the parabolic formulation of (39),
obtained by multiplying the PDE by |∇u|, exists and is
unique. The general proof for a class of PDEs to which (39)
belongs is included in [35], and we refer the reader there for
the details. Once the solution to (39) is found, denoted u∗,
we define the computed foreground region as follows:

uγ = {x ∈ Ω| u∗(x) > γ }. (42)

We select γ = 0.5 (although other values γ ∈ (0, 1) would
yield a similar result according to Chan et al. [14]). In the
following,we use the binary formof the solution, u∗, denoted
uγ . This partitions the domain into ΩF and ΩB according to
the labelling function uγ .

5.2 Implementation for RelatedModels

The discussion in this section so far has used the function
f (x) associated with the data fitting functional fX (u). This
corresponding equations for the RSF, LCV, HYB and GAV
models are detailed in Sect. 2, CV is discussed in Sect. 1, and
our approach is given by (34). We use this implementation
to obtain selective segmentation versions of each of those
models, given by (37). When these terms contain parameter
choices, we follow the advice in the corresponding papers as
far as possible, unless we have found that alternatives will
improve results. In the next section, we will give the results
of thesemodels and compare them to our proposed approach.

NoteWenow discuss details behind tuning parameters for
the GAV model. It is noted in Sect. 2 that the GAV model
requires a parameter β to adapt the c1 and c2 calculation. We
find that it is actually better to consider c1 and c2 separately
to achieve improved results, as sometimes we wish to tune
the values to have a higher c1 and lower c2 (or vice-versa)
simultaneously. Therefore, we introduce parameters β1 and
β2 to tune c1 and c2 as follows:

c1 =
∫
Ω
zβ1u∫

Ω
zβ1−1u

dΩ, c2 =
∫
Ω
zβ2(1 − u)∫

Ω
zβ2−1(1 − u)

dΩ, (43)

In all experiments, we tested the following combinations
of (β1, β2): (1.5, 0.5), (2, 0), (3,−1), (4,−2), (0.5, 1.5),
(0, 2), (−1, 3) and (−2, 4). For each choice, we optimised
the values of λ̃ and θ according to the procedure described in
Sect. 7.1. This allowed us to select the optimal combination
of (β1, β2) for each image.

6 Algorithm

Here, we will discuss the algorithm that we use to minimise
the selective segmentation model (37). We utilise additive
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operator splitting techniques to solve the minimisation prob-
lem efficiently.

6.1 An Additive Operator Splitting (AOS) Scheme

Additive Operator Splitting (AOS) [20,28,45] is a widely
used method for solving PDEs with linear and nonlinear dif-
fusion terms [34,35,39] such as

∂u

∂t
= μ∇ · (G(u)∇u) − f0. (44)

AOS allows us to split the two-dimensional problem into
two one-dimensional problems, which we solve separately
and then combine. Each one-dimensional problem gives rise
to a tridiagonal system of equations which can be solved
efficiently by Thomas’ algorithm, and hence AOS is a very
efficient method for solving PDEs of this type. AOS is a
semi-implicit method and permits far larger time-steps than
the corresponding explicit schemes would. Hence AOS is
more stable than an explicit method [45]. Note here that

G(u) = g(|∇z|)
|∇u|ε1

, f0 = λ̃F (x) + αν′
ε2

(u), (45)

and μ = 1. The standard AOS scheme assumes f0 does
not depend on u; however, in this instance that is not the
case. This requires a modification to be used for convex
segmentation problems, first introduced by [39]. This non-
standard formulation incorporates the regularised penalty
term, νε2(u), into the AOS scheme which we briefly detail
next.

The authors consider the Taylor expansions of ν′
ε2

(u)

around u = 0 and u = 1. They find that the coefficient
b of the linear term in u is the same for both expansions.
Therefore, for a change in u of δu around u = 0 and u = 1
the change in ν′

ε2
(u) can be approximated by b · δ(u). To

address this, the relevant interval is defined as

Iζ := [0 − ζ, 0 + ζ ] ∪ [1 − ζ, 1 + ζ ]

and a corresponding update function is given as

b̃(x) =
{
b, x ∈ Ω, u(x) ∈ Iζ
0, else.

The solution for (44) is then obtained by discretising the
equation as follows:

u(k+1) − u(k)

τ
= μ

∑
�=1,2

A�(u
(k))u(k+1)

+ αb̃(k)(u(k) − u(k+1)) − f (k)
0 .

where A1 and A2 are discrete forms of ∂x (G(u)∂x ) and
∂y(G(u)∂y), respectively (given in [35,39]). The modified
AOS update is then given by

u(k+1) = 1

2

2∑
�=1

(
I − 2τμ(I + B̃(k))−1A�(u

(k))

)−1

ũ(k),

(46)

where B̃(k) = diag(ταb̃(k)) and ũ(k) = u(k) + τ(I +
B̃(k))−1 f (k)

0 . This scheme allows for more control on the
changes in f0 between iterations due to the function b̃ and
parameter ζ and therefore leads to amore stable convergence.
We refer the reader to [39] for full details of the numerical
method.

6.2 The Proposed Algorithm

In Algorithm 1, we provide details of how we find the min-
imiser of the various selective segmentation models detailed
above, defined by (37). The algorithm is in a general form
to be applied to any of the approaches discussed so far. It
is important to reiterate that alternative solvers to AOS are
available, such as the dual formulation [3,8,11], split Breg-
man [19], augmented Lagrange [6], primal dual [12], and
max-flow/min-cut [47]. In all experiments, we use the tol-
erance of 10−4 for the stopping criteria and set ε1 = 10−4,
ε2 = 10−1 and τ = 10−2.

Algorithm 1 Selective Segmentation Algorithm
Provide user input region P and compute D , according to (6).
Define f (x) appropriately for the model (CV, RSF, LCV, HYB, GAV,
or the proposed approach).
Compute r(x) = θD(x) + f (x). and F (x) = r(x)/||r(x)||∞.
Initialise u (arbitrary for u ∈ [0, 1]).
while δ > tolerance do

uold := u.
Update u according to the AOS iteration (46).
δ = ||u − uold ||/||uold ||.

end while
return u∗ = u and binary labelling function, uγ .

7 Results

In this section, we will present results obtained using the pro-
posed model and compare them to using fitting terms from
similarmodels (CV[15],RSF [25], LCV[43],HYB[1],GAV
[2]), detailed in Sect. 2, and additional comparisons to alter-
native selective models. Specifically, we compare against the
work of Nguyen et al. [30] and Dong et al. [17], referred to
as CAC and SRW, respectively, and detailed in Sect. 3. We
intend to provide an overview of how effective each approach
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Fig. 5 Test Images 1–3; the
ground truth contours are
defined in the first row, and the
corresponding user input marker
set is shown in the second row.
These are synthetic images with
homogeneous foregrounds
selected to highlight the benefits
of the proposed model

Test Image 1 Test Image 2 Test Image 3

Fig. 6 Test Images 4–6; the
ground truth contours are
defined in the first row and the
corresponding user input marker
set is shown in the second row.
These are real images with some
degree of intensity
inhomogeneity in the
foreground, with potential
medical applications in mind

Test Image 4 Test Image 5 Test Image 6

is in a number of key respects and analyse their potential for
practical use in a reliable and consistent manner. Our focus is
on how each fitting term can be applied to a consistent selec-
tive segmentation framework, and how robust the proposed
model is overall. The key questions we consider are:

(i) How sensitive are the results to variations of the param-
eters λ̃ and θ?

(ii) Is the model capable of achieving accurate results?
(iii) To what extent is the proposed model dependent on the

user input?

(iv) Does the model compare favourably against alternative
selective methods?

Test Images We will perform initial tests on the images
shown in Figs. 5, 6 and 7. We have provided the ground
truth and initialisation used for each image. Test Images 1–3
are synthetic, Test Image 4 is an MRI scan of a knee, Test
Images 5–6 are abdominal CT scans, and Test Images 7–
9 are lung CT scans. They have been selected to present
challenges relevant to the discussion in Sect. 2. We focus on
medical images as this is the application of most interest to
ourwork. In the following,wewill discuss the results in terms
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Fig. 7 Test Images 7–9; the
ground truth contours are
defined in the first row, and the
corresponding user input marker
set is shown in the second row.
These are real images with
approximately homogeneous
foregrounds. The challenge is
that the background contains
substantial regions of a similar
intensity

Test Image 7 Test Image 8 Test Image 9

of synthetic images (1–3) and real images (4–9). We also test
the proposed approach on a larger data set of 30 CT images (a
sample of which is presented in Fig. 18), comparing against
existing selective methods detailed in Sect. 3.

Measuring Segmentation Accuracy In our tests, we use
the JaccardCoefficient [23], often referred to as the Tanimoto
Coefficient (TC), to measure the quality of the segmentation.
We define accuracy with respect to a ground truth, GT, given
by a manual segmentation:

GT = {x ∈ Ω| x ∈ foreground}.

The Tanimoto Coefficient is then calculated as

TC = |N (uγ ∩ GT)|
|N (uγ ∪ GT)| ,

where N (·) refers to the number of points in the enclosed
region. This takes values in the range [0, 1], with higher
TC values indicating a more accurate segmentation. In the
following, we will represent accuracy visually from red
(TC = 0) to green (TC = 1), with the intermediate scal-
ing of colours used shown in Fig. 8. This will be particularly
relevant in Sect. 7.2.

Note In Sect. 2.4, we mentioned the tuning of parameters
in the GAV model. To be explicit, the optimal (β1, β2) pairs
used in the following tests were (4, −2) for Test Images 1
and 2, (1.5, 0.5) for Test Images 3, 4, and 6, (2,0) for Test
Image 5, and (−2, 4) for Test Images 7, 8, and 9. Results
vary significantly as (β1, β2) are varied, but we found these
to be the best choices for each image.

The discussion of results is split into four sections,
addressing the questions introduced above. First, in Sect. 7.1,

Fig. 8 Colour scaling corresponding to TC values, representing the
accuracy of the result. This scale is used in subsequent figures (Color
figure online)

we will examine the robustness to the parameters λ̃ and θ for
each model. Then, in Sect. 7.2, we will compare the optimal
accuracy achieved by each method to determine what they
are capable of in the context of selective segmentation for
these examples. In Sect. 7.3, we will test the proposed model
with respect to the user input. By randomising the input, we
will determine to what extent the proposed model is suitable
for use in practice. Finally, in Sect. 7.4 we will compare the
proposed approach to the methods introduced in Sect. 3 on
an additional CT data set. This will help further establish
how the algorithm performs against competitive approaches
in the literature.

7.1 Parameter Robustness

In these tests,we aim todemonstrate howsensitive to parame-
ter choices each choice of fitting term is. To accomplish this,
we perform the segmentations for each of the models dis-
cussed (CV, RSF, LCV, HYB, GAV) and the proposed model
for a wide range of parameters and compute the TC value.
The parameter range used is λ̃, θ ∈ [1, 50]. Due to computa-
tional constraints, we run for each integer λ̃, θ between 1 and
10, and every fifth from 15 to 50. This aspect of a model’s
performance is vital when used in practice. The less sensi-
tive to parameter choices a model is the more relevant it is in
relation to potential applications. It should be noted that we
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Fig. 9 Example heatmapofTCvalues to display segmentation accuracy
for parameters (λ̃, θ)

neglect to test the selective models detailed in Sect. 3 with
respect to parameter robustness as we are using the authors’
implementation of each approach. Instead, we make direct
comparisons in the following sections.

The TC values for the parameter sets (λ̃, θ) are presented
as heatmaps in Figs. 11, 12 and 13. A heatmap is a conve-
nient way to display accuracy results for hundreds of tests
concisely. In Fig. 9, we give an example heatmap with the
same axes used for those in Figs. 11, 12 and 13. For each
of the combinations of parameter values (λ̃, θ), we give the
TC value of the segmentation result and represent it by the
appropriate colour. The corresponding colour scale is shown
in Fig. 8. Qualitatively, the more green areas of the heatmap,
the more accurate the model is for a wider set of parame-
ters. Example results for Test Image 5 when varying λ̃ (with
θ = 4) for the proposed model are given in Fig. 10. Here, it
can be seenwhat each accuracy result corresponds to visually.

Note The axes have been removed from the heatmaps in
Figs. 11, 12 and 13 for presentational clarity. However, to be
explicit, the axes used in all heatmaps are the same as those
in Fig. 9.

Synthetic Images These results are presented in Fig. 11.
For Test Images 1–2, we see poor parameter robustness from
all competing models, except for GAV which performs rea-
sonably well. However, the proposed model has minimal
parameter sensitivity for these images, with good results
achieved for almost every combination of values tested. For
Test Image 3, all models have a reasonable parameter range
(except for RSF); however, the proposed model gives bet-
ter quality results for a wider parameter range. The other
models achieve reasonable results here as the foreground
intensity of the ground truth is greater than the background
(c1 = 0.75, c2 = 0.49), whereas for Test Images 1–2 they
are equal (c1 = c2 = 0.50). These results highlight the key
advantage of the proposed model.

Real Images In Fig 12, we present results for Test Images
4–6. Here, the proposed model performs in a similar way to
its competitors because these images are more typical selec-
tive segmentation problems in the sense that there is a clear
distinction between the foreground and background intensi-
ties. In particular, the values in each case are: Test Image
4 (c1 = 0.85, c2 = 0.25), Test Image 5 (c1 = 0.70, c2 =
0.19), and Test Image 6 (c1 = 0.73, c2 = 0.20). It can
be seen that the proposed model is competitive compared
to previous approaches. The performance is quite poor for
Test Image 5, but is arguably still the best for this challeng-
ing case. In Fig. 13, we present results for Test Images 7–9.
Here, the proposed model outperforms previous approaches
significantly for each image. This is mainly due to the type
of image considered. Specifically, the true intensities are:
Test Image 7 (c1 = 0.12, c2 = 0.24), Test Image 8 (c1 =
0.10, c2 = 0.23), and Test Image 9 (c1 = 0.08, c2 = 0.14).
The proposed model is capable of achieving results where
c1 ≈ c2, with other models failing completely in these cases.

7.2 Accuracy Comparisons

Here, we aim to address the question of whether each model
is capable of achieving an accurate result. In other words,
assuming that factors such as parameter and user input sen-
sitivity are ignored, how successful is each approach. In
Table 1, we present the optimal TC values for each model
found from the tests described in the previous section, with
the highest value in bold.We include values for CAC [30] and
SRW [17], which we have obtained by iteratively refining the
user input and running the algorithm. It is worth mention-
ing that we are using the authors’ implementation of each
method. For each image, the results presented in Table 1 are
the most accurate we could obtain given a reasonable level
of input (comparisons with identical input are discussed in
Sect. 7.4). Immediately, we can see that the proposed model
consistently outperforms the other models in terms of accu-
racy for the test images (RSF equals it for Test Image 1, SRW
equals it for Test Images 1–3, and beats it for Test Image 8).
Below we will discuss some relevant details of the results,
again by splitting the test images into synthetic and real.

Synthetic ImagesWe observe that for Test Images 1 and
2 (where c1 = c2) CV, LCV, and HYB fail completely.
GAV performs well, with the proposed model and RSF being
the most accurate with perfect results. For Test Image 3, all
models are capable of achieving a good result. It should be
noted that in this case c1 = 0.75 and c2 = 0.49. This dif-
ference enables the other models to perform well, although
the proposed model is slightly superior with a perfect result.
The alternative selective models also perform well for these
images, although CAC has minor errors on the boundaries of
the foreground for each image.
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(i) λ̃ = 1, TC = 0.00 (ii) λ̃ = 2, TC = 0.79 (iii) λ̃ = 3, TC = 0.91 (iv) λ̃ = 4, TC = 0.95

(v) λ̃ = 5, TC = 0.95 (vi) λ̃ = 6, TC = 0.95 (vii) λ̃ = 7, TC = 0.94 (viii) λ̃ = 8, TC = 0.94

(ix) λ̃ = 9, TC = 0.93 (x) λ̃ = 10, TC = 0.93 (xi) λ̃ = 15, TC = 0.93 (xii) λ̃ = 20, TC = 0.85

Fig. 10 Segmentation results and TC values for the proposed model whilst varying λ̃ (with θ = 4). The colours correspond to the TC value (green
is TC = 1, red is TC = 0), consistent with the scale in Fig. 8. This is for Test Image 5, with the corresponding heatmap provided in Fig. 12 (Color
figure online)

Real Images In Table 1, we can see that the proposed
model is the most successful in terms of optimal accuracy.
It is worth noting some inconsistency in the other models,
with all but GAV having results that fall below TC = 0.9
for at least one image. GAV performs well for Test Images
4–9, with the proposed model slightly outperforming it in
each case. It is worth reminding the reader that for GAV the
parameters (β1, β2) have been refined for each example. Fix-
ing this results inmore variability in the quality of results. The
proposedmodel has no such parameter optimisation between
examples. CAC and SRW perform reasonably well for these
images, although are sometimes substandard for Test Images

4-7. This is despite extensive refinement of the user input to
achieve an acceptable result. We present the optimal results
for Test Image 9 in Fig. 14. Here, we can see how much
variation there is in the quality of results for this lung CT
image. CAC and SRW are competitive in this instance. Of
the remaining approaches, GAV is the most competitive (TC
= 0.919), but is visually inadequate. Two other models (CV,
HYB) fail completely. In this case, the problem looks quite
straightforward and yet other fitting terms are insufficient to
produce a good result. Again, the proposed model tends to be
superior in cases where c1 ≈ c2 and is capable of achieving
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Fig. 11 Heatmaps of TC values
for permutations of λ̃ and θ .
Each row and column is labelled
according to the model used and
the image tested. The colour is
consistent with the scale in
Fig. 8. Here, we present Test
Images 1–3 (Color figure online)

Test Image 1 Test Image 2 Test Image 3

CV [15]

RSF [25]

LCV [43]

HYB [1]

GAV [2]

Proposed
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Fig. 12 Heatmaps of TC values
for permutations of λ̃ and θ .
Each row and column is labelled
according to the model used and
the image tested. The colour is
consistent with the scale in
Fig. 8. Here, we present Test
Images 4–6 (Color figure
online)

Test Image 4 Test Image 5 Test Image 6

CV [15]

RSF [25]

LCV [43]

HYB [1]

GAV [2]

Proposed
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Fig. 13 Heatmaps of TC values
for permutations of λ̃ and θ .
Each row and column is labelled
according to the model used and
the image tested. The colour is
consistent with the scale in
Fig. 8. Here, we present Test
Images 7–9 (Color figure online)

Test Image 7 Test Image 8 Test Image 9

CV [15]

RSF [25]

LCV [43]

HYB [1]

GAV [2]

Proposed
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Table 1 Optimal TC values for
Test Images 1–9, for the models
introduced in Sect. 2
(CV,RSF,LCV,HYB,GAV),
Sect. 3 (CAC,SRW) and the
proposed approach

Model Test Image

1 2 3 4 5 6 7 8 9

CV 0.000 0.000 0.970 0.969 0.933 0.988 0.889 0.931 0.180

RSF 1.000 0.997 0.993 0.924 0.884 0.956 0.785 0.950 0.782

LCV 0.313 0.142 0.970 0.970 0.941 0.988 0.911 0.960 0.828

HYB 0.184 0.091 0.988 0.960 0.870 0.988 0.000 0.000 0.000

GAV 0.984 0.960 0.988 0.967 0.965 0.988 0.950 0.954 0.919

CAC 0.985 0.949 0.946 0.881 0.916 0.961 0.916 0.967 0.952

SRW 1.000 1.000 1.000 0.761 0.724 0.708 0.917 0.978 0.957

Proposed 1.000 1.000 1.000 0.973 0.989 0.990 0.965 0.961 0.971

The best result for each image is given in bold

(i) CV [15], TC = 0.18 (ii) RSF [25], TC = 0.78 (iii) LCV [43], TC = 0.83 (iv) HYB [1], TC = 0.00

(v) GAV [2], TC = 0.92 (vi) CAC [30], TC = 0.95 (vii) SRW [17], TC = 0.96 (viii) Proposed, TC = 0.97

Fig. 14 We present the optimal results for Test Image 9. The accuracy is represented by colour, consistent with the scale in Fig. 8. The proposed
model often significantly outperforms previous approaches in this case (Color figure online)

very good results for all the images considered. This high-
lights the advantages of the proposed fitting term.

7.3 User Input Randomisation

One key consideration for the practical use of selective seg-
mentation models is that the result is not too reliant on user
input. With intricate user input, accurate results are almost
guaranteed. However, the benefit of this kind of approach
is that accuracy should be attainable with minimal, intuitive
user input. One challenge in this setting is how to ascertain
to what extent a method is dependent on the user input. In

this section,wewill generalise the user input for the proposed
model in order to determine how sensitive it is in this respect.
By generalising in this way, we will make two assumptions
about the markers,M , consistent with the above considera-
tions:

(i) All points are within the target object.
(ii) Only 3 markers are selected.

We regard neither of these assumptions to be too onerous
on a user and are quite consistent with practical use. To per-
form this test, we randomly choose 1000 sets of 3 marker
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Fig. 15 Boxplots of the TC
values for 1000 random user
inputs using the proposed
model. We observe that the
method is remarkably
consistent. Even the worst
results, excluding outliers, are
competitive with the optimal
results of the existing
approaches shown in Table 1

points and run each algorithm using them. The parameters λ̃

and θ are fixed at those which gave the optimal TC values in
Table 1. For each set of marker points, we compute the corre-
sponding TC value of applying the proposed model with this
input. The results for each image are summarised by box-
plots in Fig. 15 with examples of the worst results, excluding
outliers, shown in Fig. 16. Here, it can be seen that the worst
result often outperforms the optimal results of the alternative
models considered, which is impressive. Below we discuss
the results for the test images, by again splitting them into
synthetic and real images. Based on the authors’ implemen-
tation of CAC and SRW, it was not possible to generalise
the input in this way. Instead we make direct comparisons of
input in the next section.

Synthetic Images For the Test Images 1–3, we achieve
near-perfect segmentations in all cases, shown by the mean
TC being between 0.99 and 1.00 in all cases (for Test Image
1, the mean is precisely 1.00) and a small variance around
the mean. Therefore, we can conclude that for images of this
type, where the foreground is homogeneous, our method is
very robust to user input. Essentially, any reasonable set of
markers should produce excellent results. It should be noted
that the optimal results from comparable approaches are less
than the mean result of 1000 random tests for our method
(except for SRW). This can be observed in Table 1. Fur-
thermore, these methods often fail completely. This is a key
result highlighting the advantages of our method. In visually
simple cases (Test Images 1–3), our new data fitting term
is an improvement on existing approaches by modifying the
underlying assumptions involved.

Real Images In all cases for Test Images 4–9, the mean
values show that the segmentation results are highly accurate.
Also,we notice that the variances are very reasonable demon-
strating the robustness of varying the user input. This is an

important aspect of selective segmentation and highlights the
advantages of the proposed fitting term. For Test Images 4–
6, we observe more variability in the accuracy due to minor
intensity inhomogeneity in the foreground. This means ran-
domising the user input will be more sensitive. However, we
can see that the results are very good with the mean accuracy
being competitive with the optimal accuracy of comparable
methods. In the case of the lungCT images (Test Images 7–9),
the variance in TC values is very small, due to the homogene-
ity of the foreground. Again, it is important to compare the
results of 1000 random results using our proposed model to
the optimal result of comparable methods. For these images,
all of the methods (except GAV,CAC, and SRW) have at least
one TC value below 0.9. However, GAV requires the tuning
of additional parameters (β1, β2), whilst the proposed model
does not. The results for CAC and SRW also rely on exten-
sive requirements of the user input to achieve this accuracy,
whereas random input compares favourably here. Compared
to GAV, we can see that the mean of our tests is similar to
the optimal value of GAV. One exception is for Test Image 9
(shown in Fig. 14), where there is a significant gap in favour
of our model. Again, from Fig. 16, we can see that the worst
result of randomising the user input for the proposed model
is competitive with the optimal results of the alternatives.
This is one of the most encouraging aspects of the tests; the
proposed model is remarkably robust to varying user input.
This proves that successful results with minimal, intuitive
user input is possible for a range of examples.

7.4 Alternative Selective Methods

In order to further establish the robustness of our method,
we now introduce the results of testing our approach against
competing interactive segmentation methods on a larger data
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Fig. 16 Results for the
proposed model for each image,
including TC values. The worst
result, excluding outliers, of
1000 random user inputs for
each example is presented. This
demonstrates that the model is
robust to user input, with poor
results being competitive with
the optimal result of competitors

(i) TC = 1.00 (ii) TC = 0.99 (iii) TC = 1.00

(iv) TC = 0.95 (v) TC = 0.93 (iv) TC = 0.97

(vii) TC = 0.95 (viii) TC = 0.95 (ix) TC = 0.96

Fig. 17 Boxplots of the TC
values comparing our method to
CAC [30] and SRW [17] for 30
test images. Ours (i) refers to
using identical user input to
CAC and SRW, with a sample
shown in Fig. 18. Ours (ii) refers
to 1000 random variations of the
user input for each image
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Fig. 18 Examples of the input used to compare our method to CAC [30] and SRW [17]. Each row represents an image in the dataset, and we present
five variations of the input used in the tests described in Sect. 7.4

set. The results are presented in Fig. 17, showing a box-
plot of accuracy in terms of TC on a set of 30 CT images
(excluding outliers). The target structure we consider is the
spleen, as this consists of a relatively homogeneous fore-
ground, appropriate for the approach considered. The data
have been manually contoured providing ground truth data
for the image set. We compare CAC [30] and SRW [17]
against our method with five variations of user input for each
image. It is worth emphasising here that the input used in
the tests is identical for each approach and was not refined
in any way. It was designed to mimic what a user, unfamiliar
with each approach, might select intuitively. A representative
example for three images is shown in Fig. 18. This shows
foreground (red) and background (blue) user input regions.
For our method, we define the red region asP as discussed
in Sect. 1 and enforce hard constraints on the blue region.
We refer to the results of the proposed approach using this
input as ours (i). We also include results of randomising the
user input in an identical way to Sect. 7.3. For each image,
we generate 1000 simulated user input choices, which we
present as ours (ii). It is important to note that the difference
between ours (i) and (ii) is only the definition of P . The
method and parameters are fixed between each.

The performance of CAC [30] is very good, as shown in
Fig. 17. We have included an additional figure to highlight

the difference between CAC and ours (i) and (ii) more pre-
cisely. This is shown in Fig. 19. (This is the same as Fig. 17
with TC restricted to [0.8,1].) Here, we can see that the pro-
posed approach has a slightly better median (0.96 compared
to 0.94) and is generally more consistent than CAC. This is
particularly evident when considering the worst TC results
of CAC (0.19) against ours (0.87).

In Fig. 17, it can be seen that our method exceeds the per-
formance of SRWby a largemargin (0.66 compared to 0.95).
Onepossible reason for this is that the input used, as displayed
in Fig. 18, is restricted to be as intuitive as possible. SRW
is capable of achieving improved results with more elabo-
rate foreground/background input. However, it is generally
reliant on a trial and error approachwhich is not ideal in prac-
tice. This highlights an important advantage of our method.
It is able to achieve a high standard of results with simple
user input. This is reinforced by considering ours (ii), where
the results of 30,000 random variations of the user input do
not cause a dropoff in accuracy compared to the 150 manual
user input selections. Again, this can be seen more clearly in
Fig. 19. In fact, the results for the proposed approachwith the
random input are slightly better than with the manual input.
This underlines the robustness to user input in the model,
which is a vital aspect of selective segmentation.
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Fig. 19 Boxplots of the TC
values from Fig. 17 for
TC ∈ [0.8, 1]. Here, the extent
to which the proposed method
outperforms CAC [30] is clearer
for both types of input

8 Conclusion

In this paper, we have proposed a new intensity fitting term,
for use in selective segmentation. We have compared it to
fitting terms from comparable approaches (CV, RSF, LCV,
HYB, GAV), in order to address an underlying problem in
selective segmentation: if the foreground is approximately
homogeneous what is the best way to define the intensity
fitting term? Previous methods [34,35,39] involve contradic-
tions in the formulation, which we attempt to address.

We have evaluated the success of the proposed model
in four respects: parameter robustness, optimal accuracy,
dependence on user input, and comparisons to competing
selectivemodels.Our focus is onmedical applications,where
the target object has approximately homogeneous intensity.
In each way, the proposed model performs very well, par-
ticularly in cases where the true foreground and background
intensities are similar. We have shown that our method is
remarkably insensitive to varying user input, highlighting its
potential for use in practice, and also outperforms competi-
tive algorithms in the literature.
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