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Introduction   20 

Tendons are highly specialized structures composed mainly of specialized fibroblasts surrounded by an 21 

abundant extracellular matrix (ECM) 1,2.  The specialised fibroblasts include tenoblasts and tenocytes, and 22 

these account for 90-95% of the cellular elements in tendons 3. The ECM is a complex collagen based structure 23 

based on proteoglycans including glycosaminoglycans, and several other small molecules. 1,2 The normal 24 

mechanical and structural features of tendons depend on a complex and dynamic remodelling process 1,4. The 25 

dysregulation of these features results in tendon inflammation, injury or tendinopathy 5–7, resulting  in 26 

considerable pain which negatively impacts the life of the patients restricting pain free activities. 5–7.  27 

 28 

Healing from acute tendon injury occurs in three progressive partially overlapping phases: an acute 29 

inflammatory phase, a proliferative phase and a remodelling phase. While the role of inflammation is still 30 

being studied 4,8, emerging evidence supports a major role of the immune system, both in the etiopathogenesis 31 

and treatment of the tendinopathy 9,10. The first inflammatory phase lasts three to seven days from the injury, 32 

and is characterised by the presence of monocytes and macrophages at the site of injury 4,8. Elastic deformation 33 

and mechanical stimuli are an integral part of this process, and type III collagen is increasingly produced within 34 

the tendon and its extracellular matrix 11. This is followed by the proliferation phase  with the release of 35 

vascular endothelial growth factor to allow neovascularization and stimulate the formation of granulation 36 

tissue 3,4. In the final remodelling phase, the tissue proceeds to reorganize its structure quantitatively and 37 

qualitatively 3. This process can take up to two years to complete healing.  38 

 39 

The role of the immune system in the dysregulation of healing probably results from a chronic low grade 40 

inflammation 4 related to polymorphonucleocyte, mast cells, macrophages and lymphocytes; the presence of 41 

these ‘immune cells’ has recently been highlighted in tendons12–14. Controversially, it is increasingly clear that, 42 

even when absent or poorly present, this does not  equate to the absence of  these immune cells’ action on 43 

inflammation 9. In addition, tendon injuries are accompanied and preceded by the secretion and action of 44 

several chemical mediators of inflammation by tenocytes including pro-inflammatory and anti-inflammatory 45 

cytokines, and several growth factors such as TNF-a, IL-1b, IL-6, IL-10, VEGF, TGF-b, 10,23 and 25 COX-46 

2, and PGE2. 11,15,16 Although the inflammation driven by the cytokines might have a role in the healing 47 
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process, its role in the development, healing and resolution of tendinopathy, tendon rupture and other 48 

inflammatory processes remains controversial 17,18.  49 

 50 

This systematic review reports the most up-to-date evidence on the role of immune cells on tendon 51 

healing with a focus on its clinical relevance. 52 

  53 
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2.  Methods 54 

2.1 Literature search Strategy 55 

            This systematic review was conducted according to the guidelines of the Preferred Reporting Items for 56 

Systematic Reviews and Meta-Analyses (PRISMA) 19 and MOOSE guidelines 20. A comprehensive search was 57 

performed on three medical electronic databases (PubMed, Embase and Cochrane Library) by two independent 58 

authors (E.C. and W.S.K.) from their inception to 10th  June 2019. Our main aims were to: (1) understand the 59 

role of inflammation and immune response in tendon healing, (2) identify factors associated with anti-60 

inflammatory intervention, (3) evaluate their effects through the review of animal and in vitro studies, and (4) 61 

critically summarize the evidence available. To achieve the maximum sensitivity of the search strategy, we 62 

combined the terms: ‘‘tendon”, as well some common terms of tendon conditions such as “tendon injury OR 63 

(tendon damage) OR tendonitis OR tendinopathy OR (chronic tendonitis) OR tendinosis OR (chronic 64 

tendinopathy) OR enthesitis)” AND “healing” AND “(immune response) OR (macrophages) OR (immune 65 

cells) OR (monocytes) OR (lymphocytes) OR (immunology) ” as either key words or MeSH terms. The 66 

reference lists of all included articles, previous literature reviews on the topic and top hits from Google Scholar 67 

were reviewed for further identification of potentially relevant studies. To avoid overlapping with other 68 

ongoing reviews, we first searched PROSPERO site for any similar review, and then prospectively registered 69 

our study 70 

  71 

 2.2 Selection Criteria  72 

Eligible studies included those investigating inflammation and immune response in tendon healing. 73 

Primary screening of the titles and abstracts was performed by including studies of any level of evidence 74 

published in peer-reviewed journals reporting clinical or preclinical results in English. Also, Italian, French, 75 

Spanish, Portuguese articles were included since the senior author was able to evaluate them (N.M.). Moreover, 76 

articles discussing the effect of several cytokines and immune response actors, both pathologically and 77 

physiologically were reviewed. Exclusion criteria included studies investigating the treatment response of 78 

tendon to regenerative treatments including platelet rich plasma (PRP), mesenchymal stem cells (MSCs) etc, 79 

or new drugs related to healing of the tissue. Additionally, we excluded studies in which data were not 80 

accessible, missing, without an available full text, or not well reported. We also excluded duplicates, and the 81 
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studies with poor scientific methodology assessed as described below. Abstracts, case reports, conference 82 

presentations, reviews, editorials and expert opinions were excluded.  Two authors (E.C. and W.S.K.) 83 

performed the search and evaluated the articles independently. An experienced researcher in systematic 84 

reviews (N.M.) solved cases of doubt. At the beginning of the procedure, each investigator read the abstracts 85 

of all the articles, selected the relevant ones according to both inclusion and exclusion criteria, and then 86 

compared the results with the other investigators. After four weeks, the same studies were read again to 87 

establish the agreement of the investigators about articles’ selection. No disagreement was observed among 88 

the investigators. One investigator extracted the data from the full text articles to Excel spreadsheet structured 89 

tables to analyze each study in a descriptive fashion. Another investigator independently double checked the 90 

extraction of primary data from all the articles. Doubts and inconsistencies solved by discussion. 91 

 92 

2.3 Data Extraction and Criteria Appraisal 93 

All data were extracted from article text, tables and figures. Data were extracted using the Population, 94 

Intervention, Comparison, Outcome (PICO) framework and included title, year of publication, study design, 95 

sample size, study population, patient characteristics, intervention and comparator (where applicable), 96 

outcomes, funding and conclusions. Two investigators independently reviewed each article (E.C. and 97 

L.R.). Discrepancies between the two reviewers were resolved by discussion and consensus. The final results 98 

were reviewed by another experienced investigator (N.M.). 99 

 100 

 2.4 Risk of Bias Assessment 101 

            The assessment of the risk of bias of all in vivo selected full-text articles was performed according to 102 

the SYRCLE’s risk of bias tool 21 for preclinical studies and the Cochrane Collaboration’s risk of bias tool 22 103 

for clinical studies (Supplementary material Tables 1a-1b). This assessment used “Low,” “Moderate” and 104 

“High” as judgement keys: “Low” indicated a low risk of bias, “Moderate” indicated that the risk of bias was 105 

moderate, and “High” indicated a high risk of bias. The assessment was performed by two authors (E.C. and 106 

L.R.) independently. Inter-rater agreement was 92%. Any discrepancy was discussed with the senior 107 

investigator (N.M.) for the final decision. 108 

 109 
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2.5 Study Quality Assessment 110 

            The quality of evidence was assessed according to Collaborative Approach to Meta-Analysis and 111 

Review of Animal Data from Experimental Studies (CAMARADES) checklist with supporting guidance from 112 

the CAMARADES website 23, giving one point for each of (1) publication in a peer-reviewed journal; (2) 113 

statement of temperature control; (3) random allocation to groups; (4) allocation concealment; (5) blinded 114 

assessment of outcome; (6) use of anaesthetic without significant internal protection of blood vessel; (7) 115 

appropriate animal model (aged, healthy, diabetic, or hypertensive); (8) sample size calculation; (9) 116 

compliance with animal welfare regulations; (10) statement of potential conflict of interests. Each study was 117 

assessed and scored on a scale from 0 (lowest) to 10 (highest) points. The assessment was performed by two 118 

authors (E.C. and L.R.) independently. Inter-rater agreement was 94%. Any discrepancy was discussed with 119 

the senior investigator (N.M.) for the final decision. 120 

  121 
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3. Results  122 

A total of 225 studies were identified from the databases according to the aforementioned inclusion 123 

and exclusion criteria. Overall, 112 articles were screened through abstract and title reading after removal of 124 

duplicates. Eventually, after full text reading and reference list check, we selected 68 articles to include in the 125 

present manuscript. A PRISMA 19 flow chart of the selection process and screening is provided (Figure A) 126 

 127 

Figure A.   128 

We ultimately included 53 articles 12,24,33–42,25,43–52,26,53–62,27,63–72,28,73–82,29,83,84,30–32  after applying our 129 

search strategy, inclusion and exclusion criteria. The articles included investigate the role of immune cells, the 130 

pathway triggered by their action and other immune mediators involved in the healing response of tendons 131 

after an injury.  132 

The onset and progression of tendinopathy is related to an imbalance of inflammatory factors, immune system 133 

cells and chemical mediators, hormones, mechanical stimuli and other yet unknown agents. Morita et al85 134 

described over 20 cytokynes as actors of the immune and inflammatory process involved in tendon healing. 135 

While emerging evidence supports their role in every physiological phase of healing, their imbalance can 136 

ultimately lead to a failed healing response.43  Chemokines such as CCL5, CCL2, CCL3, CXCL10 are involved 137 

in the pathogenesis of tendinopathy inducing inflammation 44, even after mechanotrasduction8,45.  The most 138 

investigated proinflammatory cytokines including IL-1β, IL-6 and TNF-α, are also able to elicit the immune 139 

response. 85 The immune cells are reported to be main actor of all the aforementioned processes both producing 140 

mediating factors and acting through cell mediated processes.  141 

 142 

Mast cells 143 

Mast cells exert were reported as inducer of the proinflammatory response on human tendon-derived 144 

cells in vitro.48  145 

 146 

Macrophages 147 

Macrophages are immune cells involved in both inflammatory and repair processes 46,47. They are 148 

crucial for healing, and initially secrete pro-inflammatory agents in response to tissue damage including IL-149 
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1β, TNF-α bioactive prostaglandins, reactive oxygen intermediates and many proteases 49–51. These factors 150 

act as important initiators of the tendinopathic cascade 52,53, which may drive matrix metalloproteinase 151 

(MMP) mediated catabolism of tendon extracellular matrix.53,54 They can be categorized into two broad 152 

subsets including the M1 (classically activated) and the M2 (alternatively activated) macrophages 47,55. 153 

Although the M1 and M2 (and its subset such as M2a, M2b, M2c, and M2d) dichotomy is insufficient to 154 

describe their diverse phenotypes and functions 47,55, M1 polarised macrophages appear to show a pro-155 

inflammatory response pattern, while M2 macrophages regulate inflammatory responses by producing 156 

immunosuppressive cytokines such as IL-1 receptor antagonist (IL-1Ra), IL-10, IL-4 and IL-13. 47,56  157 

 158 

The literature suggests that tenocytes influence the phenotype macrophages are directed towards following 159 

their initial activation during inflammation. The macrophages polarization might be controlled through soluble 160 

factors 28,84. Changes in macrophage phenotype and epithelial-to-mesenchymal transition genes have been 161 

noted following Achilles tenotomy and during repair 33. In an equine tendon repair model, a phenotype switch 162 

towards M2-type macrophage polarization along with reduced expression for the Lipoxin A4 receptor was 163 

seenin chronic injury suggesting incomplete inflammation resolution28. Emerging evidence supports the role 164 

of macrophages as key players in tendon homeostasis and in tendon repair 28,32,46,55. In particular, the anti-165 

inflammatory effect of the M2 subset on classically activated M1 macrophages limit their action, promoting 166 

tissue repair. 47,55  167 

 168 

In animal models, rodents with surgically induced tendon injury have been used to evaluate the 169 

presence of inflammatory cells by immunohistochemistry 46,57. In a rat Achilles tendon injury model, , a 170 

sequential pattern of inflammatory cell infiltration with a rapid and transient accumulation of neutrophils 171 

followed by an increase in MQ infiltration 1–28 days post-injury was observed46. Similarly, Wong et al 172 

(2009) documented temporal changes in inflammatory cell subsets in a murine immobilised surgical 173 

adhesion model of injury, reporting peak neutrophil and macrophages accumulation 1–5 days and 21 days 174 

post-surgery respectively 57. The requirement of macrophages for adult tissue repair is supported by wound 175 

healing studies in murine macrophages-knockout models, with impaired healing responses observed in 176 

macrophages deplete wounds 49–51. 177 
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 178 

The complex network of factors influencing macrophage polarization, both in vitro and in vivo, can 179 

be affected by MSCs, raising the possibility of a regenerative medicine solution for tendon healing. 41,58–66 In 180 

animal models of tendon injury, MSC treatments increased the presence of M2 macrophages and their 181 

associated anti-inflammatory factors, which subsequently resulted in improved healing. 34,67,68 MSC-182 

stimulated macrophages seem to have marked anti-inflammatory properties compared with wild type control 183 

macrophages, with a higher levels of IL-10 and IL-6 and lower level of IL-12 and TNF-α expression 41,69. 184 

The M2-like stimulated macrophages in particular can modulate an improved and faster tendon healing with 185 

better mechanical and histological feature. 41 186 

 187 

MSCs facilitate monocyte to macrophage transition, skew naive macrophages to an M1 state, and attenuate 188 

already activated M1 macrophages while enhancing M2 activation 70. Although the exact mechanisms behind 189 

MSCs and macrophages interaction across different activation stages are not fully understood, Németh et al 190 

(2009) suggested a role by inflammation signalling factors such as PGE2 and its receptors EP2 and EP4 65. 191 

Other studies have noted metabolic changes in the expression of IDO1, SIRUTIN1, AMPK and GLUT1. 70 192 

Macrophages are essential for the orchestration and promotion of satisfactory wound healing as well as the 193 

resolution of inflammation in response to pathogenic challenge or tissue damage. Additional studies are 194 

required to further elucidate the complexities of MSC modulated macrophage polarization. 195 

 196 

There is no clear picture of the influence of macrophages on tendon healing. Some studies report that 197 

macrophage depletion or deficiencies are associated with improved quality of the healing tissue 24,32, sometimes 198 

together with a decreased mass of tissue 32. Although these studies looked at the effect of absence of 199 

macrophages during the entire healing process, studies where macrophages were specifically inhibited during 200 

early inflammation 82,83 e.g. with NSAIDs 81 demonstrated a positive effect.  201 

 202 

Lymphocytes 203 

 204 
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The possible role of lymphocytes in tendon healing and tendinopathy is still not understood. Although their 205 

presence in healthy and tendinopathic tendons has been reported 12,71, further studies are needed to validate 206 

the function of lymphocytes in tendinopathy. 207 

 208 

Mechanical load and immune cells  209 

Mechanical load appears to influence the metabolism and healing of tendons 26,32,35,72–79. It  upregulate 210 

both anabolic and catabolic pathways through regulation of inflammation and immune reaction. In animal 211 

studies, loading prolonged the early inflammatory response and increased the cross-sectional area in tendons 212 

35,72,80. Other effects included macrophage polarization (M1>M2) with a delayed regeneration phase type of 213 

inflammation with more M2 macrophages and Treg cells 35. Studies on macrophages polarization reported that 214 

the mechanical stress also influenced the immune cell differentiation and action. 26,35,78,79 Andersson et al 215 

(2012) loaded by unrestricted cage activity and demonstrated an increased strength of the healing tendon 72, 216 

but this increase was due to a greater mass of the healing tissue measured by increased cross-sectional area, 217 

without any significant improvement in mechanical quality.  218 

 219 

Discussion 220 

The literature contains conflicting data on the presence and role of immune cells in tendon healing 221 

inflammation. This review systematically analysed the current evidence on the presence and possible role of 222 

both proinflammatory and anti-inflammatory cytokines in tendon healing. 223 

Macrophages and other immune cells are also derived from adipose tissue, and an intricate relationship 224 

exists between them and the adipocyte-derived proinflammatory cytokines 15,86. In particular, MCP-1 induces 225 

macrophage infiltration of adipose tissue. In turn, activated macrophages release additional proinflammatory 226 

cytokines, notably TNF-a expression is significantly increased 15,86. This reduces the expression of adiponectin, 227 

an adipocyte derived anti-inflammatory hormone. This altered balance between chemotactic mediators and 228 

macrophages results in a state of persistent local inflammation within the adipose tissue 15. Moreover, increased 229 

adipose mass alters the relationship between leptin and suppressor T cells. Leptin, an adipocyte-derived 230 
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hormone responsible for the central control of energy balance, also seems to inhibit the proliferative capacity 231 

of suppressor T cells 86.   232 

 Macrophages polarization and action seem to be influenced by mechanical loading 26,35,78,79,87. In 233 

particular, emerging evidence supports their role to be dualistic setting the basis for a U curve interpretation 234 

of its role, where overloading the tendon will result in a failed healing and reinjury and underloading in a less 235 

effective healing.  236 

The development of a better understanding of the role of specific cell subpopulations in the 237 

pathogenesis of tendinopathy and during tendon healing is vital to identify potential therapeutic targets and 238 

develop more effective future treatments for patients. Studies of equine tendinopathy suggest that chronic 239 

inflammation may develop from inadequate resolution of inflammation. 28,88 240 

Exercise still represent one of the best ways to positively influence tendon healing by negatively 241 

affecting the inflammatory environment, as reported in several preclinical studies focusing on the role of early 242 

mobilization of injured tendons 73–77. The mechanism of cytokine expression is still not fully understood but 243 

seems to rely on  the stimulatory effect exerted by trauma leading to microdamage and vessel leakage 73,74. 244 

While rat models exposed to loading by unrestricted cage activity showed an increased strength of the healing 245 

tendon 72, this increase was due to an increased mass of the healing tissue without a significant improvement 246 

in mechanical quality. Even though there is no clear consensus on how much load will be appropriate for 247 

tendon healing, early and progressive physical therapy after tendon injury, tendon surgery, and in tendinopathy 248 

should be advised. 249 

 250 

 251 

5. Limitations 252 

The main limitation of this systematic review is the heterogeneity and quality of the included studies. 253 

Most of the studies were preclinical studies, with no clinical randomized controlled trials. Despite applying 254 

strict methodological evaluation through quality and risk of bias tools, treatment variables including dose, drug 255 

delivery and population used differed across the included studies. The findings of our review will however 256 

hopefully help direct future investigations. 257 

 258 
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