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Abstract 

The successful implementation of Building Information Models (BIMs) for facility 

management, maintenance and operation is highly dependent on the ability to generate 

such models for existing assets. Generating such BIMs typically requires laser scanning 

to acquire point clouds and significant post-processing to register the clouds, replace 

the points with BIM objects, assign semantic relationships and add any additional 

properties, such as materials. Several research efforts have attempted to reduce the post-

processing manual effort by classifying the structural elements and clutter in isolated 

rooms. They have not however examined the complexity of a whole building. In this 

paper, we propose a robust framework that can automatically process the point cloud 

of an entire building, possibly with multiple floors, and classify the points belonging to 

floors, walls and ceilings. We first extract the planar surfaces by segmenting the point 

cloud, and then  we use contextual reasoning, such as height, orientation, relation to 

other objects, and local statistics like point density in order to classify them into objects. 

Experiments were conducted on a registered point cloud of an office building. The 

results indicated that almost all of the walls and floors/ceilings were correctly clustered 

in the point cloud.       

Keywords: BIM, as-is modelling, RANSAC, classification, point clouds    

1. Introduction 

The creation of an as-is Building Information Model (BIM) of a facility is a complex 

process, starting with the acquisition of the point clouds, which is followed by the 
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accurate creation of surfaces and the inclusion of information regarding the objects, 

such as materials and .costs However, modelers spend an excess amount of time into 

clustering the points that correspond to each object prior to modelling them. This 

process is time and cost-prohibitive restricting asset-owners from using BIMs in their 

small scale projects. 

 To address this issue, we propose a novel algorithm which aims at detecting 

walls, floors and ceilings in point clouds, under the assumption of Manhattan-World 

(MW) buildings. MW was first defined by Coughlan & Yuille (1999); these buildings 

have three mutually orthogonal directions and the coarse objects’ relationships have 

distinctive rules, for example the floors and ceilings are horizontal, whereas the walls 

are vertical and are either parallel to the y-z or the x-z planes. The proposed algorithm 

achieves the detection of the above-mentioned objects with limited human intervention 

and low computational complexity. Another major contribution of this algorithm is that 

it can be applied to entire point clouds of buildings, and not only on isolated rooms.   

In the following paragraphs, the state of research is presented, followed by the 

detailed description of the proposed algorithm: its input, the main steps, and the 

expected output. The experimental section presents the results obtained by applying the 

proposed method to extract the BIM model of an office building. The last section 

concludes the paper and discusses directions of future research. 

   

2. Related Work 

Object detection in point clouds is a well-studied topic. Therefore, in this section we 

will only present the papers that are closest to our approach. Valero et al (2012) used 

Radio Frequency Identification tags prior to laser scanning the facility, so that they 

could obtain information regarding the objects. Jung et al (2014) proposed a semi-

automated process for the creation of as-built BIM for indoor environments using point 

clouds. Specifically, point clouds are converted into geometric drawings where lines 

are given to guide the manual modelling, reducing the modelling time. The process 

consists of three steps: segmentation, refinement and boundary tracing.    

Pu and Vosselman (2009) detect major objects which define building facades, 

such as walls and roofs. To detect these objects they use predefined human knowledge 

such as the size, position, orientation, topology and point density. In our method, we 

determine similar characteristics to infer the object class. Sanchez & Zakhor (2012) 

classify coarse objects by comparing the angles of normal with the x and y axis. This 

approach however fails to address the case of highly cluttered environments: e.g. it is 

not able to distinguish between bookshelves and walls.  Hong et al (2015) proposed an 

algorithm for the accurate creation of as-built BIMs. They first model horizontal planes 

(floors, ceilings) by estimating the z difference between the highest and lowest surface. 

The vertical planes are projected onto the horizontal and the boundary is extracted. 

Even though the accuracy of the proposed solution is encouraging, the method does not 

address the issue of a multiple room floor. Also, the research addresses planar surface 

modelling and not solid modelling as needed to generate BIMs.   



Xiong et al (2013) and Adan & Huber (2010) examined the detection of coarse 

objects in interior environments. In the first paper, the researchers use machine learning 

to classify planar patches based on their contextual features, whereas in the second 

paper, the authors detect walls by voxelizing the space and determining the major plane 

regions exploiting geometric characteristics. Other objects, such as openings, are 

distinguished using an SVM classifier. Both cases offer promising results in labelling 

walls, floors and ceilings in cluttered environments. 

Furthermore, object classification techniques for geometry generation in a story 

with multiple offices has been examined (Thomson & Boehm 2015, Ochmann et al 

2016). Ochmann et al (2016) exploits contextual information by first segmenting the 

data into rooms. They used a top-down approach compared to our bottom-up. Thomson 

& Boehm (2015) presented an Industry Foundation Class generation process using 

spatial information. We build and further expand on this spatial reasoning for more 

robust object classification. 

More specifically for MW buildings, grammar based methods where 

investigated (Vanegas et al 2010, Khoshelham & Díaz-Vilariño 2014, Becker et al 

2015). The rules set are rather restrictive and can only be applied to specific scenarios, 

e.g. in floors with long hallways. Xiao and Furukawa (2012) reconstructed the world’s 

museums, by taking advantage of the fact that most of the museums’ geometry is 

cuboid. Hence, they could fit cubes in the point cloud data. The point cloud was sliced 

in 2D pieces. The researchers extracted lines in each piece and fitted rectangles, the 2D 

solid models were finally stacked to create the 3D model.  In this case, the researchers 

managed to create a volumetric 3D model, but the classification of the objects is not 

performed. Therefore, the user has to manually determine the different objects in the 

scene.  

We aim at developing a novel algorithm that can detect and classify each object 

separately in a cluttered MW building in order to address these limitations. As BIM 

necessitates solid modelling and not simple surface modelling, the objects of interest 

are represented through volumetric models when possible, e.g. a wall consists of a 

vertical cuboid, and not only a planar surface. Also, the minimum human intervention, 

the reduced computational complexity and the simplicity of the algorithm add up to the 

contribution of the paper. 

3. Proposed Algorithm 

The outline of the algorithm for detecting walls, floors and ceilings is presented in 

Figure 1. First, the algorithm takes as input a Point Cloud Data (PCD). The PCD is 

considered to be a set of point clouds which are registered and aligned to the major axis. 

Since these operations can be performed using the proprietary software accompanying 

laser scanners, they are not examined in this paper. The point cloud is then segmented 

into planar surfaces using RANSAC for point cloud shape detection as described in 

Schnabel et al (2007). RANSAC is an iterative algorithm, which tries to find the 

parameters of the model that best fits the data, while filtering out the outliers. This step 

outputs the point cloud segmented into a number of planar surfaces. We focus on 



obtaining planar surfaces based on the assumption that the coarse objects being 

examined are clearly planar. The planar segments are extracted in a descending order 

based on the number of points to facilitate the subsequent processing steps. Also, the 

position and normals of the segments are computed. These data assist in the 

determination of the orientation of the segments. The point cloud is then projected onto 

the y-z plane and the x-z plane, octree division is applied and the octrees with the 

maximum number of points are acquired. This leads to the detection of the horizontal 

planar surfaces that correspond to the floors and ceilings. Subsequently, we remove the 

majority of the present clutter by keeping the vertical planar surfaces that satisfy 

specific criteria. The rest of the segments are divided into two categories: the one that 

are parallel to the y-z plane and the x-z plane, we keep the planar surfaces in the 

perimeter that are within a minimum distance from the bounding box of the point cloud 

and we merge the planar surfaces that correspond to cuboid walls. The remaining 

segments are discarded. The final result contains the detected walls, floors and ceilings. 

In the following paragraphs, each step is explained in detail. 

 

Figure 1. Flow chart of the proposed solution 

 

3.1. Floor and Ceiling 

Since the point cloud is aligned with the axis and we consider an MW structure, the 

floor and ceiling are horizontal and parallel to the x-y. Therefore, the points 

corresponding to these objects are concentrated on specific values of z that have to be 



identified. To this end, we project the point cloud into the y-z and the x-z plane back to 

back, acquiring a straight line of points on the z axis with different point density. In 

order to identify the z values where most of the points are concentrated, we use octree 

division which is an efficient algorithm for partitioning the 3D space (Meagher (1982)).  

We extract the point density in each octree cell having applied the octree 

division to the projected PCD. By comparing the percentage difference of the point 

density of one division with the previous and following two octree divisions, we keep 

the octrees that satisfy a predefined threshold. The horizontal planar segments that have 

been extracted by the segmentation step, and which contain the points of the octree 

divisions identified in this step are classified as floors and ceilings. The rest of the 

horizontal segments are discarded.  
 

Object  Criteria 

Floor & 

Ceiling 
𝑎𝑏𝑠(𝑃𝑜𝑖𝑛𝑡𝐷𝑒𝑛𝑠𝑖𝑡𝑦[𝑖] −  𝑃𝑜𝑖𝑛𝑡𝐷𝑒𝑛𝑠𝑖𝑡𝑦[𝑖 + 1])/𝑃𝑜𝑖𝑛𝑡𝐷𝑒𝑛𝑠𝑖𝑡𝑦[𝑖] > 1  

Interior 

Walls in 

the minor 

axis (x-z) 

 (𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡. 𝑧 −  𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡. 𝑧 > 𝑇ℎ𝑟𝑒𝑠ℎ) && (𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡. 𝑥 −
 𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡. 𝑥 > 𝑇ℎ𝑟𝑒𝑠ℎ)                                 
 

 𝐿𝑜𝑤𝑒𝑟𝑇ℎ𝑟𝑒𝑠 < 𝑎𝑏𝑠(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑋[𝑖] − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑋[𝑗]) < 𝑈𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠             
 

 𝑎𝑏𝑠(𝑀𝑎𝑥𝑋[𝑖] − 𝑀𝑎𝑥𝑋[𝑗]) < 𝑈𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠                                               

Interior 

Walls in 

the major 

axis (y-z) 

 (𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡. 𝑧 −  𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡. 𝑧 > 𝑇ℎ𝑟𝑒𝑠ℎ) && (𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡. 𝑦 −
 𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡. 𝑦 > 𝑇ℎ𝑟𝑒𝑠ℎ)                                                                           

 

 𝐿𝑜𝑤𝑒𝑟𝑇ℎ𝑟𝑒𝑠 < 𝑎𝑏𝑠(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑌[𝑖] − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑌[𝑗]) < 𝑈𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠     

 

 𝑎𝑏𝑠(𝑀𝑎𝑥𝑋[𝑖] − 𝑀𝑎𝑥𝑋[𝑗]) < 𝑈𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠                     
Perimeter 

Walls 

Minimum Distance from the Bounding Box  

Table 1. The proposed criteria for the detection of objects in the point cloud 
 

3.2.Clutter Removal and Walls  

Even though in MW buildings walls are considered to be orthogonal and perpendicular 

to the x-y plane, they stand a greater challenge compared to floors. Their length as well 

as their position in 3D space varies based on the configurations of the rooms in the 

interior. Additionally, a wall in an interior environment is not a simple planar surface 

but a pair of planar segments, since the same wall is laser scanned from both sides from 

two different rooms -- a detail that adds up to the difficulty of defining the walls in 

interior environments.  

We extract the planar surfaces which have normals parallel to the x-z and y-z 

plane. The algorithm discards all these segments whose difference between the 

maximum x or y coordinate and minimum x or z coordinate is below a threshold for the 



segments parallel to y-z or x-z planes respectively. In this case, most of the clutter which 

is present in the interior is rejected.  

The algorithm finally detects the boundary walls of the structure and the planar 

segments that correspond to interior walls after having removed most of the clutter from 

the point cloud. Please note that clutter usually affects the completeness of the object 

in the point cloud, however, our algorithm assumes that objects are not fully covered 

by clutter. For the boundary walls of the structure, the algorithm keeps the first planar 

surfaces which are in the minimum distance from the bounding box surrounding the 

point cloud. 

   To connect the planar segments which form a wall, we consider two directions 

the x-z and y-z axis and the positions of the segments acquired from RANSAC as 

mentioned above. The examined segments i and j in the x-z direction are considered as 

one wall as long as the following statements are true: 

𝐿𝑜𝑤𝑒𝑟𝑇ℎ𝑟𝑒𝑠 < 𝑎𝑏𝑠(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑋[𝑖] − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑋[𝑗]) < 𝑈𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠    (1) 

 

𝑎𝑏𝑠(𝑀𝑎𝑥𝑌[𝑖] − 𝑀𝑎𝑥𝑌[𝑗]) < 𝑈𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠  (2) 

 

The first relationship (1) compares the Position in the x direction of the two surfaces, 

whereas the second (2) compares the y distance of the segments. (1) guarantees that 

surfaces lying on the same level on the x axis do not get connected, whereas (2) 

guarantees that the distance in the y direction does not surpass an upper threshold. 

Similarly for the y-z. The above thresholds derive from the common knowledge that 

walls have a specific width. The presented thresholds (Table 1) are not static. Alas, the 

Figure 2. The top image shows the original point cloud. The bottom images show the 3D 

model manually created using Revit 



user has to adjust them based on the site conditions. For example, if the estimated width 

of the walls are about 15cm, the user can adjust the UpperThres of equation (2) to 25cm 

taking into consideration the noise in the data. 

4. Experiments and Results 

The proposed algorithm is applied on a floor of an office building. The examined MW 

structure is the Baker Building of the Engineering Department of the University of 

Cambridge. The laser scans have been first registered and aligned to the x-y-z axis. The 

floor consists of 11 offices, (out of which 10 have been fully laser scanned), a main 

corridor and a stairwell. The building is in use, therefore the scans are cluttered. The 

original point cloud) can be seen in Figure 2 top row.  It consists of 94,143,512 colored 

points. Color has been discarded since our algorithm relies purely on geometry, 

ignoring appearance cues. Also, the PCD has been downsampled to two million points. 

This drastic operation (discarding 97% of the original point cloud) was performed to 

ensure a fast execution during RANSAC segmentation. However, since planar surfaces 

can be estimated from a small number of points (only three points are needed in the 

ideal case), the downsampling does not affect the final results. The segmentation 

returned 392 planes with the largest one containing 294,840 points corresponding to 

the floor. The parameters describing the planar surfaces, e.g. normals and position are 

extracted by the algorithm in a txt format.  

By visual inspection, we are able to identify the minor and the major axes as 

being xz and yz respectively, and set the corresponding thresholds.  Finally we fed all 

the clusters to our algorithm. The results are shown in Figure 3. 

We have manually generated the 3D model of the point cloud using Revit (see 

Fig. 2 bottom row), and clustered the points that belong to the same primitive (Figure 

3c) in order to evaluate the accuracy of the proposed approach. The manual labelling 

of the segments has shown that we have 13 segments that correspond to the ceiling and 

one large planar surface corresponding to the floor. 13 segments correspond to the 

perimeter walls, while the number of cubic interior walls is 12. The final results and 

accuracy are grouped in Table 2. The results show that the precision for floor, ceiling 

is 100%, for exterior walls is 86.7%, whereas for the interior walls, the precision 

reaches 92%. The false positive for the interior walls in the algorithm is the light pink 

segment shown in Figure 3f, which corresponds to the staircase handrails.   

Table 2 Results of the conducted experiment.

Objects Manually 

Detected 

Segments 

Automatically 

Detected Segments 

(True Positive) 

Automatically 

Detected 

Segments (False 

Positive) 

Floor 1 1 0 

Ceiling 13 13 0 

Exterior walls 13 13 2 

Interior Walls 12 12 1 



 
Figure 3.  a) The downsampled point cloud, b) the final result for the floor and ceiling, c) the ground truth detection, d) first pass 

of clutter removal, e) detected walls, f) the different pairs of walls having been detected in color, the perimeter walls in white.



5.  Conclusions 

Building Information Models for existing facilities are useful for renovation, facility 

management and retrofitting purposes. BIMs, however, need a high level of detail to 

achieve the above purposes. Point clouds can only offer information regarding the 

objects visible with a naked eye. Hence, they can only assist in the first level of detail 

of BIMs. In our research, we aim in facilitating the creation of 3D models. We proposed 

an algorithm which successfully detects floors, walls and ceilings in Manhattan-World 

structures. The algorithm uses simple geometric priors to determine which planar 

surfaces correspond to the sought structural elements. It is divided into two sections, 

one referring to the horizontal surfaces and the second to the vertical surfaces. The 

algorithm has been tested in a laser scanned point cloud. We have proven that the 

precision is over 86% and issues regarding the clutter have been successfully tackled. 

Hence, our goal of minimizing the manual effort needed to detect structural elements 

in a building has been significantly accomplished. 

However, this is only the first step in creating 3D models from point clouds. 

Our next goal in this process of capturing the as-is conditions is the generation of IFC 

models. We have extracted the dominant structural elements and we can now extract 

information regarding their length, width, height and position, which will constitute the 

basis for the IFC model generation. It is important to further examine how clutter affects 

the accuracy of the created IFC model, since clutter affects the completeness and 

accuracy of the object. 
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