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Abstract —Complex industrial assets such as power 
transformers are subject to accelerated deterioration when one 
of its constituent component malfunctions, affecting the 
condition of other components, which is a phenomenon called 
fault propagation. In this paper, we present a novel approach for 
optimizing condition-based maintenance policies for such 
assets by modelling their deterioration as a multiple dependent 
deterioration path process. The aim of the policy is to replace 
the malfunctioned component and mitigate accelerated 
deterioration at minimal impact to the business. The 
maintenance model provides guidance on determining 
inspection and maintenance strategies to optimize asset 
availability and operational cost.  

Index Terms—condition based maintenance, accelerated 
deterioration, multiple dependent deteriorating process, 
unrevealed malfunction. 

 

Nomenclature 
A critical component is a component whose functionality is 
essential for the asset to perform its designed function.  
A non-critical component is a component with an associated 
function that may influence the condition of critical 
components, but is not essential for the asset to perform its 
designed function.  
Fault propagation is an accelerated deterioration of critical 
components triggered by the malfunction of non-critical 
components.  
Minor preventive maintenance is carried out to repair or 
maintain malfunctioned non-critical components. It prevents 
further damage to other components due to fault propagation, 
and it moves the asset from an accelerated deterioration path to 
the normal-paced deterioration path.  
Major preventive maintenance prevents the asset from 
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reaching the deterioration failure state, and brings both the 
critical components and non-critical components back to an as 
good as new state [1]. 
Corrective maintenance targets sudden Poisson failures 
caused by an external event. It aims to bring the asset back to 
the rated working condition [2]. 
Replacement is undertaken after an asset reaches the 
deterioration failure state. It changes the asset condition to an as 
good as new state. 

Notation 
k The number of condition states of critical components 

before deterioration failure. 
m The number of different accelerated deterioration paths 

triggered by the malfunction of non-critical 
components. 

𝜆"#,%  The constant rate of deterioration of critical 
components from state i to state i+1, when non-critical 
components are working properly. 

𝜆&#,' The constant rate of deterioration of critical components 
from state i to state i+1, when non-critical components 
are experiencing the 𝑗th type of malfunction. 

𝜆)#,'  The constant rate of occurrence of the 𝑗 th type of 
malfunction of non-critical components when critical 
components are in the 𝑖th state. 

F    The deterioration failure state. 
b   The threshold for major preventive maintenance 

activity. 
1 λ-  The statistical mean time between revealed Poisson 

failures. 
1 λ-. The statistical mean time between revealed Poisson 

failures, when non-critical components are 
malfunctioned. 

1 λ/0 The statistical mean time between two successive 
inspections. 

1 µμ/0 The statistical mean duration of inspection. 
1 µμ2  The statistical mean duration of minor preventive 

maintenance. 
1 µμ-  The statistical mean duration of corrective repair for 
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revealed Poisson failure. 
1 µμ3   The statistical mean duration of major preventive 

maintenance.  
1 µμ4  The statistical mean duration of replacement.  
C/0'   The cost of each inspection.  
C2'   The cost of each minor preventive maintenance. 
C-'   The cost of each corrective maintenance after Poisson 

failure. 
C3'   The cost of each major preventive maintenance. 
C4'   The cost of each replacement activity. 
C7  The unplanned per unit down time cost.  
C8  The planned per unit down time cost. 

𝜋#,'  The steady state probability of state (𝑖, 𝑗). 
𝐴=  The availability of the asset. 
𝐶=  The time-averaged operating cost of the asset. 
𝐶𝑇 The cost of downtime. 
𝐶𝐴 The time-averaged costs of each activity. 
𝑓 𝑡   The lifetime function of the asset.  
𝜶  The probability vector denoting the initial probability of 

starting in any state. 
𝑺  The transition matrix. 

Abbreviations  
CTMC   Continuous time Markov chain 
MDDPM   Multiple dependent deterioration path model 
SDPM    Single deterioration path model 
MTBI    Mean time between inspections 

I.   INTRODUCTION 
ndustrial assets are composed of multiple components with 
different fault tolerances and life expectancies. In some 
occurrences, a non-critical component within the asset 

might be damaged by external events and become 
malfunctioned, and in turn have an adverse impact on other 
components, which is normally observed as a general result of 
an excessive decay of the asset. The excessive decay induced 
by the malfunctioned component could be mitigated by a minor 
maintenance, if it is discovered on time. However, if left 
unattended, it will result in failure. This phenomenon is called 
fault propagation. It is an event-triggered latent process with a 
prolonged impact on the asset aging rate. In practice, the 
phenomenon of fault propagation can be identified by 
assessment methods such as fault tree analysis [3], and failure 
mode and effect analysis [4]. Under this situation, modelling 
the asset aging process as one indistinguishable deterioration 
path seems to be oversimplified, and unlikely to withstand 
empirical scrutiny. This condition demands a refinement of 
asset deterioration modelling, and reforming of the 
condition-based maintenance strategy, to further improve asset 
performance by timely observation and mitigation of the 

accelerated aging associated with fault propagation. 
The reliability engineering community has been battling with 
the difficulty of modeling the complex behavior of asset 
deterioration and optimizing its maintenance. Currently, one of 
the key research areas receiving increasing attention is to use 
mathematical models to capture the phenomenon of 
dependencies among components within an asset (or among 
assets within a system). Amongst these dependencies, 
stochastic dependence, defined by Dekker [5] as where “…the 
state of a component influences the lifetime distribution of 
other components, or there are causes outside the system which 
bring about simultaneous failures (so-called common cause 
failures)” is most challenging and underdeveloped (and hence 
the least progressed). 
Stochastic dependence is manifested in two ways in a 
multi-component asset: inherent dependence, and induced 
dependence. Inherent dependence is where the deteriorations of 
components in an asset are affected by one another throughout 
their lifetimes. On the other hand, induced dependence is where 
a malfunction in one component of an asset will affect the rate 
of deterioration of another component in that asset. We will 
now discuss the current literature on inherent dependence. 
A multivariate competing risk model is intuitively appropriate 
for modelling this type of dependence. Gorden [6] developed a 
generalized dependent risk model where the effect of risks is 
drawn randomly from a multivariate normal distribution, 
whose covariate matrix expresses the pairwise correlation 
between risks. Copulas are an attractive alternative to model 
inherent dependence statistically, as it is a function of joint 
probability, by linking univariate marginal distributions. Lo 
and Wike [7] implemented an Archimedean copula to model 
multiple dependent competing risks. Wang and Pham [8] 
formulated the inherent dependence among multiple degrading 
processes by selecting the best fitting copulas as well as the 
time varying copulas. Tang [9] argued that copulas might not be 
uniquely determined under incomplete information. Moreover, 
the frequently implemented Gaussian copulas may induce gross 
error on calculated system reliability. Bain [10] designed a 
novel deterioration rate interaction approach where he 
modelled the effect of degradation state of one component on 
the degradation rate of other components in the system. We 
have discussed a number of approaches found in literature to 
model inherent dependence. All these approaches have a 
common factor: they use a multi-variate distribution or Copulas 
to represent the joint ageing process of the components.  
As opposed to inherent dependence which could occur in the 
components in an asset throughout its life, induced dependence 
manifests after an internal or external trigger event. For 
instance, an abnormal surge of current could cause a clamping 
in a transformer to become loose due to electromagnetic forces 
(malfunction), which can increase vibrations in the transformer, 
thereby accelerating the deterioration of certain other 
components.  Failure interaction models are one of the main 
streams to analytically describe the interactive effect induced 
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after an internal event, for instance, a component failure. There 
are abundant articles in this area. Nicolai and Dekker [11] 
refined a three-type classification scheme, which was originally 
introduced by Murthy and Nguyen [12] into a well-utilized 
two-type classification. Type I assumes that the failure of one 
component may instantaneously cause the failure of another 
component with a certain probability. Scarf and Deara [13] 
modeled the type I failure dependence in a two-component 
system, and employed failure-based replacement, age-based 
replacement, and opportunistic age-based replacement, 
considering set up cost. Type II models the nonlethal effect 
after the failure of one component, which can be further 
subdivided into two categories: failure interaction, and shock 
damage interaction. Failure interaction models the influence of 
failure of one component on the hazard rate or hazard function 
of other components. Lai [14] demonstrated failure interaction 
in a two-unit parallel system, where the failure of unit 1 will 
increase the instantaneous failure rate of unit 2, and the failure 
of unit 2 will cause instantaneous failure of unit 1. A 
replacement policy based of the number of failures on unit 1 is 
optimized to minimize the time averaged operating cost of the 
system. Golmaknmi [15] modeled the failure interaction in a 
two-component repairable system, where the failure of unit 1 is 
unrevealed and increases the system operation cost, yet the 
failure of unit 2 will cause the system to cease operating and 
also increase the instantaneous failure rate of unit 1. The paper 
minimized the systemic operation cost in a finite time horizon 
by varying the inspection interval on unit 1. Shock damaged 
interaction considers the case where the failure of one 
component will induce a shock damage on other components, 
and this damage may accumulate over time. Satow [16] 
constructed a model for a two-component system with 
shock-damaged interaction, where the non-homogeneous 
failure of unit 1 will induce a random amount of damage on unit 
2, and eventually result in high cost system failure. To prevent 
the cumulative damage on unit 2 from exceeding a predefined 
threshold, a preventive replacement policy based on both 
system age and cumulative damage to unit 2 are implemented 
to minimize the time-averaged operating cost. Wang [17] 
model the same shock interaction model on two-component 
systems, but in his case unit 2 is repairable with a geometric 
process.  
Induced dependence may also be triggered by external risk. 
Common cause failure [18], [19] is a well-known body of 
research, which belongs to this area. Common cause failure 
plays an important role in the estimation of system reliability. 
Kavm [20] found that the assumption of independent failures 
leads to the system reliability being significantly overestimated, 
so he proposed a Bayesian model to infer the common cause 
failure probability based on historical convoluted data. Xing 
[21] considered a special type of common cause failure: 
propagated failure with a global effect on a binary state system. 
She modeled a logic framework using a dynamic fault tree, 
additionally introducing the functional dependence gate to 
represent the competition in the time domain between failure 

isolation and propagated failure. Levitin [22] evaluated the 
reliability of a serial-parallel multi-state system subject to 
common cause failure by employing a universal moment 
generating function, which is more tolerant of changes to 
system topology than fault tree analysis. Further developments 
are made in his later publications on modeling the selective 
effect of propagated failure [23], and randomizing the 
propagation time of failure [24]. The models about induced 
dependence normally explicate its trigger event and 
analytically formulate its sub-sequential effects. In other words, 
it highlights the changes in system aging characteristics before 
and after the trigger event.  
The phenomena of both inherent co-degradation and induced 
failure interaction are well captured and modeled in current 
literature. In this paper, we attempt to draw the attention of 
researchers and practitioners to a phenomenon caused by an 
internal stochastic dependence among components, which 
manifests a different type of characteristic: fault propagation. 
Fault propagation is an induced co-degradation, which is 
triggered by an unrevealed event such as a malfunction of 
components or an induced agent of degradation. In practice, the 
phenomenon of fault propagation has been widely observed in 
industrial assets with complex structures. For instance, in 
power transformers, if the bush gasket becomes inelastic, the 
ingress moisture and oxygen in insulation oil will catalyse the 
hydrolysis and oxidation of the insulation paper, and reduce the 
lifetime of the power transformer. As reported in Shroff and 
Stannet [25], under 2% moisture, the lifetime of a power 
transformer can be reduced from the original 38 years to 1.9 
years.  
In this paper, we focus on modelling the effect of fault 
propagation within an asset, where the co-degradation among 
components could be seen as the acceleration of the internal 
clock of asset deterioration. The induced co-degradation 
phenomenon is therefore modelled as a transition from normal 
asset deterioration to the resulting accelerated deterioration. By 
modelling it this way, the deterioration model does not require 
detailed component level data (which is hard to obtain in 
practice), it only requires data at the asset level. 
In particular, we model the asset deterioration behaviour using 
a multiple dependent deterioration path model (MDDPM) 
constructed using a continuous time Markov chain (CTMC). 
There are a number of papers [26]-[33] that use CTMC to 
model the deterioration and maintenance of a multi-state single 
unit asset and find closed form solutions for availability and 
cost. In addition, a number of papers (e.g., [34], [35]) present 
models for multi-directional degradation using Markov 
decision processes. Amari suggested in [36] that ideally the 
different deterioration mechanisms in an asset should each be 
modelled. Further, he suggests that the model should reflect 
that certain maintenance activities can reduce the deterioration 
rate of the asset. In our modeling approach, we model the 
normal deterioration and accelerated deterioration of the asset, 
and highlight the transition between them. Such a transition 
may happen at any state of deterioration.  
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We demonstrate the significance of modeling the accelerated 
deterioration associated with fault propagation in Section II. In 
Section III, we design a condition-based maintenance model 
which generates a periodic inspection plan to detect fault 
propagation. In addition, the model also provides a 
maintenance strategy to alleviate the detrimental effect of 
accelerated deterioration and restore the system back to 
normal-paced ageing. Section VI uses a case example from the 
power industry to bring the mathematical models to life. 
Section V summarizes the findings, and recommends the 
direction of future work.  

II.   DETERIORATION MODEL 
The deterioration model we put forward is for a 
multi-component asset, which is composed of critical and 
non-critical components. We formulate the deterioration model 
as a MDDPM. A comparison is made between a single 
deterioration path model (SDPM) and a MDDPM. The result 
shows the accelerated deterioration associated with fault 
propagation has a non-negligible impact on the asset lifetime 
function, which is also known as the unreliability function 
associated with asset aging. This result also services as a 
rationale for modeling the asset deterioration as a MDDPM. 

A.  Deterioration model formulation 
We assume that the asset deterioration is a Markovian process. 
The state of the asset is defined by the condition of both critical 
and non-critical components, and the sojourn time at each state 
is exponentially distributed. Further, the joint probability of the 
simultaneous occurrence of the state transition of critical 
components and the malfunctioning of a non-critical 
component is assumed to be negligible. We implement a 
terminating Markov chain to construct the MDDPM as shown 
in Fig. 1.  
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Fig. 1. State diagram of asset deterioration model. 

The asset states in the model are characterized by two indices  𝑖 
and  𝑗, where  𝑖 signifies the condition of critical components, 
and  𝑗 denotes the condition of non-critical components. 𝑖 = 0 
implies that critical components are new, and will 
monotonically decay to the failure state (F). Under normal use 
conditions, the critical components are assumed to deteriorate 
at the constant hazard rate  𝜆"#,% . However, if a malfunction 
(1 ≤ 𝑗 ≤ 𝑚) happens on non-critical components, the constant 
deterioration rate of critical components will accelerate to  𝜆&#,'. 
The different  𝑗 index indicates different malfunction modes of 

non-critical components. The rate at which the   𝑗IJ  type of 
malfunction happens when the critical components are at the 
𝑖IJ state is denoted by  𝜆)#,'.  

B.  Estimated lifetime function 
We model the lifetime distribution of an asset as a multi-variate 
function of multiple constant deterioration rates and transition 
rates between them. By recalling the state diagram in Fig. 1, we 
can see that the lifetime of an asset is identical to the time for 
the asset to reach the absorbing state F. Thus, in the model, the 
lifetime distribution of the asset could be modeled by a 
phase-type distribution [37], [38].  
We will now demonstrate the method of calculating the lifetime 
distribution using a simplified case. Consider an asset that 
deteriorates homogeneously (𝜆"%,% = 𝜆"K,% = ⋯ 𝜆"M,% = 𝜆" , 
and 𝜆&%,' = 𝜆&K,' = ⋯ = 𝜆&M,' = 𝜆&). Also consider that the 
asset has two deterioration states, and one accelerated 
deterioration path (see Fig. 2). The malfunction rate of 
non-critical components is invariant with the deterioration 
condition of critical components  (𝜆)%,' = 𝜆)K,' = ⋯ = 𝜆)M,' =
𝜆)). 
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Fig. 2. Homogeneous deterioration process.  

We can calculate the lifetime distribution of this asset using a 
phase type distribution as  
𝑓 𝑡 = 𝛂𝑒𝐒I𝐒%. (1) 
The parameter setting for this case is  

𝐒 =

−(𝜆" + 𝜆)) 𝜆) 𝜆" 0
0 −𝜆& 0 𝜆&
0 0 −(𝜆" + 𝜆)) 𝜆)
0 0 0 −𝜆&

, 

𝛂 = [1 0 0 0],  
and 

𝐒% = −𝐒𝟏 =

0
0
𝜆"
𝜆&

, 

where 1 is a 4 x 1 vector with every element being 1.  
As S is an upper triangular matrix, it has two double roots 
which are 𝜆K = −𝜆&, and 𝜆V = −(𝜆" + 𝜆)). We can calculate 
the eigenvectors and generalized eigenvectors of matrix S. 
𝐒 − 𝜆K𝐈 𝐕K = 0, (2) 

𝐕K = 1
YZ[Y\]Y^

Y\
0 0 , 
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𝐒 − 𝜆K𝐈 𝐕V = 𝐕K, (3) 

𝐕V = 1
Y^[Y^YZ[Y^Y\]Y^

_]YZ
Y^Y\

K
Y^

YZ[Y\]Y^
Y\

, 

 
𝐒 − 𝜆V𝐈 𝐕` = 0, (4) 
𝐕` = 1 0 0 0 , 
 
𝐒 − 𝜆V𝐈 𝐕a = 𝐕`, (5) 
𝐕a = 1 0 1/𝜆" 0 . 
We combine the four eigenvectors and generalized 
eigenvectors to a 4 × 4 matrix 𝐏 = 𝐕Kd 𝐕Vd 𝐕`d 𝐕ad . This 
combination enables us to further decompose the matrix S as 
follows.  

S = PJP-1  (7) 

where 

𝐉 =

−𝜆& 1 0 0
0 −𝜆& 0 0
0 0 −(𝜆" + 𝜆)) 1
0 0 0 −(𝜆" + 𝜆))

. 

(8) 

𝑓 𝑡   can therefore be rewritten as  
𝑓 𝑡 = 𝛂𝐏𝑒𝐉I𝐏]𝟏𝐒%, (9) 
 

𝑒𝐉I =

𝑒]Y^I 𝑡𝑒]Y^I 0 0
0 𝑒]Y^I 0 0
0 0 𝑒](YZ[Y\)I 𝑡𝑒](YZ[Y\)I
0 0 0 𝑒](YZ[Y\)I

. (10) 

The solution of 𝑓 𝑡  for this model is  
 

𝑓 𝑡 =
Y^YZY\

_

YZ[Y\]Y^
_ − Yf]YZ ghi^j

YZY\
+

Y^YZ[Y^Y\]Y^
_ Ighi^j

YZY\
+ Y^]YZ gh iZki\ j

YZY\
+

YZ YZ[Y\]Y^
_Igh iZki\ j

Y^Y\
_ −

YZ[Y\]Y^ Igh(iZki\)j

Y\
. 

(11) 

To verify the above result, when the unrevealed malfunction 
rate 𝜆) is 0, f(t) reduces to 𝜆"V𝑡𝑒]YZI which is identical to that of 
a single deteriorating path model SDPM with an averaged 
sojourn time at each transient state equal to 1/𝜆" [39].  

C.  Comparison between SDPM and MDDPM 
It is intuitive that the difference of the average lifetimes 
between the SDPM and MDDPM depends on two rates 𝑙K , 
and   𝑙V , where   𝑙K = 𝜆) 𝜆" , and 𝑙V = 𝜆& 𝜆" . The normalised 
difference (e) can be expressed as  

𝑒 =
𝑡m − 𝑡&
𝑡m

 (12) 

where 𝑡m  is the average lifetime as calculated by the single 
deterioration process model, and 𝑡& is the averaged lifetime as 

calculated by our model. 𝑡m, and 𝑡& can be calculated as  

𝑡m = 𝜆"V𝑡V𝑒]YZIdt
p
% , (13) 

𝑡& = 𝑡𝑓(𝑡)dtp
% . (14) 

In Fig. 3, we plot e where 𝑙K, and  𝑙Vvary from 0.05 to 0.5, and 0 
to 10 respectively. For the given set of input values, note that 
the difference between the estimated averaged lifetimes 
between the two models can be as much as 40%.  

 
Fig. 3. Difference between estimated assets’ averaged lifetimes. 

The induced accelerated deterioration associated with fault 
propagation has a non-negligible impact on asset life. However, 
implementing a maintenance strategy designed to replace the 
malfunctioned components and alleviate resulting accelerated 
deterioration in a timely manner can mitigate this risk. 

III.   MAINTENANCE MODEL 

In this section, we aim to build a condition based maintenance 
model upon the MDDPM to timely inspect and rectify the 
accelerated deterioration. In addition, by varying the decision 
variables of the s-mean time between inspections (MTBI) and 
the major preventive maintenance threshold, we are able to 
optimize the asset’s performance in term of availability and 
cost. The detail of the condition based maintenance strategy is 
explained with detail in Subsection C, and the generalized state 
transition diagram is illustrated in Fig. 4. 

A.  Model formulation 
In the model, states with 𝑗 = 𝑚 + 1  represent inspection 
without further action. 𝑗 = 𝑚 + 2  indicates inspection that will 
lead to a maintenance action. 𝑗 = 𝑚 + 3   represents the 
maintenance action; and 𝑗 = 𝑚 + 4   represents the Poisson 
failure state. The deterioration states (0 ≤ 𝑖 ≤ 𝑘, 0 ≤ 𝑗 ≤ 𝑚) of 
the asset are unrevealed, but could be observed and assessed by 
periodical inspection. The Poisson failure (𝑗 = 𝑚 + 4 ) and 
deterioration failure (𝐹) are self-announcing. The states of the 
asset, except for the failure state, are only revealed upon 
inspection. We assume that the duration for which the asset 
stays at a particular state is exponentially distributed. When the 
asset degrades to the deterioration failure state F, it is 
overhauled or replaced to restore the asset to an as good as new 
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state. Inspection is performed to assess the condition of critical 
and non-critical components. If the non-critical components  
are operating in the rated condition 𝑗 = 0 , and the critical 
components are in an acceptable condition 𝑖 ≤ 𝑏 , no 
maintenance action is required. If the critical components are 
already in a bad state 𝑖 > 𝑏 , major preventive maintenance 
will be performed to bring the asset back to an as good as new 
state. However, even if the critical components are in a good 
state, if the non-critical components are subject to malfunction 
𝑖 ≤ 𝑏, 𝑗 ∈ 1,⋯ ,𝑚 , to prevent the accelerated deterioration 

associated with fault propagation, minor preventive 
maintenance of the malfunctioned non-critical component is 
required. If critical components are already degraded to a bad 
condition through accelerated deterioration, major preventive 
maintenance will be performed to bring the asset back to an as 
good as new condition. Apart from deterioration failure, 
Poisson failure with a constant hazard function 𝜆y may occur at 
any deterioration state, and this condition will lead the asset to 
stop functioning.  
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 Fig. 4. Generalized continuous time Markov chain maintenance model. 

When the asset is undergoing accelerated deterioration, the 
resistance to exogenous harmful events will be reduced, and the 
asset will become more vulnerable. Hence we use 𝜆yz   to 
indicate the higher probability of triggering a Poisson failure 
given that the asset is already in the accelerated deterioration 
process. This approach is similar to the faulty trigger failure 
process as mentioned by Kuo and Zou [40]. A corrective 
maintenance will then be performed to fix the failed component 
and bring the asset back to the working state just before the 
failure state.  

B.  General solution 
Based on the designed CTMC model, the availability of an 
asset can be expressed in terms of the steady state probabilities 

as shown in (15). 

𝐴= = 𝜋#,'

{

'|%

M

#|%

 
(15) 

The time-averaged operating cost contains two parts, which are 
the cost of downtime 𝐶𝑇, and the time-averaged costs of each 
activity 𝐶𝐴 (inspection and maintenance).  
𝐶= = 𝐶d + 𝐶} (16) 
The cost of downtime is subdivided into two classes: planned 
downtime cost, and unplanned downtime cost. The planned 
cost is caused by the idle time of the scheduled inspection and 
maintenance. The unplanned down time is induced by events of 
sudden failure, and deterioration failure. The downtime cost is 
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calculated by multiplying the per unit downtime cost with the 
relevant steady state probabilities as in (17). 

𝐶𝑇 = 𝐶𝑝 𝜋𝑖,𝑚+1

𝑏

𝑖=0

+ 𝜋𝑖,𝑚+2

𝑘

𝑖=0

+ 𝜋𝑖,𝑚+3

𝑘

𝑖=0

+ 𝐶𝑢 𝜋𝑖,𝑚+4 + 𝜋𝐹

𝑘

𝑖=0

 

(17) 

The time averaged cost of each activity considers the cost of 
each inspection, minor preventive maintenance, major 
preventive maintenance, corrective maintenance, and 
replacement. The way to calculate this cost is to divide the cost 
of each activity by the duration of the activity multiplied by the 
relevant steady state probabilities as shown in (18). 

  𝐶} = 𝐶#"� 𝜇#"𝜋#,{[V

�

#|%

+ 𝜇#"𝜋#,{[K

�

#|%

+ 𝐶�� 𝜇�𝜋#,{[`

�

#|%

+ 𝐶�� 𝜇�𝜋#,{[`

M

#|%

+ 𝐶y� 𝜇y𝜋#,{[a

M

#|%

+ 𝐶�� 𝜇�𝜋y 

(18) 

To calculate the availability and operational cost of the asset, 
we need to know the steady state probabilities. However, the 
model contains (𝑚 + 4)(𝑘 + 1) + 𝑏 + 2 interconnected states, 
and thus finding analytical expressions for them is complicated.  
Fortunately, only the deterioration states (j≤m) are inter-state 
dependent. The inspection states (m+1 ≤ j ≤ m+2) and 
maintenance states (m+3 ≤ j ≤ m+4) are only related to the 
deterioration states in the current path. Furthermore, when 1 ≤ i 
≤ b, the deterioration states follow a certain pattern; and when 
b+1 ≤ i ≤ k, the deterioration phases also replicate their own 
format. Due to these assumptions, the complexity reduces. By 
generating equations from (22) to (39) as shown in the 
appendix, it is straightforward to iteratively express the steady 
state probabilities in terms of 𝜋%,%, as shown in (40) to (43). By 
recalling that the sum of all steady state probabilities is equal to 
1, we calculate 𝜋%,% using (44). Substituting the result back to 
(40)-(43), closed form solutions of all steady state probabilities 
could be achieved. By substituting the steady state probabilities 
into (15) and (16), we can get analytical expressions for the 
asset availability As and operation cost Cs. This method is 
desirable when k and m are small and predefined. 

IV.   EXAMPLE 
In this section, the applicability of the model is demonstrated by 
applying it to the maintenance of a fleet of oil immersed power 
transformers of different ages. The data presented in this 
section was obtained through a case study with a major power 
distribution company in Asia. This case study demonstrates the 

optimal condition based maintenance strategy for the grid 
corporation to maintain the continual functionality of power 
transformers. The cost figures have been converted to UK 
Pounds using the conversion rates prevalent at the time of the 
study. 
Power transformers have high failure costs, and may cause 
catastrophic damage on the power network. The time required 
to maintain a transformer is non-negligible, and during this 
period the system suffers a service reliability drop. Therefore, 
the availability of power transformers is normally deemed as 
the bottleneck of reliability and capability in power 
transmission systems [41], [42]. Hence, its maintenance has 
been of considerable interest for the reliability management 
community. 
Power transformers consist of critical components such as 
winding insulation paper; and non-critical components such as 
cooling equipment, bushing, and tank. The life of a power 
transformer is primarily constrained by its winding insulation 
paper with an expected service life of 38 years [43]. The 
condition of winding insulation is normally quantified by the 
degree of polymerization [44], and assessed through Furan 
analysis [45]. In CIGRE [4], the condition is classified into five 
condition states: normal, aged, defective, faulty, and failed. We 
denote the first 4 deterioration states as 𝑖 = 0, 𝑖 = 1, 𝑖 = 2, and 
𝑖 = 3; and denote the failure state as F. The winding paper 
insulation is subject to two types of accelerated deteriorations. 
Firstly, it is subject to accelerated chemical degradation, which 
is caused by aggressive pyrolysis, hydrolysis, and oxidation. 
The degradation happens in the presence of decay agents such 
as water, oxygen, acid, and sludge. The excessive decay agents 
could be attributed to the malfunctioning of non-critical 
components, such as poor tank sealing, and inelastic gaskets in 
bushings. Under this circumstance, it could accelerate the aging 
to as much as 20 times [25]. Mechanical deterioration may be 
accelerated by an increase in the level of vibration, which is 
caused by malfunctions such as the loosening of clamps, or the 
distortion of the geometry of its winding. The lifetime of the 
winding insulation is approximately reduced to 8 months, under 
accelerated mechanical deterioration. Rates of the chemical, 
and mechanical accelerated degradation are 0.001, and 0.003 
per year respectively. The symptoms of accelerated 
deterioration can be detected by inspection, and remedy actions 
such as oil reclaiming, drying, de-sludging, reclamping, and 
repacking are performed to rectify accelerated deterioration. 
Power transformers also could stop functioning due to external 
incidents such as short circuits, switch transients, and lightning 
strikes. In the normal condition, the probability of such a 
sudden failure is 0.008 per year. Under the presence of decay 
agents or a reduction of clamping force, the dielectric and 
mechanical withstand strength are reduced; therefore, the 
failure probability increases to 0.048 per year. 
The deterioration of a power transformer is not revealed, but the 
failed states are self-announcing. We consider two types of 
maintenance regimes: corrective maintenance after sudden 
failure, and condition based maintenance to preventively 
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maintain the power transformer based on the inspected 
condition. 
1.   To resolve the deterioration failure, a replacement process 

can last 120 days, which includes cleanup, shipping, and 
installing. It has a £1M penalty cost associated with it. 

2.   If the power transformer suddenly fails, corrective 
maintenance will be arranged immediately. The statistical 
mean duration of corrective maintenance is 30 days, with 
an average cost of £5600. The corrective maintenance 
restores the condition of the power transformer to its 
pervious operation state just before the failure. 

3.   The major preventive maintenance is able to eliminate the 
accumulated deterioration, and restore the transformer to 
an as good as new state through this action. It may involve 
preventively replacing some of the components. The 
duration of the major preventive maintenance is 15 days, 
and costs £600k on average.  

4.   If a power transformer undergoes accelerated deterioration, 
a minor preventive maintenance will be scheduled to repair 
the malfunctioned non-critical component with an average 
duration of 4 days, and an average cost of £1900. 

Moreover, an additional planned downtime cost of £3200 per 
day is associated with scheduled preventive maintenance 
actions. However, the penalty of unplanned downtime, which is 
attributed to sudden failure and deterioration failure, is £53000 
per day. We aim to explore maintenance strategies and 
inspection strategies to maximize the availability and minimise 
the cost, by adjusting the major preventive maintenance 
threshold (𝑏), and MTBI (1/𝜆in). For simplicity, we assume that 
the failure probabilities and deterioration rates are homogenous, 
and the sojourn time at each state is governed by an exponential 
clock. The parameter settings are summarised in Table I. 

Table I  
Parameter setting of power transformer maintenance 

Parameter Value Parameter Value 

𝜆"  0.105  /  𝑦𝑒𝑎𝑟  𝜇�   24.39  /  year 
𝜆&K  2.105  /  year  𝜇�   3.04  /  year  
𝜆&V  5.333  /  year  𝐶�  £53000/  day  
𝜆)K  0.001  /year  𝐶�  £3200/day  

𝜆)V  0.003  /  year  𝐶��   £600000  

𝜆y   0.008  /  year  Cy�   £5600  
𝜆y&   0.048  /  year  C��   £1900  
𝜇#"  1095  /  year  𝐶��   £1000000  
𝜇�   91.25  /  year 𝐶#"�   £1000  
𝜇y   12.05/year   

 
This power transformer deterioration and maintenance can be 
modelled as illustrated in Fig. 5.  

0,0nλ

1,0fλ

1,0dλ

1,1fλ 1,2fλ

0,1nλ
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1,fkλ

0,nkλ

1,dkλ

...

...

...

..
.

..
.

..
.

..
.

md ,0λ md ,1λ
mdk ,λ

mf ,0λ mf ,1λ mf ,2λ mfk ,λ

Fig. 5. State transition diagram of power transformer maintenance. 

Because power transformers can exist in one of five states, we 
only need to consider three candidate preventive maintenance 
strategies: major preventive maintenance at aged state (𝑏 = 0), 
at defective state (𝑏 = 1), and at faulty state (𝑏 = 2). Using the 
method described in Section IV, the availability and cost at 
different MTBI for all major maintenance thresholds can be 
computed. The results are plotted in Figs. 6 and 7.  

 
Fig. 6. Availability oriented inspection and maintenance strategies. 
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Fig. 7. Cost oriented inspection and maintenance strategies. 

The optimal MTBI to maximize availability (1/𝜆oa) could be 
found by solving (19). 
&}�
&Y�Z

= 0 (19) 

The optimal MTBI to minimize cost (1/𝜆oc) can be found by 
solving (20).  
&��
&Y�Z

= 0 (20) 

We denote the availability at 𝜆oa as 𝐴�, and cost at 𝜆oc as 𝐶�. 
Tables II and III present 𝜆oa,  𝜆oc, 𝐴� , and  𝐶�  under different 
values of major maintenance thresholds (b). 
 

Table II 
Optimal availability oriented inspection strategies  

 Optimal availability oriented  
MTBI (𝟏/𝝀oa) 

Optimal availability 
(𝑨𝒐) 

b=0 3.636 years 0.9945 
b=1 1.526 years 0.9957 
b=2 0.898 years 0.9955 

 
Table III 

Optimal cost oriented inspection strategies 

 Optimal cost oriented MTBI 
(𝟏/𝝀oc) 

Minimum yearly 
operation cost (𝑪𝒐) 

b=0 0.459 years £88919 
b=1 0.319 years £58312 
b=2 0.209 years £54296 

 
From Table II, we can see that the maximum availability is 
99.57%, which could be attained when the asset is inspected 
every 1.526 years with major preventive maintenance at 
encountering a defective state. Table III implies that, with a 
0.209 years MTBI, and major preventive maintenance at 
encountering a faulty state, the asset operational cost is 

minimized to £54296/year. Figs. 6 and 7 indicate that, when 
𝑏 = 1, both availability and cost are less sensitive to the change 
of MTBI when compared 𝑏 = 2. 
We could set 𝜆)K and 𝜆)V to zero to imitate the scenario without 
accelerated deterioration. Through the same calculation, the 𝜆oa 
and  𝜆oc can be computed, and the results are presented in Table 
IV.  
 

Table IV 
Optimal availability oriented inspection strategies for maintenance strategies 

with assumption of zero accelerated deterioration 

 Optimal availability oriented 
MTBI(𝟏/𝝀oa) 

Optimal cost oriented 
MTBI (1/𝝀oc) 

b=0 4.125 year 2.6102 year 
b=1 1.9687 year 0.8145 year 
b=2 1.098 year 0.3029 year 

 
These optimal strategies with the assumption of no accelerated 
deterioration however will deviate from the optimal under the 
presence of accelerated deterioration. The improvement on 
availability and cost can be deemed as the benefit of modelling 
accelerated deterioration, as demonstrated in Table V. 

Table V 
Improvement on availability cost with accelerated deterioration  

 Improvement on optimal 
availability (𝑨𝒐) 

Reduction on optimal 
yearly operation cost (𝑪𝒐) 

b=0 9.1×10]�  £3731 
b=1 3.24×10]�  £4109 
b=2 2.87×10]�  £1178 

In Table V, a negligible improvement on availability is 
achieved by considering accelerated deterioration. This 
improvement is mainly because the power transformer has a 
high reliability, and malfunction rates (𝜆)K and 𝜆)V) are very 
small. However, due to the high failure cost and down time 
penalty, the savings from operations costs is significant. It can 
save as much as 7% of yearly operations costs.  
A finding from Fig. 6 and 7 is that major preventive 
maintenance at defective state 𝑏 = 1   has the best potential to 
minimize the unavailability, while major preventive 
maintenance at a faulty state (𝑏 = 2) is the best method for 
saving on yearly operations costs. To further investigate the 
overall performance with considering both unavailability 
1 − 𝐴¡  and operations costs, we then move our analysis from 

a single objective optimization to a multi-objective 
optimization. Fig. 8 plots Pareto fronts for inspection strategies 
with three different major maintenance threshold settings.  
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Fig. 8. Pareto fronts when b=1, b=2, and b=3. 

 
A trade-off between yearly operation cost and unavailability 
exists in all values of 𝑏. We can see that the performance when 
𝑏 = 1, and 𝑏 = 2 dominates the performance when 𝑏 = 0. We 
can also see that the Pareto fronts of 𝑏 = 1 and 𝑏 = 2 cross at 
(𝑈IJ,  𝐶IJ). These results suggest that, if the target unavailability 
(𝑈£) is lower than  𝑈IJ, the maintenance strategy with 𝑏 = 1 has 
better performance. If the budget of yearly operations cost (𝐶£) 
is below 𝐶IJ, maintenance strategy with 𝑏 = 2 is preferred. In 
this case, 𝑈IJ = 0.0049, and 𝐶IJ = £5967. Preferred zones of 
𝑏 = 1 and 𝑏 = 2 could be classified as (21).  

𝑏 =
1

1  𝑜𝑟  2
2
∅

𝑈£ < 0.0049, 𝐶£ > £59670
𝑈£ ≥ 0.0049  𝐶£ ≥ £59670
𝑈£ > 0.0049  𝐶£ < £59670
𝑈£ < 0.0049  𝐶£ < £59670

      (21) 

The result aligns with intuition. By postponing the major 
preventive maintenance threshold, the operations cost of the 
power transformer is reduced. If availability is important and 
needs to be increased, the solution is to perform maintenance 
earlier. – However, this approach could be inefficient due to the 
non-negligible maintenance duration.  

V.  CONCLUSION  

In this paper, we presented a novel modelling technique for the 
deterioration and maintenance of industrial assets with 
accelerated deterioration associated with fault propagation. We 
showed that the resulting accelerated deterioration caused by 
fault propagation can have a non-negligible impact on asset 
deterioration. A condition based maintenance model is 
designed, which exhibits a good mathematical tractability. 
Iterative closed form expressions of availability and cost are 
developed. We also demonstrated that condition based 
maintenance with minor preventive maintenance to rectify the 
accelerated deterioration may achieve a better performance 
than the one neglecting accelerated deterioration. Further 
research is suggested in the direction of converting the Markov 
process to a semi-Markov process model by relaxing the 
assumption of exponential sojourn times.  

 

APPENDIX: CLOSED FORM SOLUTIONS FOR THE GENERALIZED CONTINUOUS TIME MARKOV CHAIN MAINTENANCE MODEL 
Equilibrium equations at each state in Fig. 4 are shown from (22) to (39). 
At state (0,0),  
𝜋%,{[a𝜇y + 𝜋#,{[`𝜇�M

#|�[K + 𝜋y𝜇� + 𝜋%,{[K𝜇#" − 𝜆y + 𝜆"%,% + 𝜆)%,'{
'|K + 𝜆#" 𝜋%,% =

¨©ª,ª
¨I

.            (22) 

At state (0, 𝑗) when 1 ≤ 𝑗 ≤ 𝑚, 
𝜋%,'𝜆)%,' − 𝜆y& + 𝜆&%,' + 𝜆#" 𝜋%,' =

¨©ª,«
¨I

.                                  
(23) 
At state (0,𝑚 + 1),  

𝜋%,%𝜆#" − 𝜋%,{[K𝜇#" =
¨©ª,¬k

¨I
.                                      (24) 

At state (0,𝑚 + 2),  

𝜆#" 𝜋%,'{
'|K − 𝜋%,{[V𝜇#" =

¨©ª,¬k_
¨I

.                                    (25) 

At state (0,𝑚 + 3),  

𝜋%,{[V𝜇#" − 𝜋%,{[`𝜇� =
¨©ª,¬k®

¨I
.                                      

(26) 
At state (0,𝑚 + 4),  

𝜆y& 𝜋%,'{
'|K + 𝜆y𝜋%,% − 𝜇y𝜋%,{[a =

¨©ª,¬k¯
¨I

.                                (27) 

At state (𝑖, 0) when 1 ≤ 𝑖 ≤ b,  

𝜋#]K,%𝜆"#]K,% + 𝜋#,{[a𝜇y + 𝜋#,{[`𝜇� + 𝜋#,{[K𝜇#" − 𝜆y + 𝜆"#,% + 𝜆)#,'{
'|K + 𝜆#" 𝜋#,% =

¨©�,ª
¨I

.             (28) 
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At state (𝑖, 𝑗) when 1 ≤ 𝑖 ≤ b and 1 ≤ 𝑗 ≤ 𝑚,  

𝜋#]K,'𝜆&#]K,' + 𝜋#,%𝜆)#,' − 𝜆&#,' + 𝜆y& + 𝜆#" 𝜋#,' =
¨©�,«
¨I

.                            (29) 

At state (𝑖, 𝑚 + 1) when 1 ≤ 𝑖 ≤ b,  

𝜋#,%𝜆#" − 𝜋#,{[K𝜇#" =
¨©�,¬k

¨I
.                                       (30) 

At state (𝑖, 𝑚 + 2) when 1 ≤ 𝑖 ≤ b,  

𝜆#" 𝜋#,'{
'|K − 𝜋#,{[V𝜇#" =

¨©�,¬k_
¨I

 .                                    (31) 

At state (𝑖, 𝑚 + 3) when 1 ≤ 𝑖 ≤ b, 

𝜋#,{[V𝜇#" − 𝜋#,{[`𝜇� =
¨©�,¬k®

¨I
.                                      (32) 

At state (𝑖, 𝑚 + 4) when 1 ≤ 𝑖 ≤ b,  

𝜆y𝜋#,% + 𝜆y& 𝜋#,'{
'|K − 𝜋#,{[a𝜇y =

¨©�,¬k¯
¨I

.                                 (33)
 At state (𝑖, 0) when b ≤ 𝑖 ≤ k,  

𝜋#]K,%𝜆"#]K,% + 𝜋#,{[a𝜇y − 𝜆y + 𝜆"#,% + 𝜆)#,'{
'|K + 𝜆#" 𝜋#,% =

¨©�,ª
¨I

.                       (34)
 At state (𝑖, 𝑗) when b ≤ 𝑖 ≤ k and 1 ≤ 𝑗 ≤ 𝑚,  

𝜋#]K,'𝜆&#]K,' + 𝜋#,%𝜆)#,' − 𝜆&#,' + 𝜆#" + 𝜆y& 𝜋#,' =
¨©�,«
¨I

.                            (35) 

At state (𝑖, 𝑚 + 2) when b ≤ 𝑖 ≤ k,  

𝜆#" 𝜋#,'{
'|% − 𝜇#"𝜋#,{[V =

¨©�,¬k_
¨I

 .                                    (36) 

At state (𝑖, 𝑚 + 3) when b ≤ 𝑖 ≤ k,  

𝜇#"𝜋#,{[V − 𝜇{𝜋#,{[` =
¨©�,¬k®

¨I
.                                      

(37) 
At state (𝑖, 𝑚 + 4) when  b ≤ 𝑖 ≤ k,  

𝜆y𝜋#,% + 𝜆y& 𝜋#,'{
'|K − 𝜇y𝜋#,{[a =

¨©�,¬k¯
¨I

.                                 (38)
 At state F,  

  𝜆"M,%𝜋M,% + 𝜆&,'𝜋M,'{
'|K − 𝜇�𝜋y =

¨©²
¨I

.                                  (39) 

We can analytically represent the expression of each state in terms of 𝜋%,%, as demonstrated in (40) through (43). 

𝜋%,'     =

𝜋%,%, 𝑗 = 0
Y\ª,«©ª,ª

Y²^[Y^ª,«[Y�Z
, 1 ≤ 𝑗 ≤ 𝑚

Y�Z©ª,ª
³�Z

, 𝑗 = 𝑚 + 1
Y�Z ©ª,´

¬
´µ
³�Z

, 𝑗 = 𝑚 + 2
Y�Z ©ª,´

¬
´µ
³¶

, 𝑗 = 𝑚 + 3
Y²©ª,ª
³²

+ Y²^
³²

Y\ª,´©ª,ª
Y²^[Y^ª,´[Y�Z

{
·|K , 𝑗 = 𝑚 + 4

                              (40) 
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©�,«
K¸#¸� =

YZ�h,ª©�h,ª[ Y²^[Y�Z
i^�h,´¹�h,´
i^�,´ki²^ki�Z

¬
´µ

YZ�,ª[ Y\�,´]  
i\�,´(i²^ki�Z)
i^�,´ki²^ki�Z

¬
´µ

, 𝑗 = 0

Y\�,«
Y^�,«[Y²^[Y�Z

YZ�h,ª©�h,ª[ Y²^[Y�Z
i^�h,´¹�h,´
i^�,´ki²^ki�Z

¬
´µ

YZ�,ª[ Y\�,´]  
i\�,´(i²^ki�Z)
i^�,´ki²^ki�Z

¬
´µ

+
Y^�h,«©�h,«
Y^�,«[Y²^[Y�Z

, 1 ≤ 𝑗 ≤ 𝑚

Y�Z©�,ª
³�Z

, 𝑗 = 𝑚 + 1
Y�Z ©�,´

¬
´µ
³�Z

, 𝑗 = 𝑚 + 2
Y�Z ©�,´

¬
´µ
³¶

, 𝑗 = 𝑚 + 3
Y²©�,ª
³²

+ Y²^ ©�,´
¬
´µ
³²

, 𝑗 = 𝑚 + 4

                (41) 

©�,«
�º#¸M =

YZ�h,ª©�h,ª[Y²^
i^�h,´¹�h,´
i^�,´ki²^ki�Z

¬
´µ

YZ�,ª[Y�Z[ Y\�,´]
i\�,´i²^

i^�,´ki²^ki�Z
¬
´µ

, 𝑗 = 0

Y\�,«
Y^�,«[Y²^[Y�Z

YZ�h,ª©�h,ª[Y²^
i^�h,´¹�h,´
i^�,´ki²^ki�Z

¬
´µ

YZ�,ª[Y�Z[ Y\�,´]
i\�,´i²^

i^�,´ki²^ki�Z
¬
´µ

+
Y^�h,«©�h,«
Y^�,«[Y²^[Y�Z

, 1 ≤ 𝑗 ≤ 𝑚

𝑁. 𝐴., 𝑗 = 𝑚 + 1
Y�Z ©�,´

¬
´µª
³�Z

, 𝑗 = 𝑚 + 2
Y�Z ©�,´

¬
´µª
³¼

, 𝑗 = 𝑚 + 3
Y²©�,ª
³²

+ Y²^ ©�,´
¬
´µ
³²

, 𝑗 = 𝑚 + 4

                  (42) 

𝜋y =
YZ½,ª©½,ª[ Y^½,«©½,«

¬
«µ

³¾
                                        (43) 

By recalling that the sum of all steady state probabilities is equal to 1, we have (44).  

𝜋%,% =
K
©�,«[©²¬k¯

«µª
½
�µª

                                         (44) 

Therefore, the analytical expression of each state can be calculated by substituting the result from (44) into (40) to (43). 
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