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Abstract 

This thesis details recent work on an innovative new approach to Josephson junction 

fabrication.  These junctions are created in low TC superconductor-normal metal bilayer tracks 

on a deep submicron scale using a Focused Ion Beam Microscope (FIB).  The FIB is used to 

mill away a trench 50_nm wide in the upper layer of niobium superconductor (125 nm thick), 

weakening the superconducting coupling and resulting in a Josephson junction.  With the aid 

of a newly developed in situ resistance measurement technique it is possible to determine the 

cut depth to a high degree of accuracy and hence gain insight into how this affects the 

resulting device parameters.  Devices fabricated over a wide range of cut depths and copper 

normal metal layer thicknesses (0-175 nm) have been thoroughly characterized at 4.2 K in 

terms of current-voltage (I-V) characteristics, magnetic field- and microwave-response.  In 

selected cases I-V characteristics have been studied over the full temperature range from TC 

down to 300 mK.  Devices with resistively-shunted (RSJ) I-V characteristics and ICRN 

products above 50 µV at 4.2 K have been fabricated reproducibly.  This work has been 

complemented by Transmission Electron Microscopy (TEM) studies that have allowed the 

microstructure of the individual devices to be inspected and confirm the validity of the in situ 

resistance measurement. 

The individual junction devices are promising candidates for use in the next generation of 

Josephson voltage standards.  In collaboration with Dr. Sam Benz at the National Institute of 

Standards and Technology (NIST) in the U.S., series arrays of junctions have been fabricated 

and characterized.  Phase-locking behaviour has been observed in arrays of 10 junctions of 

spacings 0.2 to 1.6 µm between 4.2 K and TC in spite of the relatively large spread in 

individual critical currents.  Strategies for minimizing junction parameter spread and 

producing large-scale arrays are discussed. 

The opportunities offered by the FIB for the creation of novel device structures has not been 

overlooked.  By milling a circular trench in the Nb Cu bilayer a Corbino geometry SNS 

junction is created.  In this unique device the junction barrier is enclosed in a superconducting 

loop, implying that magnetic flux can only enter the barrier as quantized vorticies.  This gives 

rise to a startling magnetic field response – with the entry of a vortex the critical current is 

suppressed from its maximum value to zero.  Experimental results and theoretical modeling 

are reported.  Possible future applications of this novel device geometry (which may be of 

relevance to Quantum Computing and to studies of Berry’s phase effects) are considered.    
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 Symbols and Abbreviations 

Intended as a useful reference guide rather than an exhaustive list. 
 

Physical Constants 
Planck constant          h = 6.626 × 10-34 J s 
Planck constant/2π                                  = 1.055 × 10h -34 

Electronic charge           e = -1.602 × 10-19 C 
Permeability of free space         µ0  = 4π × 10-7 H m-1 
Magnetic flux quantum          Ф0 = h/2e = 2.07 x 10-17 Wb 
Boltzmann Constant         kB = 1.381 x 10-23 J K-1 

 

Superconductors: 
T temperature 
TC  transition temperature 
A magnetic vector potential 
J current density 
Λ  London parameter 
ξ coherence length 
ξGL Ginzburg Landau coherence 

length 
ξ0 intrinsic coherence length 
λ magnetic penetration depth 
λL  London penetration depth 
λp  thin film penetration depth 

(perpendicular) 
ρ carrier density or resistivity 
ψ superconducting wavefunction 
l electronic mean free path 
∆ superconducting energy gap 

parameter 
vF  Fermi velocity 
t film thickness 
 
 
Abbreviations  
BCS Bardeen Cooper Schrieffer 

(theory) 
FIB  focused ion beam  
GBJ  grain boundary junction 
HF high frequency  

or hydrofluoric acid 
NIST National Institute of Standards  

and Technology (U.S.A.) 
PSGE perturbed sine-Gordon equation 
RF radio frequency 
RIE  reactive ion etch 
RSFQ rapid single flux quantum  

(digital logic) 
 

Josephson Junctions: 
I current 
V voltage 
ϕ phase difference across Josephson 

junction 
IC  critical current 
RN  normal state resistance 
ICRN  Characteristic voltage 
Jn nth order Bessel function 
d trench width 
LEff effective junction barrier thickness 
w barrier width  

(transverse to current flow) 
λJ  Josephson penetration depth 
ω p junction plasma frequency 
Ω reduced frequency 
 
 
 
 
 
 
 
 
 
RSJ  resistively shunted junction  
SEM  scanning electron microscope 
SIS      superconductor-insulator-

superconductor (junction) 
SNS  superconductor-normal metal-

superconductor (junction) 
SQUID superconducting quantum 

interference device 
TDGL time-dependant Ginzburg Landau 

(theory) 
TEM  transmission electron microscopy 
2DEG two-dimensional electron gas 
UHV  ultra high vacuum 
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Introduction 

Chapter 1: Introduction 

The Josephson effect is the quantum mechanical tunneling of paired electrons between two 

regions of superconductor.  So-called Josephson junctions exhibiting this striking 

phenomenon now form the basis of a number of technologies. For example, Superconducting 

Quantum Interference Devices (SQUIDs) are the world’s most sensitive detectors of magnetic 

flux, capable of measuring the magnetic fields produced by a single living cell.  Josephson 

junctions have formed the basis of the international standardization of the volt since the mid-

1970’s.  In addition, Josephson junctions provide the active elements for ultrafast digital 

electronics and (potentially) for quantum computing.  As in the case of conventional silicon-

based (semiconductor) electronics, further miniaturization is a key research issue in 

superconducting electronics.  Curious quantum-mechanical effects, which arise as we make 

the transition from microscopic (millionth of a metre) to nanoscale (thousand-millionth of a 

metre) components, present a further challenge - and motivation - to the researcher. 

A reliable and versatile technique for the fabrication of nanoscale Josephson junctions in 

superconductor-normal metal bilayers has been developed.  The fabrication technique 

depends on the use of a Focused Ion Beam microscope (FIB).  This instrument is similar in 

operation to a Scanning Electron Microscope (SEM) in which a beam of high-energy 

electrons is focused onto the surface of a sample in vacuum.  As the beam rasters back and 

forth across the surface, an image of nanoscale resolution can be built up using secondary 

electrons.  In a FIB, in place of an electron beam, a beam of much more massive Gallium ions 

is used.  In the first instance the sample can be imaged just as in the SEM.  However, if the 

high-energy ion beam dwells on the sample for any appreciable time material is eroded (like 

nanoscale sandblasting).  In the microelectronics industry the FIB has become an 

indispensable tool for sectioning and examining faulty microchips.  The FIB our laboratory 

has been adapted for the manufacture of nanoscale electronic devices.  In order to fabricate a 

superconductor-normal metal-superconductor (SNS) Josephson junction, a microscopic track 

is patterned by standard photolithography in a bilayer of niobium superconductor and copper 

normal metal.  A narrow trench (50 nanometres wide) is milled in the upper superconducting 

layer.  The result is a Josephson junction with a normal metal barrier.  A specially constructed 

in situ resistance measurement stage allows the resistance of the track to be measured whilst 

the milling is taking place.  With the use of a simple algorithm the resistance change can be 

converted to a milling depth, allowing the trench depth to be determined on the scale of 

nanometres (tens of atomic layers). 

 

 1



Chapter 1 

 2

A thorough investigation has been carried out of the variation of junction properties with 

respect to trench depth and normal metal layer thickness. The resulting devices show 

considerable promise as the basis for the next generation of voltage standards arrays.  In 

collaboration with U.S. National Institute of Standards and Technology (NIST), prototype 

series arrays of SNS junctions have been fabricated and characterized.  The goal is to 

fabricate an array of closely spaced junctions with sufficiently small parameter spreads such 

that they respond to an applied microwave field in unison 

This unique technology also allows novel device structures to be created and studied.  Milling 

a circular trench in the superconductor-normal metal bilayer results in a Corbino geometry 

Josephson junction.  This novel device can be measured by making an electrical contact to the 

central island.  In the case of a Josephson junction, this geometry has some interesting 

implications that have not previously been explored in detail, either experimentally or 

theoretically.  In thin film superconductors, magnetic flux can penetrate the superconducting 

state, but only as quantized vortices.  In this geometry the Josephson junction is surrounded 

by a superconducting loop, so magnetic flux can only enter the junction in single quanta, 

leading to an abrupt suppression of the Josephson supercurrent.  The study reported here 

opens up some intriguing future avenues of research.  

The structure of this thesis can be summarized as follows: Chapter 2 provides an introduction 

to the field of superconductivity, with particular emphasis on aspects relevant to 

superconductor-normal metal-superconductor (SNS) junctions.  There then follows in 

Chapter_3 a description of the device fabrication process and the measurement facilities used 

in this work.  Chapter 4 contains a survey of previous approaches to junction fabrication in 

this geometry, followed by a discussion of the properties of the thin films used in device 

fabrication and finishing with the results of the TEM studies of device profiles.  The measured 

properties of single SNS junctions are discussed in Chapter 5.  The work on series arrays of 

nanofabricated SNS junctions carried out in collaboration with NIST is described in 

Chapter_6.  The realization of a novel device geometry  (the Corbino geometry SNS junction) 

is the subject of Chapter 7.  Chapter 8 concludes the main body of the thesis.  Extensions of 

the current work are also discussed.  Finally there is a bibliography and two appendices; one 

listing scientific meetings attended by the author and the other purely theoretical.  The 

majority of the work in this thesis has already been published (single junctions – Hadfield 

2001; arrays – Hadfield 2002b; early Corbino junction results – Hadfield 2002a).  The latest 

Corbino junction results have been submitted for publication in Physical Review B (Hadfield 

2002b).  Work contained in this thesis also features in a number of other publications to date 

(Burnell 2002a, 2002b). 



Weak Superconductivity 

Chapter 2: Weak Superconductivity 

2.1 Introduction 

The extraordinary phenomenon of superconductivity was discovered by Kammerlingh Onnes 

in 1911, shortly after he had succeeded in liquefying helium (Onnes 1911).  The 

superconducting state is characterized not only by the disappearance of electrical resistivity 

below a critical temperature TC, but also by the onset of perfect diamagnetism at this point - 

the Meissner effect (Meissner 1927).   Superconductivity occurs in about half of the metals in 

the periodic table.  The critical temperatures are all relatively low however – the highest TC 

occurs in niobium at 9.25 K.    

A number of recent historical reviews concerning the theoretical development of the subject 

are available (Schrieffer 1993, Schrieffer 1999, Ginzburg 2000).  A robust phenomenological 

theory describing the basic effects of superconductivity was provided by the London brothers 

(London 1935, 1950).  An important further contribution to the understanding of 

superconductivity was made by Ginzburg and Landau (Ginzburg 1950).  However, a 

satisfactory microscopic theory was absent until that of Bardeen, Cooper and Schrieffer (BCS 

theory) was published in 1957 (Bardeen 1957).  This paved the way for Josephson’s 1962 

prediction of tunneling between two weakly coupled superconductors (Josephson 1962) – the 

Josephson effect.  The possibility of a Josephson junction-based computing technology 

spurred a major research effort in the 1960s and 1970s.  This however was abandoned, largely 

due to the unparalleled success of competing silicon-based technologies (Keyes 1989).  

Until the mid-1980’s the record value of TC stood at 23 K for Nb3Ge (Gavaler 1973).  The 

discovery of superconductivity at much higher temperatures in the cuprate materials by 

Bednorz and Müller in 1986 (Bednorz 1986) provoked great interest and has provided the 

stimulus for an immense research effort.  At present a satisfactory theory encompassing all 

forms of superconductivity in the cuprates is lacking, and the formidable complexity of these 

materials has made it difficult to reap the predicted technological benefits of the higher 

critical temperature (present record: HgBa2Ca2Cu3O8+δ, 134 K at atmospheric pressure 

(Schilling 1994); 164 K at high pressure (Gao 1994)).  Due to the emergence of new Junction-

based computing concepts such as Rapid-Single-Flux-Quantum Logic (RSFQ) (Likharev 

1991) and Quantum Computing (Averin 1999, Nakamura 1999, Makhlin 2001) there is 

continued interest in viable junction technologies.  In this area, as a result of ever improving 

refrigeration and nanofabrication techniques, low TC junctions offer renewed promise.   
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Chapter 2 

2.2 The Superconducting State 

This section gives overview of superconducting phenomenology and theoretical approaches 

that lead to the development of BCS theory, with particular emphasis on aspects relevant to 

this investigation. 

2.2.1 The two-fluid model 

Gorter and Casmir (Gorter 1934) first put forward the concept of a ‘two-fluid model’ of 

superconductivity in order to explain the second order phase transition occuring at TC.  They 

proposed that the total density of electrons ρ be divided into two components: 

  ns ρρρ += ,       (2.1)  

where a fraction ρρs  of the electrons can be regarded as being condensed into a ‘superfluid’, 

which is primarily responsible for the remarkable properties of superconductors, whilst the 

remainder (the fraction ρρ n ) form an interpenetrating ‘normal’ fluid , which carries entropy 

and is subject to scattering.  The fraction ρρs  grows from zero at TC to unity at T = 0 K, 

where all of the electrons have entered the superfluid condensate.  This approach however 

offers no explanation of how the critical field of a superconductor (i.e. its diamagnetic 

response) changes with temperature. 

2.2.2 The London theory 

The London theory took perfect diamagnetism to be the most fundamental property of a 

superconductor, assuming some form of superfluid wavefunction that is rigid to the vorticity 

imparted by the magnetic field.  Using Maxwell’s equations and the two-fluid picture, 

dissipationless current flow followed directly, and the London brothers were able to show that 

magnetic flux must penetrate some distance into the bulk.  The London penetration depth λL 

at T = 0 K is 

  ( )
21

2
0

0 







=

e
m

s

e
L ρµ

λ       (2.2) 

where me is the effective electron mass, µ0 is the permeability of free space and e is the 

electronic charge.  λL gives the minimum penetration depth that may be expected in practice 

(high frequency measurements typically give a superconducting penetration depth λ ~100 nm 

for a bulk metallic superconductor well below TC).   
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Figure 2.1: The temperature dependence of the London penetration depth λL according to (2.3).   

T/TC 

λL(T)/λL(0) 

The temperature dependence of λL is described by the formula 

 ( ) ( ) ( )[ ] 21410
−

−= CLL TTT λλ       (2.3)  

and is depicted in Figure 2.1.  We see that λL is infinite at TC , but differs from its T = 0 value 

λL(0) by only a few percent at T/TC  = 0.5.   This formula gives a good qualitative guide to the 

measured variation of λ with temperature. 

In the London theory the phase of the wavefunction must be single-valued and this led to the 

prediction of fluxoid quantization.  The fluxoid is the magnetic flux through an area plus a 

line integral around that area due to the superfluid velocity. In the case of a thick 

superconducting cylinder (much thicker than λL) this second term can be ignored and flux is 

also quantized.  This effect was observed experimentally (Deaver 1961, Doll 1961), showing 

that quantization takes place in units of Ф0 = h/2e = 2.07 x 10-17 Wb.  Hence the full 

expression for fluxoid quantization is 

( ) n
e

hldJA S 2
=⋅Λ+∫      (2.4) 

where A is the magnetic vector potential, Λ is the London parameter and JS is the screening 

current density.  This provides strong evidence that the superfluid is comprised of pairs of 
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electrons.  Direct evidence of fluxoid quantization was provided by the Little-Parks 

experiment (Little 1962, 1964), which was performed on a thin-walled superconducting 

cylinder.  

As mentioned, in practice the measured penetration depth λ is greater than λL for materials 

with short electronic mean free paths.  Pippard extended the London theory to include non-

local electrodynamics (Pippard 1950).  His key insight was to recognize that λ depends on the 

size of the electron mean free path l relative to an intrinsic coherence length ξ0.  The 

coherence length therefore determines the scale over which the wavefunction can ‘feel’ non-

local electromagnetic fields.  BCS microscopic theory (Section 2.2.4) gives the value 

  CBF Tkvh18.00 =ξ       (2.5) 

where vF is the velocity of an electron at the Fermi surface.  The numerical value is typically 

~1 µm although vF and TC vary considerably in the various superconductors (van Duzer 

1999).  For a pure material with a large coherence length (l, ξ0 >>λL – the ‘clean’ limit)    

  ( ) LL λλξλ 31
065.0=  .     (2.6) 

In the ‘dirty’ limit (l<ξ0) 

  ( ) 21
0 lL ξλλ ≈ .      (2.7)  

2.2.3 Ginzburg-Landau theory 

Ginzburg and Landau (Ginzburg 1950) developed a theory to include a spatial variation of the 

superfluid density ρs.  The Ginzburg-Landau theory was based on the Landau theory of 

second order phase transitions.  A phenomenological Hamiltonian for the system can be 

written down, dependent only on the symmetries of the system, in terms of some order 

parameter.  A form of the free energy of the system is used to find its generic behaviour near a 

transition.  Applying this approach to the problem of superconductivity, they suggested that 

ρρs  be written in terms of a complex, position-dependent, condensate wavefunction 

ψ(r), ( ) ( ) 2rrs ψρρ = .  This wavefunction is used as the order parameter.  The expression for 

the free energy f is then 

( ) 242 * ψεψβψα Aeiff n +∇−+++= h ,  (2.8) 
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where α, β and ε are phenomenological terms.  Conventionally ε is taken as 1/2me and e* is 

the effective charge (which turns out to be twice the electronic charge).  Minimizing this over 

all space: 

( ) ( ) 0*
2

1 22 =+++∇− ψψβαψAei
me

h .   (2.9) 

With suitable boundary conditions the Ginzburg-Landau penetration depth (λGL) and 

coherence length (ξGL) can be derived: 

αµβλ 2
04/ emeGL =       (2.10) 

αξ eGL m2/2h=       (2.11) 

The behaviour of f near TC requires that α and β are temperature dependent.  Now ξGL is not 

the same as the intrinsic coherence length ξ0, but describes the length scale over which ψ(r) 

varies.  The ratio ( ) ( )TT GLGL ξλκ =  determines whether the material behaves as a Type I 

(κ_<< 1/√2) or Type II superconductor (κ >> 1/√2).  Using the Ginzburg-Landau theory, 

Abrikosov showed that in the case of Type II superconductors, magnetic field entering the 

bulk at the critical field HC1 does so as quantized vortices (Abrikosov 1957).  This is known 

as the mixed state.  These vortices are characterized by a core of size ~ ξGL(T) inside which 

the order parameter ψ(r) and the superconducting properties are suppressed.  This is 

surrounded by a circulating current which shields the flux line from the bulk, and extends a 

distance ~λGL(T) from the centre of the core.   

2.2.4 BCS theory 

Bardeen, Cooper and Schrieffer succeeded in showing that the formation of a superfluid 

condensate of paired electrons is feasible (Bardeen 1957).  The BCS model offers a 

microscopic description of the superconducting ground state, which has been applied with 

great success to low TC materials.  Below TC the Coulomb repulsion between electrons at the 

Fermi surface is screened and a weak attraction sufficient to bind the pairs together arises due 

to interactions with vibrations of the atomic lattice (phonons).  The resulting Cooper pair has 

zero net momentum and (in a conventional singlet s-wave superconductor) is comprised of 

electrons of opposite spins.  A many-particle wavefunction was constructed to describe the 

superconducting state.  From this it was shown that 2∆ is the energy required to split a Cooper 

 7



Chapter 2 

pair and that the size of a Cooper pair is given by the coherence length, ξ0 (2.5).  The BCS 

prediction for the temperature dependence of the gap parameter ∆ is shown in Figure 2.2.   

 
 
 

Figure 2.2: The BCS prediction of the temperature dependence of the gap parameter ∆(T) 
 (Tinkham 1996). 

( )0∆∆  

 

TcT

 

Gor’kov (Gor’kov 1958) showed that the Ginzburg-Landau equations could be derived from 

BCS theory close to TC and was thus able relate the wavefunction ψ  to the gap parameter ∆.  

Hence a single wavefunction is associated with a macroscopic number of electrons which 

condense into the same quantum state forming Cooper pairs.  Hence the superconducting state 

can be regarded as a macroscopic quantum state, described by a macroscopic wavefunction of 

the form 

θρψ i
s e= ,       (2.12) 

where θ is the phase common to all the Cooper pairs. 

2.2.5 Flux penetration in superconducting thin films 

If we consider the interface between a Type II superconductor and free space, it is well 

established experimentally that vortices experience a surface barrier impeding their entry into 

the bulk.  Bean and Livingstone considered the penetration of straight flux lines through a 

perfectly flat surface (Bean 1964).   This ‘Bean-Livingstone’ barrier arises due to the 

superposition of the attractive image force and the repulsive force on the vortex exerted by 

Meissner screening currents.  Furthermore if a vortex trapped inside the superconductor 

approaches the edge, the screening current distribution is perturbed, thus affecting the 
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condition for flux quantization (2.4).  This means that within the penetration depth λ vortices 

may carry less than one quantum of flux Φ0 (Bardeen1961, Ginzburg 1962).  

In thin films, due to demagnetizing effects, the effective superconducting penetration depth is 

much longer than the bulk value.  Pearl (Pearl 1964) showed that for a thin film of thickness t 

with magnetic field applied perpendicular to the plane of the film the penetration depth is 

 tp
2~ λλ .      (t<<λ)  (2.13)  

In the thin film case the problem of surface barriers is more difficult to treat (the method of 

images cannot be used).  A recent review (Brandt 1995) lists eight theories explaining the 

surface barrier effect in thin films: flux entry may be hindered by divers mechanisms 

including geometric barriers, pinning within the film and interfacial roughness.  Moreover in 

the thin film case non-quantized flux penetration effects are amplified.  An important recent 

paper (Kogan 1994) suggests that the flux associated with vortex in a thin film is reduced 

below Φ0 a large distance (~10λp) from the edge. 

 

2.3 The Josephson Effect 

Josephson (Josephson 1962) first considered the case of two superconductors weakly coupled 

by a thin insulating barrier that allows quantum mechanical tunneling of Cooper pairs from 

one side to the other. He predicted the occurrence of some unusual phenomena in this 

situation – in particular a tunneling current at zero bias voltage, which is re-entrant under 

applied magnetic field.  This was observed experimentally shortly afterwards and led to the 

award of the 1973 Nobel Prize to Josephson and Anderson.  Structures exhibiting these 

phenomena (of which the tunnel junction described is the simplest example) are known as 

Josephson junctions or weak links.  Weak links can also be created between regions of low TC 

superconductor by means of a point contact (Zimmerman 1964) or constriction (Anderson 

1964).  A metallic or semiconducting barrier can also be used, either in a sandwich 

(Clarke_1969, 1971) or variable-thickness bridge (Gubankov 1973) configuration.  Ion 

implantation usually has the effect of suppressing the TC of a superconducting material, so a 

barrier can be created from a region of superconductor above its TC (Arrington 1975).  In high 

TC materials the coherence length is extremely short and a junction is created merely by the 

presence of a grain boundary (Chaudari 1988).  In the most anisotropic of these materials (e.g. 

Bi_2212) intrinsic Josephson tunneling occurs in the c-axis direction (Kleiner 1992).  

Josephson effects are predicted in any system with macroscopic phase coherence and have 
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recently been reported in superfluid 3He (Giovanazzi 2000, Davis 2002) and Bose-Einstein 

condensates (Cataliotti 2001).  The most common low TC superconducor weak link 

configurations are shown in Figure 2.3. 

                
                                                   
 
 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 2.3: Different types of weak links in low TC superconductors.  S stands for superconductor, 
 S’ for a superconductor above TC, N for a normal metal, c for a constriction and I for an insulator. 

(N. B. N/S’ means the barrier material is either N or S’). 
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An elegant phenomenological derivation of the Josephson relations is given by Feynman 

(Feynman 1965).  The probability amplitude of finding a Cooper pair on one side is given by 

ψ1, and by ψ2 on the other.  In the superconducting state the wave function ψ1 is the common 

wavefunction of all the pairs on one side and ψ2 is the corresponding function on the other 

side.   

In this simple symmetrical case the material on both sides is assumed the same and there is no 

magnetic field.  The two amplitudes can then be related in the following way: 

211
1 ψψ

ψ
KU

t
i +=

∂
∂

h       (2.14) 

122
2 ψψ

ψ
KU

t
i +=

∂
∂

h       (2.15) 

A finite value of the coupling amplitude K allows leakage from one side to the other.  If the 

two sides were identical U1 would equal U2.  However, if a voltage bias is applied across the 

junction U1  – U2 = 2eV.  Defining the zero of energy halfway in between the two equations 

become: 

  21
1 ψψ

ψ
KeV

t
i +=

∂
∂

h       (2.16) 

  12
2 ψψ

ψ
KeV

t
+−=

∂
∂

hi      (2.17) 

i.e. the standard equations for two coupled quantum mechanical states.  After (2.12), for the 

wavefunctions of the individual superconductors we can now write: 

  1
11

θρψ ie=    2
22

θρψ ie=    (2.18,2.19) 

where θ1 and θ2 are the phases on the two sides of the junction and ρ1 and ρ2 are the respective 

pair densities.  Substituting into (2.16) and (2.17) and equating real and imaginary parts, four 

equations are obtained.  Letting  ϕ = θ2  - θ1 the result is: 

ϕρρρ sin211
h

&
K

=       (2.20) 

ϕρρρ sin212
h

&
K

−=       (2.21) 
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hh
& eVK

−= ϕ
ρ
ρ

θ cos
1

2
1      (2.22) 

hh
& eVK

+= ϕ
ρ
ρ

θ cos
2

1
2      (2.23) 

With equivalent superconductors on either side of the junction we can set ρ1=ρ2=ρ0.  

Furthermore the electron density is assumed not to vary significantly from the equilibrium 

value ρ0 with time as a result of the interaction.  The current following from side 1 to side 2 

would just be 1ρ&  (or - 2ρ& ) or 

  ϕsinCII = ,       (2.24) 

where the critical current h02 ρKIC =  is the maximum current the structure can support 

without dissipation.  This is known as the dc Josephson equation.  From the second pair of 

equations we then obtain 

h
&&&

eV2
12 =−= θθϕ .      (2.25) 

This result is known as the ac Josephson relation; frequency (ϕ& ) and voltage (V) are related 

by the fundamental ratio he2  = 485,597.9 GHz/V.  The most accurate experimental study to 

date (Jain 1987) found the voltage difference between two separate Josephson devices driven 

by the same signal to be less than 3 parts in 1019.  

 

2.4 Josephson Junctions at Zero Voltage 

The stationary properties of Josephson Junctions (IC, ICRN) vary considerably with 

temperature depending on the nature of the barrier material.  Hence considerable insight can 

be gained from studying  IC (T) and ICRN (T) data.   This discussion draws heavily on the 

excellent review articles of Likharev (Likharev 1979) and Delin and Kleinsasser (Delin 

1996). 
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2.4.1 Tunnel junctions and point contacts 

The temperature dependent behaviour of these classic Josephson devices is well described by 

the theory of Ambergaokar and Baratoff (Ambergaokar 1963).  This theory predicts for the 

critical current IC of a tunnel junction at temperature T: 








∆
=

T2k
∆(T)

eR
TI

BN
C tanh)(

2
π ,     (2.26) 

where RN is the normal state resistance of the junction  (temperature independent in low TC 

devices) and ∆ is the energy gap of the (identical) superconducting electrodes.  BCS theory 

predicts CBTk53.3)0(2 =∆  from which the curve (a) in Figure 2.4 is calculated.  This 

equation is well established experimentally for low TC materials (Fiske 1964).  Critical 

currents and conductance of tunnel junctions decrease exponentially with barrier thickness – 

typical useful barriers are of the order 1 nm thick. 

2 ReI

Fig
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In a point contact weak coupling is achieved by connecting two massive superconducting 

banks by a tiny bridge of superconducting material.  Kulik and Omel’yanchuk (Kulik 1975, 

1978) derived expressions for superconducting electrodes separated by a tiny orifice of radius 

a in an otherwise opaque interface, with a << ξS the coherence length in the superconducting 

electrodes.  For a ‘dirty’ contact (mean free path in the superconducting electrodes lS << a) an 

analytic expression is obtained (the temperature dependence of which is shown in Figure 

2.4_(b)).  The temperature dependence for the ‘clean’ point contact (a << lS) is shown in 

Figure 2.4 (c).  All expressions yield convex ICRN(T) curves: ICRN rises sharply below TC, 

flattening as T tends to zero.  Note that point contacts have larger predicted ICRN products than 

tunnel junctions for a given material: 2)0( π=∆NC RIe , 0.66π and π for tunnel junctions, 

dirty point contacts and clean point contacts respectively.  

2.4.2 Superconductor-normal metal-superconductor junctions 

The physical basis for superconductor-normal metal-superconductor (SNS) is the proximity 

effect, the leakage of Cooper pairs out of the superconductor and into the normal metal near 

the SN interface.  The mechanism by which this occurs is known as Andreev reflection 

(Andreev 1964). In the simplest approximation (Delin 1996), the critical current of a SNS 

junction decays exponentially with increasing electrode separation, L, as  

)exp( 00 LLII CC −=    .   (2.27) )( 0LL >>

The characteristic decay length L is typically equal to ξn, the coherence length in N, which is 

usually much longer than typical tunnel barrier thicknesses.  The temperature dependence of 

IC is dominated by the exponential factor, resulting in an exponential increase in IC  below TC - 

i. e. with upward concavity, in contrast to the tunnel junction and point contact curves.   

The coherence length ξn reflects the size of the Cooper pair in the N material.  Consider a 

normal metal with TC = 0 and mean free path ln as the largest relevant length scale. In the 

clean limit (lc>>ξnc), electronic transport is ballistic and the coherence length is given by  

FTnc vτξ =        (2.28) 

where )2( TkBT πτ h= =(1.22 ps-K)/T and vF is the Fermi velocity (Deutscher 1969). 
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In the dirty limit electronic transport is diffusive and the usual random walk argument leads to 

an expression for ξnd: 

( ) ( ) 2121
nTnncnd Dl τδξξ ==      (2.29) 

where Dn is the carrier diffusion constant in N and δ is the dimensionality ( δnFn lvD = ).  

The subscripts n, c and δ refer to the normal metal layer, the clean and dirty limits 

respectively.  In the context of SNS junctions, ‘clean’ and ‘dirty’ refer to the ratio ncnl ξ , not 

the ratio of ln to the contact dimensions.  These equations represent the upper limit of ξn. For 

typical noble metals, vF  = 1-2 × 106 ms-1 so ξnc = 300-600 nm at 4.2 K.  However for thin 

films the mean free path is limited by the film thickness.  So if ln < 100 nm, ξnd < 100-140 nm 

at 4.2K and the dirty limit prevails.  In semiconductor N layers vF is an order of magnitude 

lower, reducing ξnc accordingly and leading to extreme dirty limit junctions.  In state-of–the-

art two-dimensional electron gas (2DEG) systems ln can be of the order of microns, allowing 

ballistic (clean limit) SNS structures to be created (van Wees 1996) which are of great interest 

in the field of mesoscopic physics.  

2.4.3 De Gennes dirty limit theory 

De Gennes (de Gennes 1964) produced one of the first systematic theoretical investigations of 

the proximity effect.  The basic validity of this theory was confirmed by pioneering 

experimental studies on SN bilayers (Hauser 1966) and SNS sandwich junctions (Clarke 

1969). This early work provides an intuitive basis for understanding the proximity effect and 

the behaviour of SNS junctions and agrees with the limiting cases of subsequent more general 

theories.  The basis of the theory was the self-consistent expression for the spatially varying 

pair potential obtained by Gor’kov from microscopic BCS theory (Gor’kov 1960).  Junction 

critical currents are then calculated using the phenomenological Ginzburg-Landau theory, 

which applies at temperatures down to 0.3TC.   

The spatially varying pair potential ∆(r) is defined as 

( ) ( ) ( )rFrVr =∆       (2.30) 

where V(r) effective electron-electron interaction and ( ) ( ) ( )〉〈= ↓↑ rrrF ψψ  is the pair 

condensation amplitude.  

Considering an SN interface, where N is a dirty metal, de Gennes calculated that on the N 

side, the superconducting  order parameter (or wavefunction) decays exponentially over the 
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coherence length, ξnd.  On the S side the order parameter relaxes into the bulk from the 

interface value ∆i with a characteristic length ξs  (which is the same as Ginzburg-Landau 

coherence length for the superconductor ξGL).  ξs is calculated in the same way as ξnd , but 

using the values of the mean free path and Fermi velocity of the superconductor. The results 

were obtained using the so-called single-frequency approximation, in which the only the 

lowest Matsubara frequency in the Fourier expansion of the Fermi-Dirac distribution is used.  

This simplifies the analysis, yielding analytic expressions, but these are only valid for long 

junctions (junction length L >> ξnd).  A SNS junction can then be viewed as two back-to-back 

SN contacts (schematics shown in Figure 2.5).  IC can then be calculated as the extent of the 

overlap of the wavefunctions of the two superconducting electrodes. 

( )nd

nd

CB

i

N
C L

L
TkeR

LTI
ξ

ξπ
sinh4

);(
2∆

=  

   ( nd
ndCB

i

N

LL
TkeR

ξ
ξ

π
−

∆
≅ exp

2

2

) .   (2.31) 
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Figure 2.5: ∆(x) for SN and SNS structures in the de Gennes theory. 
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2.4.4 Microscopic SNS theory 

To deal with arbitrary bridge length and temperature a more general theoretical approach is 

required.  This was achieved by expressing the highly complicated general equations of 

stationary superconductivity (Gor’kov 1958b, 1960) in a more tractable form (Eilenberger 

1968).  The Usadel Equations (Usadel 1970) were derived from the Eilenberger theory in the 

dirty limit.  These can be used to describe the behaviour of SNS junctions of arbitrary length 

(by abandoning the single-frequency approximation) and unlike the Ginzburg-Landau 

relations, are valid over the entire temperature range.  Likharev (Likharev 1976) dealt with the 

basic case of a one-dimensional junction with rigid boundary conditions.  A schematic of the 

variation of order parameter across the junction is shown in Figure 2.6. 

S S

∆(x)

x

N

LEff

 
Figure 2.6: Schematic of the rigid-boundary condition model variation of the variation of ∆(x) 

across a SNS structure used by Likharev. 

General results are obtained from the Usadel equations by numerical calculations but the 

limiting cases may be derived analytically.  The predicted dependence of ICRN(T) for various 

reduced junction lengths (LEff/ξn) is shown in Figure 2.6.  For the case of a short SNS junction 

(LEff/ξnd(Tc) = 0) the Kulik-Omel’yanchuk expression for a dirty point contact is obtained.  For 

a long junction under rigid boundary conditions not too far below TC : 

)sinh(
2);(

2

ndEff

ndEff

CBN
C L

L
TkeR

LTI
ξ

ξ
π

∞∆=  

 

   )exp(
2

ndEff
ndCBN

LL
TkeR

ξ
ξπ

−
∆∞4

≅   (0.3 TC < T < TC). (2.32)  

which differs only by a factor of order unity from the de Gennes expression.   
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This theoretical approach was extended by Kuprianov and co-workers (Kurprianov 1981).  

They dealt with the effect of the proximity effect on the superconductor, the effects of 

interfacial barriers, finite electron-electron effects in the N interlayer (i.e. a ‘normal’ layer 

with finite TC) and depairing effects due to large currents in the S electrodes.  
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Figure 2.7: Behaviour of ICRN(T)  predicted by Likharev for LEff /ξnd(Tc ) = 0,

12 (top to bottom). 
 

2.4.5 Magnetic field response in the absence of self-field effects –

An external magnetic field gives rise to a modulation of the critical 

The simplest case to consider is that of a short junction, where the redi

in the junction under the influence of its own self-field can be negl

magnetic field the phase difference between the electrodes is uniform

relation holds; the current distribution across the length of the junctio

external field Hz is applied in the plane of the barrier it penetrate

(thickness L), but also the electrodes up to the London penetration 

difference then varies linearly with distance along the junction: 

h
zHde

x
′

=
∂
∂ 02 µϕ      where   LLd λ2+=′

This equation can now be integrated and inserted into the dc Josephso

over the junction area gives the current I.  The critical current I
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maximizing I with respect to the constant of integration 0ϕ .  For a uniform critical current 

density J0 the junction  

( )

0

0
C

Φ
πΦ
Φ
πΦ

IΦI









=
sin

0
      (2.34) 

where dwBdwHΦ zz ′=′= 0µ and w is the junction width.  Thus the critical current varies as 

the modulus of a sinc function – this is analogous to the case of Fraunhofer diffraction of light 

though a single slit.  This is shown in Figure 2.8.  Minima in IC occur where an integer 

number of flux quanta are introduced into the barrier.  Deviations from this ideal behaviour 

can result from an inhomogeneous current distribution across the junction – arising for 

example from inhomogeneities in the barrier.  IC becomes the Fourier transform of the current 

density distribution J(x,y).  Hence J(x,y) can be deduced from ( )ΦIC .  Numerous calculated 

examples for differing current distributions are given in (Barone 1982).  Close to ideal 

behaviour is obtained in low TC tunnel junctions with thick electrodes, whereas high TC 

junctions with artificial barriers in general give poor correspondence due extreme barrier 

roughness and susceptibility to flux trapping.  

 
 

 
 
 

Figure 2.8: Modulation of critical current with magnetic flux in a short Josephson junction  
(Tinkham 1996). 
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2.4.6 Magnetic field response with self-field effects – long junction limit 

The length scale over which self-field effects arise is the Josephson penetration depth, Jλ : 

  
c

0
J jd

Φ
′

=
02πµ

λ .      (2.35) 

Junctions of width w>>λJ are termed long junctions (λJ is temperature dependent so a 

junction can change from short to long with decreasing temperature).   The critical current is 

no longer proportional to the junction area as current flow becomes confined to the edges of 

the junction.  At a given value of applied magnetic field there may be several possible 

solutions for the critical current, corresponding to different numbers of flux vortices trapped 

in the junction.  This leads to a triangular IC(Φ) pattern with incomplete suppression of critical 

current at the minima and irregular period, as shown in Figure 2.9 (Waldram 1996).  When 

self-field effects come in to play, the geometry of the current input also becomes a significant 

factor in determining the overall shape of IC(Φ).    

F

JcI λ2

2

          
 

igure 2.9: Simulated magnetic field response of a junction in the long limit with wi
overlapping modes correspond to different numbers of flux lines trapped in the jun

Scalapino 1967). 
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The evolution of the phase difference with respect to time (t) and position (x) in a one-

dimensional long junction is governed by the time-dependent sine-Gordon equation (SGE) 

(Tinkham 1996): 

  ( ) ( ) ( ) 0,sin1,1
22

2 =−








∂
∂

−∇ tx
x

tx
tc J

ϕ
λ

ϕ     (2.36) 

where c  is the Swihart velocity (the speed of electromagnetic radiation in the barrier).  The 

bias current is introduced via its self-field in the boundary condition (2.33).  This equation 

describes the propagation of waves in a nonlinear dispersive medium.  Solutions of the 

equation are solitons – particle-like excitations that propagate without dispersion along the 

junction barrier, which acts as a Josephson transmission line bounded by the superconducting 

electrodes.   These solitions are known as fluxons or Josephson vortices.  The flux Φ0 

associated with such a Josephson vortex is confined on the length scale of λJ.   

In a real Josephson junction dissipative losses must be taken account.  Hence it is more 

appropriate to use the perturbed sine-Gordon equation (PSGE) (McLaughlin 1978, Barone 

1982, Ustinov 1998). For a one-dimensional junction this is:    

  Γ−−=−− xxttttxx βϕαϕϕϕϕ sin     (2.37) 

where the spatial co-ordinate is normalized to λJ and time to the plasma frequency ω p of the 

junction ( Jp c λω ≡ ). The indices denote partial derivatives.  The loss terms αϕ t and βϕ xxt 

represent the quasiparticle tunneling current and surface losses respectively; Γ is the bias 

current normalized to the critical current of the junction.  In the steady state, the bias current 

supplied by the external circuit compensates for the dissipation.   

There are no analytic solutions to the PSGE.  In the case of weak boundary conditions 

perturbation theory yields propagating solutions (fluxons).  Fluxon modes can be excited in 

the absence of an external magnetic field, giving rise to resonances in the current-voltage     

(I-V)_characteristic of a junction (Fulton 1973).  Fluxons traverse the width of the junction 

under the action of the bias current.  A fluxon arriving at the junction boundary undergoes 

reflection into an anti-fluxon, which is then driven back into the junction.  The 

electromagnetic properties of highly anisotropic high TC superconductors such as bismuth 

2212 are dominated by fluxon motion within the Josephson superlattice (Kleiner 1992, 1994).  

The weak boundary condition case is most elegantly realized in annular SIS junctions where 

the barrier is effectively infinite - Section 2.6 (Davidson 1985).  With strong boundary 
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conditions solutions are obtained numerically.  The non-linear interaction of the Josephson 

current with the cavity modes of the Josephson transmission line gives rise to steps in the I-V 

characteristic.  The amplitude of these ‘Fiske resonances’ (Fiske 1964) depends on the 

external magnetic field.      

 

2.5 Josephson Junctions at Finite Voltages 

 

 
   
   

Figure 2.10: Josephson junction current-voltage (I-V) characteristics (Rowell 1992). 
     (a) SNS junction (b) SIS junction.  
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At finite voltage bias the barrier is crossed by, not only an ac supercurrent, but also by a 

current of unpaired charge carriers (quasiparticles).  The mode of quasiparticle transport 

across the barrier depends on the nature of the barrier material: with an insulating barrier the 

mechanism is tunneling; with metallic barriers the transport mechanism can be either ballistic 

(clean metal) or diffusive (dirty metal).  The difference in the resulting I-V characteristics is 

illustrated in Figure 2.10.   

With a metallic barrier (a) the I-V characteristic takes the form of a hyperbola as the 

quasiparticles crossing the barrier at finite voltage encounter an ohmic resistance.  In the case 

of an insulating barrier (b) quasiparticle tunneling first occurs at a voltage ∆/e, where ∆ is the 

energy gap of the (identical) superconducting electrodes.  In practice this results in a current 

voltage characteristic with large hysteresis.  For technological applications such as Rapid 

Single Flux Quantum Logic (RSFQ – Likharev 1991) non-hysteretic I-V characteristics are 

desired.  Hence although in most current commercial applications Nb-AlO3-Nb SIS junctions 

(Geerk 1982) are employed, these have to be shunted with external resistors.  This is an 

obstacle to future improvements in integration densities in large-scale superconducting 

circuits (Likharev 1999). 

2.5.1 The resistively shunted junction model 

In the first approximation metallic barriers result in an ohmic quasiparticle current.  Hence the 

Josephson junction can be modeled phenomenologically as a lumped circuit consisting of a 

Josephson element in parallel with a resistor – the Resistively Shunted Junction (RSJ) model 

(Stewart 1968, McCumber 1968).  In practice electrical transport across a Josephson junction 

is measured by dc current biasing, as the output impedance of a bias source is usually much 

greater than RN.  The total current in the absence of noise is 

ϕϕϕ sinsin C
N

C
N

I
2eR

I
R
VI +=+= &

h ,   (2.38) 

using both the ac and dc Josephson relations (Equations 2.24 and 2.25).  The time dependant 

voltage V(t) is obtained by integrating using the method of separation of variables: 
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This expression shows the key importance of the  product of a Josephson junction – this 

factor, virtually independent of junction geometry, determines the maximum ac voltage 

amplitude obtainable at a given operating frequency.  Hence to achieve optimum performance 

in electronic circuits based on Josephson junctions, the  product should be tailored as far 

as device constraints allow.  Identifying the prefactor to t as an angular frequency and 

substituting in the ac Josephson relation we obtain the averaged dc voltage 

NC RI

I NC R

0=V     when  CII ≤  

( ) 12 −= CNC IIRIV  when   II >  . (2.40) C

This expression gives rise to a curve identical to that in Figure 2.10 (a) (although the voltage 

is strictly oscillating, this takes place at a such a high frequency as to be impossible to observe 

directly in normal dc measurements). 

The RSJ model can be extended to take into account finite junction capacitance – a second 

order term is introduced into (2.38) yielding an equation of sine-Gordon type (2.36).  The 

effect of significant capacitance is to produce a hysteretic I-V characteristic.  Furthermore, the 

effects of thermal noise, which leads to rounding of the I-V characteristics at finite 

temperatures, can be incorporated in the model. Noise is characterized by a dimensionless 

parameter γ (Ambergaokar 1969): 

  ( )
Tek
TI

B

Ch
=γ .       (2.41) 

When γ is large the rounding of the I-V characterstic is negligible; as γ tends to zero the I-V 

characteristic becomes ohmic (Barone 1982). 

In spite of its crude basic assumptions and the appearance of more sophisticated theories (e.g. 

Time Dependant Ginzburg-Landau theory (Gor’kov and Eliashberg 1968)), the RSJ model 

remains popular. It gives a reasonable approximation to the measured I-V characteristics of 

Josephson junctions and it also is easy to implement in models of electronic circuits 

consisting of large numbers of Josephson junctions (Likharev 1986). 
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2.5.2 Microwave properties of Josephson junctions 

Let us now consider the dc and ac Josephson relations once more ((2.24) and (2.25)). 

Substitution of the ac relation into the dc relation leads to: 







 +⋅= 00

2sin ϕteVJJ
h

,     (2.42) 

which illustrates that the application of a dc bias voltage across the junction gives rise to an ac 

supercurrent with an  angular frequency ( ), related to applied voltage (V) by Jf heVf J 2= .  

This Josephson frequency, , is voltage dependent and lies typically in the microwave 

region: for a voltage of 10 µV  is 4.8 GHz.  This unique fundamental relationship between 

frequency and voltage is now exploited in the international standardization of the volt (Kose 

1976). 

Jf

fJ

In a junction under dc bias these Josephson oscillations can be synchronized (‘phase locked’) 

with an applied microwave (HF) signal.  This leads to the appearance of Shapiro steps in the 

junction I-V characteristic at discrete voltages Vn: 

HFn f
e

hnV
2

= ,       (2.43) 

where n is an integer (Shapiro 1963).  At the nth step, Josephson oscillations of frequency beat 

with the nth harmonic of the HF signal, which is generated due to the non-linearity of the 

junction. It is useful to note that the ICRN product can also be used to define a characteristic 

frequency fC: 

NCC RI
h
ef 2

= ,       (2.44) 

and hence a reduced  frequency Ω:  

  
C

HF

NC

HF

f
f

ReI
hf

==
2

Ω .      (2.45) 
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Figure 2.11: Dependencies of the amplitudes of the zero voltage step (n=0) and first Shapiro step 
(n=1) on the applied HF current for (a) Ω = 0.1 and (b) Ω = 1. The insets show example current-

voltage characteristics for these frequency values at the indicated IHF values (Terpstra 1994). 

If an HF voltage source is used the locking range (‘step amplitude’) In of the nth Shapiro step 

is found to depend on the HF voltage amplitude in the following way: 









=

HF

HF
nCn hf

eVJII 22 ,      (2.46) 

where Jn is the nth order Bessel function of the first kind.  If the junction is both dc and HF 

current biased (the situation in the experiments in this investigation) then the RSJ equation 

(2.38) must be integrated numerically to obtain the excited I-V characteristics. The shape of 

the steps and their amplitudes are determined by the reduced frequency Ω. The dependence of 

the amplitudes of the zero voltage (n = 0) and first (n = 1) Shapiro step on the HF current are 

shown for different values Ω of in Figure 2.11.  Qualitatively Ω may be regarded as a 

measure of the ratio of the fractions of the HF current passing through the shunt resistance 

and the Josephson element.   
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For low frequencies (Ω<<1, Figure 2.11 (a)) the main part of the HF current IHF passes 

through the Josephson element and the junction is truly HF current biased.  This differs 

strongly from the HF voltage biased case in that the steps heights are much smaller than those 

predicted by (2.45) and the intervals between the steps are almost horizontal.  With Ω=1 

(Figure 2.11 (b)) most of the HF current flows through the resistor and the junction becomes 

effectively HF voltage biased.  In all cases, however, the period of the oscillations in step 

height is determined by Ω.  Hence the period can be used in experiments as a precise measure 

of ICRN  for an excited junction. 

 

2.6 Josephson Junctions with Circular Barriers 

This final section concerns the dynamics of circular (infinite) barrier Josephson junctions.  

The unique properties of infinite (circular) barrier Josephson junctions have long been 

recognized (Tilley 1966, Cheishvili 1969, Sherrill 1979).  The most striking property of a 

junction with a cylindrical barrier is that flux will be trapped in the barrier as quanta leading 

to an abrupt suppression of the critical current IC.  Early attempts were made to fabricate 

cylindrical superconductor-insulator-superconductor (SIS) junctions in the ideal geometry 

(Figure 2.12 (a)) by thin-film deposition on the surface of a wire (Kuwada 1983, Sherrill 

1981).   A new approach to realizing junctions in this geometry is explored in Chapter 7. 

Barrier

Barrier

Φ0 Φ0
r θ

z

(a) (b)

Barrier

Barrier

Φ0 Φ0
r θ

z

(a) (b)
 

Figure 2.12: Circular junction geometries in the long junction limit (a) the ideal ‘Corbino’ geometry.  
The barrier is in the same plane as the electrodes and current can be passed radially through the device. 
(b) the ‘Lyngby’ annular junction geometry.  This device is patterned from a conventional SIS trilayer.  
Current flow is in the z-direction.  A trapped fluxon is wrapped around one of the electrodes.  The total 

flux linking the junction can be altered by applying an external field in the (r,θ) plane. 
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2.6.1 Annular Josephson junctions 

Recent experimental work has focused on non-ideal geometries that can be realized to a high 

degree of accuracy using conventional microfabrication techniques.  An annular SIS junction 

(Figure 2.12 (b)) is formed by patterning a SIS tunnel junction into a ring, yielding a high 

quality circular barrier of carefully controlled dimensions (Davidson 1985).  The geometry is 

non-ideal insofar as the junction is not in the same plane as the electrodes.  Fluxons can be 

trapped in the barrier by applying a field or a bias current during cooling (Ustinov 2002) – in 

the optimal case flux will be wrapped around one of the electrodes as illustrated.   

The annular geometry provides an ideal opportunity to study the Sine-Gordon dynamics of 

fluxons (Section 2.4.6).  For a long SIS junction in this geometry, the underdamped 

conditions and the lack of edge reflections, fluxon motion up to superluminal velocities can 

be achieved (leading to Lorentz contraction of fluxons (Laub 1995) and, in stacked annular 

junctions, the emission of Cherenkov radiation (Goldobin 1998)).  By tuning the inner and 

outer radius of the annulus ‘whispering gallery’ fluxon modes can be created (Wallraff 

2000a).   Quantum tunneling of vortices between the lobes of a heart-shaped annular junction 

may provide the future basis of a quantum computer (Wallraff 2000b, 2001).  If a vortex is 

trapped in the annular junction during cooling through the superconducting transition it 

cannot escape – below TC the multiply connected topology permits only creation or 

annihilation of fluxon-antifluxon pairs.  The stability of the trapped fluxon can be exploited in 

X-ray detector applications, where an SIS junction operates in the subgap regime and the dc 

Josephson current must be suppressed (Nappi 1997).  Furthermore this property of annular 

junctions is believed to shed light on cosmological theories (Kanvoussanaki 2000, Nappi 

2002): the ‘Kibble-Zurek’ scenario describes analogous symmetry breaking processes during 

second order phase transitions in the aftermath of the Big Bang (Zurek 1996).  There remain 

however some other interesting properties predicted for circular junctions, which cannot be 

observed in the annular geometry.  

2.6.2 Berry’s phase and the Magnus force 

The discrepancy between the behaviour of quantized vorticies in superconductors and 

superfluid 4He has long puzzled physicists (Vinen 1969, Tilley 1990).  In superfluid 4He the 

force on a vortex best described in terms of the Magnus effect (Vinen 1961) that is to say, a 

vortex moving through the superfluid experiences a transverse force, in much the same way 

as a rotating ball traveling through the air.  In a superconductor, the metallic lattice provides a 

fixed frame of reference, so the transformation used to derive the Magnus force in superfluid 
4He cannot be applied.  Furthermore, in a superconductor the superfluid is charged, hence a 
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Lorentz force is liable to arise between the flux lines and the electric current.  Recently the 

existence of a Magnus force on a vortex in the superconducting case has been justified in 

terms of microscopic BCS theory by invoking Berry’s geometric phase (Ao and Thouless 

1993, Gaitan 1995).  Berry (Berry 1984) recognized the very general result that a quantum 

system’s wavefunction may not return its original phase after its parameters cycle slowly 

(adiabatically) around a circuit.  This result applies to an astonishingly wide variety of 

physical systems∗  (Shapere 1990).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.13: (a) The forces acting on a vortex in a superconductor with current density J in  
the most general case (b) the resultant direction of vortex motion v. 

J

Φ0
FLorentz

-FMagnus

FDrag
v

x

x’

J

(a) (b)

J

Φ0
FLorentz

-FMagnus

FDrag
v

x

x’

J

(a) (b)

The steady state motion of an isolated vortex Φ0 in a region of constant current density J is 

governed by the equation  

  ( ) 000 =−Φ×−Φ× vvJ βα      (2.46) 

The first term represents the Lorentz force FLorentz, the second term the Magnus force FMagnus 

and the final term the viscous drag FDrag contributed by the movement of the normal core of 

the vortex (Poole 2000).  Flux flow occurs with direction and velocity v.  This generates a 

transverse electric field and hence a voltage drop along the direction x-x’.  If the dominant 

force is the Magnus force, vortex flow will occur in the direction of current flow, giving rise 

to a transverse (Hall) voltage.  If the Lorentz force dominates, vortex motion is perpendicular 

to the current and the voltage is longitudinal.  In experiments the latter effect is much 

stronger.  In measurements on bulk superconductors a secondary Magnus force is hard to 

detect, as vortex motion is also influenced by lattice defects in the sample.  
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It has recently been proposed (Gaitan 1996, Gaitan 2001) that a Josephson junction in the 

ideal ‘Corbino’ geometry of Figure 2.12 (a) presents an opportunity to measure the Berry’s 

phase-induced Magnus force on a vortex trapped in the barrier (conventional junction 

geometries, including the annular junction of Figure 2.12 (b) are unsuitable for this 

experiment, as the direction of vortex motion is always perpendicular to the tunneling current, 

causing the Magnus force to vanish). A Magnus force term acts in addition to the usual 

current bias driving force term Γ (2.37).  This force δΓ varies with time and position.  

Numerical simulations (Plerou 2001) predict shifts in the I-V characteristic of the junction due 

to this effect.  The junction can be of SIS or SNS type with a clean barrier.   Above a cutoff 

temperature (crudely estimated at under 1_mK) the Berry’s phase effect will be masked by 

spectral flow of quasiparticle states within the vortex core (Makhlin 1995). 
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Chapter 3: Experimental Methods 

3.1 Summary 

This Chapter details the techniques used to fabricate and measure the devices under 

investigation in this thesis.  The basic device fabrication method (used to produce the devices 

described in Chapters 5 and 6) can be summarized in the following steps: 

• Substrate preparation and cleaning. 

• Photolithography.  

• Film deposition by dc magnetron sputtering. 

• Lift-off and edge bead removal. 

• Device fabrication using the focused ion beam microscope (FIB). 

The multilayer devices of Chapter 7 required the use of additional techniques: 

• Sputtering of insulating layers. 

• Argon ion milling. 

There then follows a review of the measurement facilities used in this investigation:  

• Devices Rig: Measurement of I-V characteristics at different temperatures, magnetic 

fields, under microwave irradiation.  Adaptation of electronics for low-noise 

measurement with the aid of a lock-in amplifier. 

• HelioxTM 3He cryostat. 

 

3.2 Fabrication 

3.2.1 Substrate preparation and cleaning 

The 5 mm × 10 mm substrates used for the fabrication of the devices used in this investigation 

were cut from an oxidized silicon wafer using a dicing saw.  Oxidized silicon was chosen as a 

substrate as it is robust and a reliable insulator.  The following steps were taken to clean the 

freshly–cut substrates 
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• Heating followed by immersion in acetone to melt and remove remaining wax from the 

dicing process.  Soaking in chloroform overnight. 

• Placing in an ultrasound bath in a beaker of chloroform for 30 minutes. 

• Wiping with a cotton bud soaked in acetone and airbrushing with acetone. 

• Rinsing with isopropanol. 

• Drying with filtered compressed air. 

The substrates were then examined under an optical microscope and cleaned further if 

necessary. 

3.2.2 Photolithography 

Photolithography was carried out in the device materials group class 100 clean room.  The 

typical procedure for photolithographic patterning in preparation for lift-off was as follows: 

• The substrate was airbrushed with acetone and dried with filtered compressed air to 

remove dust. 

• The substrate was placed on 100°C hotplate for ~1 minute to remove any remaining 

solvent residues. 

• The substrate was placed on the resist spinner and covered with 4-5 drops of Hoechst 

AZ1529 photoresist using a pipette. 

• The spinner was rotated at 6000 rpm for 30 s giving a 2.37 µm layer of resist. 

• The sample was removed from the spinner chuck and baked to harden the photoresist on 

the 100°C hotplate for 1 minute. 

• The edges of the sample exposed with UV light in the Karl Suess mask aligner for 30 

seconds using a rectangular edge-bead removal mask. 

• The exposed resist was developed away in a 4:1 solution of AZ developer to distilled 

water (development time ~10 s).  The sample was then rinsed in distilled water and dried 

with compressed air, then inspected under green light in an optical microscope: total 

removal of the edge-beads is necessary to ensure good contact in the second exposure – 

the sample was returned to the developer until this was achieved. 
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• The second exposure (~10 s) was carried out using the CAM25 negative mask in the Karl 

Suess mask aligner, vacuum contact being required to define 2 µm width tracks  

• To ensure sharp edges after lift-off samples were often treated in Chlorobenzene for 

2_mins before developing. 

• The sample was developed in a 3:2 distilled water: developer solution for 30 s.  The 

sample was rinsed, dried and inspected with green light as before. 

• If the results were unsatisfactory the resist was removed with acetone and the process 

repeated. 

3.2.3 Deposition of metallic films 

3.2.3.1 The principle of dc magnetron sputtering 

In dc magnetron sputtering the cathode (to which the target material is attached) is held at a 

large negative voltage relative to the substrate and walls of the chamber.  An argon plasma is 

ignited in the chamber by field emission of electrons from the cathode.  The magnetron (a 

configuration of magnets situated underneath the target) serves to confine electrons close to 

the target surface, thereby increasing ionization in this region (Figure 3.1).  Positively-

charged Ar ions are then accelerated towards the cathode, dislodging atoms from the target 

and leading to the build up of a thin film on the substrate (Figure 3.2). 

 

 
Figure 3.1: Applied fields and electron motion in the planar magnetron (Ohring 1992) 
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Figure 3.2: Schematic of the dc magnetron sputtering process. 

 

3.2.3.2 Description of the Mark VII deposition system 

Film deposition was carried out by Dr. Gavin Burnell in an Ultra-High Vacuum (UHV) 

magnetron sputtering system (the Cambridge Device Materials Mark VII).  A schematic and 

picture of the system is shown in Figure 3.3. The system is fully described elsewhere 

(Blamire 1988).  The system consists of an outer and inner chamber.  The latter is surrounded 

by a liquid N2 jacket, which serves to trap contaminating gases.  The chamber is roughed by 

use of a rotary pump, and then pumped to high vacuum by a Turbo Molecular Pump, which is 

backed by the rotary pump.  In this manner pressures as low as 2×10-7 Pa can be attained 

routinely. 

The magnetrons and substrate stage are mounted on a single flange, which is then mounted on 

top of the chamber.  In this way multilayer films can be deposited without breaking the 

vacuum.  During the deposition the substrate holder is rotated.  Under conditions of constant 

power, gas pressure and distance from the target, the deposition rate is determined by the rate 

of rotation.  A computer controlled stepper motor mounted on the axle affords precise control 

of the rotational speed.  Blanking of the substrates is achieved by rotating the stage away from 

the active magnetron. 

 

 34



 Experimental Methods 

 

 

Figure 3.3: Schematic of UHV magnetron sputtering system (after Burnell 1998). 
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Figure 3.4: Sputtering flange (after Burnell 1998). 
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3.2.3.3 Deposition procedure 

Firstly the system is allowed to pump overnight (9 hours minimum) during which time it is 

heated to approximately 120° C for four hours.  This ‘bake out’ procedure encourages 

evaporation and removal of contaminants from the chamber walls.  After base pressure is 

attained, sputtering is carried out using Ar gas (>99.9999 % purity) at pressures between 0.5 

and 2 Pa depending on the material being sputtered.  For this investigation mainly Nb-only 

layers and Nb-Cu bilayers were deposited (Au, W, Pd and Al also have been tried as 

substitutes for Cu).  With the current flange the samples are below room temperature (no 

direct heating or cooling is available) so the resulting films are polycrystalline.  The low 

deposition temperature has the advantages however that the films are smooth and migration of 

atoms between the different metallic layers is discouraged so the interfaces are sharp.   

3.2.4 Lift-off and edge-bead removal 

Lift-off is best performed directly after removal of the samples from the deposition system.  

The principle of lift-off is illustrated in Figure 3.5.  The samples are immersed in a beaker of 

acetone and squirted gently with a pipette under the surface.  In 5-10 minutes the areas where 

metal has been deposited on photoresist come free, leaving behind the desired pattern of 

metallization on the substrate.  The samples are then rinsed with acetone and dried with 

compressed air. 

(a) Photoresist is spun onto substrate. 
 

Photoresist (~2 µm)

Substrate  
 

(b) After edge bead removal, sample is exposed with UV under negative mask, then 
developed (a chlorobenzene treatment prior to developing leads to overhanging resist 
edges). 

 
 

(c) Thin metal film is deposited on top of sample. 
 

Thin film of metal
(~100nm thick)

 
 

(d) Lift-off: immersion in acetone leads to removal of areas where photoresist adheres to 
substrate, leaving desired pattern of tracks behind. 

 

 
 

          Figure 3.5: The prinicple of lift-off. 
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For the edge bead removal a layer of photoresist is spun on the samples as in the first stage of 

photolithography.  The rectangular edge-bead removal mask is used in the Karl Suess mask 

aligner to expose the resist over the metal around the edge of the contact pads.  Typically two 

exposures of ~25 s are carried out.  The samples are then developed in a 4:1 developer to 

distilled water for ~10 s.  The metallization around the edge of the contact pads is then 

removed by immersion for 5-10 s in a solution of Hydrofluoric Acid (HF: HNO3: H2O 1:7:6).  

Extreme caution is exercised at this point, as HF solution is potentially lethal.  The samples 

are inspected under an optical microscope and the redundant resist removed with acetone. 

3.2.5 Patterning in the focused ion beam instrument 

Submicron scale trenches are milled into the ~2 µm wide metal bilayer tracks using the 

Focused Ion Beam microscope (FIB).  The depth of the cuts is accurately determined to 

±5_nm with the aid of an in situ resistance measurement. 

3.2.5.1 The FIB 

Since its introduction in the late 1980s the FIB has become an essential tool in the 

microelectronics industry (Melngailis 1987, Young 1993).  The principle of operation is 

similar to a Scanning Electron Microscope (SEM).  The major difference is that in place of an 

electron source a gallium liquid metal source is used to emit a beam of positively charged Ga 

ions.  This enables both imaging and milling of the sample.  In addition, localized deposition 

of extra material (Pt) can be achieved by ion beam-induced decomposition of an organo-

metallic gas.  Hence this versatile instrument allows faulty circuits to be both inspected and 

modified.  Recent reviews of FIB applications are available (Phaneuf 1999, Reyntjens 2001). 

In this investigation we have exploited the ability of this instrument to create sub-micron scale 

features without resorting to complex and time-consuming techniques such as electron beam 

lithography.  Other research uses of the instrument in our laboratory include the manufacture 

of masks for ion beam implantation (Kang 2001), site-specific sample preparation for 

Transmission Electron Microscopy (TEM - see Section 4.4), tip preparation for Scanning 

Near Field Optical Microscopy (SNOM - Milner 2002), microelectromechanical systems 

(MEMS –Daniel 1999) and patterning of mesa structures for intrinsic tunneling studies in 

high TC superconductors (Winkler 1999). 

3.2.5.2 Operation of FEI Inc. FIB 200 

Full details of operation are given in the FEI ‘Focused Ion Beam Workstation User’s Guide’ 

7451 N. E. Evergreen Parking, Hillsboro, OR, USA, FEI Company.  A simplified version is 

outlined here. 
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Figure 3.6 (right): Schematic of the FIB.
 
Figure 3.7 (below): Photo of the FIB 
(courtesy of A. Latif). 
 

The heart of the FIB is the focusing column, which directs a beam of ions onto the sample.  A 

high vacuum (<5×10-5 Pa) environment is maintained in the column to avoid beam 

interference with gas molecules.  A strong electric field is applied to the liquid metal Ga 

source at the top of the column.  The source self-assembles into a tip and emits positively 

charged Ga ions – the usual extraction current being 2.2 µA.  Two electrostatic lenses, a 

steering quadrupole and an octopole focus the ion beam deflector in its passage down the 

column.  The ion beam then passes through a small opening into the sample chamber (base 

pressure <5×10-4 Pa) where it strikes the sample.  To minimize the beam diameter it is 

necessary to use the highest beam voltage and the smallest possible working distance.  The 

column voltage is 30 kV and the working distance is between 15 and 75 mm.  The beam 

current is the rate at which ions strike the sample and is controlled by the variable aperture.  

This can be set in the range from 1 pA to 1 nA.  Due to the energy spread in the ion beam 

(~5_eV) the beam diameter increases with larger apertures and hence with increased beam 

current.  This chromatic aberration limits the spatial resolution of the FIB instrument (whereas 

spherical aberration is the limiting factor in most SEMs).  In this work a beam current of 4 pA 

was used as this was the minimum stable beam current obtainable, giving a spot size of 

15_nm.   
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Secondary electrons and ions detected when the beam rasters across the surface of the sample 

are used to image the sample (the ion detection system allows the imaging of insulating as 

well as conducting samples).  The beam is guided by the quadrupole steering plates and the 

octopole stigmator/deflection assembly provides scan and shift for fine field of view 

movement, as well as beam astigmatism correction.  The milling of specified patterns into the 

sample is achieved with the aid of a scan control system. 

Prolonged imaging at high magnifications leads to Ga implantation of the sample.  This may 

lead to the alteration of sample properties.  There is a beam blanking system in the focusing 

column which, when activated, diverts the beam away from the blanking aperture and into a 

Faraday cup.  This blanking system also allows the beam current to be measured. 

3.2.5.3 Device fabrication with the aid of an in situ resistance measurement 

 
 
 
 
 
  
           
 
 
 
 
 
 
 
 
 

 
 

Figure 3.8: Schematic of in situ resistance measurement 
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Josephson junctions are created in the Nb-Cu tracks by milling narrow trenches down through 

the upper Nb layer to weaken the coupling (an area 50 nm × 2.5 µm would be milled for a 

given length of time).  Previously cut depths were determined by scaling down the large area 

mill rates determined from the FIB end-point detection feature (Moseley 2000).  This method 

proved unsatisfactory as the mill rate was found to be strongly dependant on the aspect-ratio 

of the cut being milled.  To solve this problem Dr. Wilfred Booij and Dr. Adnan Latif 

developed an in situ resistance measurement technique.  The sample is wire bonded to a 

specially designed chip-carrier linked to the outside of the chamber by an electrical feed 

through.  Direct current was supplied and voltage signals were measured using a Keithley 

2000 voltmeter; these instruments were read by LabVIEW software running on the FIB 

control computer.  Hence a resistance measurement can be carried out on a track as it is being 

milled.  This allows the depth of the trench (± 5 nm) to be extracted from the cutting data 

(Figure 3.9).  The calculation is easiest for a cut into Nb only, so cutting depth would be 

calibrated with respect to cutting time on a Nb-only chip and then a Nb-Cu chip would be 

loaded without turning the beam off and cuts of identical time (and depth) made. 

3.2.6 RF sputtering of insulating layers 

For the devices discussed in Chapter 7 a second wiring layer was required.  In order to isolate 

this from the bottom electrode a layer of insulating silica (SiO2) was deposited over the 

structures. 

3.2.6.1 The principle of RF sputtering 
 

In order to achieve dc sputtering of insulating materials such as quartz (ρ = 106 Ωcm), 

unfeasibly high voltages would be required.  The deposition of insulating thin films is 

commonly achieved by applying an ac signal to the electrodes at radio frequency (RF) – this 

is known as RF sputtering.   Capacitive coupling of the RF generator to the insulating target 

ensures that only the target material is sputtered. 

3.2.6.2 The Device Materials Group silica system     

This deposition system is located in the Device Materials Group clean room.  A schematic of 

the system is shown in Figure 3.10.  A lift-off patterned sample is placed beneath the quartz 

target.   The base pressure of 5 x 10-5 mbar is reached in 30 minutes.  The Ar plasma is ignited 

at 8 Pa.  When impedence matching of the RF source to the target is achieved (reflected 

power minimized; transmitted power = 50 W) the shutter is opened and deposition 

commences.  After 30 seconds of sputtering at low pressure (2.7 Pa) for maximum adhesion, 
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3.2.7.1 Ion milling 

Ion milling is a purely physical milling process.  The physics of the process is analogous to 

sputtering (material is sputtered from the sample surface by a directional ion beam).  The most 

popular source for ion milling is the Kaufman source.  A confined plasma (typically Ar) is 

used to generate ions.   The ions are accelerated through a high potential (~500 V) to create a 

collimated beam, which bombards the sample.  This kind of etch process is not selective and 

as the products are not volatile, redeposition effects may occur.    

3.2.7.1 The New-OAR milling/deposition system 

This system, located in the device materials group clean room, is invaluable for multilayer 

device processing.  The lift-off patterned sample is mounted with vacuum grease or 

conducting silver paint on a cooled sample stage.  This stage can be rotated to face either the 

ion gun or a variety of dc magnetron sputtering targets (available materials include Nb, Au, 

Ag and Al).  Hence the surface of a sample can be cleaned by Ar ion milling before a metal 

layer is deposited.   For the deposition of a high-quality wiring layer a typical procedure is as 

follows: The system is pumped overnight and liquid N2 used to condense the chamber gases, 

allowing a base pressure of 4 x 10-6 mbar to be achieved.   Milling in an Ar-only atmosphere 

proceeds at 2 x 10-3 mbar.  Nb and Au metallization layers were deposited at ~10-2 mbar. 

 

3.3 Measurement Apparatus 

3.3.1 Devices rig 

This setup, constructed by Dr. Wilfred Booij and Dr. Gavin Burnell, contained most of the 

room temperature electronics needed by the various cryogenic probes used.  The electronics 

were computer controlled, along with data acquisition and processing.  Device measurements 

were made using an integrated dual current and low noise amplifier set.  The resulting current 

monitor signal and amplified voltage response was digitized using a National Instruments  

Lab PC-1200 12 bit A/D converter board and the data processed by a LabVIEWTM program 

running on a Dell OptiPlex GXa PC.  The ‘Dualscope’ software program written by 

Dr._Gavin Burnell allows simultaneous recording of up to 4 channels of data whilst 

controlling a separate magnetic coil power supply and/or providing a controlled current to the 

device. 
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Figure 3.11: Photo of devices rig (courtesy of M. Blamire). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.12: Schematic of the devices rig measurement setup (after Moseley 2000). 
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3.3.2 Dip probe 

For the majority of the measurements in this investigation a dip probe constructed by 

Dr._Wilfred Booij was used.  It fits into a standard helium dewar and is of low thermal mass, 

allowing measurements at 4.2 K and above to be taken quickly and easily.  The bottom end of 

the probe consists of a Cu block to which a resistive wire cartridge heater is attached.  

Temperature is measured using a Si diode temperature sensor and stabilized using a 

Lakeshore 82C Temperature controller.   The sample chip was mounted using silver dag or 

nail varnish on a custom designed chip carrier that was attached to the probe by a 19-way D-

connector.  Electrical connections between the sample chip and the chip carrier were put in 

place by ultrasonic bonding with 30 µm Al wire.  A dipole antenna situated directly above the 

sample allowed microwave radiation from a Marconi Instuments 6159A source in the range 

10-20 GHz to be applied.  The output power of the source was calibrated by means of a 

Schottky diode.  A cylinder containing two pairs of Helmholtz coils was placed over the 

sample on the Cu block.  This allowed a magnetic field of up to ~30 mT to be applied either 

in-plane (x-y coils) or perpendicular to the plane (z-coils).  The coils were calibrated at room 

temperature using a Hall Probe.  A mumetal sheath was fitted over the whole assembly, which 

reduced the ambient field to less that 320 nT at room temperature.  

Hence using this probe in conjunction with the ‘Dualscope’ program and measurement 

electronics, measurements could be made on devices under controlled conditions of 

temperature, magnetic field and microwave irradiation. 

3.3.3 Adaptation for low-noise measurement 

In order to perform low-noise microwave measurements the dip probe with microwave 

antenna was used with a different set of electronics.  A schematic of the measurement setup is 

shown in Figure 3.13.   

The basic setup is similar to that described in Section 3.3.2.  The devices are current biased 

and the voltage and current are measured by standard four-point measurement technique.  The 

low noise current source and voltage amplifiers were designed by Dr. Wilfred Booij.  A Dell 

PC controlled the electronics via a 16 bit National Instruments analogue to digital I/O card.  

Current-voltage characteristics were measured with LabVIEW software.  The software also 

controlled the temperature controller, lock-in amplifier and voltage source.  The computer 

generated a 30 Hz sinusoidal voltage, which was used to drive the current source.  A second 

current source could be used to drive the magnetic field coils.  The output power and 

frequency of microwave source (Marconi 6159A) was controlled manually. 
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The EG&G 5302 lock-in amplifier enabled the direct measurement of the differential 

resistance (or dynamic resistance) versus voltage curves.  A 1 kHz voltage with 5 mV 

amplitude was generated by the lock-in amplifier.  This signal was added to a slowly varying 

voltage ramp generated by the current source power supply by means of an adder box 

constructed by Dr. Phillip McBrien.  The amplitude of the 1 kHz current applied to the device 

would therefore change depending on the range of the current source.  The lock-in measured 

the amplitude of the voltage across the device at 1 kHz.  The differential resistance could then 

be then be calculated with the knowledge of the current source range and the voltage 

amplifier gain.  Variation of the current source range and voltage amplifier gain were found 

not to affect the differential resistance measurement.  The differential resistance measurement 

was also not affected by changes in the frequency of the lock-in signal up to ~7 kHz.  Above 

7_kHz the amplitude of the voltage signal measured by the lock-in was reduced by passive 

RC low pass filters in the probe. 
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Figure 3.13: Schematic of low-noise measurement setup (after McBrien 2000). 
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The temperature of the sample was measured with a silicon diode temperature sensor with a 

Lakeshore 340 temperature controller.  The Lakeshore temperature controller and the lock-in 

amplifier were connected to the computer with a GPIB card. 

The peak-to-peak voltage noise of the system was under 1 µV.  The following steps were 

taken to minimize the voltage noise.  The current source and voltage amplifier power supply 

contained active low-pass filters to minimize the voltage noise.  The current source and 

voltage amplifier were fixed to the top of the probe itself.  This minimized the length of cable 

through which low-level signals travelled and thus reduced electromagnetic interference. 

3.3.4 Oxford Instruments HelioxTM 3He cryostat 

 
 

Figure 3.14: Photo of HelioxTM 3He cryostat (courtesy of M. Blamire). 
 

The Oxford Instruments HelioxTM 3He cryostat is designed to fit on a standard helium dewar 

and allows measurements to be carried out at temperatures down to 300 mK (depending on 

the heat load).  A schematic of the system is shown.  It was adapted for use with the devices 

rig by Dr. Gavin Burnell and Dr. Richard Moseley.  The sample is attached to a carrier using 

either silver dag or nail varnish. The carrier was attached to the probe Cu block and 3He plot 

by two connecting bolts and a 0.9” dual-in-line socket.  The sample is connected to the 

electronics system via wire bonds from the sample to a printed circuit board on the carrier.  

The DIL socket is permanently connected via superconducting Nb wires to a D-socket housed 

in the HelioxTM.  A connection port inside the probe is connected by standard copper wiring to 

a port at the top of the assembly, which allows the signal wires to be connected to the rig 

electronics.  A breakout box containing shielding and feedthroughs that reduce high 

frequency interference, is mounted directly on the socket.  Magnetic coils can be mounted on 

the probe if required, but were not used in the measurements in this investigation. 
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Figure 3.15: The operating principle of the HelioxTM sorption pumped 3He cryostat. 

The operating procedure of the HelioxTM can be summarized as follows: 

• The sealed sample space is pumped and cooled to 150 K by immersing the whole probe in 

liquid N2. 

• The probe is then transferred to the helium dewar and cooled by liquid He down to 4.2_K. 

• The 3He sorption charcoal is then heated whilst the 1 K pot is being filled constantly with 

He from the dewar via a capillary and needle valve.   

• The 1 K pot is also being pumped by a rotary pump.  The result is that the 1 K pot 

temperature falls and so that the 3He condenses and runs down to the 3He pot on which 

the sample is mounted.   

• The sample can now be cooled to base temperature by ceasing to heat the charcoal 

sorption pump, which will then start to pump on the 3He (see schematic). 
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• Temperatures in the range 0.3-1.5 K are achieved by heating the charcoal sorption pump 

to reduce its efficiency.  At higher temperatures control is more complicated.  The sample 

is heated directly by a heater mounted next to the probe holder and indirectly cooled by 

the 1 K pot. 

The entire operation from initial cooling to reaching base temperature takes 3 to 4 hours (the 

sample chamber should be loaded the evening before and pumped overnight). 
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Chapter 4: Preliminary Studies 

4.1 Previous Experimental Work on SNS Junctions 

The first experimental studies of the proximity effect in superconductor-normal metal (SN) 

bilayers (Hauser 1966) were carried out at the same time as the theoretical work of de Gennes 

(see Section 2.4.3).  The first thorough study of superconductor-normal metal-superconductor 

(SNS) junctions (in a sandwich geometry) was carried out by Clarke (Clarke 1969) and results 

were found to be in good agreement with a simplified form of the de Gennes theory.  SNS 

junctions in a sandwich geometry were unsuited for practical applications due to their large 

cross-sectional area (of order 1_µm2), leading to unfeasibly large junction critical currents and 

low normal state resistances.  Hence in the early 1970s interest shifted to SNS junctions in a 

planar variable-thickness bridge geometry, based on a thin film (~100 nm) SN bilayer.  A 

trench was created by patterning a resist film on top of the SN bilayer and etching through the 

upper superconducting layer (Notarys 1973, van Dover 1981).  The difficulty of submicron-

scale (electron beam) lithography and the unreliability of the etching procedure made accurate 

control of the barrier cross-sectional area and length (and hence the resulting junction 

parameters IC, ICRN) impossible.  Thus this avenue was largely abandoned in the search for a 

reliable SNS junction technology. SNS sandwich junctions with semiconductor or 

magnetically doped metals (Niemeyer 1979) as ‘normal’ layers were considered more 

promising alternatives.  At present most low TC  Josephson circuits are based on Nb-AlO3-Nb 

SIS junctions with resistive shunts (Likharev 1999).  Recent reports mention SNS variable-

thickness bridges only in the context of novel fundamental studies (Irmer 1999, Dubos 2000). 

The acquisition of a Focused Ion Beam microscope (FIB) has enabled our research group to 

take a fresh approach to the problem of nanoscale variable-thickness bridge fabrication.  The 

FIB allows us to circumvent the problems of deep submicron lithography and anisotropic 

chemical etching.  As described in Section 3.2.5, rectangular-cross section slots of width 

50_nm can be milled with ease into Nb up to an aspect ratio of 2.5 (i.e a depth of 125 nm).  

The early work of Moseley (Moseley 1999, 2000) was carried out using an area dose method 

to determine the slot depth. A large area of Nb on Cu was milled until such time as the end 

point detection sensor in the apparatus indicated that the Cu layer was reached; the dose was 

then scaled for the area of the desired slot.  The mill rate was suspected to be slower for a 

high aspect ratio cut so this method gave overestimates of cutting depth.  The development of 

an in situ resistance measuring technique (Latif 2000) has afforded us much greater control of 

cutting depths (up to ± 5 nm). 
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4.2 Characteristics of Room Temperature Sputtered Films 

Films of Cu and Nb deposited by sputtering (nominally) at room temperature are usually 

polycrystalline (Barber 1986). 

Characteristics of room temperature spu
temperature

Material Tm (K) Td /T

Nb 3041 

Cu 1356 

 

4.3 Resistance versus Temperat
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epitaxial film the mean free path is lim
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hence decreasing resisitivity.  RRR val
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TABLE 4.1:  
ttered films (Tm = melting temperature, Td = deposition 
, Pd = deposition pressure). 

 
m(max) Pd (Pa) Structure 

0.1 0.5-2Pa Fibrous grains 

0.2 “ Columnar grains 
ure Measurements 
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     (4.1) 

inated by electron-phonon scattering ρi (∝T) then at 
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Film thickness 

(nm) 
RRR 

25 1.9 
50 3.6 

400 7.7 
125 2.5 
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4.4 Transmission Electron Microscopy Studies 

Valuable information about the microstructure of the films and the profiles of the cuts made 

with the FIB was obtained by a Transmission Electron Microscopy (TEM) study.  The results 

of this study also demonstrate the validity of the in situ resistance measurement technique in 

determining cut depths.  The study of the cross-section of a specific device is only possible 

with access to a FIB, once again illustrating the tremendous versatility of this instrument.  

This was carried out with the assistance of Dr. Stephen Lloyd.  A series of cuts of increasing 

depths were made into the tracks on a 125 nm Nb 50 nm Cu chip (Figure 4.1 (a)).  The track 

areas were then covered over with Platinum utilizing the in situ localized Pt deposition feature 

of the FIB (Figure 4.1 (b)).  The track used to prepare the final TEM sample was track 2 (top 

right in both these pictures). 

  
 

Figure 4.1: FIB images of tracks cut for TEM sample (a) before and (b) after Pt deposition. 
 

  
 

Figure 4.2: FIB images taken during final stages of track thinning for TEM (a) from above and (b) the side. 

(b)(a) 

(a) (b) 
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Figure 4.3: Dark field TEM image of a 125 nm Nb 50 nm Cu bilayer. 

The area of interest (1 mm × 2mm) was then cut from the chip using a dicing saw and thinned 

on an abrasive turntable to 0.05 mm × 2 mm.  The sample was then mounted in the FIB and 

the areas of chip on either side of the area of interest were removed by milling on high beam 

current (Figures 4.2(a) and (b)). The area of track containing the cuts was then thinned using 

progressively smaller beam currents until a section of thickness ~50 nm remained.  It was 

then possible to carry out TEM studies of the specimen. 

The dark field image (Figure 4.3) illustrates most clearly the differing microstructure in the 

two layers.  The columnar stucture in the Cu is clearly visible, with a grain size in the plane of 

the film of about 30 nm.  Here we also see some sort of twin boundary in the polycrystal.  The 

Nb layer above clearly has a much finer grain structure.  

The subsequent bright field TEM images show the profiles of the cuts milled in the bilayer 

track using the FIB. Figure 4.4 shows a series of cuts of increasing mill time (4, 5, 6, 7, 8 s) 

from left to right.  The cut profile is basically rectangular and appears to increase linearly with 

cutting time. Figure 4.5 shows the next set of cuts in the series, 9 to 13 s from left to right.  

Here it is clear that once the Cu layer is reached, the milling rate increases markedly (Cu is 

sputtered faster than Nb). Also, the aspect ratio of the cuts is now greater than 2.5, leading to 

significant redeposition of material in the bottom of the trench. These two factors mean that 

the cut cross section begins to taper when the Cu layer is penetrated. 
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Figure 4.4: Bright Field TEM image of (from left) 4, 5, 6, 7 and 8 s cuts into a  
125 nm Nb 50 nm Cu bilayer. 
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Figure 4.5: Bright field TEM image of  (from left) 9, 10, 11, 12, 13 s cuts into a  
125 nm Nb 50 nm Cu bilayer. 

The local milling rate may depend on the microstructure of the material at that point hence the 

depth of the cut may vary slightly across the width a track.  This effect appears most 

pronounced in the Cu layer, where the grain size is much larger than in the Nb.  Figure 4.6 

demonstrates this effect.  Figure 4.6 (a) and (b) show 8 and 9 s cuts respectively.  These cuts 

terminate in the Nb. The profiles are basically rectangular but with some unevenness at the 

bottom.  Figure 4.6 (c) and (d) show cuts into and through the Cu layer.  There is noticeable 

damage to the substrate in both these images. In Figure 4.6 (c) this implantation effect occurs 

even through an appreciable remaining thickness of Cu (≅15 nm).  This observation tallys 

with the calculated stopping distances of 30 keV Ga+ ions in various materials.  The stopping 

distances in Nb, Cu and Si are 11.3, 9.5 and 25_nm respectively, calculated (Moseley 2000) 

using the SRIM 2000 Monte Carlo-based program  (Biersack 1980).  The shorter stopping 

distances within metallic layers also reflects the fact that these elements are sputtered ~2.5 

times faster than Si in the FIB (Kempshall 2001) – this in turn leads to greater susceptibility 

to redeposition effects when milling metallic films.  Hence the maximum aspect ratio for a 

straight-sided slot achieved here is much poorer than what could be attained when milling Si.  

Furthermore in this study we are unable to employ the ‘enhanced etch’ mode of the FIB to 

improve the aspect ratio. There milling is assisted by the introduction of iodine into the 

chamber - in Cu films this has the highly undesirable side-effect of forming copper iodide. 
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In conclusion, the conversion of resistance data to cut depth is based on the assumption that 

the cut profile is rectangular, as indeed appears to be the case up to an aspect ratio of 2.5.  

Resistance data was aquired as the initial cuts were milled, and the cut depths observed by 

TEM were found to be within ±5 nm of those predicted (up to an aspect ratio of 2.5).  The 

TEM images also provide valuable insight into the film microstructure and the extent of Ga 

implantation at the base of the cuts. 

Pt

Nb

Cu

50 nm

SiO2
(a) (b)

(c) (d)
 

 
Figure 4.6: Close-up TEM images of various cuts (a) 8 s (b) 9 s (c) 12 s (d) 13 s 
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Chapter 5: Characteristics of Planar SNS Junctions 

5.1 Summary 

In this investigation initial devices were made using the in situ resistance measurement 

technique in 125 nm Nb, 75 nm Cu, 1.5 µm wide bilayer tracks, since similar devices 

fabricated by Moseley had yielded promising results (Moseley 2000).  These devices were 

thoroughly characterized at 4.2 K in terms of their current-voltage (I-V) characteristics, 

magnetic field- and microwave-response.  A comparison was made with devices fabricated in 

125 nm Nb single layer tracks.  A systematic study was then carried out of the effect on the 

characteristics of devices at 4.2 K of varying the Cu thickness: further devices were fabricated 

in chips of 125 nm Nb on top of 12.5 nm, 25 nm, 37.5 nm and 175 nm Cu.  Using the results 

of this study a theoretical picture of device operation has been developed.  The HelioxTM 3He 

cryostat allowed I-V characteristics for a number of devices to be measured down to 300_mK.  

The IC(T) and ICRN(T) data thus obtained was compared with established SNS junction theory.  

The magnetic field response and microwave properties of individual junctions have now been 

studied in detail.  The core results contained in this Chapter have been published 

(Hadfield_2001a). 

5.2 Measurements at 4.2 K 

5.2.1 Devices created in 125 nm Nb 75 nm Cu bilayer tracks 
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Figure 5.1: Device created in a 125 nm Nb 75 nm Cu track (1.5 µm width) with 6.6 second cut  (70% 

through Nb):low bias characteristics at 4.2 K (a) I-V at low bias (b) Plot of I2 against V2. 
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Figure 5.1 (a) shows a typical low bias I-V characteristic of a single-junction device fabricated 

in a 125 nm Nb, 75nm Cu bilayer track.  In this case a 50 nm slot was cut for 6.6 s (70% of 

the way through the Nb layer).  At low voltages the junction displays a characteristic of RSJ 

form (IC = 1980 µA, ICRN = 100 µV). As seen in Figure 5.1 (b), for this set of data I2 ∝ V2, in 

correspondence with the RSJ prediction (2.40).  The normal state resistance RN of a given 

device was determined using the best-fit gradient of such a plot.  At higher currents, instead of 

tending to an asymptotic RN value, the I-V characteristic deviates from RSJ behaviour (Figure 

5.2).  The normal state resistance of the device starts to increase and at a certain bias current 

value (IC(Track) ≅ 7300 µA), the whole track is driven into the normal state resulting in large 

hysteresis.  This sort of behaviour is well known in variable-thickness bridges and is 

explained in terms of hotspot formation centred on the junction region, as the current is so 

large as to drive the whole track into a resistive state (Skocpol 1974). 
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Figure 5.2: I-V characteristics of the same device at high current bias. (125 nm Nb 75 nm Cu track  
6.6 second cut  (70% through Nb)). 
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The magnetic field response of a single junction device fabricated by a 8.8 s cut into the Nb of 

a 125 nm Nb 75 nm Cu bilayer is sown in Figure 5.3.  The pattern is basically of Fraunhofer 

type indicating that this junction is in the short limit.  A more thorough exploration of the 

magnetic field response of this type of junction is given in Section 5.4.1.  

Figure 5.3: Magnetic
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The microwave response of the same junction is shown in Figure 5.4, exhibiting clear Shapiro 

steps.  The measurement setup used here facilitated the calibration of the applied microwave 

power via a Schottky diode.  This allowed the modulation of the step heights with applied 

microwave power to be measured.  Results for the n = 0, 1 and 2 steps are shown in 

Figure_5.5 and show the expected Bessel function-like behaviour (Ω~1). Non-zero minimum 

step heights are artifacts of the step height-finding subroutine. 
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I-V characteristics at 4.2 K for devices of increasing cut depth (60-90% into the Nb layer) 

from a single 125 nm Nb 75 nm Cu chip are shown in Figure 5.6 (a).  (Measura le IC ’s at 

4.2_K were obtained for cuts into the Cu layer, though the exact depth of these cu

to control as the milling rate of Cu is high and the cut cross-section begins to 

Chapter 4).  The results in Figure 5.6 indicate that at 4.2 K a significant propor

Josephson current is passing through the Nb at the bottom the trench: the deeper 

lower the IC , which is unsurprising as the junction area is being reduced as th

increases.  It is interesting to note the behaviour of the ICRN product in relation to c

these same devices (Figure 5.6 (b)). There is a steady decrease in ICRN with inc

depth.  This is because the normal state resistance remains more or less the same: 

voltage state the quasiparticle current travels through the Cu layer (the normal stat

of Cu is much less than that of Nb) which is of equal thickness in all of these devic
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5.2.2 Comparison between devices created in 125 nm Nb 75 nm Cu bilayer tracks and 
devices created in 125 nm Nb only tracks  

 

Devices were also fabricated by making 50 nm cuts of the same depth into tracks on a 125 nm 

Nb-only chip.  These produced Josephson junction-like I-V characteristics at 4.2 K over a 

much narrower range of cut depths (70-80%).  The I-V characteristic at 4.2 K of a device 

fabricated with a 70% cut through the Nb in a 125 nm Nb-only chip is compared with that of 

a device of identical cut depth fabricated in a 125 nm Nb 75 nm Cu chip in Figure 5.7.  The 

Nb-only device (blue) has a markedly lower IC (595 µA as compared to 1980 µA) and clearly 

a much higher RN (1.6 Ω as compared to 0.05 Ω) than the 125 nm Nb 75 nm Cu device. The I-

V characteristic of the Nb-only device also shows signs of hysteresis, presumably due to the 

thermal effects  (Nb has a much lower thermal conductivity than Cu).  125 nm Nb devices 

also showed much poorer magnetic field and microwave response than their 125 nm 75 nm 

Cu counterparts.  A plausible explanation for the poorer performance of Nb-only 

microbridges is that the device characteristics are determined by a thin (20 to 30 nm) 

remaining layer of Nb, which is implanted with Ga up to 15 nm through its thickness.  Clearly 

the exact properties of this region are difficult to control.  The presence of a Cu layer 

underneath, in addition to carrying a small proportion of the Josephson current, greatly 

improves heat dissipation in the region of the junction and allows a much larger IC to be 

supported without hysteresis.  The only potential drawback of employing a Cu layer is that 

the RN of the junction is reduced (a high ICRN product being desirable for certain applications). 

Figure 5.7: The
75 nm Cu bilaye  
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5.2.3 Variation of device properties with Cu layer thickness 

A detailed study was carried out of the effect on device properties (RN, IC, ICRN) of the 

variation of Cu thickness for a given cut depth.  Cu thicknesses from 0 to 175 nm and cut 

depths from 60-100% through the Nb layer were investigated (a device with zero Cu 

thickness is a simple Nb-only variable thickness bridge).  The Nb thickness remained constant 

at 125 nm and a 50 nm trench width was always used.  Data for 70% cut devices over the full 

range of Cu thickness is given in Table 5.1.  In all cases RN decreases as Cu thickness 

increases.  The trend in IC is more complex.  The addition of thin layer of Cu results in a 

dramatic lowering of IC: as the order parameter at the bottom of the Nb layer is suppressed.  IC 

falls an order of magnitude below that of a Nb-only variable thickness bridge.  As the Cu 

layer thickness is increased, however, the proximitized Cu layer begins to carry an increasing 

proportion of the Josephson current.  At 175 nm Cu thickness, IC appears to be approaching 

saturation, as the film thickness now exceeds the dirty limit coherence length in the normal 

metal (≅75 nm).  

Length scales of import

Cu 

thickness 

(nm) 

Residual 

resistivity, 

ρCu (µΩcm) 

Electronic m

free path ln (n

12.5 6.3 15 

75 1.76 33 

175 0.58 122 

TABLE 5.1: 
Variation of device parameters at 4.2 K with Cu layer thickness for 70% cuts through  

125 nm niobium layer. 
 

Cu layer thickness 
(nm) 

IC (µA/µm) RN(Ω/µm) ICRN (µV) 

 
0 

 
540 

 
1.6 

 
864 

 
12.5 

 
60 

 
0.85 

 
51 

 
25 

 
46 

 
0.48 

 
22 

 
37.5 

 
320 

 
0.13 

 
42 

 
75 

 
1010 

 
0.044 

 
44 

 
175 

 

 
1100 

 
0.018 

 
20 

 

TABLE 5.2: 
ance for Cu layers in this investigation. 

 
ean 

m) 

Clean limit 

coherence length ξnc 

at 4.2K (nm) 

Dirty limit coherence 

length ξnd at 4.2K (nm) 

450 47 

450 70 

450 130 
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Figure 5.8: ICRN at 4.2 K versus Cu thickness for 60% (circles) and 80% (triangles) cuts through 
125 nm Nb layer. Inset is a schematic of the device structure (S = superconductor below its TC, 

S’= superconductor above its TC, N = normal metal).  Note that the point for the 60% cut at zero 
Cu thickness does not strictly represent a Josephson junction. 

Nb:
125 nm
Cu:
0-175 nm

50 nm

 

ICRN data for 60% and 80% cuts into the 125 nm Nb layer over the full range of Cu 

thicknesses is shown in Figure 5.8.  The initial decrease in IC and hence ICRN is most dramatic 

for the 80% cut, as the Nb layer remaining at the bottom of the trench is thinner.  For the 80% 

cut, ICRN  then begins to recover at a Cu thickness of 25 nm, rising to a maximum at around 

75_nm Cu.  For the 60% cut ICRN varies little over this Cu thickness range. As Cu thickness 

increases further, ICRN decreases gently for both cut depths, due to the reduction in RN with 

increasing Cu thickness.  The data sets for other cut depths (70, 95, 100% - omitted from 

Figure 5.9 to allow clear representation) follow the trends illustrated by the 60% and 80% 

sets.  A further important point is that for low Cu thicknesses ICRN  varies considerably over a 

narrow range of cutting depths: only at Cu thicknesses of 40 nm and above were junction-like 

properties achieved over a wide range of cut depths (60-100%).  Furthermore, a thick Cu 

layer greatly improves heat dissipation from the region of the junction, allowing devices to 

support a higher critical current at 4.2 K without thermal hysteresis. 
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5.2.4 Towards a model of device behaviour 

From this data and the calculated length scales in Table 5.2 we can develop a picture of the 

current transport in these devices: the Josephson current penetrates the Cu layer up to the dirty 

limit coherence length ξnd. ξnd becomes shorter than the film thickness at around 75 nm Cu 

thickness.  Beyond this point we should hence expect little further increase in IC for a given 

cut depth.  As RN continues to fall with increasing Cu thickness we should expect ICRN  to 

saturate over this length scale, which indeed appears to be the case. 
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Figure 5.9: Towards a model of device behaviour. 
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The results of this study lead us to propose a model whereby Josephson current flows in 

parallel through two interacting channels: the SS’S channel through the damaged and 

proximitized Nb and the bottom of the trench and the SNS channel through the Cu beneath (S 

= superconductor below its TC , S’ = superconductor above its TC , N = normal metal).  This 

situation can also be represented by an order parameter that is inhomogeneous vertically 

through the centre of the junction (Figure 5.9).  The profile of the order parameter ∆ along the 

line y-y’ must determine the critical current of the device.  A model which allows this profile 

to be calculated, taking into account the remaining Nb thickness and the thickness of the 

normal metal layer, relative to the coherence lengths in both materials, would allow variations 

of ICRN with remaining Nb depth (such as shown in Figure 5.6 (b)) to be calculated.  In terms 

of useful applications of these devices, control of device parameters is vital, so a slow 

variation of ICRN with milling depth is highly desirable.  To date the slowest variation has 

been achieved with a thick (~100 nm), clean Cu layer.  An outline of an approach to 

calculating the spatial variation of the order parameter vertically through the barrier, based on 

microscopic Usadel theory (Usadel 1970) is given in Appendix 1. 

5.3 Temperature Dependent Measurements 

Measurements were carried out of ICRN over a more extensive temperature range for selected 

devices in order to investigate the behaviour of the two interdependent transport channels.  In 

order to study the SS’S channel in isolation, a device created by an 80% cut through a 

125_nm Nb-only track was chosen.  A fit was made to this Nb-only microbridge data using a 

theory of de Gennes (de Gennes 1964 – Section 2.4.3).  Substituting the value of the 

electronic mean free path in Nb (ln = 5 nm, calculated from the residual resistivity) into 

Equation 2.31 gives an effective junction length LEff = 400 nm (i.e. long compared to the 

width of the trench).  It should be noted however that measurements were only possible over a 

limited temperature range due to poor heat dissipation from the region of the junction. 

TABLE 5.3: 
Summary of parameters used for fitting with Likharev model 

 
Cu 

thickness 

(nm) 

Electronic 

Mean free 

path 

ln (nm) 

Tc 

(device) 

(K) 

ξnc(Tc) 

(nm) 

ξnd(Tc) 

(nm) 

ICRN(T→0) 

(measured) 

(µV) 

LEff/ξnd(Tc) ICRN(T→0) 

(Likharev 

prediction) 

(µV) 

75 33 7.5 250 52 270 5 980 

175 122 6.5 290 108 140 8 550 
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ure 5.10: ICRN measured as a function of temperature for a 100% cut through the Nb layer in a 
5 nm Nb 75 nm Cu track.  The fit is made using the Likharev one-dimensional-electrodes-in-
equilibrium theory for L/ξN = 5. With normal metal dirty limit coherence length at 4.2 K  

ξN = 45 nm, the effective junction length L is 280 nm. 
NS channel was measured by selecting devices where the Nb layer was cut completely 

gh.  A numerical fit to the data was carried out using the one-dimensional-structure-

electrodes-in-equilibrium theory (Likharev 1976 – Section 2.4.4).  Table 5.3 shows the 

eters used in the fit for two devices.  In Figure 5.11 ICRN(T) for a 100% cut device in 

m 75 nm Cu bilayer is shown.  This gives an effective junction length LEff of 280 nm.  

value seems plausible, envisaging the Josephson current entering the Cu at some average 

ce into the Nb banks.  The absolute value of ICRN is 4-5 times lower however than that 

cted by the theory, given the value of the gap in Nb (1.3 meV - Warburton 1993).  This 

e explained in by the suppression of the gap in the Nb in the region of the SN interface. 

ression of the order parameter in the superconducting banks is not taken into account in 

ikharev hard boundary condition model, nor is an imperfect interface transparency at the 

nterface.  These would both lead to the effective order parameter appropriate for 

itution in the Likharev model being much less than the ideal value.  These arguments 

 applied by van Dover (van Dover 1981) to results on variable thickness bridges similar 

ose fabricated in this study in order to fit ICRN(T) data.  Van Dover multiplied the 

rev ICRN predictions by temperature dependent prefactors given representing the 

ession of the order parameter and the imperfect interface transparency.  The result was a 
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reasonable fit but with unclear physical justification: the reliability of the fit depends on a 

factor γ which represents the ratio of the effective mass of a charge carrier in the normal metal 

to that in the superconductor.  This must be far from unity to give a sensible value for the 

interface transparency.   

Hence to date theoretical fits have only been made successfully to temperature dependent data 

from devices that are either purely SS’S or SNS.  In general, as discussed in Section 5.2.4, the 

devices are two-dimensional in nature and consist of two interdependent transport channels 

(which can be viewed as an order parameter that is inhomogeneous vertically through the 

centre of the junction).  

5.4 Departures from Ideal Behaviour 

5.4.1 Magnetic field response 

The basic magnetic field response of a Josephson junction is explained in Section 2.4.5.  

When the self-field of the current through the junction can be neglected the IC(B) response is 

analogous to the diffraction of monochromatic light through a single slit in the Fraunhofer 

regime (the ‘short’ limit).  Self-field effects become significant in the ‘long’ limit, when the 

junction width exceeds the Josephson penetration depth λJ  (Equation 2.35).   
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Figure 5.11: FIB image of a 2 µm width junction (80% th
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To explore the transition from ‘short’ to ‘long’ behaviour junctions of several widths (0.5, 1, 

2 and 4 µm) and depths (70% -100% through Nb) were fabricated in a single 125 nm Nb 75 

nm Cu chip.  The chip was of the type provided by NIST (See Chapter 6) consisting of a long 

central track (up to 8 µm width) with numerous narrower lines branching off.  The milling 

depth for a 50 nm trench with a 4 pA beam was calibrated using the in situ resistance 

measurement.  After trench milling, junction widths were defined using a 70 pA beam (Figure 

5.11).  To avoid creating excessive debris (which could lead to back-filling of the junction 

trench), islands of isolated superconducting material were left either side of the actual 

junction. 

Figure 5.12 shows IC(B) responses of junctions of  70% and 80% milling depth.  The IC(B) is  

extracted using a 5 µV voltage criterion.  The 70% trace (red) exhibits close to a sinc-function 

(Fraunhofer) response; the incomplete suppression of IC at the first minimum may be 

attributed to inhomogeneities in the barrier and the use of a voltage criterion.  The first 

minimum corresponds to one flux quantum Φ0 linking the junction. The 80% trace (blue) 

measured in the same field, shows a first minimum where IC is clearly not suppressed.  This 

indicates we are approaching the long limit, where the IC(B) pattern is more correctly viewed 

as a superposition of triangles (Section 2.4.6 - Waldram 1996).   
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Figure 5.12: Critical current versus applied field response for 1 µm width junctions 

(Red: 70% cut; blue 80% cut). 
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Hence from Figure 5.12 we can infer 

depth) – clear long junction behaviou

comparison λJ is calculated for these t

are shown in Table 5.4.  The current de

uniformly distributed through the rema

depth is λp=λL
2/t where λL is the Lon

thickness (125 nm).  Inductive measure

(T = 0) at 90 nm (Schneider 1994).  T

plus twice the penetration depth.  Sur

(525 nm compared with 360 nm for 

clearly closer to the long limit (implyi

estimate of JC - as discussed in Section

the depth following the same depende

the remaining Nb layer and falling off

Furthermore a thin layer of Nb in th

implantation.  The recalculated values 

depth device is only slightly longer (20

Parameters used in calculating Joseph
Figure 5.12. assuming majority

Milling 

depth 

(%) 

Remaining 

depth of Nb 

(nm) 

Critical 

current 

(µA) 

70 27.5 1260 

80 15 525 

Parameters used in calculating Josephso
Figure 5.12 assuming a uniform curre

Milling 

depth 

(%) 

Remaining 

depth of 

material (nm) 

Critical 

current 

(µA) 

70 112.5 1260 

80 100 525 
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TABLE 5.4: 
n penetration depth, λJ  for the 1 µm width junctions of  
nt density JC throughout the remaining Nb-Cu bilayer 

 
Current 

density JC 

(Am-2) 

Thin film 

penetration 

depth λp (nm) 

Barrier 

thickness 

d’(nm) 

λJ (nm) 

1.12x1010 65 180 360 

5.25x109 65 180 525 
that λJ is typically under 1 µm (depending on milling 

r is only expected when junction width w >> λJ.  For 

wo devices using Equation 2.28.  The parameters used 

nsity JC is calculated by simply assuming the current is 

ining Nb and Cu thickness.  The thin film penetration 

don penetration depth and t the superconducting film 

ments of Nb thin films grown in this laboratory put λL 

he effective barrier thickness d’ is the trench width, d, 

prisingly the 80% depth junction yields the longer λJ 

the 70% depth junction).  In Figure 5.12 the 80% is 

ng a shorter λJ).  The discrepancy may arise from the 

 5.2.4 JC is in fact liable to be inhomogeneous through 

nce as the order parameter ∆ in Figure 5.9 (highest in 

 in the Cu layer with distance from the SN interface).   

e bottom of the trench (~10 nm) is degraded by Ga 

of λJ are given in Table 5.5.  In this case λJ for the 80% 

3 nm as opposed to 177 nm for the 70% device).   

so
 c
TABLE 5.5: 
n penetration depth, λJ  for the 1 µm width junctions of  
urrent transport through the remaining Nb layer. 

 
Current 

density JC 

(Am-2) 

Thin film 

penetration 

depth λp (nm) 

Barrier 

thickness 

d’(nm) 

λJ (nm) 

4.58x1010 65 180 177 

3.50x1010 65 180 203 
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Figure 5.13: Transition from ‘short’ to ‘long’ junction behaviour with  

increasing junction width in 70% cut depth devices.   IC(B) patterns measured  
at 4.2 K (B-field normalized to track width).  Track widths indicated. 

Figure 5.13 shows the evolution of IC(B) for 70% cut junctions of width 0.5 to 4 µm.  For 

clarity, magnetic field is normalized to junction width.  IC is unscaled and so increases with 

junction width.  For the narrowest junctions (0.5 µm width) the full period of the pattern was 

difficult to obtain, as a greater flux density is required.   It is clear that the pattern evolves 

from sinc-like (0.5 and 1 µm width) to clear long junction type (4 µm), suggesting that 

λJ_<_1_µm is a good estimate for these 70% cut depth devices.  IC for the 4 µm width device 

is noticeably less than the 2 µm width device, indicating that self-field effects are limiting IC 

in the long limit. It should also be noted that the patterns for 2 and 4 µm width devices are 

considerably less clean, indicating increasing barrier inhomogeneity.  The asymmetry evident 

in the 2 µm and 4 µm traces is due to self-field effects arising from the current injection 

configuration:  the current is being driven in a ‘U’-shaped path (see Figure 5.11), so a 

component of the current flows parallel to the barrier (Isaac 1998).   
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An obvious further question is whether the effective magnetic area of the junctions can be 

extracted from the IC(B) data.  The usual result for a Josephson junction is that the period of 

the magnetic field modulation ( )[ ]dwB L +Φ=∆ λ20  where w is the junction width, d is 

the trench width and λL is the London penetration depth.  For a planar junction in the thin film 

limit (thickness ~ λL or less) flux penetrates the film uniformly and ∆B varies as 1/w2 

(Rosenthal 1991).   This limit is most commonly achieved in junctions based on high TC 

materials, where λL is long.  The planar SNS junctions used in this study are based on 

polycrystalline Nb films 125 nm thick.   As mentioned the best available figure for λL is 

90_nm (Schneider 1994).  Hence with these devices we may expect to be at the crossover 

between the 1/w and 1/w2 regimes.  Figure 5.14 shows ∆B (half width of the central peak) 

versus w.  For both milling depths studied, the best fit power of w is close to 1.5 indicating 

that we are in the intermediate regime (thickness ~ λL).   However, as we enter the long 

junction regime the analysis may be argued to be invalid.  Without the 4 µm width data the 

best fit power is 2 indicating we are in the thin film limit and flux focusing is taking place.  

Some studies of flux focusing (Pauza 1993) suggest that for a junction in a thinned track, the 

appropriate scaling is in fact 1/wTrack.wJunction.  In this experiment it is difficult to verify this 

type of dependence as the data set is small and the geometry is not exactly the same: the 

presence of the isolated superconducting regions either side of the junction (Figure 5.11) may 

distort the result.    
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Figure 5.14: Plot of junction width w versus modulation period ∆B for 70% (red circles)  

and 80% cuts (blue diamonds).  A power law fit nwB 1∝∆ gives n=1.5 for the  
full range  (blue line) and n=2 discarding the 4 µm width junction data (red line). 
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5.4.2 Microwave response 

The development of an improved low-noise measurement setup (Section 3.3.3) has allowed 

deviations from RSJ-like behaviour in the junction I-V characteristics to be studied.  The I-V 

characteristic at 4.2 K of a single junction is shown in Figure 5.15.  The device was fabricated 

in a 125 nm Nb 75 nm Cu bilayer provided by NIST (see Chapter 6).     

Two features are striking about the I-V characteristic: 

(a) Without microwaves (red curve) 

There appears to be a definite ‘shoulder’ at 0.03 mV, which is not in agreement with the RSJ 

model (which predicts a hyperbola: Equation 2.31). 

(b) With microwaves at 13.95 GHz (blue and green curves) 

At moderate microwave power (blue curve) there are strong Shapiro steps at the expected 

voltages (first step at ~0.028 mV).  However as microwave power is increased further (green 

curve) half-integer Shapiro steps become evident. 
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Figure 5.15: I-V characteristic of a single junction in a 125 nm 75 nm Cu bilayer 
at 4.2 K. Red curve: without microwaves. Blue and Green curves: with 

increasing microwave power at 13.95 GHz. 
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The ‘shoulder’ feature in the I-V characteristics of planar SNS junctions has been reported 

elsewhere (Lindelhof 1981) and is ascribed to non-equilibrium processes, which cause a gap 

oscillation (Lempitskii 1983).  The evolution of this feature with temperature has also been 

studied (Dubos 2000/2001- Figure 5.16).  The structure concerned was a long Nb-Cu-Nb 

junction with a barrier length of 800 nm.  At low temperatures the I-V characteristic of the 

device is RSJ-like but as temperature is increased the ‘shoulder’ feature becomes more and 

more apparent.  This transition takes place over quite a small temperature range (3.5 – 5.5 K; 

TC Nb electrodes = 8 K).  Hence the reason why this feature is not so obvious in the devices 

discussed in the previous sections of this Chapter is that the Nb-Cu bilayers provided by NIST 

have slightly lower TC than those produced in Cambridge. 

 
 
 

Figure 5.16: (a) Differential resistance of a Nb-Cu-Nb device as a function of dc bias current at 
different temperatures.  Inset: Electron micrograph of device.  (b) Current-voltage characteristics 
as obtained by numerical integration of differential resistance curves.  Also shown is an RSJ fit to 

the data at 5.5 K (dotted line) and ohmic behaviour (dashed line). (Dubos 2001) 
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More sophisticated theories than the RSJ model can be employed to obtain an improved fit to 

the I-V characteristics of planar SNS junctions.  Time-Dependent Ginzburg Landau theory 

(TDGL) was applied with some success to this problem by van Dover and co-workers (van 

Dover 1981, de Lozanne 1986).  More recently SNS I-V characteristics have been simulated 

theoretically within the framework of quasiclassical Green’s functions (Dubos 2000, Wilhelm 

2000). 

Sub-multiple Shapiro steps have been observed since the earliest SNS junctions were 

fabricated (Waldram 1970).  The explanation usually offered is an additional sin(2ϕ) term in 

the current-phase relation (Equation 2.17) – which can again be ascribed to a non-equilibrium 

current.  In the case of long barrier SNS junctions experimental observations of sub-multiple 

steps (Dubos 2000) have been found to be in good agreement with Usadel-based microscopic 

theory (Wilhelm 2000).  The sub-multiple steps are found to persist at high temperatures even 

when the dc Josephson current is zero.  Hence although the junctions discussed in this 

Chapter are two-dimensional in nature it is clear that the features observed are in keeping with 

more idealized SNS experimental systems. 

 

5.5 Conclusion 

In this Chapter the results of careful electrical measurements on single superconductor-normal 

metal-superconductor (SNS) junctions fabricated by the focused ion beam (FIB) have been 

presented.  The goal of this study was to assess the reproducibility of this technique and the 

range of junction parameters that could be attained.  Insofar as was possible, device behaviour 

was compared with established SNS theory, with a view to gaining insights which would 

allow us to improve the performance of future devices.  

As shown in Chapter 4, the in situ resistance measurement technique allows us to control 

milling depths of 50 nm wide trenches to within 10 nm.  Here, the trench depth has been 

shown to be the decisive factor in determining device characteristics.  It has been shown 

conclusively that the Nb remaining in the bottom of the trench carries a significant part of the 

Josephson current, whilst the Cu layer beneath carries the quasiparticle current in the finite 

voltage state and provides effective thermal dissipation from the region of the junction.  The 

investigation of the effect of Cu thickness variation allows device parameters to be tuned to a 

high level of accuracy and has allowed progress to made towards a theoretical model of 

device operation (see also Appendix 1).  It has been shown that junctions with non-hysteretic 

I-V characteristics at 4.2 K and cut depth-tunable ICRN can best be obtained with a thick 
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 74

(>40_nm) Cu layer.  In this range ICRN is maximized by limiting the Cu thickness so that it is 

comparable to the bulk dirty limit coherence length of the normal metal; IC is maximized by 

having sufficient normal metal present to augment Josephson current transport without 

excessively degrading RN.   

The two-dimensional device architecture, although convenient from the point of view of 

fabrication, makes exact quantitative analysis in terms of conventional (one-dimensional) 

SNS junction models difficult.  However the observed behaviour is in excellent qualitative 

agreement with the established canon.  The temperature dependence of ICRN for selected 

devices has been studied and corresponds well to that expected from established SNS theory.  

A study has also been carried out of the device magnetic field response over a range of 

junction widths, allowing the transition from ‘short’ to the ‘long’ junction behaviour to be 

observed (the Josephson penetration depth λJ is typically under 1 µm).  As the thickness of 

the  films used is of the order of the penetration depth, flux focusing effects are observed in 

these junctions.  Finally, a new low-noise measurement setup has allowed departures from 

RSJ-like behaviour in the I-V characteristics and novel features of the microwave response of 

this type of junction to be studied. 

In conclusion it has been demonstrated that SNS-type Josephson junctions can be fabricated 

with ease using the focused ion beam (FIB). The FIB-based fabrication technique affords us a 

high degree of control over the resulting device parameters and the junction properties are in 

good qualitative agreement with established SNS junction theory. 



Nanofabricated Series Arrays of SNS junctions 

Chapter 6: Nanofabricated Series Arrays of SNS junctions 

6.1 Introduction 

6.1.1 Josephson voltage standards 

As described in Section 2.5.2, a microwave signal applied to a Josephson junction gives rise 

to so-called Shapiro steps in the current voltage (I-V) characteristic by phase-locking with the 

internal Josephson oscillations.  If a microwave signal is applied to a series array of N 

identical Josephson junctions, the first Shapiro step (Section 2.5.2) will appear at a voltage  

HFf
e

hNV
2

= ,       (6.1) 

where fHF is the microwave frequency.  Hence N and fHF can be chosen to give a particular 

voltage for the first step.  The accuracy of this voltage depends only on the precision of the 

frequency source.  Current primary voltage standards are based on the dc operation of series 

arrays consisting of large numbers of SIS tunnel junctions (e.g. 20,208 Nb-AlOx-Nb 

Josephson Junctions for operation in the range –10 V to +10 V (Hamilton 1992, 1997)).   

6.1.2 Programmable voltage standards 

SIS junction arrays are however poorly suited to time dependent tasks, such as generation of a 

calibrated sine wave.  In a programmable voltage standard binary subdivisions of the overall 

array are biased at the –1, 0 or 1 step to achieve the desired output voltage (Figure 6.1).  The 

junctions must be non-hysteretic to permit rapid resetting.  In addition, a high critical current 

(~5 mA) is required to provide noise immunity.  SNS junctions in a sandwich geometry (Nb-

PdAu-Nb; Area ~1 µm2) have been used successfully by the National Institute of Standards 

and Technology (NIST) in the U.S. for a 1V Programmable Voltage Standard system  (Benz 

1997). 

For the new NIST 10 V Programmable Voltage Standard System over 13,000 junctions in a 

series array must be contained within a few mm in order to remain lumped for high-frequency  

broadband digital codes.  This requires a spacing between junctions of under 500 nm.  Using 

the Focused Ion Beam microscope (FIB) -based fabrication technique discussed in Chapter 5 

it is routinely possible to fabricate deep-submicron scale junctions with critical current ~1 mA 

and characteristic voltages ~50 µV.  The junctions can in principle be placed as close together 

as one wishes.   
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Figure 6.1: (i) A binary divided array for a programmable voltage standard.  

(ii) Ideal step structure in one of the subdivision of the array when a  
microwave current is applied (N is the number of junctions in the subdivision).  

After (Hamilton 1997). 
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Figure 6.2: Variation of ICRN with milling depth for devices fabricated in  

Nb-PdAu (blue squares) and Nb-Cu (red diamonds).  The exponential  
best fit lines illustrate the general trends  
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Early studies (Moseley 2000) suggested that in this geometry individual junction properties 

were only degraded when the nearest neighbour spacing was much less than 100 nm.  Over 

this length scale order parameter and quasiparticle coupling mechanisms through the 

unbroken normal metal layer come into play.  Hence these junctions are excellent candidates 

for lumped array applications at around 16 GHz.  Figure 6.2 shows that for individual 

junctions fabricated by this method, ICRN varies much more slowly with milling depth when 

Cu used as the normal metal layer, rather than PdAu, which is much dirtier.  In terms of the 

model discussed in Section 5.2.4: although the PdAu film is sufficiently thick (50 nm) such 

that the coherence length has saturated, it serves mainly to drag down the order parameter ∆ 

in the remaining Nb at the bottom of the trench as PdAu is dirtier than Cu.  The increased 

curvature of ∆ leads to a steeper ICRN with milling depth profile.  Hence a collaboration was 

established between myself and Dr. Sam Benz at NIST with a view to making prototype 

arrays of nanoscale SNS junctions in Nb-Cu bilayers. 

6.1.3 Allowable spread in junction parameters 

In any real array we should anticipate that the properties of individual junctions will not be 

identical.  A question of fundamental importance is what spread in junction parameters (IC,, 

RN, ICRN) will still permit phase-locking of the entire array on a given Shapiro step. The 

following discussion draws on previous studies (Borovitskii 1985 and Weber 2000).   

Consider the effect on (2.38) of an applied microwave current I1sin(Ωt): 

  ϕϕ &
h

N
C eR

ItII
2

sin)sin(10 +=Ω+      (6.2) 

I0 is the dc bias current, Ω is the reduced frequency (2.45).  All points in (IC, RN) space in 

which a junction is phase-locked at a given step can be determined for a given set of values of 

I0, I1 and Ω.  Figure 6.3 shows the reduced parameter areas for the n = 1, 2, 3 steps (S1, S2, S3 

respectively) under the condition 5.0/ 01 =II .  IC is normalized by I0 and RN is normalized 

by .  A shaded area on the diagram represents the variation of junction 

parameters within a series array.  The phase-locking of all junctions at the n

00 / IfRP Φ=
th step implies that 

the shaded area lies entirely within the Sn region of the diagram.  Adjusting the bias current I0 

and the input frequency f can alter the position of the shaded area.  The extent of the shaded 

area on the log-log diagram remains the same. 
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Figure 6.3: Representation of the locking regions for the n=1,2 and 3 Shapiro steps (S1, S2, S3 

respectively).  The shaded regions represent maximum allowable parameter spreads for arrays to 
achieve locking on the first step (diagonal hatching: ICRN  constant; vertical hatching: RN  constant). 

Let us consider two possible parameter-spread scenarios: 

(a) Constant ICRN 

The shaded area (diagonal hatching) represents an array of non-uniform junctions with equal 

ICRN .  It is elliptical in form with the long axis parallel to the isochore of Ω.  The area is 

placed at Ω = 1, where the largest parameter spread is allowed for locking at the first step. 

The tolerance interval for the reduced critical current is from IC/I0 = -3 dB to +2dB.  This 

implies an IC spread δIC = ICmax/ICmin= +5 dB ~1.8 (ICmax is the largest single junction critical 

current within the array; ICmin the minimum).  A similar result is obtained for the spread in RN.  

Hence Ω = 1 is the optimal working point for an array with constant ICRN. 

(b) Constant RN 

The second shaded area (vertical hatching) represents the parameter-spread area for an array 

of junctions of approximately equal RN.  The maximum permissible δIC  is along the abscissa.  

In the diagram δR = Rmax/Rmin = 2 dB  = 1.3, which implies δIC = 17 dB = 7.0.  The only 

disadvantage of this situation is that ICRN  varies as IC, so there is no optimal Ω.  
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6.2 Fabrication Procedure 

Dr. Paul Dresselhaus at NIST, Boulder, carried out the film deposition and basic patterning 

for the samples used in this study.  The mask design consists of a main track of 3-8 µm width 

intersected by voltage taps.  The design also incorporated a coplanar waveguide for uniform 

microwave injection.  The samples were then delivered to Cambridge for FIB-patterning and 

basic characterization by the author.  Promising devices were posted back to NIST for further 

investigation. 

The basic fabrication procedure was as follows: 

A 125 nm Nb 75 nm Cu bilayer is deposited on an oxidized Si substrate in an ultra-high 

vacuum magnetron sputtering system in sequence without breaking vacuum.  This ensures 

both excellent film and interface quality.  The microscopic track layout was defined in the 

bilayer by photolithography and reactive ion etching.  The patterned sample was wirebonded 

to a holder in a four-point resistance measurement configuration and the sample is transferred 

to a standard Focused Ion Beam microscope (FIB) for device fabrication.  A region of track 

1_µm wide was defined by milling on a high beam current (11 pA).  Then an array of 

junctions was milled using a 4 pA beam either in series (milling each junction in sequence) or 

in parallel (milling the array as a single object).  The software to facilitate accurate control of 

the milling sequence was written by Dr. Gavin Burnell.  For comparison a single junction was 

milled in a neighbouring section of track.  This whole process is performed without altering 

the beam focus.   

The milling depth can be deduced from an in situ resistance measurement.  Customized 

software now allows milling to be halted when the desired change in resistance and hence 

milling depth is reached.  For this study arrays of 10 junctions with spacings of 0.2_µm to 

1.6_µm were milled in parallel along the main track of a single 10 mm x10 mm chip.  The 

milling time per junction (area milled 2 µm x 50 nm) was 11 s.  Figure 6.4 shows a schematic 

of the array milling process and Figure 6.5 shows a finished 10-junction array viewed in the 

FIB. 
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Figure 6.4: Schematic of the array fabrication procedure. 
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Figure 6.5: FIB image (plan view) of a 10-junction array fabricated in a Nb-Cu layer. 
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6.3 Results 

Basic device characterization was performed between 4.2 K and the transition temperature 

(TC) using a dip probe including magnetic field coils and microwave antenna.  Current-

voltage (I-V) characteristics were obtained in a quasi-static current-biased measurement.  

Microwave measurements were possible in the range 11-18 GHz. 

An example of phase-locking as evinced by a Shapiro step is shown in Figure 6.5 (10-

junction array, 1.6 µm spacing, 14.0 GHz, 6.0 K – step appears at 0.28 mV).  Table 6.1 shows 

parameters for arrays of spacing 0.2-1.6 µm.  The locking temperature given is the lowest at 

which a convincing ×10 step was observed.  In general this temperature is lower when the 

junction spacing is shorter, suggesting a penetration depth-dependent electromagnetic 

coupling mechanism. 
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Figure 6.6: I-V characteristic of a 10-junction array (junction spacing 1.6 µm) at 6.0 K.   
In the main plot the red trace is without microwaves; the blue trace is with microwaves  

applied at 14.0 GHz.  A vertical Shapiro step is obtained at 0.28 mV, but additional  
features are in evidence (inset). 
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Low noise differential resistance measurements as a function of bias current (dV(I)/dI) were 

made with the aid of a lock-in amplifier (see Section 3.3.3).  This allowed the switching of 

individual junctions in an array to be observed.  Figure 6.7 shows the dV(I)/dI characteristic 

of an array and a single junction at 4.2 K.  From the deduced IC distribution (statistics shown 

in Table 6.1), the I-V of an array can be convincingly reconstructed.  Significantly this best fit 

is obtained by scaling the I-V characteristic of a single junction assuming constant RN (rather 

than ICRN).  In these devices, when the milled trench does not penetrate the Cu layer, RN is 

effectively constant (Cu has a resistivity a factor of 10 lower than that of Nb in the normal 

state).  Due to the small spread in individual junction RN, locking is achieved in the array in 

spite of the large spread in IC (from Table 5.1 δI ~ 1.5 for 10 junctions). 

A low-noise measurement of an array under microwave irradiation reveals structure in 

addition to the Shapiro-like step (see Figure 6.6 inset).  This may arise due to the non-ideal 

microwave response of individual junctions.  The single junction differential resistance profile 

shown in Figure 6.7 is clearly not ideally RSJ-like, with a bump at ~1.5x IC (this corresponds 

to the ‘shoulder’ feature in 5.12 discussed in Section 5.4).  An interesting question is whether 

this feature leads to a reduction in Shapiro step amplitude if both occur at the same voltage. 

 
TABLE 6.1: 

Statistics for arrays of spacings 0.2 to 1.6 µm at 4.2 K 
 
 

Spacing 

(µm) 

 

 

Min. 

IC  (µA) 

 

Max. 

 

 

Mean 

Spread 

(Standard Dev./Mean)

(%) 

δI 

(Imax/Imin) 

Locking 

Temperature 

(K) 

0.2 890 1700 1389 19.8 1.56 4.2 

0.4 2140 3000 2521 10.7 1.40 5.0 

0.6 510 1410 904 36.2 2.76 _ 

0.8 980 1510 1291 11.8 1.54 5.0 

1.6 1290 1970 1550 12.3 1.53 5.5 

 
 

The beam was refocused for the milling of each array, so although the current, area, and milling time per 
junction were equal, the focusing conditions are only identical for junctions within that particular array. 
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Figure 6.7: Differential resistance versus current for a 10-junction array and a  

single junction at 4.2 K. 

6.4 Discussion and Outlook 

6.4.1 Tolerance to spread in junction parameters 

As we have seen the current junction technology yields arrays with a small spread in RN and a 

large spread in IC.  The unbroken Cu layer effectively shunts all of the junctions in the array, 

leading to a uniform RN. The key question is whether the inherent large IC spread makes this 

junction technology unsuitable for the fabrication of large-scale arrays.  The analysis of 

Section 6.1.3 suggests that due to the uniform RN in these arrays a very large spread in IC can 

be tolerated, if operating conditions are chosen appropriately.  This analysis has already been 

applied with success to arrays of grain boundary Josephson junctions (GBJs) in high 

temperature superconductors (Klushin 1996, Weber 2000).  Conventional GBJs suffer from 

large variation in IC and RN, but at a given temperature ICRN for all junctions is constant.  By 

shunting the junctions with a layer of low resistivity normal metal (Au), the spread in RN can 

be negated.  The first metrologically-useful devices (secondary voltage standards for 77 K 

operation) based on this approach are now being produced (Klushin 2001).  This is a very 

encouraging result from the point of view of the work discussed in this Chapter. 
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 6.4.2 Reducing parameter spread: Nb-Cu epitaxy 

As discussed in Section 5.4 and shown Figure 6.2 a thick layer of clean normal metal (thicker 

than the bulk coherence length) leads to the slowest variation of ICRN with milling depth.  At 

present Cu provides the best alternative (Au, W, Al, PdAu, Pd, CuNi have also been tried at 

various times (Moseley 2000, Burnell 2001, Bell 2001).  Currently the mean free path and 

hence the dirty limit coherence length in the Cu films is limited by the grain size (~30 nm, see 

Chapter 4).  A larger grain size could be achieved by using a lattice-matched substrate and 

raising the deposition temperature. 

In an SNS junction IC depends exponentially on the barrier width (2.27), so even small 

variations in the width of the FIB-milled trenches will translate to large variations in IC.  For 

this reason directly-written junctions will always have larger IC spreads than sandwich 

structures, where the barrier thickness can be controlled on the order of Å by the deposition 

process.  Beam fluctuations have been eliminated as a source of error by milling all the 

junctions in the array in parallel, but to little avail.  Repeated measurements of the arrays over 

a period of weeks show no noticeable drift in properties, suggesting migration of implanted 

Ga is not a serious cause for concern.  The fundamental cause of the IC variation seems likely 

to be the polycrystalline microstructure of the films leading to an uneven milling rate and 

hence uneven trench width and depth.  Recent reports on FIB milling of single-crystal Cu 

(Kempshall 2001) suggest that the channeling Ga ions along specific lattice directions in the 

crystal allows much higher aspect ratio trenches to be milled without topographical 

degradation.  Hence the clearest way to achieve a significant improvement in parameter 

spreads would also be to use truly epitaxial films.   

In a final investigation, the author, with the assistance of Dr. Mark Blamire, attempted the 

growth of epitaxial Nb-Cu bilayers.  As discussed in Chapter 4, films of Nb and Cu sputtered 

at room temperature onto SiO2 are polycrystalline in character (grain sizes: Nb under 10 nm, 

Cu 30 nm in-plane).  Epitaxial film growth implies growth of a single crystal film.  Hence a 

substrate must be chosen which is matched to the lattice parameters of the metal crystal 

structure and an elevated temperature is required to initiate epitaxial ‘step-flow’ growth.  In 

this study r-plane and a-plane sapphire (Al2O3) were considered as suitable substrates.   

Epitaxial Nb films have been successfully grown in this laboratory by sputtering on heated r-

plane sapphire substrates (Warburton 1995, Burnell 1998).   There are several reports of Nb-

Cu heteroepitaxial growth by UHV e-beam evaporation (Di Nunzio 1996) and molecular 

beam epitaxy (Yamamoto 1998).  It should be noted that best results were obtained by 

depositing a Nb buffer layer on the sapphire. 
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TABLE 6.2: 
Summary of reports of epitaxial Nb-Cu bilayer growth. 

 
 

Substrate Nb Cu Reference 

a-plane sapphire )0211(  (110) (111) Yamamoto 1998 

r-plane sapphire )0211(  (001) (001) Di Nunzio 1996 

 

To avoid defect growth, substrates were rigorously cleaned using nitric acid, chloroform, 

acetone and ultrasound (Burnell 1998).  The Mark III sputtering system was used in this work 

(essentially similar in operation to that desribed in  Chapter 4).  The major difference being 

the flange used.  In this case a heater was employed: substrates were placed on a tantulum 

strip which through which a current of upto 20 A was passed.  To achieve a gradient in 

temperature the width of strip tapered (the narrowest end being hottest).  Films were sputtered 

at around 1 Pa pressure.  Film thicknesses were determined by profilometer and the films 

were characterized by X-ray diffraction. 

 
 

Figure 6.8: FIB image of a Nb-Cu-Nb (125 nm Nb 75 nm Cu 20 nm Nb) sputtered multilayer.   
The large islands visible on the surface are believed to be Cu grains. 
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Various difficulties were encountered in this study.  Tm is higher for Nb than for Cu, therefore 

after the deposition of the Cu layer the heater current was raised further.  This lead to 

evaporation (indicated by a Cu-coloured deposit on the heater around the samples) and 

retexturing of the Cu layer on the samples themselves.  In the best samples obtained (again by 

using a thin Nb (~20 nm) buffer layer), the Cu grain size was considerably larger (up to 1 µm) 

with promising X-ray response (Cu (111) full width at half maximum 0.5°).  However these 

same films were extremely rough.  An FIB image of such a film is shown in Figure 6.8.  The 

individual micron-sized Cu grains are clearly visible.  Attempts at creating junctions in these 

tracks were unsuccessful – at best flux-flow type current voltage characteristics were obtained 

(resistance increases with increasing current bias). 

6.4.3 Scaling up: fabricating large numbers of junctions reproducibly 

As mentioned in Section 6.1.1 over 13,000 junctions are required for the NIST 10V 

Programmable Voltage Standard System.  The milling time for each junction is ~10 s making 

the FIB-based serial writing process is extremely laborious.  In addition, as we move over 

distances of hundreds of µm, refocusing and recalibration of milling depths will certainly be 

necessary.  Hence alternative routes to planar SNS junction fabrication in superconductor-

normal metal bilayers were explored by our collaborators at NIST.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.9: Alternative route to planar SNS junction fabrication. (a) SEM image of a trench  
formed by RIE in a Nb-PdAu bilayer  courtesy of Dr. Paul Dresslhaus - note the PMMA mask  

has been stripped away (b) Schematic of undercutting. 
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A 100 nm trench was patterned by e-beam lithography in PMMA resist layer.  The trench was 

transferred Nb beneath by Reactive Ion Etching (RIE).  RIE, is a combined physical and 

chemical etch process, using a highly reactive plasma such as SF6 or CF4.    Under correct 

conditions a highly anisotropic, selective etch can be achieved.  Nb is etched selectively by 

RIE, whereas other metals and alloys such as Al, PdAu or Cu are unaffected by the process.  

Figure 6.9 shows the results of RIE etching a Nb-PdAu bilayer.  The Nb trench is 

considerably wider than intended due to backscattering of ions from the PdAu surface.  The 

resulting device showed no critical current at 4.2 K.  In order to boost the IC a thin Al layer 

could be inserted in the Nb layer, resulting in a Nb microbridge shunted with normal metal.  

However backscattering from the etch stop layer may still lead to an inhomogeneous trench 

profile and an unacceptably high spread in device parameters. 

 

6.5 Conclusion 

The focused ion beam-based planar SNS junction fabrication technology described in 

Chapter_5 has been successfully applied to the fabrication of small-scale series arrays.  The 

results contained in this Chapter have been published (Hadfield 2001b).   Phase-locking has 

been achieved in 10-junction arrays of spacings 0.2-1.6 microns.  An analysis has been 

carried out of the spread in individual junction critical currents within each array.  Studies 

show that due to the low spread in junction RN, the large IC spread in inherent in the 

fabrication process is not necessarily an obstacle to finding useful applications.  Possibilites 

for reducing parameter spreads and scaling up the process for the fabrication of large-scale 

arrays have been discussed.  Furthermore, the low noise measurement technique and 

parameter spread analysis developed here is now being used collaboration with Dr. Dae-Joon 

Kang for evaluation of junction arrays in YBa2Cu3O7-x and MgB2 fabricated by masked ion 

damage (Kang 2002).  
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 Chapter 7: The Corbino Geometry Josephson Junction 

7.1 Introduction 

This Chapter describes the fabrication and measurement of the first thin film based junction 

with the circular barrier in the same plane as the electrodes.  The unique properties of 

junctions in this geometry have been discussed in Section 2.6. This investigation is an 

extension of the focused ion beam (FIB) based planar superconductor-normal metal-

superconductor (SNS) junction fabrication technique described in Chapter 5.  The starting 

point is a superconductor-normal metal bilayer (125 nm Nb on 75 nm Cu).  A 50 nm wide 

trench is milled into the upper superconducting layer in order to achieve weak coupling.  

Milling a circular trench and making an electrical contact to the central island creates a 

Corbino geometry SNS junction.  Figure 7.1 illustrates the Corbino geometry; the term 

derives from the experiment carried out by Corbino in 1911 to demonstrate the Hall Effect in 

a disc-shaped conducting sample (Corbino 1911). 

 

 
 
 
Figure 7.1: The author demonstrating the Corbino geometry (visual aid courtesy of Wham-o Inc.).  Orso 
Mario Corbino demonstrated (Corbino 1911) that if current contacts are made to the centre and the rim 

of a disc-shaped conducting sample and a magnetic field is applied perpendicular to the plane of the 
sample, in addition to the radial current (marked by the arrows), there will also be a circulating current. 

The Corbino Effect is hence the equivalent of the Hall Effect in a circular geometry. 
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7.2 Experimental Technique 

As in the basic planar SNS junction experiments, a microscopic track layout was defined by 

lift-off patterning of the sputtered bilayer (125 nm Nb, 75 nm Cu on an oxidized Si substrate).  

The track layout contains a main track of 8, 7, 6 µm width sections intersected by 

voltage/current lines.  The milling depth of a 50 nm wide trench on 4 pA FIB beam current 

was calibrated on a test track using the in situ resistance measurement.  Circular trenches 

(2.5_µm radius, various depths 60 - 100 % through Nb thickness) were then milled in the 

main track.  

                  

Circular 
Trench 50 nm 

wide, 5 µm 
diameter

Conical 
Via HoleNbCu track  

8 µm width, 
overlaid with 

Silica

(a)

 

                  

FIB section through 
connecting via, viewed at 

45° tilt

Bottom layer

ViaIsolation

1 micron
(b)

 
 
Figure 7.3: (a) FIB image of device at via milling stage (b) Via contact sectioned and viewed at 45° 

tilt in the FIB. 
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Isolation cuts were milled in the main track to separate the individual devices using a large 

beam current (70 pA).  After further lift-off patterning, a silica isolation layer (thickness 

250_nm) was deposited by RF sputtering over the region of interest.  The sample was then 

returned to the FIB system and via hole milled onto the central island of each junction.  In the 

FIB, milling depth per unit area through an insulating layer can be calibrated by measuring 

the sample stage current; a jump is observed when the insulating layer is breached (this is 

known as the FIB ‘end-point detection’ facility).  Straight-sided via holes were found to give 

poor via filling when the final metallization layer was deposited, leading to a considerable 

shunt resistance in early devices (Hadfield 2002b).  The perfected via hole procedure was as 

follows: a sequence of concentric circles was milled (1.25 to 0.75 µm radius) to create a 

conical hole 80 % of the way through the insulator.  After a final lift-off patterning stage, the 

sample was transferred to a combined Ar milling/dc magnetron sputtering system.  The final 

(Ga-implanted) insulating layer was removed by Ar milling and a Nb-Au (~30 nm Nb, 

~200_nm Au) layer was deposited without breaking vacuum. The Nb layer was purely 

intended to improve Au adhesion – a thick superconducting top electrode was found to make 

the resulting device too insensitive to external magnetic field.  Figure 7.3 (a) is an FIB image 

of a device at the end of the via hole milling stage.  Figure 7.3 (b) shows a conical via (no 

junction barrier defined) sectioned and viewed at 45° tilt in the FIB. 

 

7.3 Results and Discussion 

7.3.1 Measurements at 4.2 K 

We are now routinely able to produce Corbino geometry junctions with comparable critical 

current densities to planar SNS junctions previously fabricated.  Figure 7.4 (a) shows a 

comparison plot of normalized critical current versus milling depth through the Nb layer for 

planar SNS and Corbino geometry devices.  Figure 7.4 (b) shows the current-voltage (I-V) 

characteristic of a Corbino geometry junction at 4.2 K with and without applied microwave 

radiation.  The I-V characteristic without microwaves is non-hysteric and approximately RSJ 

type.  Series resistance due to the via contact is minimal.  There is a strong microwave 

response: the critical current can be completely suppressed indicating a pure Josephson 

current and strong Shapiro steps are observed; half integer steps (a common feature of planar 

SNS devices (Dubos 2001)) are also evident. 
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Figure 7.4: (a)  Critical current normalized to barrier width for planar SNS junctions (blue squares) and 
Corbino geometry junctions (red diamonds). (b) Microwave response at 17.0 GHz of a Corbino geometry 

junction.  Series resistance is under 1 mΩ. 
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Figure 7.5: Critical current versus applied field for 5 µm diameter junction in a 8 µm width track.  
The numbered arrows indicate the field sweep sequence. Inset shows the same behaviour repeated 

over multiple cycles. 
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As discussed in Section 7.1, a distinctive magnetic field response is expected for this type of 

device.  Figure 7.5 shows the critical current, IC of a high critical current Corbino geometry 

junction (5 µm diameter junction in 8 µm width track) in a perpendicular magnetic field at 

4.2_K.  Measurements were taken with a mumetal shielded dip-probe in a He bath.  Current-

biased measurements were made of the I-V characteristic at each value of field; the value of IC 

was extracted using a voltage criterion. 

Magnetic field was applied perpendicular to the plane of the sample via a calibrated 

Helmholtz pair.  Over a small field range no irreversible change in IC is observed.  If the 

external field exceeds 15 mT, IC is suppressed steeply and irreversibly.  This can be identified 

as the entry of one quantum of flux (Φ0 = h/2e) into the junction barrier.  When the external 

field is reduced back to zero IC remains suppressed and the flux is trapped in the junction.  As 

the field direction is reversed IC reappears abruptly at 8 mT.  At this point a flux quantum of 

opposite orientation enters the junction and annihilates the original trapped vortex.  A second 

steep, but not abrupt, suppression of IC occurs at 15 mT corresponding to the trapping of a 

flux quantum of negative polarity in the junction barrier.  As illustrated in Figure 7.5 (inset) 

this behaviour can be repeated over multiple cycles, the flux entry/annihilation events 

occurring at almost identical fields (given the presence of electrical and thermal noise at 

4.2_K). This dynamic response of the critical current to magnetic field is dependent on the 

exact configuration of the Meissner state in the superconductor; slightly different behavior 

can be observed in the same device each time it is heated and cooled through the 

superconducting transition.  

A more reproducible way to identify the flux entry event is to field cool the device at set 

external field.  Results for a device of lower current density are shown in Figure 7.6.  

Quantized flux trapping in the barrier is identified by performing an IC(B) sweep at 4.2 K.  If 

the field was swept first in the same direction as the cooling field, no change should be 

expected (IC remains suppressed).  An annihilation event is then expected when the field is 

swept in the opposite direction to the cooling field.  Scanning Hall Probe studies on 

microscopic Nb thin film tracks (Field 2002) suggest there is a small but measurable surface 

barrier to flux entry (see also Section 2.2.5 - the experiment in question supports an 

unpublished theory by Clem (Clem 1998)).  This would lead us to expect an abrupt 

suppression in IC at this cooling field.  Although IC is rapidly suppressed with cooling field, 

conclusive evidence of flux trapping in the barrier was only observed at relatively high 

cooling fields.  This suggests that flux is entering the film at low cooling field, but being 

pinned elsewhere (the via contact in particular is liable to contain a large concentration of 

pinning sites). 
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Figure 7.6: Field-cooled measurements of critical current (5 µm device in 8 µm width track).  

Irreversible flux trapping in the junction occurs at an external field of 2.5 mT as indicated. 
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Figure 7.7:  Critical current versus magnetic field for a 5 µm diameter junction in a 6 µm track.  

The field is swept from 0 to +25 mT to –25 mT.  Inset: schematic of geometry.  Flux quantization 
(2.4) is not achieved if screening currents overlap the edges of the junction. 
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We have also explored the situation where the track is thinned such that the superconductor 

surrounding the junction barrier is of the order of the London penetration depth λL at its 

narrowest point (≅ 100-500 nm for Nb in the plane of the film).  Figure 7.7 shows critical 

current versus magnetic field at 4.2 K for a 5 µm diameter junction in a 6 µm width track.  

The critical current is now suppressed in a series of jumps. As the field is reduced critical 

current reappears incrementally, before another series of suppression events.  As in Figure 

7.5, this behaviour was repeatable over a large number of cycles.  As mentioned in Section 

2.2.5, flux quantization in units of less than h/2e may occur over mesoscopic distances from 

an edge a in thin film superconductor (Kogan 1994, Geim 2000).  These electrical 

measurements strongly suggest that flux trapping is occurring in units less than h/2e in the 

junction barrier itself. 

7.3.2 Model based on the approach of a single vortex to the junction 

Firstly consider a vortex in a semi-infinite thin film.  As the interface is approached the flux 

on the vortex is reduced (Kogan 1994).  The relevant penetration depth is tLp
2λλ =  where 

t is the film thickness.  Figure 7.8 shows the how the flux associated with the vortex is 

reduced as the surface is approached. 
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Figure 7.8: Flux on Pearl’s vortex approaching an interface (after Kogan 1994) 

as a fraction of the flux quantum Φ0=h/2e. 
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Figure 7.10: Phase difference contributed by approaching vortex for a short junction. 
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Figure 7.11: Variation of critical current with vortex separation (calculated using MathematicaTM). 
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The simulation of Figure 7.11 suggests that critical current IC will be suppressed steeply but 

not abruptly as a vortex approaches the junction.  This is quite similar the suppression of IC 

that we see in the data (Figure 7.5).  The result of Figure 7.7, where the distance from the 

junction barrier to the edge of the superconductor is reduced may be interpreted as the entry 

of several vortices into the junction, each carrying an overall flux less than h/2e.  The distance 

of the vortex from the junction must be reduced as the applied magnetic field is increased (B 

∝ 1/a2).  However in a real device actual vortex separation must be strongly dependent on 

surface barriers to flux entry and pinning sites within the film (Figure 7.12).   

Vortex pinned 
at defect site

Vortex enters 
junction

Reversible 
flux penetration 

within λp

Separation of 
junction from 
edge >> λp  

 
Figure 7.12: In a real device the migration of flux into junction barrier is likely to be via a series of 

pinning sites. 
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Figure 7.13: Phase difference contributed by approaching vortex for a long junction.  The flux in the 
junction is confined on the scale of the Josephson penetration depth λJ.   
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Furthermore the junctions used in this investigation are in the long junction limit.  As Figure 

7.4 (a) clearly shows, the critical current per unit barrier width scales with milling depth in the 

same way in both Corbino geometry and planar SNS junctions.  Hence the estimate of 

Josephson penetration depth of Section 5.4.1 applies equally  well to the Corbino geometry 

devices of this Chapter: λJ < 1 µm as compared to an overall barrier circumference ‘w’ of 

15.7_µm.  The flux in the junction will then be confined on the length scale of λJ (illustrated 

in Figure 7.13).  Simulations of Abrikosov vortex approach to a long junction are more 

challenging, but qualitatively may be expected to yield a similar result in the Corbino 

geometry case as that illustrated in Figure 7.11.  It is clear that the approach of a second 

vortex will not lead to a significant change in the critical current – there may be a 

reappearance of IC when the vortex is very close.   If the external field direction is reversed a 

more dramatic result can be expected - anti-vorticies penetrate the film (Figure 7.14).  The 

vortex trapped in the junction and the anti-vortex experience an attractive force, leading an 

abrupt annihilation.  This is evinced in the IC(B) characteristic as a rapid reappearance of IC.  

This is indeed what is seen in Figure 7.5. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.14: Long junction with one vortex (red) trapped (a)  anti-vortex (green) approaches  
junction (b) abrupt annihilation event takes place. 
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In practice the most elegant method of investigating the effect of junction IC of an 

approaching vortex would be by Low Temperature Scanning Electron Microscopy (LTSEM) 

(Gross 1994).  The electron beam can be used to drag a vortex into the junction whilst 

measuring the junction I-V characteristic (Ustinov 1993).  This technique should allow us 

reproduce the numerically predicted result of Figure 7.11.    Furthermore this technique would 

afford the opportunity to study the current density distributions in the structure. 
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Figure 7.15: Proposed Low Temperature Scanning Electron Microscopy (LTSEM) experiment: the 
electron beam is used to drag a vortex into the junction barrier, whilst the I-V characteristic of the 

junction is measured. 

7.3.3 Alternative model based on self-fields of screening currents 

Another approach was taken to modelling junction response to external magnetic fields, 

taking into account the actual geometry used in the experiment.  We assume that the 

separation of the junction barrier is of  the order of the magnetic penetration depth, λp. 

  I = IC sin ϕ( ) .      (7.2) 

The phase difference across the junction ϕ varies with position as (Barone 1982): 

∇ϕ =
2πµ 0deff

Φ 0

H ∧ ˆ u ,      (7.3) 

where H is the effective magnetic field and û is a unit vector in the direction of current flow. 

There are two magnetic field contributions to take into account, illustrated in Figure 7.16.   
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Firstly, in an external applied field screening currents will flow in the edges of the film 

(Figure 7.16 (a)).  The self-field of these screening currents leads to an effective field in the 

junction barrier.  This can be approximated by a sin2 field distribution with angle θ (for 

computational ease we pick the simplest analytic function with the correct period).  Secondly 

in the actual experiment the bias current is injected from one side or other of the junction (and 

extracted through the central island).  To ensure a uniform current flow through the junction 

barrier, current flows by two different paths into the far side of the junction (Figure 7.16 (b)).  

The self-field contributed by these two different current paths can be modeled by a sinusoidal 

field distribution.  This means that if the junction is exactly aligned on the axis of the track, 

the self-field of the bias current will contribute no net flux over the whole barrier.  
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Figure 7.16:  Fields perturbing the phase difference around the Corbino geometry juncion;  
(a) self-field of screening current and (b) self-field of bias current. 
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The phase difference induced due to the effective field H(θ) is given by: 

( ) ( ) θθθϕ
θ

′′∝ ∫ dH .      (7.4) 

The overall critical current of the junction will hence be given by:  

  IC = J sin ϕ0 + ϕ1 θ , HExt( )+ ϕ2 θ , IC( )( )0

2π
∫ dθ  .  (7.5) 

The phase difference due to the external field HExt is given by ϕ1 and the phase difference due 

to the self field of the bias current is given by ϕ2, which is therefore a function of the bias 

current and hence of IC. 

To remove the constant phase factor ϕ0 we maximize IC with respect to ϕ0, arriving at: 

  )( 2122 SCIC += ,      (7.6) 

where 

( ) θϕϕ
π

dJS ∫ +=
2

0 21sin ,     (7.7) 

( ) θϕϕ
π

dJC ∫ +=
2

0 21cos .     (7.8) 

 

As the right-hand side of Equation 7.6 is a function of IC, in order to find the correct root we 

use the Newton-Raphson method (Jeffrey 1989).  Figure 7.17 illustrates the root finding 

process as external field is increased (plots generated using MathematicaTM).  At zero external 

field there is one intersection: this is the correct value of IC.  As the external field increases a 

dip appears in the function IC.  Clearly at a certain value of external field a second solution 

will appear at IC = 0.   
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Figure 7.17: The root (solution for critical current IC) for a particular value of external field HExt is 

found using the Newton-Raphson method. 
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Figure 7.18: Simulated critical current response to external field.  Scaling factor n=1 (inverted 
triangles), n=3.5 (diamonds), n=10(triangles).  When the self-field of the bias current is taken into 

account (n=1, 3.5) a second solution abruptly appears at IC=0. When the self-field of the bias current is 
small (n=10) a smooth suppression to IC=0 is obtained.  In all cases, an IC=0 solution exists at an 

external field corresponding to one flux quantum, Φ0 linking the junction. 
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The relative weights of the two field terms in the simulation can be varied.  Qualitatively this 

results in the stretching or contraction of f(IC) along the x-axis.   If the self-field of the bias-

current is small then f(IC)  will be stretched.  This will lead to a smooth suppression of IC to 

zero.  If the self field of the bias current is dominant f(IC) is contracted, leading to several 

possible non-zero solutions.  Figure 7.18 shows a selection of simulated IC(B) curves up to the 

point where an IC  = 0 solution appears.   This model can also be adapted to take into account 

an asymmetric bias current (for example, where the circular barrier is not aligned perfectly on 

the axis of the track - a situation which did arise in some of the devices fabricated). In this 

case, in both experiment and simulation, current bias and external field direction have to be 

reversed to obtain the same magnitude of IC. 

This model shows that reversible field penetration leads to perturbations in IC. In all cases 

explored an IC = 0 solution exists at the same value of external field - this is interpreted as 

corresponding to the case where the total flux linking the junction is equal to one flux 

quantum.  In my view this model is less satisfactory than that proposed in Section 7.3.2 as it 

does not take into account the mechanism of flux entry into the junction i.e. as individual 

vorticies.  However, it is not without merit, as it does take the actual experimental geometry 

into account.  In the experiments performed we typically did see reversible perturbations in IC 

when sweeping over low field ranges, which can be attributed to reversible field penetration 

as described in this model. The irreversible suppression/reappearance of IC seen at larger 

external fields in contrast can only be explained in terms of quantized flux entry/annihilation, 

which is best described using the model of 7.3.2.   

7.3.4 Double well potential 

The dependence of junction properties on the effective magnetic field distribution around the 

barrier considered in Section 7.3.3 has some interesting implications: consider a Corbino 

junction with trapped flux. (extent of vortex ~λJ, the Josephson penetration depth << 2πR). 

With an external magnetic field, field energy is ∝(H1(θ)+HVortex)
2.  With external applied field 

the trapped flux will be located at θ =  0 or π  i.e. in double well potential.  This seems to be a 

highly plausible scenario – Scanning Hall Probe studies of flux penetration in microscopic 

superconducting tracks typically show at low fields vortices neatly aligned along the track 

axis, as far from the edges as possible (e.g. Field 2002).  The depth of the potential can be 

varied by the magnitude of the external field and, since λJ is strongly temperature-dependent, 

the shape of the potential is modified by the temperature.  If a bias current is applied through 

the junction the vortex can be driven between minima.  It would be easy to couple a number 

of such systems together by writing a series of such circles along a superconducting track. 
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Figure 7.19: Double potential well.  Consider a Corbino geometry junction with trapped flux. T<<TC 

 so the flux vortex is confined  (extent of vortex ~λJ , the Josephson penetration depth).  With an external 
magnetic field, field energy is ∝(H1(θ)+HVortex)2 so potential energy takes the same form as H1(θ) i.e. a 
double well potential.  With external applied field the vortex is most likely to be located at  θ = 0 or π. 

Double well potentials in heart-shaped annular junctions have been proposed as the basis of a 

qubit, the basic element of a quantum computer (Wallraff 2000).  It is proposed that at 

sufficiently low temperatures, macroscopic quantum tunneling (Caldiera 1981) of fluxons will 

occur.  In this case we have an overdamped SNS junction as opposed to an underdamped SIS 

junction (this implies a quality factor 106 smaller), which means quantum effects persist over 

impracticably short timescales and the trapped vortex behaves as a classical object.  To raise 

the quality factor of our Corbino geometry junctions and enter the quantum regime we could 

employ in-plane SIS ramp junctions or planar high temperature superconductor junctions 

(Booij 1997). 

7.3.5 Berry’s phase effects 

It has recently been pointed out (Section 2.6.2 - Gaitan 2001, Plerou 2001) that the 

appearance of a Berry phase as a vortex is driven around a circular junction barrier should 

lead to a disturbance of the current distribution and a variation in the driving force on the 

vortex.  This should be expressed as a measurable variation in the I-V characteristics of the 

junction at low temperatures.  Common annular SIS junctions are unsuited to this type of 

experiment because the geometry is incorrect. We have succeeded in creating a device in the 

ideal geometry.  A further consideration is that a clean SNS barrier is required (coherence 

length in N layer longer than overall barrier width).  At present our junctions are in the dirty 

limit (Hadfield 2001a).  The use of epitaxial Nb-Cu bilayers would enable the fabrication of a 

clean limit Corbino geometry SNS junction (Section 6.4.2).  Alternatively a ballistic N barrier 

could be achieved using a 2DEG (van Wees 1996).  
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7.4 Conclusion 

The first Corbino geometry SNS junction has been successfully realized.  The experimental 

work presented in this Chapter has focused primarily on measurement of critical current in 

response to an applied magnetic field at 4.2 K.  As the junction barrier is embedded in a 

superconducting strip, magnetic flux can only enter as quantized units.  A dynamic 

measurement of critical current as external field is varied reveals abrupt 

suppression/reappearance of critical current, corresponding to flux entry/annihilation in the 

junction barrier.  When the superconducting region surrounding the barrier is sufficiently thin 

the suppression/reappearance occurs in a series of steps, suggesting incomplete flux 

quantization.  The response of the junction IC to the approach of an individual vortex has been 

simulated.  In the near future we hope to study this exact situation experimentally by use of 

LTSEM (in collaboration with Professor Dieter Koelle at the Univerisity of Tübingen in 

Germany).  A second model has been developed to take into account reversible magnetic field 

penetration in the actual device geometry.  Using this approach it is possible to the critical 

current response of the junction to external field up to the point of irreversible flux entry into 

the barrier.  These considerations indicate that a trapped vortex is confined in a double 

potential well in this device geometry.  This work demonstrates that studies of this Josephson 

junction geometry are now technologically feasible.  It is hoped that the publication of this 

work (Hadfield 2002b) will stimulate further experimental and theoretical studies. 



Conclusion 

Chapter 8: Conclusion 

8.1 Outlook 

In addition to the work on arrays and Corbino geometry junctions there are a number of other 

avenues my colleagues and I have pursued with our focused ion beam-based fabrication 

technique. 

8.1.1 Junctions in magnesium diboride thin films 

The long-overlooked compound magnesium diboride (MgB2) was shown to superconduct at 

39 K in early 2001 (Nagamatsu 2001).  Tunneling studies indicate that MgB2 is isotropic with 

an s-wave character, albeit with a double energy gap arising from multiband 

superconductivity (Pickett 2002).  Josephson devices based on MgB2 could potentially 

operate close to 30 K, well within the range of commercial cyrocoolers.  In MgB2, unlike the 

cuprate high temperature superconductors, grain boundaries do not give rise to weak links.  

Using 100 nm MgB2 thin films from Korea (Moon 2001) my colleague Dr. Gavin Burnell has 

succeeded in fabricating the first thin-film MgB2 Josephson junctions (Burnell 2001).  As 

with the devices described in Chapters 5, 6 and 7 weak coupling was achieved by milling a 

50_nm trench across a microscopic track.  The junctions created are SNS type, with non-

hysteretic RSJ-like current-voltage characterstics (ICRN ~1 mV at 4.2 K) and strong 

microwave response (Figure 8.1), making these junctions excellent candidates for high 

frequency applications. 
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Figure 8.1: Current-voltage characteristic of a FIB junction in  MgB2 at 5, 13 and 21 K  (left).  

Microwave response of junction at 5 K with increasing microwave power (right).  (Burnell 2001b) 
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The first studies of MgB2 SQUIDs (Blank 2001, Zhang 2001) suggest that due to the high 

flux pinning in this material, low noise SQUIDs for high temperature operation may be a real 

possibility.  Thin film based dc SQUIDs fabricated by Dr. Burnell show an extremely large 

voltage modulation (up to 175 µV at 10 K - Burnell 2002b).  Currently the limiting factor in 

making larger scale devices in MgB2 is the quality of the available films (Zeng 2002).  We 

have however already demonstrated that our existing junction technology is well-suited to the 

fabrication of SQUIDs and prototype Single Flux Quantum logic circuits (Ortlepp 2001) in 

this material. 

8.1.2 The asymmetry modulated SQUID 

One further technological application considered for superconductor-normal metal SNS 

bridge devices discussed in Chapter 5 is the Asymmetry Modulated SQUID or AMS (Tarte 

2000).  The common acronym SQUID stands for Superconducting QUantum Interference 

Device.  The AMS is intended primarily for use as an X-ray detector.  It is a development of 

the concept of a hot electron-tunable SNS junction (Baselmans 1999, 2001).  In this case the 

N region of the SNS junction is attached to a larger normal metal reservoir.  By altering the 

electron and phonon distributions in the reservoir the IC  of the junction can be modulated.  

The AMS device is based on a dc SQUID - one junction barrier is attached to a normal metal 

reservoir (Figure 8.2).  The two junctions are designed to have nominally equal IC ’s.  The 

reservoir serves as an absorber for incoming high-energy particles.  The arrival of an X-ray 

photon raises the temperature of the electron distribution in the reservoir, altering the IC of the 

connected junction.  The induced asymmetry between the IC ’s. of the two junctions in the 

SQUID loop leads to a circulating current and hence a magnetic flux Φ in the loop.   
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Figure 8.2: Schematic of the asymmetry modulated SQUID. 
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This in turn alters shape of the transfer function V(Φ) of the SQUID loop.  The current in a 

feedback loop is used to apply an external flux which also modulates the current flow in the 

SQUID loop allowing the operating point to be set. 

The AMS must be operated at low temperatures (in the region of 300 mK) in order to achieve 

the necessary decoupling of the electron and phonon distributions in the normal.  The results 

in Chapter 5 indicate that the Nb-Cu bilayers are not necessarily the best choice for devices 

operating in this temperature regime (the critical current IC saturates below 1 K and the I-V 

characteristics become hysteretic, plus a higher normal state resistance RN is desirable for 

SQUID applications).  Dr. Gavin Burnell has investigated devices in the alternative bilayer 

systems Nb-Al, TaNb-Cu and TaMo-Cu. Functioning dc SQUIDs based on this junction 

technology have been successfully fabricated (operating down to 2 K) and considerable 

progress has been made towards realizing the AMS concept (Burnell 2001a, 2002a).   

8.1.3 A trilayer-based device fabrication technique 

Recently my colleague Chris Bell has investigated the possibilities offered by the FIB for 

creating nanoscale sandwich-type device structures.  This allows many of the problems 

usually associated with multilayer devices (such as poor interfaces) to be avoided.  A similar 

FIB-based approach has been used with great success to fabricate structures for studies of 

intrinsic tunneling in single crystals of high temperature superconductor (Latyshev 1999).  

The basic fabrication strategy is as follows: 

• The starting point is an in situ deposited trilayer structure, consisting of two thick 

electrodes (>100 nm) and a barrier layer (e.g. superconductor–normal metal-

superconductor).  The layers are deposited in sequence without breaking vacuum, 

ensuring excellent interface quality. 

• A pattern of microscopic tracks is defined in the trilayer film, either by photolithography 

prior to deposition followed by lift-off, or photolithography and ion milling after 

deposition (see Chapter 3). 

• Using the TEM sample preparation facility of the FIB (see Chapter 4) a small section of 

track (~1 micron long) is thinned to ~100 nm thickness on a high beam current (milling 

deep into the substrate on either side). 

• The sample is then tilted on its side.  The addition of a 45° wedge to the standard SEM 

stub allows the thinned track to be viewed almost sideways on.  A small beam current 

(4_pA) is used to mill two slots as shown in the schematic Figure 8.3.   
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Barrier
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FIB-milled slots
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flow through device

(a) (b)  
 

Figure 8.3: (a) Initial trilayer structure; (b) Thinned trilayer with FIB milled slots defining current path. 
 
 

 
 
 

Figure 8.4: A finished trilayer device viewed at 45° tilt in the FIB 
 

200 nm 
Nb electrodes 

Cu barrier 

 

An image of a completed SNS device viewed at 45° tilt in the FIB fabricated in a Nb-Cu-Nb 

trilayer is shown in Figure 8.4.  The Cu layer due to its high conductivity shows up as bright 

stripe between the Nb electrodes.  The finished area of the junction is 100 nm x 200 nm.   
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Conclusion 

We view this technique as being useful in fabricating individual test-devices in novel 

materials, rather than a means of fabricating large numbers of identical devices.  In our 

laboratory we have the facility to deposit not only superconductors and normal metals, but 

also insulating barriers, ferromagnets, giant magnetoresistance (GMR) multilayers and 

maganite materials.  We should soon also have the capability to deposit thin films the new 

superconductor MgB2.  This device structure could be used to realize a MgB2 SIS junction 

(using MgO as a barrier).  Other device configurations under consideration include SFS (π-

junctions) that are of interest as a basis for quantum computing (Rayazanov 2000) and SIS 

junctions with magnetic impurities in the barrier (Bulaevskii 1977).  An interesting possibility 

suggested by a number of theoreticians (Begeret, Golubov 2001) is a SFIFS structure: device 

behaviour depends strongly on whether the ferromagnetic layers are aligned parallel or 

antiparallel.  The versatility of this technique extends beyond superconducting devices – we 

have also used this method to prototype blue LEDs in GaN heterostructures deposited by 

Metal-Organic Chemical Vapour Deposition (MOCVD) in our Department. 

8.2.4 Long term outlook 

In the longer term the outlook for focused ion beam based device work in Cambridge is very 

promising.  2003 will see the opening of a new Nanotechnology Centre in West Cambridge, 

reflecting the importance of this field in the future of science and technology (Financial 

Times 2001).  The facilities will be shared between our research group (Device Materials, 

Materials Science) and the groups of Professor Richard Friend (Physics) and Professor Mark 

Welland (Engineering).  In addition to extensive new cleanroom facilities there will be an 

expanded FIB suite.  The FIB will applied to new areas such as bio-nanotechnology.  The 

next generation of ‘dualbeam’ FIB systems feature both electron and Ga ion sources.  The 

electron beam allows the progress of milling to be monitored without causing further 

implantation damage.  The combination of a FIB system with a cold stage is a very interesting 

prospect for superconducting device fabrication.  Furthermore the localized deposition of 

insulating materials will be possible.  In the more distant future, FIB systems with lighter ion 

sources (H, Ar) may become commercially available.  This would remove the current 

constraints on FIB applications which arise due to Ga implantation issues.  
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8.2 Conclusion 

The body of work presented in this thesis demonstrates the usefulness and versatility of the 

focused ion beam (FIB) in superconducting device fabrication.   

A single Josephson junction is fabricated in a superconductor-normal metal bilayer (125 nm 

Nb 75 nm Cu) by milling a 50_nm wide trench across a microscopic track.  The resulting 

junctions are of superconductor-normal metal-superconductor (SNS) type.  The depth of the 

trench and hence the resulting device parameters can be accurately controlled by means of an 

in situ resistance measurement.  A thorough study has been carried out of the effect of the 

varying the normal metal layer thickness – the thickness is now optimized to achieve the 

slowest possible variation of device parameters with trench depth.  The properties of single 

junction devices are well understood in the context of established SNS theory. 

The junctions show promise for use in the next generation of Josephson voltage standards.  

The current-voltage characteristics are of resistively shunted junction type, with characteristic 

voltages of order 50_µV.  Prototype series arrays of SNS junctions have been fabricated in 

collaboration with the U.S. National Institute of Standards and Technology (NIST).  Phase-

locking with an external microwave source has been achieved in 10-junction arrays between 

4.2 K and the transition temperature.  Low-noise measurements of the array differential 

resistance reveal a significant spread in junction critical currents; locking is achieved due to 

the shunting effect of the unbroken normal metal layer.    Large-scale arrays require a 

significant reduction in device parameter spread.  This may be achieved by using epitaxial 

films. 

The FIB offers the opportunity to explore novel junction geometries.  The first Corbino 

geometry SNS junction is reported.  This device is fabricated by milling a circular trench in a 

bilayer track.   An electrical contact is made to the central superconducting island, allowing a 

current to be passed radially through the device.  As the junction is embedded in a 

superconducting track, when a magnetic field is applied flux can only enter the barrier in 

quantized units.  Measurements of the device critical current reveal both flux entry and 

annihilation events.  When the surrounding superconductor is sufficiently thin, flux entry in 

units of less than the flux  quantum Φ0 is observed.  Numerical simulations have been carried 

out in support of these measurements.    In the near future imaging work will be carried out in 

order to visualize the flux entry process.  The possibilities of utilizing such a device to 

observe further novel quantum effects have been discussed. 
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8.0 Extensions to this Work 

This section gives a summary of possible extensions to the work carried out in this thesis 

(more detailed discussion can be found in Chapters 6 and 7).  Other FIB-based 

superconducting device fabrication work currently being carried out in our laboratory by my 

colleagues is summarized in Section 8.1. 

The properties of planar SNS junctions fabricated by focused ion beam (FIB) are now well 

understood.  The devices fabricated in Nb-Cu bilayers have the basic properties required for 

the next generation of Josephson Voltage Standards (non-hysteretic current-voltage 

characteristics, high current densities, low (~50 µV) characteristic voltage at 4.2 K and high 

potential integration density).  The FIB-based technique offers sufficient reproducibility to 

allow functioning 10-junction arrays to be fabricated successfully.  The final application 

requires up to 10,000 junctions; the current technique is considered too slow (10 s per 

junction) and the variation in device parameters too great.  E-beam lithography and an 

anisotropic etch, in combination with the insertion of an etch-stop layer in the Nb could be 

used to create devices similar to those produced in this thesis – with benefit of much 

improved scalability.  The fundamental cause of variation in device properties appears to be 

the polycrystalline microstructure of the thin films used.  The use of epitaxial films may lead 

to a significant reduction in the device parameter spread.  Attempts have been made in this 

thesis to achieve epitaxial Nb-Cu growth; an alternative deposition technique to sputtering, or 

a different choice of normal metal may lead to improved results.  Furthermore, an alternative 

choice of normal metal may lead to high characteristic voltage junctions (~1 mV) which 

would then be of interest for other applications in superconducting digital electronics (RSFQ, 

SQUIDs). 

The Corbino geometry Josephson junction reported in Chapter 7 undoubtedly merits further 

study.  In the immediate future it would be of great interest to carry out an imaging 

experiment on the existing devices (Scanning Hall Probe, SQUID and LTSEM are suitable 

techniques).  This would allow the movement of individual flux quanta to be visualized and 

correlated with electrical measurements.     Underdamped Corbino geometry junctions could 

be fabricated by adding a capacitive shunt to the existing device structure, giving rise to 

propagating fluxon modes.  Clean limit Corbino geometry SNS junctions (for example using 

a 2DEG as a normal metal layer) could be used to study Berry phase effects at low 

temperatures. 
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Appendix 1: Calculation of ∆(x) for a SN bilayer using 

Usadel theory   

As discussed in Chapter 5, it would be very useful to able to calculate the form of the 

superconducting order parameter ∆ for a superconductor-normal metal (SN) bilayer.  This 

problem has already been dealt with in the limit close to TC (Martinis 2000) using the Usadel 

microscopic theory (Usadel 1970). 

The Usadel Equations 

Usadel theory is based on the assumption that electronic transport in a metal is diffusive.  The 

superconducting state is described by the function θ(x, E) where x is a position co-ordinate 

(the one-dimensional case is considered here for simplicity).  The variable is complex and 

ranges in magnitude from 0 to π/2. θ =0 corresponds to the normal state. 

The Usadel equations used to solve for θ(x, E) are 
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where 2enD SSS σ= is the diffusivity constant, nS is the density of states, σS is the normal 

state conductivity, Veff the BCS-like interaction potential, τsf is the spin-flip time, φ is the 

superconducting phase, Ax is the vector potential, ∆ is the superconducting order parameter, 

Dωh  is the Debye energy and T is the temperature.  The limit of a uniform superconductor 

we can neglect the first (spatial variation) and third (pair-breaking) terms in (A.1).  θ  is 

solved to be ( )EBCS )/arctan( Ei∆=θ .  Substituting θBCS into (A.2) gives the usual BCS 

form of the pair potential. 
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Solution Strategy 

If pair breaking can be neglected (A.1) becomes 
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The superconductor extends from x=-lS to 0 and the normal metal extends from x=0 to lN. We 

start with a trial solution for ∆(x) (a simple step function: ∆ finite in the superconductor and ∆ 

zero in the normal metal. 
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into (4) and find θ(x) by splitting θ into real and imaginary parts:  

oundary conditions at x=-lS and lN  are 0=
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.  At the superconductor-
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enote superconductor and normal metal respectively, and Gint/A is the 

ce of the interface per unit area.   



Appendix 1  

Hence θ(x) will take the form 

θ(x)
S N

x-ls lN

We repeat then solution of at intervals over range of energies E over which to integrate to find 

∆ (say 0<E< Dωh ).  The solutions θ(x, E) can then be used to solve the self-consistency 

equation (2) and obtain a new function ∆(x): 

∆(x)
x-ls lN

We then repeat the process using this as the input function until ∆(x)old=∆(x)new. 

Once the final form of θ(x, E) is known, useful quantities can be calculated.  For example the 

quasiparticle density of states is given by [ ]θcosReSqp nn = .  The supercurrent density is 

given by 

( ) ( )[ ] ( ) [ .sinIm2tanh2 2θφσ ∫
+∞

∞−

+∂∂= TkEdEAexej BxSS h ]             (A.5) 
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Now care must be taken as a supercurrent can act as a pair-breaker.  If the supercurrent 

density is small (that is if the quadratic term inside the square bracket in (A.1) is much less 

than ∆) then  

x
jS ∂

∂
∆∝

φ2                    (A.6) 

Hence by calculating ∆(x) vertically through the centre of the device, the dependence of IC 

and ICRN on remaining Nb thickness, normal metal layer thickness and composition can be 

calculated. 
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Appendix 2: Scientific Meetings attended  

EURESCO Conference ‘Future Perspectives in Superconducting Josephson Devices’ 

Pommersfelden, Germany, 29th June-4th July (Poster: The Corbino geometry Josephson 

junction). 

Electromagnetic Technology Division, National Institute of Standards and Technology, 

Boulder, CO, USA, 5th June 2002 (Seminar: Josephson junctions fabricated by focused ion 

beam). 

Beasley Group, Department of Applied Physics, Stanford University, CA, USA, 30th May 

2002 (Seminar: Josephson junctions fabricated by focused ion beam) 

Joint meeting of European Physical Society and Institute of Physics Condensed Matter and 

Materials Physics Division, Brighton U.K. 7th-11th April 2002 (Poster prize winner: The 

Corbino geometry Josephson junction). 

Institute of Physics Superconductivity Group Workshop ‘Mesoscopic Phenomena in 

Superconductors’ University of Bristol, U.K., 26th September 2001 (Oral presentation: The 

Corbino geometry Josephson junction). 

International Symposium on Superconducting Device Physics, 25-27 June 2001 Tokyo, Japan 

(Poster: Novel Josephson junction geometries in NbCu bilayer films fabricated by focused ion 

beam microscope). 

International Superconductive Electronics Conference, 19-22 June 2001 Osaka, Japan, 

(Poster: Nanofabricated SNS junction series arrays in superconductor-normal metal bilayers). 

Royal Microscopical Society Workshop: Advances in Focused Ion Beam Microscopy. 

University of Oxford, U.K., 30th March 2001. 

Institute of Physics Superconductivity Group Meeting, March 2001, University of 

Birmingham, U.K. (Poster – runner up in Poster Competition). 

Institute of Physics Condensed Matter and Materials Physics Meeting, 19-21 December 2000, 

University of Bristol, U.K. (Oral session SCd: Nanoscale SNS junction fabrication in 

superconductor-normal metal bilayers ). 
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Applied Superconductivity Conference, 17-22 September 2000, Virginia Beach, VA, USA 

(Poster Session 5EC01: Nanoscale SNS junction fabrication in superconductor-normal metal 

bilayers). 

Electromagnetic Technology Division, National Institute of Standards and Technology, 

Boulder, CO, USA, 10 July 2000 (Seminar: Nanoscale SNS junction fabrication in 

superconductor-normal metal bilayers). 

Boulder School for Condensed Matter and Materials Physics, 3-28 July 2000, University of 

Colorado, Boulder, CO, USA. (Participant). 

Institute of Physics Superconductivity Group Meeting, March 2000, University of 

Birmingham, U.K. (Poster). 

COST-TMR Workshop on Mesoscopic Superconductors and Hybrid Structures, 16-19 

December 1999, University of Lancaster, U.K. 
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