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Abstract 10 

Triggering Receptor Expressed in Myeloid Cells 2 (TREM2) is a pattern recognition receptor on 11 
myeloid cells, and is upregulated on microglia surrounding amyloid plaques in Alzheimer’s disease 12 
(AD). Rare, heterozygous mutations in TREM2 (e.g. R47H) increase AD risk several fold. TREM2 13 
can be cleaved at the plasma membrane by metalloproteases to release the ectodomain as soluble 14 
TREM2 (sTREM2). Wild-type sTREM2 binds oligomeric amyloid beta (Ab) and acts as an 15 
extracellular chaperone, blocking and reversing Ab oligomerization and fibrillization, and preventing 16 
Ab-induced neuronal loss in vitro. Whereas, R47H sTREM2 increases Ab fibrillization and 17 
neurotoxicity. AD brains expressing R47H TREM2 have more fibrous plaques with more neuritic 18 
pathology around these plaques, consistent with R47H sTREM2 promoting Ab fibrillization relative 19 
to WT sTREM2.  Brain expression or injection of wild-type sTREM2 reduces pathology in amyloid 20 
models of AD in mice, indicating that wild-type sTREM2 is protective against amyloid pathology. 21 
Levels of sTREM2 in cerebrospinal fluid (CSF) fall prior to AD, rise in early AD, and fall again in late 22 
AD.  People with higher sTREM2 levels in CSF progress more slowly into and through AD than do 23 
people with lower sTREM2 levels, suggesting that sTREM2 protects against AD.  However, some of 24 
these experiments can be interpreted as full-length TREM2 protecting rather than sTREM2, and to 25 
distinguish between these two possibilities, we need more experiments testing whether sTREM2 itself 26 
protects in AD and AD models, and at what stage of disease.  If sTREM2 is protective, then treatments 27 
could be designed to elevate sTREM2 in AD. 28 

1 Introduction 29 

1.1 TREM2 30 

Triggering Receptor Expressed in Myeloid Cells 2 (TREM2) is a pattern recognition receptor found 31 
on the plasma membrane of myeloid cells. When activated by ligands, such as phospholipids, 32 
lipoproteins and amyloid beta peptide (Ab), TREM2 induces an innate immune response, which 33 
includes phagocytosis, chemotaxis, and transcriptional changes (Keren-Shaul et al., 2017; Deczkowska 34 
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et al., 2020; Kulkarni et al., 2021). TREM2 signalling is mainly via binding DAP12 (DNAX-activating 35 
protein of 12 kDa), which activates Syk tyrosine kinase (Deczkowska et al., 2020). Within the brain, 36 
TREM2 is almost uniquely expressed by microglia, and is upregulated on microglia around amyloid 37 
plaques in AD (Giraldo et al., 2013; Yuan et al., 2016; Brendel et al., 2017). Rare, heterozygous 38 
mutations of TREM2 are known to affect AD risk, including the R47H mutation, which increases AD 39 
risk several fold (Guerreiro et al., 2012; Jonsson et al., 2013; Giraldo et al., 2013; Kulkarni et al., 2021). 40 
These mutations are thought to increase AD risk by reducing the protective roles of microglial TREM2, 41 
in particular by reducing microglial phagocytosis of amyloid plaques (Condello et al., 2015; Yuan et 42 
al., 2016). 43 

1.2 sTREM2 44 

TREM2 is a single-pass type I transmembrane protein with a small C-terminal on the cytosolic side of 45 
the plasma membrane, and an N-terminal ectodomain that includes the ligand binding site (Zhong & 46 
Chen 2019; Yang et al., 2020).  However, the ectodomain of TREM2 is shed from cells expressing 47 
full-length TREM2 into the extracellular medium, and is then known as soluble TREM2 (sTREM2) 48 
(Piccio et al., 2008; Wunderlich et al., 2013). The turnover of full-length TREM2 on macrophages is 49 
very rapid with a half-life of less than one hour, because of constitutive cleavage of full-length TREM2 50 
and shedding of sTREM2 (Thornton et al 2017). The proteases responsible for shedding sTREM2 51 
include A Disintegrin And Metalloproteases 10 and 17 (ADAM10 and ADAM17), and this cleavage 52 
occurs at the H157-S158 peptide bond (Thornton et al., 2017; Schlepckow et al., 2017). ADAM10 and 53 
17 appear to be responsible for sTREM2 release induced by lipopolysaccharide (LPS), whereas the 54 
protease meprin b constitutively cleaves TREM2 (predominately at the R136-D137 peptide bond) to 55 
release sTREM2 from macrophages (Berner et al., 2020). However, it is unclear whether meprin b can 56 
generate sTREM2 in microglia. After shedding of sTREM2, the remaining part of TREM2 may be 57 
cleaved within the membrane by g secretase (Wunderlich et al., 2013). The very rapid and inducible 58 
turnover of TREM2 to generate sTREM2 suggests either that i) TREM2 levels need to be regulated 59 
very rapidly, or ii) that sTREM2 has a function, and full-length TREM2 is a precursor of this functional 60 
sTREM2. 61 

1.3 Regulation of sTREM2 shedding 62 

Conditions that increase or decrease sTREM2 shedding from full-length TREM2 are not clear, but LPS 63 
or IL-1b can induce sTREM2 release from primary mouse microglia (Zhong et al., 2019). Also, 64 
oligomeric Ab, which can bind both full-length TREM2 and sTREM2, induced shedding of sTREM2 65 
for TREM2-overexpressing cells (Vilalta et al., 2021), suggesting that sTREM2 shedding may be 66 
induced prior to and during AD as a result of Ab oligomerization. CSF sTREM2 levels increase in 67 
amyloid mouse models and correlate with microglial activation (Brendel et al., 2017). Viral infection 68 
of the lungs can increase sTREM2 levels post-infection, due to IL-13 or IL-4 induced sTREM2 69 
shedding (Wu et al., 2015). And HIV viral infection of the brain increases CSF levels of sTREM2 70 
(Gisslén et al., 2018). sTREM2 levels in CSF are thought to be a biomarker of microglial activation 71 
(Orihashi R & 2021), although there is limited evidence for this in vivo (Bekris et al., 2018; Rauchmann 72 
& 2020; Pascoal et al., 2021), and sTREM2 may itself cause microglial activation (see below). CSF 73 
sTREM2 levels rise with age in humans from about 2 ng/ml at 43 years to 6 ng/ml at 80 years of age 74 
(Henjum et al., 2016).  75 

1.4 Alternative forms of sTREM2 76 
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TREM2 can be expressed via alternative splicing as a soluble isoform, lacking the transmembrane form, 77 
and this alternative sTREM2 may constitute 25% of total sTREM2 in the brain (Ma et al., 2016; Del-78 
Aguila et al., 2019). This again suggests that sTREM2 has a function, rather than being simply a 79 
degradation product of full-length TREM2. The sTREM2 generated by alternative splicing would be 80 
201 amino acids residues long (after removal of the signal peptide); the sTREM2 generated by 81 
ADAM10 or 17 would be 157 amino acids residues long; and the sTREM2 generated by meprin b 82 
would be 136 amino acids residues long (plus shorter forms) (Berner et al., 2020). The ectodomain of 83 
TREM2 and sTREM2 is highly glycosylated at Asn20 and Asn79, so the apparent molecular weight 84 
of full-length TREM2 on electrophoresis gels is about 50 kDa when fully glycosylated, and about 25 85 
kDa when deglycosylated (Ma et al., 2016). The apparent molecular weight of sTREM2 in CSF is 30-86 
35 kDa (Ma et al., 2016), implying that almost half the apparent weight of sTREM2 is sugars, and that 87 
different glycosylation states coexist. The alternative mechanisms of sTREM2 generation are 88 
illustrated in Fig 1. 89 

1.5 sTREM2 degradation 90 

Processes responsible for degradation and clearance of extracellular sTREM2 are unclear, although it 91 
has been found that macrophages readily take up sTREM2 (Wu et al., 2015), and sTREM2 injected 92 
into mouse brain is cleared from the brain within 3 days (Zhong et al., 2019). Membrane-attached 93 
meprin b generates sTREM2 constitutively, but inflammation-induced ADAM10/17 releases soluble 94 
meprin b, which can rapidly degrade sTREM2 (Berner et al., 2020). However, it is unclear whether 95 
meprin b contributes to sTREM2 production or degradation in the brain. 96 

2 Actions of sTREM2 97 

2.1 sTREM2 activates microglia 98 

sTREM2 treatment of macrophages induced phosphorylation of ERK1/2 (extracellular signal-99 
regulated kinases 1 and 2) and inhibited apoptosis (Wu et al., 2015). Similarly, sTREM2 treatment of 100 
microglia in culture promoted survival by inhibiting apoptosis, apparently via activation of Akt (Zhong 101 
et al., 2017). In addition, sTREM2 induced inflammatory activation of cultured microglia via nuclear 102 
factor-κB, resulting in morphological activation and release of pro-inflammatory cytokines (Zhong et 103 
al., 2017). sTREM2 also stimulated migration and phagocytosis by primary microglia in culture (Zhong 104 
et al., 2019). Injection of sTREM2 into the brains of mice expressing the amyloid precursor protein 105 
(APP) induced activation and proliferation of microglia, plus increased expression of pro-inflammatory 106 
cytokines, and increased microglial phagocytosis of Ab (Zhong et al., 2019). Injection of sTREM2 into 107 
the brains of healthy mice also induced expression of pro-inflammatory cytokines (Fassler et al., 2021). 108 
A fragment of sTREM2 (amino acids 51-81) was sufficient to activate microglia (Sheng et al., 2021). 109 
Thus, sTREM2 activates microglia, although the mechanism of this activation is unclear. 110 

2.2 sTREM2 blocks Ab aggregation and neurotoxicity 111 

sTREM2 is known to bind oligomeric Ab, with minimal binding to monomeric or fibrillar Ab (Zhao 112 
et al., 2018; Zhong et al., 2018; Lessard et al., 2018; Vilalta et al., 2021). Subsequently, it was found 113 
that sTREM2 blocked Ab oligomerisation and fibrillization at a molar ratio of 1 sTREM2 to 100 Aβ 114 
(Kober et al., 2020; Vilalta et al., 2021), and at higher molar ratios sTREM2 disaggregated Ab 115 
oligomers and fibrils (Vilalta et al., 2021). Wild-type sTREM2 also inhibited Ab-induced 116 
permeabilization of artificial membranes, and inhibited Ab-induced neuronal loss in glial-neuronal 117 
cultures (Vilalta et al., 2021). These results suggest that wild-type sTREM2 may act as extracellular 118 
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chaperone for Ab, blocking its folding into aggregatable forms and refolding aggregates into soluble 119 
forms, thereby inhibiting the neurotoxicity of Ab.  In contrast, R47H sTREM2 bound less to Ab 120 
oligomers, but increased Ab aggregation into protofibrils, and increased Ab-induced neuronal loss in 121 
glial-neuronal cultures (Vilalta et al., 2021). Thus, R47H sTREM2 may not only loose a 122 
neuroprotective function, but also gain a neurotoxic function in the presence of Ab, probably by folding 123 
Ab into more toxic forms (see Figure 2). 124 

2.3 sTREM2 protects against amyloid pathology in mice 125 

sTREM2 injection into the brains of mice expressing APP reduced amyloid plaque load (Zhong et al., 126 
2019). Furthermore, viral expression of sTREM2 in the APP-expressing mice, reduced plaque load and 127 
and reversed deficits of spatial memory and long-term potentiation (Zhong et al., 2019). Thus, sTREM2 128 
is protective against amyloid pathology in mice, and this might be by sTREM2 affecting Ab 129 
aggregation and/or sTREM2 activating microglia to phagocytose plaques.  A fragment of sTREM2 130 
(amino acids 51-81) was sufficient to activate microglia, but not to bind Ab and reduce amyloid 131 
pathology in vivo; whereas a 41-81 fragment of sTREM2 bound Ab and reduced amyloid pathology 132 
in vivo better than full-length sTREM2 (Sheng et al., 2021). This suggests that sTREM2 protects 133 
against amyloid pathology mainly by binding Ab. 134 

TREM2 knockout mice, crossed with APP-expressing mice, have more fibrous and less compact 135 
plaques (Condello et al., 2015; Yuan et al., 2016; Wang et al., 2016; Song et al., 2018), and while this 136 
has been attributed to less microglial phagocytosis of the plaques because of less full-length TREM2, 137 
the result might alternatively be due to sTREM2 blocking Ab aggregation and/or sTREM2 activating 138 
microglia to phagocytose plaques.  TREM2 knockout mice have increased Ab seeding (Parhizkar et 139 
al., 2019), which again could be explained by reduced microglial phagocytosis of Ab seeds mediated 140 
by full-length TREM2, or reduced blocking of Ab aggregation by sTREM2. In 5xFAD mice expressing 141 
wild-type human TREM2, sTREM2 was found bound to the amyloid plaques (Song et al., 2018), 142 
consistent with sTREM2 having a role in regulating plaques. Note that the ability of sTREM2 to block 143 
Ab aggregation and to disaggregate Ab, might be shared with full-length TREM2, as they both bind 144 
Ab oligomers (Vilalta et al., 2021), but this has not been tested.  Humans (and mice) with heterozygous 145 
R47H TREM2 have more fibrous plaques with more neuritic pathology (Yuan et al., 2016), which 146 
again might be explained by either R47H sTREM2 promoting Ab fibrillation, or by reduced microglial 147 
phagocytosis of plaques. 148 

3 Evidence that sTREM2 is protective against AD in humans 149 

CSF levels of sTREM2 fall significantly in early pre-symptomatic stages prior to AD diagnosis (when 150 
amyloid is aggregating), but rise during mild cognitive impairment (MCI) and AD (when tau is 151 
aggregating), and fall again during the dementia stages of AD (Heslegrave et al., 2016; Piccio et al., 152 
2016; Suárez-Calvet et al., 2016; Bekris et al., 2018; Liu et al., 2019; Suárez-Calvet et al., 2019; 153 
Rauchmann et al., 2019; Nordengen et al., 2019; Ma et al., 2020).  People with higher CSF levels of 154 
sTREM2 progress more slowly through MCI and AD, in terms of memory loss, clinical score and brain 155 
atrophy (Ewers M et al., 2019, 2020; Franzmeier et al., 2020; Edwin et al., 2020).  And this apparent 156 
protective effect of sTREM2 correlated with reduced amyloid and Tau aggregation measured by PET 157 
(Ewers M et al., 2020), consistent with sTREM2 reducing amyloid aggregation and pathology.  158 

However, these apparent protective effect of high sTREM2 has been attributed to full-length TREM2, 159 
rather than sTREM2, on the untested assumption that high sTREM2 levels indicates high TREM2 160 
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levels, as a result of constant shedding. However, if elevated sTREM2 results from elevated shedding, 161 
which is for example induced by oligomeric Ab (Vilalta et al., 2021), then this will reduce full-length 162 
TREM2. Thus, elevated levels of sTREM2 do not necessarily indicate that levels of full-length TREM2 163 
are elevated, and the apparent protective effect of sTREM2 against AD may be more simply explained 164 
by sTREM2 itself being protective.   165 

GWAS studies of gene variants that affect the CSF levels of sTREM2 identified the membrane-166 
spanning 4-domains superfamily A (MS4A) gene cluster as key determinants of sTREM2 levels in CSF 167 
(Piccio et al., 2016; Deming et al., 2019; Hou et al., 2019). This gene region had previously been linked 168 
to AD risk (Hollingworth et al., 2011; Naj et al., 2011; Lambert et al., 2013).  For example, rs1582763 169 
increased brain expression of MS4A4A and MS4A6A genes, increased sTREM2 levels in CSF, reduced 170 
AD risk and increased age of AD diagnosis. While rs6591561 resulted in a loss-of-function MS4A4A, 171 
reduced CSF sTREM2 levels, increased AD risk and reduced age at AD onset (Deming et al., 2019). 172 
MS4A4A and TREM2 were found to colocalize at the plasma membrane, and overexpression of 173 
MS4A4A increased sTREM2 levels, whilst silencing of MS4A4A reduced sTREM2 levels (Deming et 174 
al., 2019). This suggests that MS4A4A may affect AD risk by promoting sTREM2 shedding, and if so, 175 
indicating that sTREM2, rather than full-length TREM2 is protective against AD. However, further 176 
work is required to establish whether MS4A4A directly affects sTREM2 shedding.  177 

4 Evidence against the hypothesis that sTREM2 protects 178 

One piece of evidence potentially contradicting a protective role of sTREM2 in AD, is that the H157Y 179 
mutation of TREM2 expressed in cells significantly increased sTREM2 shedding relative to wild-type 180 
TREM2, resulting in increased sTREM2 and decreased full-length TREM2, but is associated with 181 
increased AD risk (Schlepckow et al., 2017; Thornton et al., 2017). This suggests that the increased 182 
AD risk associated with the H157Y mutation is due to decreased full-length TREM2 or increased 183 
sTREM2, contradicting the hypothesis that sTREM2 is protective against AD. However, the H157Y 184 
mutation only increased shedding by about 50%, and this was from HEK293 cells (Schlepckow et al., 185 
2017; Thornton et al., 2017), so it may be difficult to extrapolate to sTREM2 levels in human brains.  186 
Additionally, the H157Y mutation would constitute the C-terminal of sTREM2, and might affect its 187 
properties, such as its interactions with Ab. Thus, it would be important to determine whether this 188 
mutation does indeed increase CSF levels of sTREM2 in humans, and whether H157Y sTREM2 has 189 
the same protective properties as wild-type sTREM2. 190 

Other evidence potentially contradicting the hypothesis that sTREM2 protects against AD is the finding 191 
of Schlepckow et al., 2020 that an antibody binding to the ADAM cleavage site of TREM2 prevented 192 
sTREM2 release, but reduced plaques load in an amyloid mouse model.  However, the antibody used 193 
directly activated TREM2 signalling, so the reduced plaque load may result from this signalling 194 
(Schlepckow et al., 2020). Additionally, the compaction of these plaques, neuritic pathology and 195 
memory loss were not tested in this model.  196 

5 Discussion 197 

5.1 Is TREM2 or sTREM2 protective in Alzheimer’s disease? 198 

It appears that either TREM2 or sTREM2 are protective in Alzheimer’s disease, but which? TREM2 199 
is thought to be protective by i) recruiting and activating microglia into a protective state around 200 
amyloid plaques, and ii) compacting amyloid plaques by phagocytosis of Ab, preventing the plaques 201 
inducing neuritic pathology (Condello et al., 2015; Yuan et al., 2016; Keren-Shaul et al., 2017). 202 
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Whereas, sTREM2 is thought to be protective by: i) stimulating microglial recruitment, activation and 203 
phagocytosis of Ab, and/or ii) blocking and reversing Ab aggregation, preventing neurotoxicity 204 
(Zhong et al., 2019; Vilalta et al., 2021). Thus, the putative protective effects of TREM2 and sTREM2 205 
are complimentary rather than antagonistic, and potentially both may be protective against Alzheimer’s 206 
disease. However, it is still important to verify that TREM2 and/or sTREM2 are in fact protective. 207 

5.2 Key experiments to determine whether sTREM2 is protective against AD 208 

Some of evidence indicating that sTREM2 is protective against AD, may alternatively be interpreted 209 
as full-length TREM2 is protective. Thus, there is a need for experiments that distinguish between 210 
these possibilities, or directly show that sTREM2 is protective.  The most direct way to show that is to 211 
add or express sTREM2 independent of full-length TREM2 and test whether this is protective in AD 212 
models.  This has been done for a mouse amyloid model and found to be protective (Zhong et al., 213 
2019), but this was relatively acute model, and it would be important to test this in other models, 214 
particularly more chronic and AD-relevant models. Within such models, it would be important to test 215 
whether sTREM2 can block Ab aggregation, or disaggregate preformed plaques or oligomers. It would 216 
also be useful to know whether Ab oligomers in AD CSF are significantly bound to sTREM2, and 217 
whether physiological levels of sTREM2 can disaggregate Ab aggregation in CSF. Further, it would 218 
be worth knowing whether the different types of sTREM2 behave differently, including sTREM2 219 
generated by ADAM and meprin b, or by alternative splicing, or H157Y and R62H sTREM2. 220 

5.3 Potential treatment strategies 221 

Current strategies targeting TREM2 in AD have focused on agonistic antibodies to activate TREM2 222 
with the aim of increasing microglial phagocytosis of amyloid plaques (Wang et al., 2020; Fassler et 223 
al., 2021).  These antibodies will also bind sTREM2 and potentially block the protective effects of 224 
sTREM2 (Fassler et al., 2021).  If sTREM2 is indeed more protective against AD than full-length 225 
TREM2, then antibodies that increased sTREM2 shedding might be beneficial, or other treatments 226 
designed to activate sTREM2 shedding e.g. by activating ADAM10 and ADAM17.  Blocking sTREM2 227 
degradation (e.g. by inhibiting meprin b) might increase sTREM2 levels without decreasing full-length 228 
TREM2. sTREM2 and sTREM2 fragments injected into the brain were protective in mouse models of 229 
AD (Zhong et al., 2019; Sheng et al., 2021), but may be difficult to deliver practically in humans. 230 
However, viral vectors expressing sTREM2 in the brain were protective in these mouse models of AD, 231 
and thus might be protective in humans with AD (Zhong et al., 2019). 232 
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 423 

Figure 1. Release of sTREM2 from microglia, and activation of microglia by sTREM2. sTREM2 424 
may be generated by ADAM10/17 or meprin b proteolysis of full-length TREM2, or from expression 425 
of an isoform lacking the transmembrane domain. g secretase can cleave the remains of TREM2 within 426 
the membrane to degrade it. Released sTREM2 can chemoattract and activate microglia via unknown 427 
receptors. 428 

 429 

 430 

Figure 2. Wild-type sTREM2 blocks Ab pathology, but R47H TREM2 does the opposite. Ab 431 
oligomers bind to TREM2 and induce shedding of sTREM2. Wild-type sTREM2 blocks Ab 432 
oligomerization, fibrillization and neurotoxicity. R47H sTREM2 increases Ab oligomerization, 433 
fibrillization and neurotoxicity. Thus, wild-type sTREM2 may protect against amyloid pathology, 434 
while R47H TREM2 exacerbates amyloid pathology. This might help explain why a single copy of the 435 
R47H TREM2 gene increases AD risk several fold. 436 
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