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ABSTRACT: In his classic 1939 paper, Kirkwood linked the macroscopic dielectric constant

of polar liquids to the local orientational order as measured by the g-factor (later named after

E=0

him) and suggested that the corresponding dielectric constant at short-range is effectively
equal to the macroscopic value just after “a distance of molecular magnitude” [Kirkwood, J.
Chem. Phys., 1939, 7, 911]. Here, we show a simple approach to extract the short-ranged

Kirkwood g-factor from molecular dynamics (MD) simulation by superposing the outcomes
of constant electric field E and constant electric displacement D simulations [Zhang and
Sprik, Phys. Rev. B: Condens. Matter Mater. Phys., 2016, 93, 144201]. Rather than from the
notoriously slow fluctuations of the dipole moment of the full MD cell, the dielectric constant
can now be estimated from dipole fluctuations at short-range, accelerating the convergence.
Exploiting this feature, we computed the bulk dielectric constant of liquid water modeled in

the generalized gradient approximation (PBE) to density functional theory and found it to be

at least 40% larger than the experimental value.

he static dielectric constant, €, of a polar liquid is related

to the thermal equilibrium fluctuations of the polarization
at zero field." Polarization fluctuations are long-range and vary
with the shape of the dielectric body. €, on the other hand, is an
intrinsic response coefficient independent of geometry. This led
Kirkwood to postulate that it should be possible to express € in
terms of a short-range orientational correlation function.”
Extending Onsager’s local field approach,3 Kirkwood derived
the relation

4pNE’g (e — 1)(2¢ + 1)
Q B € (1)

N is the number of polar molecules in a system of volume Q. y
is the value of the dipole of a molecule in the liquid. /3, as usual,
denotes the inverse temperature. The orientational correlations
are contained in a single number, the Kirkwood g-factor, gy.
Setting gx 1 in eq 1 recovers Onsager's mean field
approximation.” For correlated polar liquids, gy is obtained as
the asymptotic value of the r-dependent Kirkwood g-factor

Gy(r) = <ﬂ1'M1(”)>//42 (2)

where g, is the dipole of a reference molecule, 1, at the center
of a sphere of radius . M;(r) is the sum total of dipoles y; in
the sphere (including the dipole of molecule 1). Local
orientational correlations are averaged out by thermal motion
after the first few coordination shells. Hence, Kirkwood argued
that Gg(r) should approach a constant gi beyond a certain
distance ry (the Kirkwood correlation length); therefore, gy =
G ()5, As he commented in the original 1939 paper, “r¢ is a
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distance of molecular magnitude beyond which the local
dielectric constant in the neighborhood of an arbitrary molecule
is effectively equal to the macroscopic dielectric constant”.” The
short-range character of Gg(r) was demonstrated by integral
equation theory for the simplest of models for dipolar fluids:
hard spheres with a point dipole fixed at the center.*”” This
relation can be shown to hold for any point dipole system
assuming that the dielectric constant is local.”

The practice of dielectric constant calculation in computer
simulation is however very different. Rather than determining
the asymptotic value of the r-dependent Kirkwood function (eq
2), € is estimated from the fluctuations of the volume dipole M,
i.e, the dipole moment of the entire periodic model system cell.
This is a crucial distinction, and it took some time before the
question of the relation between the fluctuations of M and €
was settled.””"" The procedure depends on the scheme that is
used for the evaluation of the long-range electrostatic
interactions. The appropriate e%uation for the commonly
used Ewald summation method is

4nfp 2 2

— (M )y — M)g_g) =€ —1
30 (Mo — (M)g) =€ 3)
where Q = L? is the volume of the cubic cell of length L.

Analysis of the conditional convergence of Ewald summation
also established that the effective electrostatic boundary
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conditions for the bare Ewald sum (no surface term) are
equivalent to setting the k = 0 component of the macroscopic
electric field E to zero, as indicated in eq 3 by the subscript E =
0. These boundary conditions are often interpreted as wrapping
the dielectric body in metal foil.”~"" This is a key difference
with eq 1 which applies to an infinite system without
boundaries which can be formally compared to a system
under zero external electric field, E, = 0.

The thermodynamic conjugate of the macroscopic electric
field E is not the external field E, but the dielectric
displacement field D."” D = 0 constraints generate therefore
a third electrostatic ensemble in addition to the E = 0 and E, =
0 ensembles. Polarization fluctuations can be expected to be
different again.

Indeed, the counterpart to eq 3 is

c—1

4nf 2 2 _
3—Q(<M J)p=0 — (M)D=O) =

)
The fluctuation expression eq 4 was derived in a previous
publication'* applying linear response theory to the constant D
Hamiltonian proposed by Stengel, Spaldin, and Vanderbilt
(SSV)."> We verified that the polarization fluctuations obtained
from a D = 0 simulation, when substituted in eq 4, yield a static
dielectric constant of SPC/E in good agreement with the
estimate obtained from eq 3."*

Convergence of the E = 0 fluctuation ((AM)?) in eq 3 is
notoriously slow. Computation of € of liquid water requires
MD runs on the nanosecond time scale. Reducing these
computational costs was part of the motivation for studying D
= 0 liquid water in ref 14. We argued that the relaxation time of
the D 0 fluctuations, corresponding to longitudinal
polarization modes, can be expected to be a factor € faster
compared to the relaxation time of E = 0 fluctuations which
have transverse character. This was born out by the
calculations.'* However, the computational effort for the
determination of € essentially remained the same. The reason
is that the statistical accuracy in {(AM)?) in eq 4 must be
proportionally higher, which cancels the gain in relaxation time.

The slow relaxation times of polarization fluctuations are
generally attributed to the long-range character of dipole—
dipole interactions.”® However, the long-range component has
been eliminated in the distance-dependent Kirkwood factor
G(r) of eq 2, which is short-range. This observation suggests
that this property can possibly be exploited in an efficient
scheme for computing €. Unfortunately, Gy(r) is only short-
range in the infinite system. The boundary conditions applied
in simulation reintroduce long-range effects, as has been
demonstrated in a number of studies.'“>° The results for
SPC/E water shown in Figure 1 are typical of this behavior.
Neither the E = 0 or D = 0 curves reach a plateau value at
molecular distances.

The divergence between the E = 0 and D = 0 Kirkwood
factor with distance (Figure 1) was explained by Caillol, who
derived an analytical expression for the long-range component
in Gg(r).”" The effect of a change of boundary conditions was
treated in the formalism of De Leeuw, Perram, and Smith’
(LPS). Electrostatic boundary conditions are imposed by
embedding a large spherical cluster of identical cells in a
continuum of dielectric constant €’. The expression obtained by
Caillol is valid for distance r > ri (the Kirkwood correlation
length) and can be written as
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Figure 1. (a) r-dependent composite Kirkwood g-factor, Gg(r), of
SPC/E water (green curve) calculated by combining E = 0 (red curve)
and D = 0 (blue curve) calculations according to eq 8. (b) The
effective r-dependent dielectric constant obtained from Gy (r) using
eq 1 (solid curve) compared to ¢ estimated from the volume dipole
fluctuation at E = 0 using eq 3 (dashed line). The box length is 27.7 A.
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v(r) is the volume of the sphere defining M,(r) in eq 2. For ¢’
= ¢, the r-dependent term in eq S vanishes and the Kirkwood—
Onsager formula is recovered (Gg(r) = gy). For € > ¢, the
long-range interaction adds a positive bias unless the cell size is
sufficiently large so that Gy (r) reaches the asymptotic limit well
before the bias sets in (v(ry) < Q). The bias turns negative for
€' < e. This effect has been actually observed for the
Stockmayer fluid for which € can be computed to high
accuracy."' Gg(r) is virtually constant after three neighboring
shells. The dielectric constant can therefore in principle be
estimated by iterating in €’. However, this procedure is feasible
only for simple models such as the Stockmayer fluid."’

The validity of eq 5 is not restricted to spherical volumes
v(r) but also applies when the integration defining M, (r) in eq
2 is extended beyond r = L/2. In that case, only the volume of
the intersection of the sphere and cubic cell is included.”" The
maximum value of r is therefore 4/3L/2 when integration is
over the entire box. In this limit, M;(r) = M and v(r)/Q = 1.

Ultimately, eq S is based on the LPS Hamiltonian which is of
the form”>"**

Q
H = Hppc — ?E P

P (6)

Hppe is the standard Ewald Hamiltonian. Transformed to a
reciprocal space sum, the k = 0 term is missing. The k = 0
contribution is added in by the second term. P = M/Q is the
uniform polarization density. E, is the polarization field
generated by P modified (“screened”) by the electrostatic
boundary conditions.

4r

E=—""P
P 2¢’ + 1
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In the LPS view, —E,-P/2 is interpreted as a “surface” term (for
the reaction field view, see ref 11). For ¢/ = oo (metallic
medium), the polarization field vanishes leaving only Hppc in
eq 6.”7"" The polarization field is canceled by the charges
induced in the surrounding “virtual” metal electrode at infinity.

Substituting ¢’ = oo in eq 5 with v(r) = Q vyields an
expression for ¢ consistent with eq 3 (provided (M) = 0). For a
system under E = 0 constraints, eq S interpolates between the
short-range orientational correlations at r = rx and the
fluctuations of the volume dipole M. This relation also holds
for a D = 0 system if we identify zero electric displacement with
an embedding medium of dielectric constant €’ = 0. While
seemingly unphysical, €’ = 0 boundaries have been shown to be
pertinent to simulation of electrolyte solution.” Inserting €’ = 0
in eq 7, we obtain E, = —4zP. For ¢’ = 0o, depolarization is
complete (E, = 0). For ¢’ = 0, there is no depolarization at all."*
The full polarization field couples to the polarization. Inserting
in eq 6 we find that the ¢’ = 0 LPS Hamiltonian is identical to
the D = 0 SSV Hamiltonian. Consistent with ¢’ =0 < D =0
mapping, Caillol’s eq S is equivalent to eq 4 for ¢’ = 0 and v(r)
= Q. The thermodynamic foundation of the SSV Hamil-
tonians'“'® conveys therefore a physical significance to an €’ =
0 environment.

We are now ready to introduce the equation used in the
calculation. This is a superposition of the correlation function
eq 2 evaluated under E = 0 and D = 0 conditions.

Gy (r) = l(2G1<(”)E=0 + G (r)p=o)

3 (®)
With €’ = 00 & E =0 and ¢’ = 0 & D = 0 mapping, it can be
inferred from eq 5 that long-range contributions cancel in the
composite Kirkwood factor Gy (r) of eq 8. Gy (r) should level
off to an r-independent constant at distances comparable to
molecular length scales. Equation 8 gives us therefore
computational access to the short-ranged Kirkwood g-factor
without the need for prior knowledge of €.

To validate this prediction, we performed MD simulations of
liquid water at ambient conditions for the SPC/E water
model”* using a modified version of GROMACS 4 package.”
Technical settings are as described in our previous work."* As
shown in Figure 1a, Gy (r) obtained according to eq 8 is indeed
short-ranged. It is effectively constant beyond r = 6 A. This
distance corresponds to the second minimum of the oxygen—
oxygen radial distribution function of SPC/E water. The Gg(r)
plot can be represented as an effective r-dependent dielectric
constant by inverting eq 1. The result is shown in Figure 1b.
For comparison, the estimate obtained from the fluctuations of
the volume dipole M at E = 0 (eq 3) is also given. These two
estimates should coincide at r = 4/3L/2 = 24.0 A where M, (r)
= M. The r-dependent € reaches its bulk value already after the
second coordination shell. Our results conform therefore to
Kirkwood’s rule that the dielectric constant is determined by
short-range orientational correlations.

For further confirmation, the calculations were extended to a
variety of nongolarizable and polarizable water models,
including SPC,”® TIP3P,”” TIP4P,”” and SWM4-DP.”® The
appropriate generalizations of eqs 2—4 for polarizable models
can be found in the Supporting Information. The simulations
were carried out at the same conditions as for SPC/E water, in
particular density and box size. The general trend is similar to
what is shown in Figure 1 (see Figures S1—S4 in the
Supporting Information). Gg.(r) is effectively constant beyond
a molecular length with the corresponding r-dependent
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dielectric constant equal to the bulk value. The mean absolute
error of the dielectric constant calculated from Gy (r) (eq 1) at
r = 6 A relative to the one calculated from volume dipole
fluctuation (eq 3) is about 2.6, as shown in Figure 2. A better
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Figure 2. Correlation between the bulk dielectric constant, ¢,
calculated from volume dipole fluctuations at E = 0 (eq 3) and the
local dielectric constant calculated from the Kirkwood—Onsager
formula (eq 1) using the value of the r-dependent composite
Kirkwood g-factor, Gi.(r), of eq 8 at a distance of r = 6 A. This
distance corresponds to the second minimum in the oxygen—oxygen
radial distribution function of SPC/E liquid water.

agreement can be obtained if one includes more neighboring
molecules by increasing r further. However, the argument in
favor of a minimal value is that this value can be regarded as a
measure for the Kirkwood correlation length, ry, and has
therefore physical meaning.

The convergence in the distance-dependent Kirkwood factor
computed using eq 8 depends on adequate sampling of Gg(r)
at E = 0 and D = 0. Because of the much faster relaxation of
longitudinal polarization compared to transverse polarization,'*
G(r)p-o converges more rapidly than Gg(r)g-, (see Figure S in
ref 14.). Therefore, the convergence in the composite function
Gg(r) is dominated by the constant E = 0 average. It varies
with distance, as shown in Figure 3. The dielectric constant €(r)
computed from Gg.(r) at larger r values shows the poor
convergence familiar from the computation of € from
fluctuations of volume dipole (eq 3). In contrast, for distances
smaller than the Kirkwood correlation length, e(r) is to a good
approximation stationary on the 0.1 ns time scale. A technical
comment regarding the way Figure 3 was constructed is in
order. (M,()) is assumed to be zero in Kirkwood—Onsager
theory (eqs 1 and 2). The average cell dipole moment (M),
however, explicitly appears in eqs 3 and 4 affecting the time
convergence of the fluctuation. Therefore, for reasons of a
consistent comparison, a term (M;(r))*/(4*N(r)) has been
subtracted from eq 2 in the calculation of () in Figure 3 (N(r)
is the number of polar molecules in a sphere of radius r).

From an applications perspective, the big question is of
course whether calculation of the short-range Kirkwood g-factor
will enable us to compute the dielectric constant when MD
trajectories are too short to obtain a reliable estimate from
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Figure 3. Convergence with MD run time of the r-dependent
dielectric constant € of SPC/E water computed from the Kirkwood—
Onsager formula using Gg.(r) (eqs 8 and 1). This estimate is
compared to € calculated from E = 0 volume dipole fluctuations using
eq 3 (dashed line). The shaded area is the margin for 5% deviation.
The local dielectric constant converges within 100 ps. At this time time
scale, the volume dipole moment based estimate (the value at
maximum r) has still a long way to go.

volume dipole fluctuations. Density functional theory (DFT)-
based MD simulation of polar fluids is an example.”” " While
sampling of volume dipole fluctuation has proved feasible in
some cases,”””" liquid water under ambient conditions remains
a challenge.”® Taking up this challenge, we have carried out
DFT-based MD simulations at E = 0 and D = 0. The constant
D method has recently been implemented in CP2K*>** and is
available in version 3.0 (see section B, Tables S1—S4 and
Figures SS and S6 in the Supporting Information).

The electronic structure of liquid water was solved applyin:
DFT in the Perdew—Burke—Ernzerhof (PBE) approximation.”
Triple-{ basis sets with two additional polarization functions
(TZV2P) and a charge density cutoff of 320 Ry were used.
Core electrons were taken into account using the dual-space
Goedecker—Teter—Hutter (GTH) pseudopotentials.”> The
model system consisted of 64 water molecules in a cubic box
of length 12.432 A. The integration time-step is 0.5 fs, and MD
trajectories in the NVE ensemble were collected for about 150
ps each at E = 0 and D = 0 conditions after initial equilibration.
The average temperatures were 350 + 18 and 348 + 18 K,
respectively. The molecular dipole moments were obtained
from maximally localized Wannier functions (MLWFs)***” as
computed by CP2K. The centers of the MLWFs were
assembled in H,O molecules using the TRAVIS analysis code.*®

To compute the static dielectric constant, €, of polarizable
water models, such as PBE water, the fluctuation equations (eqs
3 and 4) for rigid (nonpolarizable) molecules must be adjusted
for an optical dielectric constant €., # 1. The generalization of
eq 3 appropriate for standard Ewald summation boundary
conditions has been worked out.””~*' The agreed on expression
is

MYy — (MY) = € — e

3Q 9)
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The corresponding expression under D = 0 constraints is

€ — €y

B (Mg — (M) =

3Q (10)

In the Supporting Information, eqs 9 and 10 are derived
applying the Hellmann—Feynman theorem to the SSV
Hamiltonians. Superposition of eqs 9 and 10 recovers the
correct form of the Kirkwood—Onsager formula for polarizable
polar liquids, as given by Wertheim®* (see Supporting
Information). Therefore, the procedure to extract the short-
ranged Kirkwood g-factor for polarizable models is again eq 8.

The r-dependent dielectric constant calculated from Gy (r) is
shown in Figure 4. Gi.(r) in the first coordination shell is close
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Figure 4. (a) Kirkwood g-factor G(r) of PBE water calculated at E =
0 (in red) and D = 0 (in blue) and the resulting composite g-factor
Gy.(r) (green) according to eq 8. (b) The corresponding r-dependent
dielectric constant €(r) calculated from G (r) using the variant of eq 1
for polarizable polar model** (see Supporting Information, section A).
The shaded region corresponds to the interval between the first and
second minimum of the oxygen—oxygen radial distribution function
(3.3 and 5.5 A, respectively). Our final estimate of the dielectric

constant of PBE water (¢ = 112) is the average of e(r) over this
interval.

to 2.2, which is in agreement with previous DFT-MD results for
PBE water.** Moreover, already after S0 ps of simulation, the
overall shape of G (r) at short-range resembles that of SPC/E
water (see Figure 3). Using r values between the first and
second minimum of the oxygen—oxygen radial distribution
function, we arrive at a dielectric constant of PBE water of 112
+ 6. As expected, distances approaching r = \/ 3L/2 lead to
significant underestimation of € even with 150 ps simulation,
which is as long as we could afford.

While our scheme for the calculation of € is new, the result is
not really a surprise. It is consistent with the enhancement of
the average dipole moment of PBE water relative to SPC/E.
We find 3.2 + 0.3 D for PBE compared to 2.35 D for SPC/E.
Scaling the bulk dielectric constant of SPC/E water (i.e.,, 71) by
the square of this ratio puts the dielectric constant of PBE at
131, which is close to our estimates derived from the composite
Kirkwood g-factor. Therefore, PBE water overestimates the
dielectric constant of liquid water by at least 40%, compared
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with the experimental value of 78. This finding is in accord with
recent studies of the dielectric constant of ice.*>**
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