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Machine learning has the potential to accelerate materials discovery by accurately predicting
materials properties at a low computational cost. However, the model inputs remain a key stumbling
block. Current methods typically use descriptors constructed from knowledge of either the full
crystal structure — therefore only applicable to materials with already characterised structures — or
structure-agnostic fixed-length representations hand-engineered from the stoichiometry. We develop
a machine learning approach that takes only the stoichiometry as input and automatically learns
appropriate and systematically improvable descriptors from data. Our key insight is to treat the
stoichiometric formula as a dense weighted graph between elements. Compared to the state of the
art for structure-agnostic methods, our approach achieves lower errors with less data.

INTRODUCTION

The discovery of new materials is key to making tech-
nologies cheaper, more functional, and more sustainable.
However, the vastness of material space renders mate-
rials discovery via exhaustive experimentation infeasi-
ble. To address this shortcoming, significant effort has
been directed towards calculating materials properties
via high-throughput ab initio simulations [1-4]. How-
ever, ab initio simulations require atomic coordinates as
input. These are typically only accessible for materials
that have already been synthesised and characterised —
only O(10°) crystal structures have been published [5],
constituting a very limited region of the potential ma-
terials space [6]. A critical challenge exists for mate-
rials discovery in that expanding these ab initio efforts
to look at novel compounds requires one to first predict
the likely crystal structure for each compound. Ab-initio
crystal structure prediction [7-9] is a computationally
costly global optimisation problem which presents a sig-
nificant challenge for high-throughput workflows. Whilst
alternative strategies such as prototyping from known
crystal structures [2, 10] have been employed to manoeu-
vre around this bottleneck, identifying new stable com-
pounds in a timely manner remains an important goal
for computational material science.

One avenue that has shown promise for accelerating
materials discovery workflows is materials informatics
and machine learning. Here the aim is to use available
experimental and ab inito data to construct accurate
and computationally cheap statistical models that can
be used to predict the properties of previously unseen
materials and direct search efforts [11-13]. However, a
key stumbling block to widespread application remains in
defining suitable model inputs — so-called “descriptors”.
So far most applications of machine learning within ma-
terial science have used descriptors based on knowledge
of the crystal structure [14-20]. The use of structure-
based descriptions means that the resulting models are
therefore limited by the same structure bottlenecks as ab

initio approaches when searching for novel compounds.

To circumvent the structure bottleneck, one approach
is to develop descriptors from stoichiometry alone. In
doing so we give up the ability to handle polymorphs
for the ability to enumerate over a design space of novel
compounds. This exchange empowers a new stage in ma-
terials discovery workflows where desirable and computa-
tionally cheap pre-processing models can be used, with-
out knowledge of the crystal structure, to triage more
time consuming and expensive calculations or experi-
ments in a statistically principled manner.

Focusing on materials with a small and fixed num-
ber of elements, pioneering works [21-23] constructed
descriptors by exhaustively searching through analyti-
cal expressions comprising combinations of atomic de-
scriptors.  However, the computational complexity of
this approach scales exponentially with the number of
constituting elements and is not applicable to materi-
als with different numbers of elements or dopants. To
address this shortcoming, general-purpose material de-
scriptors, hand-curated from the weighted statistics of
chosen atomic properties for the elements in a material,
have been proposed [24-26]. However, the power of these
general-purpose descriptors is circumscribed by the intu-
itions behind their construction.

In this paper, we develop a novel machine learning
framework that learns the stoichiometry-to-descriptor
map directly from data. Our key insight is to reformu-
late the stoichiometric formula of a material as a dense
weighted graph between its elements. A message-passing
neural network is then used to directly learn material de-
scriptors. The advantage of this approach is that the
descriptor becomes systematically improvable as more
data becomes available. Our approach is inspired by
breakthrough methods in chemistry that directly take a
molecular graph as input and learn the optimal molecule-
to-descriptor map from data [27, 28].

We show that our model achieves lower errors and

higher sample efficiency than commonly used models.
Moreover, its learnt descriptors are transferable, allow-



ing us to use data-abundant tasks to extract descriptors
that can be used in data-poor tasks. We highlight the
important role of uncertainty estimation to applications
in material science and show how via the use of a Deep
Ensemble [29] our model can produce useful uncertainty
estimates.

RESULTS

Representation Learning of Inorganic Materials

To eschew the hand engineering required by cur-
rent structure-agnostic descriptor generation techniques,
we represent each material’s composition as a dense
weighted graph. The nodes in this graph represent the
different elements present in the composition and each
node is weighted by the fractional abundance of the cor-
responding element. This novel representation for the
stoichiometries of inorganic materials allows us to lever-
age neural message passing [28]. The message pass-
ing operations are used to update the representations of
each of the element nodes such that they are contextu-
ally aware of the types and quantities of other elements
present in the material. This process allows the model
to learn material-specific representations for each of its
constituent elements and pick up on physically relevant
effects such as co-doping [30] that would otherwise be
obscured within the construction of hand-engineered ma-
terials descriptors. We refer to this approach as Roost
(Representation Learning from Stoichiometry). In the
following paragraphs we introduce a specific model based
on this idea.

To begin, each element in the model’s input domain
is represented by a vector. Whilst the only require-
ment is that each element has a unique vector, it can
improve performance, particularly when training data is
scarce, to embed elements into a vector space that cap-
tures some prior knowledge about correlations between
elements [31, 32]. These initial representations are then
multiplied by a n by d — 1 learnable weight matrix where
n is the size of the initial vector and d is the size of the
internal representations of elements used in the model.
The final entry in the initial internal representation is
the fractional weight of the element. A message-passing
operation is then used to update these internal represen-
tations by propagating contextual information about the
different elements present in the material between the
nodes in the graph, Figure 1 shows a schematic repre-
sentation of this process. The mathematical form of the
update process is

ht+1 U(h)(ht ) (1)
where h! is the feature vector for the i‘" element after
t updates, vf = {h!, hj, hl, ..} is the set of other el-
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ements in the material’s composition, and U( ) is the
element update function for the ¢ + 1" update. For this
work, we use a weighted soft-attention mechanism for our
element update functions. In general, attention mecha-
nisms are used to tell models how important different
features are for their given tasks. Soft-attention builds
upon this concept by allowing the function that produces
the attention coeflicients to be learnt directly from the
data. The soft-attention mechanism is the crux behind
many state-of-the-art sequence-to-sequence models used
in machine translation and language processing [33, 34]
and it has recently shown good results on graphs [35]
and in some material science applications [36, 37]. In
this domain, the attention mechanism allows us to cap-
ture important materials concepts beyond the expressive
power of older approaches e.g. that the properties and
thus the representation of metallic atoms in a metal ox-
ide should depend much more on the fact that oxygen is
present than other metallic dopants being present.

The first stage of the attention mechanism is to com-
pute unnormalised scalar coefficients, e;;, across pairs of
elements in the material,

ei; = f'(hillhj), (2)

where f(...) is a single-hidden-layer neural network for
the t+1*" update, the j index runs over all the elements in
v}, and || is the concatenation operation. The coefficients
e;; are directional depending on the concatenation order
of h; and h;. These coefficients are then normalised using
a weighted softmax function where the weights, w;, are
the fractional weights of the elements in the composition,
: wj exp (ef;)

az - —, 3
T X wkexp (e) ¥

where j is a given element from v} and the k index runs
over all the elements in v!. The elemental representa-
tions are then updated in a residual manner [38] with
learnt pair-dependent perturbations weighted by these
soft-attention coefficients,

h§+1 ht+zatm t,m htHht) (4)

where g¢'(...) is a single-hidden-layer neural network for
the t + 1** update and the j index again runs over all
the elements in v!. We make use of multiple attention
heads, indexed m, to stabilise the training and improve
performance. The number of times the element update
operation is repeated, T, as well as the number of atten-
tion heads, M, are hyperparameters of the model that
must be set before training.

A fixed-length representation for each material is de-
termined via another weighted soft-attention-based pool-
ing operation that considers each element in the mate-
rial in turn and decides, given its learnt representation,
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Figure 1. Schematic Representation of Stoichiometry Graph and Update Rule. a shows an example stoichiometry

graph for LaxCuOy.

b shows a graphical representation of the the update function for the La representation.

The pair

dependent perturbations, shown as the cyan and purple nodes, are weighted according to their attention coefficients before

being used to update the La representation.

how much attention to pay to its presence when con-
structing the material’s overall representation. Finally,
these material representations are taken as the input to
a feed-forward output neural network that makes target
property predictions. Using neural networks for all the
building blocks of the model ensures the whole model is
end-to-end differentiable. This allows for its parameters
to be trained via stochastic gradient-based optimisation
methods. Whilst the rest of this paper focuses on regres-
sion tasks the model can be used for both regression and
classification tasks by adapting the loss function and the
architecture of the final output network as required.

Uncertainty Estimation

A major strength of structure-agnostic models is that
they can be used to screen large data sets of combina-
torially generated candidates. However, most machine
learning models are designed for interpolation tasks, thus
predictions for materials that are out of the training dis-
tribution are often unreliable. During a combinatorial
screening of novel compositions, we cannot assume that
the distribution of new materials matches that of our
training data. Therefore, in such applications, it becomes
necessary to attempt to quantify the uncertainty of the
predictions.

In statistical modelling there are two sources of uncer-
tainty that are necessary to consider: First, the aleatoric
uncertainty, which is the variability due to the natural
randomness of the process (i.e. the measurement noise).
Second, the epistemic uncertainty, which is related to
the variance between the predictions of plausible mod-
els that could explain the data. This uncertainty arises
due to having an insufficient or sparse sampling of the

underlying process such that many distinct but equiva-
lently good models exist for explaining the available data.
Here we make use of a Deep Ensemble approach [29] that
considers both forms of uncertainty.

Within a Deep Ensemble individual models require
a proper scoring rule [39] to be used as the training
criterion. To define a proper scoring rule for regres-
sion we consider the aleatoric uncertainty as part of a
heteroskedastic problem formulation where the measure-
ment noise depends on the position in the input space.
The model is made to predict two outputs corresponding
to the predictive mean, fig(x;), and the aleatoric variance,
Ga.0(xi)? [40, 41]. By assuming a probability distribution
for the measurement noise we can obtain maximum like-
lihood estimates for the parameters of individual models
by minimising a loss function proportional to the neg-
ative log-likelihood of the chosen distribution. Here we
use a Laplace distribution which gives the loss function

V2 X )
L= ; Gao(m) llyi — fro(xq)|l1 + log<oa,g(azi)) (5)

Such loss functions are occasionally referred to as robust
as they allow the model to learn to attenuate the impor-
tance of potentially anomalous training points.

To get an estimate for the epistemic uncertainty within
the Deep Ensemble we generate a set of W plausible sets
of model parameters, {él, . éW}, by training an ensem-
ble of independent randomly-initialised models using the
robust loss function (5). Due to the non-convex nature of
the loss landscape, different initialisations typically end
up in different local basins of attraction within the pa-
rameter space that have approximately equal losses [42].
We use these as samples of plausible sets of model param-
eters to make Monte Carlo estimates for the expectation
of the model, §j(z;), and the epistemic contribution to its
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Where P(fx,y) is the hypothetical distribution of mod-
els that could explain the data. The effective marginali-
sation of P(|x,y) from using an ensemble of models not
only provides a way to estimate the epistemic uncertainty
but also invariably leads to lower average errors. The to-
tal uncertainty of the ensemble expectation is simply the
sum of the epistemic contribution and the average of the
aleatoric contributions from each model in the ensemble.
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Baseline Model

A common workhorse for the application of machine
learning to both cheminformatics and materials science
is Random Forests plus fixed-length descriptors [43, 44].

Random Forests are a decision tree-based model that
use an ensemble of multiple weak regressors known as
trees [45]. Each of the trees is constructed to find a se-
ries of decision boundaries that split the data to minimise
the squared deviations between the samples and the sam-
ple mean in each branch or leaf of the tree. Predictions
are made by averaging over the outputs of the different
trees when applied to new data. To overcome issues of
over-fitting common to decision tree methods, Random
Forests use bagging and random subspace projection to
reduce the correlation between the trees improving their
generalisation performance.

For our baseline inputs we use the general-purpose
fixed-length Magpie feature vectors [24]. The Magpie
feature set contains 145 features and is highly engineered
to include as much prior scientific knowledge about the
elements, stoichiometry, and electronic properties as pos-
sible.

Data Sets

For this work, we consider a selection of experimental
and ab initio data sets. The Open Quantum Materials
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Figure 2. Sample Efficiency Learning Curve on

OQMD. The figure shows learning curves for the OQMD
data set as the amount of training data is varied for a fixed
out-of-sample test set. Plotted on log-log scales the trends
follow inverse power law as expected from statistical learning
theory. Results for ElemNet taken from [46].

Database (OQMD) data set contains the average forma-
tion enthalpy per atom calculated via density functional
theory [1]. For comparison purposes we take the subset
of 256,620 materials from [46], this subset contains only
the lowest energy polymorph for each stoichiometry. The
Materials Project (MP) data set we look at contains the
band gaps for 43,921 non-metals present in the Materials
Project catalogue [3]. As before we take only the lowest
energy polymorph for each stoichiometry to ensure that
the stoichiometry-to-property map is well defined. Fi-
nally, we consider a much smaller experimental data set
consisting of 3,895 non-metals for which the band gap
has been measured experimentally (EX) as used in [25].

Evaluation of Sample Efficiency

Materials discovery workflows are often data limited.
As a result, the sample efficiency of models is of critical
importance. The sample efficiency can be investigated by
looking at how the performance of the model on a fixed
test set changes as the model is exposed to more training
data. From statistical learning theory, one can show that
the average error for a model approximately follows an in-
verse power law relationship with the amount of training
data in the large data limit [16, 47]. As such the gradi-
ent and intercept on a log-log plot of the training set size
against the model error indicate the sample efficiency of
the model.

Figure 2 shows such learning curves for the OQMD
data set and Table 1 records the benchmark results for



Table 1. Performance Benchmarks on OQMD. The ta-
ble shows the mean absolute error (MAE), and root mean
squared error (RMSE) for the baseline and proposed models
on 10% of the data that was randomly sampled and with-
held as a test set. The bracketed numbers show the standard
deviation in the last significant figure.

MAE / eV RMSE / eV

RF + Magpie 0.067 0.121
ElemNet [46] 0.055

Roost (Single) 0.0297(7)  0.0995(16)
Roost (Ensemble) 0.0241 0.0871

when all the training data is used. In this case, 10% of
the available data was held back from the training pro-
cess as the test set. As well as our baseline model we also
compare against ElemNet, an alternative neural network-
based model that also takes the atomic fractions of each
element as input [46]. The comparison shows that the
inductive biases captured by the representation learning
approach lead to a much higher sample efficiency. Indeed
the crossover where Roost begins to outperform the tra-
ditional machine learning baseline occurs for O(10?) data
points — a size typical of experimental databases collated
for novel material classes [48, 49] — as opposed to O(103)
for ElemNet.

Evaluation of Uncertainty Estimates

While the utility of stoichiometry-to-property mod-
els is primarily based on the amortisation of more
time-consuming and expensive calculations or experi-
ments, their approximate nature raises legitimate ques-
tions about when they can be used with confidence. Be-
yond simply building more sample-efficient models (e.g.
by designing improved architectures or leveraging tech-
niques such as transfer learning), well-behaved uncer-
tainty estimates can allow for such models to be used
with greater confidence (See Supplementary Note 1 for
a discussion on the need for calibrated uncertainty esti-
mates). Figure 3 highlights this idea on the OQMD data
set. The plot shows how the test set error varies as a func-
tion of the confidence percentile. The error for a confi-
dence percentile of X is determined by re-calculating the
average error of the model after removing the X% of the
test set assigned the highest uncertainty by the model.
Additional illustrative curves are included to show what
would happen if the data was restricted in a random or-
der and if the data was restricted according to the size
of the model’s error.

The added value of any form of uncertainty estimation
is evident in large differences between the random rank-
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Figure 3. Confidence-Error Curves on OQMD. The fig-
ure shows confidence-error curves on the OQMD test set. The
curves show how the average model error changes as the data
points the model is most uncertain about are removed se-
quentially. The random ranking-based curve in blue serves
as a reference showing the result if all points are treated as
having equal confidence, the blue shaded area highlights the
curve’s standard deviation computed over 500 random trials.

ing and the uncertainty-based curves — points with large
uncertainties do on average have larger errors. On the
other side, the error-based ranking curve provides a use-
ful lower bound for comparison about how good those un-
certainty estimates are. However, it should be noted that
optimal uncertainties would not result in exact coinci-
dence with this error-based ranking curve. This is due to
instances where the model might make accurate predic-
tions despite those predictions not being well supported
by the training data, in which case the model should have
high uncertainty. These points would be removed early in
any uncertainty-based curve but late in the error-based
ranking curve resulting in the uncertainty-based curve
being higher than the error-based ranking curve.

To highlight the benefit of using a full framework
for estimating the uncertainty, one that considers both
aleatoric and epistemic uncertainties, we compare against
a purely epistemic alternative based on an ensemble of
similar models trained using an L1 loss function that only
estimate a predictive mean. We see that whilst the two
ensembles have comparable errors over the whole data
set, the full framework gives more reliable uncertainty
estimates shown by the curve for the full framework
(Epistemic & Aleatoric) decreasing more steeply than the
curve for the epistemic-only alternative. Within the full
framework the relative magnitudes for the epistemic and
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Figure 4. Test Set Error During Training on EX. The
figure shows how the MAE on the test set changes through-
out the training of the model for different transfer learning
scenarios. The curves show the average MAE over 10 in-
dependent randomly-initialised models with the shaded area
corresponding to the standard deviation of the models at each
point.

Table 2. Transfer Learning Benchmarking on EX. The
table shows the ensemble mean absolute error (MAE), and
root mean squared error (RMSE) for the three transfer learn-
ing scenarios and baselines on 20% of the data that was ran-
domly sampled and withheld as a test set.

MAE / eV RMSE / eV

Baseline EX 0.277 0.460
SVM EX [25] 0.45

Roost EX 0.243 0.422
Roost OQMD — EX  0.240 0.404
Roost MP — EX 0.219 0.364

aleatoric components vary depending on the data set be-
ing investigated and the extent to which the model is
being tested in an interpolative regime (See Supplemen-
tary Figures 4 and 5). This implies that the different
forms of uncertainty capture different effects in the data
and further supports the use of a full framework.

Transfer learning

For experimental data sets with smaller numbers of
data points traditional machine learning methods based
on decision tree or kernel models have historically tended
to perform comparably if not better than deep neural
network-based models. However, a strength of neural

network-based models over such methods is that they
are much more amenable to transfer learning [50]. Trans-
fer learning focuses on using knowledge gained from one
problem to achieve faster optimisation and/or a lower
error on another problem.

As a result of substantial efforts, data-sets derived via
high-throughput ab initio workflows can be many times
larger than their experimental cousins, making them ripe
for transfer learning [51]. To investigate the extent to
which transfer learning helps our model we train three
sets of models on the EX data set. The first set is directly
trained on EX, the second is first trained on OQMD
then fine-tuned on EX (OQMD — EX), and the third
is trained on MP before fine-tuning on EX (MP — EX).
Due to the similarity of the MP and EX tasks, to ensure
any changes in performance observed are not artefacts of
the experimental design, we remove all materials from the
MP data set that are also found in the EX data set such
that the two are independent. For all these experiments
the same 20% of EX was withheld as an independent test
set.

A Dbenefit of learning material descriptors is that simi-
larity between the descriptors of different materials learnt
for a given task should be relevant for other tasks, there-
fore allowing non-cognate transfer learning. We see this
in Figure 4 where transfer learning from OQMD leads to
faster convergence and slightly lower errors on the EX
data set than direct training despite the mismatch be-
tween the tasks. If the tasks are cognate, as is the case
between MP and EX, the benefits of transfer learning
are even more pronounced. Here, in addition to the ben-
efits of having pre-trained the message passing sections
of the model, the pre-trained weights of the output net-
work give a strong inductive bias for fitting the materi-
als descriptor-to-property mapping resulting in notably
lower predictive errors (Table 2).

Ablation Study

The proposed reference model incorporates many dif-
ferent ideas to build upon previous work in the materials
informatics and machine learning communities. There-
fore, we have conducted an ablation study to show which
parts of the model are most important for its enhanced
performance. We examined the following design choices:

1. The use of an element embedding that captures
correlations between elements versus a OneHot em-
bedding of elements,

2. The use of a robust loss function based on the neg-
ative log-likelihood of a Laplace distribution (5)
against the use of a standard L1 loss function,

3. Whether it is best to include the fractional element
weights as node-level features, within the pooling



Table 3. Model Design Choices for Ablation Study. The table shows the different model architectures based on the
Roost framework studied in the ablation study.

Reference Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

Matscholar Element
Embedding [32]
OneHot Element

Embedding
Robust Loss

v v v v v v v v v

Function

Weights on
Nodes

Weights in
Pooling

Soft Attention

Pooling

Mean

Pooling

Residuals when

Message Passing

Residuals in

Output Network

No Output
Network

Table 4. Ablation Study Model Performances. The table shows the how the performance varies for different model
architectures based on the Roost framework. Numbers in parentheses are used to show the standard error in the last significant
figure. The lowest values in each row are highlighted in bold.

Reference Model 1  Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10
MAE 0.264(3) 0.279(2) 0.269(2) 0.329(2) 0.274(3) 0.269(3) 0.269(2) 0.284(3) 0.271(2) 0.292(3) 0.273(2)

R RMSE 0.448(4) 0.476(4)  0.447(4) 0.529(4) 0.476(6) 0.454(4) 0.459(5)  0.477(7) 0.465(5) 0.490(4) 0.470(5)
OQMD MAE 0.0297(2) 0.0295(1) 0.0310(2) 0.1673(2) 0.0317(2) 0.0300(2) 0.0313(3) 0.0320(3) 0.0306(4) 0.0330(3) 0.0299(1)
RMSE 0.0995(5)  0.0992(3) 0.0979(4) 0.2710(3) 0.1022(6) 0.0999(5) 0.0959(6) 0.1025(6) 0.1017(9) 0.1040(6) 0.0981(4)
EX ens MAE 0.243 0.260 0.249 0.312 0.251 0.251 0.250 0.259 0.251 0.265 0.255
RMSE 0.422 0.445 0.423 0.501 0.450 0.428 0.435 0.442 0.435 0.451 0.444
OQMD ens MAE 0.0241 0.0241 0.0248 0.1644 0.0256 0.0243 0.0248 0.0253 0.0247 0.0259 0.0249
RMSE 0.0871 0.0878 0.0882 0.2682 0.0898 0.0874 0.0875 0.0880 0.0877 0.0885 0.0911
operation, or in both places, an output network.
4. The use of our weighted soft-attention-based pool- The combinations of design choices examined are shown
ing throughout the architecture versus an alterna- iy Table 3. We train 10 randomly-initialised models for
tive mean-based pooling mechanism, each design choice. We look at both the statistics across

these single models to allow for the significance of differ-
ent choices to be understood as well as their ensembled
performance. We repeat the ablation study for both the
6. The impact on model performance from only using  EX and OQMD data sets to allow us to understand how

the message passing section of the model without different design choices trade-off in the small and large

5. The use of residual architectures for both the mes-
sage passing and output neural networks, and



data limits. The results are shown in Table 4.

The primary conclusion from the ablation study is that
whilst the design choices made in the reference architec-
ture described do lead to slight improvements in per-
formance, all models from the ablation study (with ex-
ception of Model 3 that does not include the element
weights) still significantly out-perform alternative mod-
els such as ElemNet or the Random Forest plus Magpie
baseline on the OQMD data set. As such, it is apparent
that it is the Roost framework’s approach of reformulat-
ing the problem as one of regression over a multiset and
not specific architectural details that is responsible for
the observed improvements.

Comparing the reference model and Model 1 we see
that the choice of an element embedding that captures
chemical correlation leads to improved model perfor-
mance on the smaller EX data set but does not re-
sult in significant differences for the larger OQMD data
set. This suggests that the models can learn to com-
pensate for the lack of domain knowledge if sufficiently
large amounts of data are available. This result supports
our claim that end-to-end featurization continuously im-
proves as the model is exposed to more data.

The robust loss function (5) performs comparably on
the EX data set to a more conventional L1 loss function
(Model 2). Given that they offer similar average errors
the use of a robust loss function is highly compelling even
for single models as it also provides an estimate of the
aleatoric uncertainty with minimal computational over-
head. Looking at the OQMD data set the distinction
between the two different loss functions is more appar-
ent. The attenuation effect of the robust loss, that it
can suppress the need to fit outliers, is observed in how
the reference model achieves a lower MAE but a higher
RMSE than Model 2. When proceeding to ensemble the
single models, the validity of such a mechanism becomes
apparent as both the MAE and RMSE are lower for the
reference model in the ensembled case. This can be at-
tributed to the cancellation of errors amongst predictions
on the outlying (high squared-error) data points when
ensembling.

Models 3, 4 and 5 from the ablation study look at how
including the fractional element weights in different ways
influences the model performance. As expected we see
that omitting the element weights entirely in Model 3
leads to an order of magnitude decrease in performance
on the OQMD data set. However, whilst there is still a
significant decrease in performance for the EX data set
the error is still relatively comparable to that achieved
by the standard model. This is due to a lack of diver-
sity within different chemical sub-spaces in the EX data
set. As a consequence, the EX data set is perhaps a
less discriminative benchmark than OQMD despite the
challenges associated with data scarcity. Including the
weights on both the nodes and via the pooling operation
gave the best results being marginally better than solely

including the element weights on the nodes. Only includ-
ing the weights via the pooling operation gave slightly
worse results. This can be explained from the relative
lack of information as the weighted soft-attention-based
pooling (3) only includes the weights of the second ele-
ment in the pairing as opposed to both elements if the
weights are included as node features.

Whilst we primarily make use of a soft-attention-based
pooling mechanism alternative pooling mechanisms are
feasible. In Model 6 we replace the pooling operations
with a mean-pooling mechanism of the form

hitt=hi+ ) g'(hil|R}), 9)

J

where h! is the internal representation of the i*" element
after t updates, g'(...) is a single-hidden-layer neural net-
work for the ¢ + 1** update, || is the concatenation oper-
ation and the j index runs over the set v} which contains
the other elements in the material’s composition. This
model achieves a lower RMSE but has a higher MAE
when considering individual models. However, when the
models are ensembled the soft-attention-based pooling
mechanism achieves both lower MAE and RMSE. This
suggests that there is scope to tailor the reference model
presented here for different applications by conducting
neural architecture searches. However, this is an ex-
tremely computationally expensive process beyond the
scope of this work [52].

Comparing Models 7, 8, and 9 we see that using resid-
ual architectures in both the message passing stages and
the output network lead to improved performance. Inter-
estingly we see that replacing the output network with a
single linear transformation (Model 10) does not signif-
icantly impact the performance of single models on the
OQMD data set but does result in worse performance
from the ensembled models. A potential explanation
for this comes from considering the effective prior of the
model without an output network. The addition of the
output network changes the form of the prior hypothesis
space of the model and as a result the distribution of dis-
tinct local basins of attraction [53]. The reduced benefits
of model averaging within the ensemble for models with-
out output networks could potentially be due to changes
in the loss landscape meaning that such models are more
likely to end up in correlated basins of attraction.

DISCUSSION

We propose a novel and physically motivated machine
learning framework for tackling the problem of predicting
materials properties without crystal structures. Our key
methodological insight is to represent the compositions of
materials as dense weighted graphs. We show that this
formulation significantly improves the sample efficiency



of the model compared to other structure-agnostic ap-
proaches.

Through modelling both the uncertainty in the phys-
ical process and in our modelling processes, the model
produces useful estimates of its own uncertainty. We
demonstrate this by showing that as we restrict, ac-
cording to our uncertainty estimates, the confidence per-
centile under consideration, we observe steady decreases
in the average error on the test set. Such behaviour is im-
portant if we wish to use our model to drive an activate
learning cycle.

We show that the representations learnt by the model
are transferable allowing us to leverage data-abundant
databases, such as those obtained by high-throughput
ab initio workflows, to improve model performance when
investigating smaller experimental data sets. The ability
of the model to transfer its learnt descriptors suggests
that self-supervised learning may be a viable avenue to
bolster model performance [54, 55].

We have conducted an extensive ablation study to ex-
amine the model. We show that it is the reformulation of
the problem such that both the descriptor and the fit are
learnt simultaneously that results in the improved per-
formance not the specific details of the message passing
architecture used.

More broadly, the Roost framework’s ability to handle
multisets of various sizes makes it applicable to other
important problems in material science such as the pre-
diction of the major products of inorganic reactions [56].
We believe that recasting more problems in material
science into this language of set regression, using the
same message passing framework as our Roost approach
or other frameworks [57, 58], provides an exciting new
area for the development of novel machine learning
methods.

METHODS

In this work, we adopt the same architecture and hy-
perparameters for all the problems investigated. These
choices were made based on heuristic ideas from other
graph convolution-based architectures.

We use the Matscholar embedding from [32] for which
n = 200. We chose an internal representation size of
d = 64 based on the CGCNN model [18].

We opted to use 3 message passing layers based on the
default configuration of the MEGNet model [19]. For
the choice of neural networks to use within our weighted
soft-attention-based pooling function we drew inspiration
from the GAT architectures presented in [35] which led
to us choosing single-hidden-layer neural networks with
256 hidden units and LeakyReLU activation functions
for ft(...) and g'(...). For the reference model, we used 3
attention heads in each of message passing layers.

The output network used for the reference model is
a deep neural network with 5 hidden layers and ReL.U
activation functions. The number of hidden units in each
layer is 1024, 512, 256, 126, and 64 respectively. Skip
connections were added to the output network to help
tackle the vanishing gradient problem [38].

The sizes of various networks were selected to ensure
that our model was appropriately over-parameterised for
the OQMD data set. For modern neural network archi-
tectures over-parameterisation leads to improved model
performance [59, 60]. Our reference model has 2.4 million
parameters — approximately 10x the size of the OQMD
training set used.

For numerical reasons when estimating the aleatoric
uncertainty the model is made to predict log (&a(xi))
which is then exponentiated to get 6,(z;). In this work
we use ensembles of W = 10 to estimate the epistemic
contribution within the Deep Ensemble.

All transfer learning experiments were conducted as
warm-restarts with all of the model parameters being
re-optimised given the new data. This was observed to
give better performance than freezing the message pass-
ing layers and only re-optimising the weights of the out-
put neural network.

The mean-based pooling function in the ablation study
used single-hidden-layer neural networks with 256 hidden
units and LeakyReLU activation functions for g‘(...).

All the neural network-based models examined in both
the main results and the ablation study were trained
using the Adam optimiser and fixed learning rate of
3 x 1074, A mini-batch size of 128 and weight decay pa-
rameter of 1076 were used for all the experiments. The
models were trained for 250 epochs (cycles through the
training set).

For our baseline models we use the Random Forest
implementation from scikit-learn and use Matminer [61]
to generate the Magpie features. The max features and
number of estimators for the Random Forest are set to
0.25 and 200 respectively.
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