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Abstract Herein we describe a full account of the development of the 
palladium-catalyzed cross-coupling of benzylammonium salts with boronic 
acids. A range of different benzylamine-derived quaternary ammonium salts 
can be coupled successfully with boronic acids under relatively mild 
conditions.  Our optimization has identified ligands that are able to 
chemoselectively cross-couple at the ammonium in the presence of chlorides. 
We demonstrate that intramolecular palladium-catalyzed C-H activation is also 
a viable pathway for the putative benzyl-Pd(II) intermediate obtained upon 
oxidative addition and have optimized this to obtain fluorene in good yield. 
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Quaternary ammonium functionality occurs commonly in a wide 

range of compounds for many applications.1 It is most frequently 

employed to promote aqueous solubility or to interact with an 

anionic partner through ion pairing. It is less often utilized as a 

reactive functional group, but is nevertheless known to engage in 

a number of useful reaction types, most prominently in Hofmann 

elimination2 and sigmatropic rearrangements such as the 

Stevens and Sommelet-Hauser3 rearrangements.4  Quaternary 

ammonium salts have also been investigated to a lesser extent in 

the context of transition metal-catalyzed cross coupling, where 

they would represent a useful functional handle for oxidative 

addition due to their ease of accessibility by simple methylation 

of amines. Whilst the cross-coupling of aniline-derived 

ammonium salts has been quite well-explored,5 until recently 

there are have been far fewer methods applicable to 

benzylaniline-derived ammonium salts. The diarylmethanes that 

would result from such couplings are a commonly encountered 

motif in pharmaceuticals and natural products.  Very recently a 

number of elegant nickel-catalyzed cross couplings of 

benzylamine-derived ammonium salts have been reported with 

aryl boronic acids to give diarylmethanes,5g, 6  with B2Pin2 to give 

benzylic boronates,5i, 7 and with CO2 to give carboxylic acids8 

(Scheme 1, a). Notably, Watson and co-workers were able to 

carry out these couplings stereospecifically from chiral 

ammonium salts, which proceeded with inversion of 

configuration.6, 7b Until our recent work, to the best of our 

knowledge only a single example of palladium-catalyzed cross 

coupling of benzylamine-derived ammonium salts had been 

reported, that is in a Heck-type reaction with alkenes (Scheme 1, 

b).9 We recently reported the ion-pair directed C-H borylation of 

benzylamine-derived quaternary ammonium salts, which 

delivered high levels of meta selectivity using a novel anionic 

bipyridine ligand.10 To probe the elaboration of the ammonium 

salt products of our borylation reaction, we wished to cross-

couple benzylamine-derived ammonium salts with multiple 

functional handles, including chlorides. Watson and co-workers 

noted that with their Ni-catalyzed method, cross coupling 

occurred at both the ammonium group and chloride 

functionality.6 Accordingly, we sought an alternative method and 

showed an example of palladium catalyzed coupling of the benzyl 

ammonium functionality with boronic acids, which allowed us to 

cross-couple in the presence of the chloride (Scheme 1, c). In this 

present paper we disclose a full account of our studies on this 

reaction (Scheme 1, d).11 We also disclose the palladium-

catalyzed C-H activation of an ortho-phenyl substituted 

ammonium salt to form fluorene, which we discovered during the 

course of these studies (Scheme 1, e).  

 

Scheme 1.  
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        We chose benzyltrimethylammonium tosylate 1a as our 

initial optimisation substrate and evaluated a number of ligands 

using KF as base at 60 oC. Of the ligands surveyed, we found that 

L4 (Xantphos), L6 and XPhos gave the highest yields of product 

(Table 1, entries 1-12). We subsequently tested L4 and XPhos at 

lower temperatures and found that XPhos appeared to be the 

more reactive, still giving good yields at only 40 oC (entries 13-

16). A base screen using XPhos at 50 oC revealed that K3PO4 is also 

a highly effective base (entry 17). Among carbonate bases, only 

Cs2CO3 was viable (entries 18-20) and CsF proved to be similar to 

KF (entry 22). 

 
Table 1. Optimization of the cross-coupling reaction on substrate 1a 

 

 

Entry Ligand Base Temp 

(oC) 

Yield 2a (%)a 

1 L1 KF 60 0 

2 L2 KF 60 10 

3 L3 KF 60 63 

4 L4 KF 60 92 

5 L5 KF 60 0 

6 L6 KF 60 93 

7 L7 KF 60 33 

8 XPhos KF 60 88 

9 SPhos KF 60 85 

10 PPh3 KF 60 29 

11 P(oTol)3 KF 60 0 

12 (S)-BINAP KF 60 18 

13 L4 KF 50 87 

14 L4 KF 40 47 

15 XPhos KF 50 98 (82) 

16 XPhos KF 40 93 

17 XPhos K3PO4 50 94 (82) 

18 XPhos K2CO3 50 0 

19 XPhos Na2CO3 50 27 

20 XPhos Cs2CO3 50 97 

21 XPhos CsOAc 50 33 

22 XPhos CsF 50 93 

aDetermined by 1H-NMR analysis with reference to an internal standard. Isolated 

yield given in parenthesis for selected experiments. 

    At this point, we also conducted an investigation into the effect 

of ligands on the cross coupling of 2-chloro ammonium salt 1b as 

we wished to establish a protocol in which chloro-containing 

substrates could be selectively cross coupled at the ammonium 

moiety (Table 2). The ability to accomplish this would offer some 

complementarity to the Ni-catalyzed coupling methods in which 

chloride-containing substrates are incompatible.6 Our survey 

revealed that XPhos gives very low yields of the desired product 

(entry 8), with the majority of coupling occurring at the chloride. 

However, L4 (XantPhos), which had been the second most active 

ligand in optimisation on 1a, gave no coupling at the chloride and 

an excellent yield of desired product 2b (entry 4). In this case 

heating to 60 oC was found to be necessary (entry 11). This 

emphasises how important appropriate ligand choice is to 

accomplish chemoselectivity in more complex substrates. 

 

Table 2. Optimization of the cross-coupling reaction on chloride-containing 
substrate 1b 
 

 
 

Entry Ligand Temp 

(oC) 
Yield 2b (%)a 
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1 L1 60 23 

2 L2 60 28 

3 L3 60 87 

4 L4 60 93 (90) 

5 L5 60 0 

6 L6 60 86 

7 L7 60 55 

8 XPhos 60 4 

9 SPhos 60 19 

10 (S)-BINAP 60 5 

11 L4 50 28 

aDetermined by 1H-NMR analysis with reference to an internal standard. Isolated 

yield given in parenthesis for selected experiments. 

    With optimized conditions in hand on the ammonium tosylate 

salt 1a, we sought to examine tolerance of the counterion of the 

ammonium salt and were pleased to find it was general, with 

common counteranions such as halides and tetrafluoroborate all 

being compatible (Scheme 2). 

 
Scheme 2. Evaluation of counteranion of ammonium salt. 

 
 

    We next examined the scope of the coupling with respect to the 

benzylammonium salt component and investigated a range of 

different substituted aromatic and heteroaromatic salts (Scheme 

3, starting materials shown in table for clarity). For a selection of 

examples, we found that ortho, meta and para substitution is 

tolerated. Also, a heterocyclic thiophene ammonium salt could be 

coupled in good yield. In the cases of the ortho-substituted 

compounds we often found that the bromide salts gave better 

yields than the corresponding tosylates, suggesting potentially 

higher reactivity. We also show that the ammonium salt does not 

have to be a trimethylammonium, as a piperidine variant reacts 

smoothly. In cases such as 2i where the yield was low, the mass 

balance typically comprised unreacted starting material. 

 

Scheme 3. Scope ammonium salt in coupling reaction  

 
 

    We next demonstrated that a representative selection of 

boronic acids are compatible in the cross-coupling with 

benzyltrimethylammonium bromide  (Scheme 4). We found that 

a 4-pyridylboronic acid gave no conversion under these 

conditions but have not carried out extensive optimisation on 

this substrate at this stage. 

 
Scheme 4. Selection of boronic acids tested in cross coupling  
 

 
a Comprises an inseparable mixture of 3:1 2n: homocoupled boronic acid 

    We were keen to examine substrates which contain a chloride 

on either the ammonium salt or the boronic acid in order to be 

able to demonstrate orthogonality between the chloride and the 

ammonium. Based on our previous ligand optimization (Table 2), 

we selected Xantphos and found that a number of chloride-

containing ammonium salts and a chloride-containing boronic 

acid give good to excellent yields in the coupling, under mild 

conditions (Scheme 5).  This leaves the chloride functionality 

intact for further cross-coupling. 

 
Scheme 5. Evaluation of chloride-containing substrates using XantPhos as 
ligand 
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   Given the elegant work of Watson and co-workers in which 

stereospecific coupling was found to occur under Nickel 

catalysis,6 we were keen to evaluate whether stereochemical 

information is retained with our palladium-catalyzed protocol. 

By using an elevated temperature of 80 oC, we were able to obtain 

a moderate yield of coupled product 4 (Scheme 6a). However, 

HPLC analysis showed that this was racemic. The enantiopurity 

of the starting ammonium salt 3, obtained by methylation of 

phenylglycine methyl ester, was confirmed by 1H-NMR analysis 

after anion exchange with BINPHAT.12 Therefore we can 

conclude that the stereochemical information was lost during the 

course of the cross-coupling process in this particular case. 

Unfortunately, we were not able to obtain >5% yield of the 

corresponding α-methyl substrate under our conditions and thus 

were not able to determine whether this substrate would retain 

its stereochemical fidelity (Scheme 6b). In this case the major by-

product was the result of elimination to the styrene and a range 

of ligands were tested for this substrate with no success. 

 
Scheme 6. Evaluation of cross-coupling of an α-chiral ammonium salt under 
our conditions 
 

 
 

   Finally, in our scope studies, we had observed an interesting 

side product that was produced in 9% yield in the cross-coupling 

of 2-phenylbenzylammonium salt 1e (Scheme 7). This was 

determined to be fluorene (5) and most likely arises through C-H 

activation onto the ortho-phenyl ring being competitive with 

transmetallation with the boronic acid. Indeed, a literature 

search revealed that 2-phenylbenzyl halides undergo a similar C-

H activation process under Pd(II)-catalysis.13  

 

Scheme  7. Fluorene side-product observed in coupling of 1e. 

 

 

    Fluorene derivatives are valuable structural motifs with 

various applications in chemistry and materials science,14 and the 

ability to access them via C-H activation from benzylamine 

building blocks would be potentially new and useful route to 

access them. Furthermore, we have shown in our previous work 

that it is possible to cross-couple at the ortho position in the 

presence of the benzyl ammonium functionality.10 This leads to 

the possibility of a tandem cross coupling/C-H activation process 

for fluorene synthesis. In an effort to increase the yield, we 

undertook optimization in the absence of the boronic acid (Table 

3). Evaluation of bases showed that Cs2CO3 is by far the best 

(entries 1-6), although the yield of fluorene was still only 

moderate. Reducing the equivalents of base was detrimental 

(entry 7), as was increasing the temperature to 100 oC (entries 8 

and 9). Whilst switching the solvent to dioxane or DME did not 

significantly improve matters (entries 10-13), it was found that 

doubling the catalyst/ligand loading was key (entries 14-15) and 

that the best yield could be achieved at 90 oC with a moderate 

three equivalents of base (entry 16). Use of DME as solvent 

together with (S)-BINAP as ligand gave comparable results 

(entries 17 and 18).13  

 

Table 3. Optimization of intramolecular C-H activation to form fluorine (x) 

 

 

Entr

y 

Ligand Base (eq.) Temp 

(oC) 

Solvent Yiel

d 2a 

(%)a 

1 XPhos KF (5) 80 THF 0 

2 XPhos NMe3 (5) 80 THF 0 

3 XPhos K3PO4 (5) 80 THF 12 

4 XPhos Na2CO3 (5) 80 THF 0 

5 XPhos NaHCO3 (5) 80 THF 0 

6 XPhos Cs2CO3 (5) 80 THF 50 

7 XPhos Cs2CO3 (2) 80 THF 23 

8 XPhos Cs2CO3 (2) 100 THF 8 

9 XPhos Cs2CO3 (3) 100 THF 21 

10 XPhos Cs2CO3 (2) 100 Dioxane 24 

11 XPhos Cs2CO3 (3) 100 Dioxane 33 

12 XPhos Cs2CO3 (3) 100 DME 1 

13 (S)-

BINAP 

Cs2CO3 (2) 100 DME 35 

14b XPhos Cs2CO3 (2) 80 THF 46 
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15b XPhos Cs2CO3 (2) 90 THF 54 

16b XPhos Cs2CO3 (3) 90 THF 64 

(41) 

17b (S)-

BINAP 

Cs2CO3 (2) 90 DME 63 

(61) 

18b (S)-

BINAP 

Cs2CO3 (3)  90 DME 46 

aDetermined by 1H-NMR analysis with reference to an internal standard. Isolated 

yield given in parenthesis for selected experiments. b 5.0 mol% Pd(OAc)2 and 10% 

mol% ligand used. 

    In summary, we have described in detail our studies on the 

development of the palladium-catalyzed coupling of benzyl 

ammonium salts and boronic acids under mild conditions. We 

have shown that a variety of substrates are compatible and that, 

with appropriate ligand choice, chemoselectivity can be obtained 

between reaction at the ammonium functionality and reaction at 

a chloride on the arene. This offers an advantage over the related 

Ni-catalyzed processes in which chlorides are not tolerated. In 

addition, we have found that palladium catalyzed C-H activation 

can occur if an aromatic ring is present at the ortho position of 

the benzylammonium salt, demonstrating another productive 

pathway for the putative benzyl-Pd(II) intermediate other than 

transmetallation.  

 

The experimental section has no title; please leave this line here. 

All reagents were used as supplied from commercial sources without 

further purification. Cross coupling reactions were carried out in 4 ml 

15x45mm crimp top vials, which were purged with Argon. Vials were 

heated in welled heating blocks. 1H-NMR spectra were recorded on a 

600MHz Bruker Avance 600 BBI spectrometer. Chemical shifts are 

reported in parts per million (ppm) and the spectra are calibrated to the 

resonance resulting from incomplete deuteration of solvents. 13C NMR 

spectra were recorded on a 600MHz Bruker Avance 600 BBI spectrometer 

or 500MHz DCH Cryoprobe spectrometer with complete proton 

decoupling. Chemical shifts are reported in ppm and calibrated to the 

solvent resonance resulting from incomplete deuteration. Data are 

reported as follows: chemical shift in ppm, integration (only for 1H 

spectra), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = 

multiplet or combinations of them; 13C signals are singlets unless 

otherwise stated), coupling constants J in Hz. 19F NMR spectra were 

recorded on a 400MHz Avance III HD Smart Probe spectrometer. 

Analytical thin layer chromatography was performed using precoated 

Merck glass backed silica gel plates (Silicagel 60 F254). Visualisation was 

by ultraviolet fluorescence (254nm) and staining the plates with cerium 

ammonium molybdate (CAM). Flash column chromatography was 

performed using silica gel 60 (0.040μm to 0.063 μm). 

Synthesis of Ammonium Salts  

The preparations of 1a, 1b, 1c, 1d, 1h and 1i have been previously 

reported.10 

General Procedure A for the Preparation of Ammonium Tosylate 

Salts 

A flask was charged with NaHCO3 which was suspended in either MeOH  

or MeCN. The specified benzylamine was added, followed by methyl 

toluenesulfonate. After stirring the reaction at room temperature 

overnight, the solvent was removed and the precipitate filtered off and 

washed with CH2Cl2. The combined filtrate and washings were 

concentrated under reduced pressure, redissolved in a minimum amount 

of CH2Cl2 and the product precipitated by addition of Et2O. The precipitate 

was collected by filtration and washed with further Et2O. If further 

purification was necessary, it is stated accordingly. 

General Procedure B for the Preparation of Ammonium Bromide 

Salts 

Trimethylamine was added to a solution of a benzylbromide in MeCN and 

the resulting mixture was stirred at room temperature for 1 h. The 

volatiles were evaporated and the remaining precipitate was collected by 

filtration and washed with Et2O. 

1-([1,1’-biphenyl]-2-yl)-N,N,N-trimethylmethanaminium bromide 

(1e) 

Prepared according to General Procedure B with 2-(bromomethyl)-1,1’-

biphenyl (0.73 ml, 4 mmol, 1 eq.) and trimethylamine (6 ml, 1M in THF, 6 

mmol, 1.5 eq.) in MeCN (4 ml), the white solid of 1e was obtained (1.169 

g, 3.8 mmol, 95 %). 

1H NMR (600MHz, d6-DMSO) d 7.74 (dd, J = 7.7, 1.3 Hz, 1H), 7.62 (td, J = 

7.5, 1.4 Hz, 1H), 7.57 – 7.44 (m, 4H), 7.47 – 7.37 (m, 4H), 4.68 (s, 2H), 2.76 

(s, 9H);   

13C NMR (151MHz, d6-DMSO) d 144.55, 139.95, 134.64, 131.48, 130.67, 

129.48, 128.87, 127.69, 127.67, 125.35, 64.79, 52.00. 

HRMS m/z: [M]+ calc’d for [C17H23N]+ expect 226.1596; found 226.1597. 

 

1-(2-fluoro-6-(trifluoromethyl)phenyl)-N,N,N-

trimethylmethanaminium tosylate (1f) 

Trimethylamine (1.28 mL, 5.4 mmol, 4.2M in ethanol)  was added to a 

solution of 2-fluoro-6-(trifluoromethyl)benzyl bromide (700 mg, 2.72 

mmol) in acetonitrile and stirred for 1 hour at room temperature. The 

volatiles were evaporated under reduced pressure, the residue dissolved 

in CH2Cl2 and Et2O was slowly added. The precipitated bromide salt was 

collected by filtration (840 mg, 2.65 mmol, 98%). This salt (632 mg, 2 

mmol) was dissolved in chloroform and AgOTs (837 mmol, 3 mmol) was 

added. The resulting reaction mixture was stirred for 30 minutes, then 

filtered through a bed of Celite. The solvent was removed under reduced 

pressure to afford the tosylate salt 1f as a white solid (572 mg, 1.4 mmol, 

70%). 

1H NMR (600MHz, CDCl3) δ 7.68-7.63 (m, 3H), 7.59 (d, J = 7.9 Hz, 1H), 7.43 

(t, J = 8.8 Hz, 1H), 7.05 (d, J = 8.0 Hz, 4.81 (s, 2H), 3.29 (s, 9H), 2.25 (s, 3H); 

13C NMR (151MHz, CDCl3) δ 162.5 (d, 1JCF = 254 Hz), 143.8, 139.2, 133.9 

(d, 3JCF = 10 Hz), 132.5 (dq, 3JCF/2JCF = 1, 32 Hz), 128.6, 125.7, 124.2 (dq, 

4JCF/3JCF = 6, 3 Hz), 123.0 (q, 1JCF = 271 Hz), 121.0 (d, 2JCF = 24 Hz), 113.9 (d, 
2JCF = 16 Hz), 59.6, 54.2, 21.2. 

HRMS m/z: [M]+ calc’d for [C11H14NF4]+ expect 263.1062; found 263.1056. 

 

N,N,N-trimethyl-1-(p-tolyl)methanaminium tosylate (1g) 

To a solution of the corresponding bromide salt (244 mg, 1.0 mmol) in 

CHCl3 (5 ml) was added AgOTs (418 mg, 1.5 mmol) and the reaction 

stirred at room temperature for 30 mins. After this time the reaction was 

filtered through a thin pad of Celite and the solvent evaporated to give the 

title compound as a white solid (170 mg, 0.51 mmol, 51% yield). 

1H NMR (600MHz, CDCl3) δ 7.74 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 

7.09 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 4.55 (s, 2H), 3.12 (s, 9H), 

2.30 (s, 3H), 2.28 (s, 1H); 

13C NMR (151MHz, CDCl3) δ 143.6, 140.5, 139.5, 132.9, 129.6, 128.8, 

125.8, 124.7, 68.7, 52.1, 21.28, 21.27. 

HRMS m/z: [M]+ calc’d for [C11H18N]+ expect 164.1434; found 164.1432. 

 

N,N,N-trimethyl-1-(thiophen-2-yl)methanaminium tosylate (1j) 

Prepared according to General Procedure A with thiophen-2-

ylmethanamine (0.51 ml, 5.0 mmol, 1 eq.), NaHCO3 (4.2 g, 50 mmol, 10 eq.) 

and methyl toluenesulfonate (4.7 ml, 25 mmol, 5 eq.) in 10 ml MeOH. This 

yielded 1j as a white powder (1.34 g, 4.1 mmol, 82 %). 

1H NMR (600 MHz, d6-DMSO) δ 7.81 (d, J = 5.1 Hz, 1H), 7.52 (d, J = 8.0 Hz, 

2H), 7.40 (d, J = 3.2 Hz, 1H), 7.18 (dd, J = 3.7, 5.0 Hz, 1H), 7.12 (d, J = 7.9 

Hz, 2H), 4.81 (s, 2H), 3.05 (s, 9H), 2.28 (s, 3H).  

13C NMR (151MHz, d6-DMSO) 146.0, 138.2, 134.7, 131.1, 129.4, 128.6, 

128.3, 125.9, 62.1, 51.9, 21.2.  
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HRMS m/z: [M]+ calc’d for [C8H14NS]+ expect 156.0841; found 156.0841. 

 

1-(4-(methoxycarbonyl)phenyl)-N,N,N-trimethylmethanaminium 

bromide (1k)15 

Prepared according to General Procedure B with methyl 4-

(bromomethyl)benzoate (458 mg, 2 mmol, 1 eq.) and trimethylamine (3 

ml, 1M in THF, 3 mmol, 1.5 eq.) in MeCN (8 ml), solid 1k was obtained 

(534 mg, 1.9 mmol, 93 %). 

1H NMR (600MHz, MeOD-d4) d 8.19 – 8.14 (m, 2H), 7.75 – 7.70 (m, 2H), 

4.65 (s, 2H), 3.94 (s, 3H), 3.16 (s, 9H). 

13C NMR (151MHz, MeOD-d4) δ 166.2, 133.0, 132.5, 132.1, 129.7, 68.2, 

52.0, 51.6 

 Data in agreement with the literature.15 

 

N,N,N-trimethyl-1-(naphthalen-2-yl)methanaminium bromide (1l)16 

Prepared according to General Procedure B with 2-

(bromomethyl)naphthalene (442 mg, 2 mmol, 1 eq.) and trimethylamine 

(3 ml, 1M in THF, 3 mmol, 1.5 eq.) in MeCN (4 ml), white solid 1l was 

obtained (486 mg, 1.7 mmol, 87 %). 

1H NMR (600MHz, MeOD-d4) d 8.15 (s, 1H), 8.06 – 7.95 (m, 3H), 7.66 – 

7.58 (m, 3H), 4.73 (s, 2H), 3.18 (s, 9H).  

13C NMR (151MHz, MeOD-d4) δ 134.0, 133.2, 133.0, 128.7, 128.6, 128.1, 

127.5, 127.4, 126.7, 125.0, 69.2, 51.9. 

Data in agreement with the literature.16 

 

1-(4-chlorophenyl)-N,N,N-trimethylmethanaminium 4-

methylbenzenesulfonate (1p) 

Prepared according to General Procedure A with 4-chlorobenzylamine 

(0.48 ml, 4.0 mmol, 1 eq.), NaHCO3 (3.36 g, 40 mmol, 10 eq.) and methyl 

toluenesulfonate (3.0 ml, 20 mmol, 5 eq.) in 14 ml MeOH. This yielded 1o 

as a white powder (1.216 g, 3.4 mmol, 85 %). 

1H NMR (600MHz, CDCl3) δ 7.76 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 

7.29 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 4.79 (s, 2H), 3.22 (s, 9H), 

2.33 (s, 3H); 

13C NMR (151MHz, CDCl3) δ 143.3, 139.8, 136.9, 134.5, 129.3, 128.9, 

126.2, 125.7, 67.7, 52.3, 21.3. 

HRMS m/z: [M]+ calc’d for [C10H15NCl]+ expect 184.0888; found 184.0886. 

 

1-(2,5-dichlorophenyl)-N,N,N-trimethylmethanaminium 

methylbenzenesulfonate (1r)  

Prepared according to General Procedure A with 2,5-

dichlorobenzylamine (1.0 g, 5.7 mmol, 1 eq.), NaHCO3 (4.7 g, 57 mmol, 10 

eq.) and methyl toluenesulfonate (4.3 ml, 28.5 mmol, 5 eq.) in 20 ml MeOH. 

This yielded 1r as a white powder (2.1 g, 5.4 mmol, 94 %). 

1H NMR (600MHz, MeOD-d4) δ 7.79 (d, J = 2.3 Hz, 1H), 7.75 (d, J = 8.0 Hz, 

2H), 7.63 (d, J = 8.5 Hz, 1H), 7.60 (dd, J = 8.5, 2.3 Hz, 1H), 7.25 (d, J = 8.0 

Hz, 2H), 4.71 (s, 2H), 3.21 (s, 9H), 2.38 (s, 3H);  

13C NMR (151MHz, MeOD-d4) δ 144.0, 141.9, 136.6, 136.5, 134.8, 134.0, 

133.6, 130.1, 129.3, 127.2, 66.4, 54.0, 21.6.  

HRMS m/z: [M]+ calc’d for [C10H14NCl2]+ expect 218.0498; found 

218.0488. 

 

(R)-2-methoxy-N,N,N-trimethyl-2-oxo-1-phenylethan-1-aminium 4-

methylbenzenesulfonate (3) 

Prepared according to General Procedure A with methyl (R)-2-amino-2-

phenylacetate hydrochloride (807 mg, 4.0 mmol, 1 eq.), NaHCO3 (3.36 g, 

40 mmol, 10 eq.) and methyl toluenesulfonate (3 ml, 20 mmol, 5 eq.) in 14 

ml MeCN. For further purification the crude was dissolved in water (20 

ml) and washed with CH2Cl2 (3x20 ml) and Et2O (3x20 ml). Water was 

removed under reduced pressure, yielding 1p as an oil (647 mg, 1.7 mmol, 

43%). The enantiopurity was controlled by dissolving 1p (5 mg) and S-

BINPHAT (15 mg) in CH2Cl2/acetone (2 ml, 1:1) and stirring for 5 min. 

After removing the solvent, the taken 1H NMR (600MHz, CDCl3) showed 

only one ammonium peak, conforming the product’s enantiopurity. A 

portion (533 mg) of the obtained oil were additionally washed twice with 

Et2O, decanting the washing off and dissolved in a minimum amount of 

CH2Cl2. A white solid (330 mg) was obtained by addition of Et2O, collected 

by filtration and washed with Et2O.  

1H NMR (600MHz, CDCl3) d 7.81 – 7.76 (m, 2H), 7.61 (d, J = 7.5 Hz, 2H), 

7.55 – 7.48 (m, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.14 (d, J = 7.9 Hz, 2H), 6.09 (s, 

1H), 3.70 (s, 3H), 3.45 (s, 9H), 2.32 (s, 3H); 

13C NMR (151MHz, CDCl3) d 167.4, 143.3, 139.6, 131.6, 129.7, 128.8, 

126.8, 125.9, 74.6, 53.5, 51.8, 21.4. 

HRMS m/z: [M]+ calc’d for [C12H18NO2]+ expect 208.1338; found 

208.1336. 

 

Palladium Catalyzed Cross-Coupling 

General procedure for palladium-catalyzed cross-coupling 

The desired amount of substrate, boronic acid (3 eq.), base (3 eq.), 

Pd(OAc)2 (2.5 mol%.) and ligand (5 mol%.) were weighed out as solids, 

the vial sealed and purged with argon, then solvent added and purged 

again. The reactions were run at a specified reaction time over night. The 

crude was filtered through a pad of Celite and washed three times with 

CHCl3. The solvent was removed under reduced pressure, an internal 

standard added and the reaction analysed by 1H NMR. For purification, the 

analysed mixture was concentrated, the product extracted with Et2O and 

filtered through dry MgSO4 and further purified by flash column 

chromatography. 

1-benzyl-4-methoxybenzene (2a)17 

Following general procedure using 1a (OTs) (78 mg, 0.2 mmol), (4-

methoxyphenyl)boronic acid (91 mg, 0.6 mmol), K3PO4 (127 mg, 0.6 

mmol), Pd(OAc)2 (1.1 mg, 5x10-3 mmol), Xphos (4.8 mg, 1x10-2 mmol), in 

THF (0.4 ml) at 50 oC. Purification by silica gel chromatography (20% 

CH2Cl2/petroleum ether) gave 2a (33 mg, 0.16 mmol, 82 %). 

1H NMR (600MHz, CDCl3) δ 7.30 (t, J = 7.6 Hz, 2H), 7.24 – 7.17 (m, 3H), 

7.13 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 3.94 (s, 2H), 3.80 (s, 3H); 
13C NMR (151MHz, CDCl3) δ 158.0, 141.7, 133.3, 129.9, 128.9, 128.5, 

126.1, 114.0, 55.3, 41.1.  

Data in agreement with literature.17 

1-chloro-2-(4-methoxybenzyl)benzene (2b)18 

Following general procedure using 1-(2-chlorophenyl)-N,N,N-

trimethylmethanaminium tosylate (36 mg, 0.1 mmol), (4-

methoxyphenyl)boronic acid (46 mg, 0.3 mmol), KF (17 mg, 0.3 mmol), 

Pd(OAc)2 (0.6 mg, 2.5 x10-3 mmol), Xantphos (2.9 mg, 5x10-3 mmol) in 

THF (0.2 ml) at 60 oC. Purification by silica gel chromatography (25% to 

40% CH2Cl2/petroleum ether) gave 2b (21 mg, 0.09 mmol, 90 %). 

1H NMR (600MHz, CDCl3) δ 7.37 (dd, J = 7.5, 1.7 Hz, 1H), 7.23 – 7.10 (m, 

5H), 6.87 – 6.81 (m, 2H), 4.05 (s, 2H), 3.79 (s, 3H);  

13C NMR (151MHz, CDCl3) δ 158.2, 139.2, 134.2, 131.6, 131.0, 130.0, 

129.6, 127.6, 126.9, 114.0, 55.3, 38.4.  

Data in agreement with literature.18 

1-(4-methoxybenzyl)-2-(trifluoromethyl)benzene (2c)19 

Following general procedure using 1c (OTs) (78 mg, 0.2 mmol), (4-

methoxyphenyl)boronic acid (91 mg, 0.6 mmol), KF (35 mg, 0.6 mmol), 

Pd(OAc)2 (1.1 mg, 5x10-3mmol), Xphos (4.8 mg, 1x10-2 mmol), in THF (0.4 

ml) at 50 oC. Purification by silica gel chromatography (20% 

CH2Cl2/petroleum ether) gave 2c (45 mg, 0.17 mmol, 85 %). 

1H NMR (600MHz, CDCl3) δ 7.67 (dd, J = 7.9, 1.3 Hz, 1H), 7.43 (td, J = 7.6, 

1.3 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.18 (d, J = 7.8 Hz, 1H), 7.11 – 7.06 (m, 

2H), 6.89 – 6.83 (m, 2H), 4.14 (s, 2H), 3.80 (s, 3H);  
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13C NMR (151MHz, CDCl3) δ 158.1, 140.0, 131.8, 131.7, 131.5, 130.1, 128.5 

(q, 2JCF = 29.7 Hz), 126.0, 125.7 (q, 3JCF = 5.8 Hz), 124.5 (q, 1JCF = 273.9 Hz), 

113.9, 55.2, 36.8 (q, 4JCF = 2.2 Hz);  

19F NMR (376 MHz, CDCl3) δ -59.6.  

Data in agreement with literature.19 

 

1-(4-methoxybenzyl)-2-methylbenzene (2d)17 

Following general procedure using 1d (Br) (49 mg, 0.2 mmol), (4-

methoxyphenyl)boronic acid (91 mg, 0.6 mmol), KF (35 mg, 0.6 mmol), 

Pd(OAc)2 (1.1 mg, 5x10-3 mmol), Xphos (4.8mg, 1x10-2 mmol) in THF (0.4 

ml) at 50 oC. Purification by silica gel chromatography (20% 

CH2Cl2/petroleum ether) gave 2d (33 mg, 0.16 mmol, 78 %). 

1H NMR (600MHz, CDCl3) δ 7.19 – 7.12 (m, 3H), 7.12 – 7.02 (m, 3H), 6.85 

– 6.80 (m, 2H), 3.93 (s, 2H), 3.79 (s, 3H), 2.25 (s, 3H);  

13C NMR (151MHz, CDCl3) δ 157.8, 139.3, 136.5, 132.4, 130.2, 129.7, 

129.6, 126.3, 125.9, 113.7, 55.2, 38.5, 19.6.  

Data in agreement with literature.17 

 

2-(4-methoxybenzyl)-1,1’-biphenyl (2e)20 

Following general procedure using 1e (Br) (61 mg, 0.2 mmol), (4-

methoxyphenyl)boronic acid (91 mg, 0.6 mmol), KF (35 mg, 0.6 mmol), 

Pd(OAc)2 (1.1 mg, 5x10-3 mmol), Xphos (4.8 mg, 1x10-2 mmol) in THF (0.4 

ml) at 50 oC. Purification by silica gel chromatography (20% 

CH2Cl2/petroleum ether) gave 2e (41 mg, 0.15 mmol, 75 %). 

1H NMR (600MHz, CDCl3) δ 7.41 – 7.35 (m, 2H), 7.37 – 7.31 (m, 1H), 7.34 

– 7.24 (m, 5H), 7.22 (dd, J = 6.7, 1.8 Hz, 1H), 6.93 – 6.88 (m, 2H), 6.80 – 

6.74 (m, 2H), 3.91 (s, 2H), 3.78 (s, 3H);  

13C NMR (151MHz, CDCl3) δ 157.7, 142.1, 141.6, 138.6, 133.5, 130.1, 

130.0, 129.7, 129.2, 128.0, 127.4, 126.8, 126.0, 113.5, 55.2, 38.1.  

Data in agreement with literature.20 

 

1-fluoro-2-(4-methoxybenzyl)-3-(trifluoromethyl)benzene (2f) 

Following general procedure using 1f (OTs) (82 mg, 0.2 mmol), (4-

methoxyphenyl)boronic acid (91 mg, 0.6 mmol), KF (35 mg, 0.6 mmol), 

Pd(OAc)2 (1.1 mg, 5x10-3 mmol), Xphos (4.8 mg, 1x10-2 mmol) in THF (0.4 

ml) at 50 oC. Purification by silica gel chromatography (20% 

CH2Cl2/petroleum ether) gave 2f (47 mg, 0.17 mmol, 83 %). 

1H NMR (600MHz, CDCl3) δ 7.50 (d, J = 7.8 Hz, 1H), 7.38 – 7.31 (m, 1H), 

7.29 – 7.22 (m, 1H), 7.07 (d, J = 8.3 Hz, 2H), 6.84 – 6.78 (m, 2H), 4.14 (s, 

2H), 3.77 (s, 3H);  

13C NMR (151MHz, CDCl3) δ 162.1 (d, 1JCF = 248 Hz), 158.1, 131.1, 130.9 

(dq, 3JCF/2JCF = 4, 30 Hz), 129.2, 128.2 (d, 3JCF = 9 Hz), 127.3 (d, 2JCF = 17.6 

Hz), 123.9 (dq, 4JCF/1JCF = 4, 274 Hz), 121.9 (dq, 4JCF/3JCF = 4, 6 Hz), 119.3 

(d, 2JCF = 23 Hz), 113.8, 55.3, 30.6 (dq, 3JCF/4JCF = 4, 2 Hz); 

19F NMR (376 MHz, CDCl3) δ -58.8, -112.3. 

HRMS m/z: [M]+ calc’d for [C15H12F4O]+ expect 284.0824; found 284.0823. 

 

1-methoxy-4-(4-methylbenzyl)benzene (2g)17 

Following general procedure using 1g (OTs) (67 mg, 0.2 mmol), (4-

methoxyphenyl)boronic acid (91 mg, 0.6 mmol), K3PO4 (127 mg, 0.6 

mmol), Pd(OAc)2 (1.1 mg, 5x10-3mmol), Xphos (4.8 mg, 1x10-2 mmol) in 

THF (0.4 ml) at 50 oC. Purification by silica gel chromatography (25% 

CH2Cl2/petroleum ether) gave 2g (31 mg, 0.14 mmol, 72 %). 

1H NMR (600MHz, CDCl3) δ 7.14 – 7.06 (m, 6H), 6.87 – 6.81 (m, 2H), 3.90 

(s, 2H), 3.79 (s, 3H), 2.33 (s, 3H);  

13C NMR (151MHz, CDCl3) δ 158.0, 138.6, 135.5, 133.6, 129.9, 129.2, 

128.8, 113.9, 55.3, 40.7, 21.1.  

Data in agreement with literature.17 

 

1-methoxy-2-(4-methoxybenzyl)benzene (2h)6 

Following general procedure using 1h (OTs) (70 mg, 0.2 mmol), (4-

methoxyphenyl)boronic acid (91 mg, 0.6 mmol), K3PO4 (127 mg, 0.6 

mmol), Pd(OAc)2 (1.1 mg, 5x10-3 mmol), Xphos (4.8 mg, 1x10-2 mmol) in 

THF (0.4 ml) at 80 oC. Purification by silica gel chromatography (first run 

with 25% up to 40% CH2Cl2/petroleum ether, second run with 10% 

Et2O/petroleum ether) gave 2h (25 mg, 0.11 mmol, 54 %). 

1H NMR (600MHz, CDCl3) δ 7.19 (td, J = 7.8, 1.8 Hz, 1H), 7.17 – 7.11 (m, 

2H), 7.06 (dd, J = 7.2, 1.7 Hz, 1H), 6.91 – 6.84 (m, 2H), 6.85 – 6.79 (m, 2H), 

3.92 (s, 2H), 3.83 (s, 3H), 3.78 (s, 3H);  

13C NMR (151MHz, CDCl3) δ 157.8, 157.4, 133.2, 130.2, 130.2, 130.0, 

127.4, 120.5, 113.8, 110.5, 55.4, 55.3, 35.0.  

Data in agreement with literature.6 

 

1-fluoro-3-(4-methoxybenzyl)benzene (2i)17 

Following general procedure using 1i (OTs) (68 mg, 0.2 mmol), (4-

methoxyphenyl)boronic acid (91 mg, 0.6 mmol), K3PO4 (127 mg, 0.6 

mmol), Pd(OAc)2 (1.1 mg, 5x10-3 mmol), Xphos (4.8 mg, 1x10-2 mmol) in 

THF (0.4 ml) at 50 oC. Purification by silica gel chromatography (25% 

CH2Cl2/petroleum ether) gave 2i (17 mg, 0.08 mmol, 40 %). 

1H NMR (600MHz, CDCl3) δ 7.23 (td, J = 7.9, 6.0 Hz, 1H), 7.13 – 7.08 (m, 

2H), 6.98 – 6.93 (m, 1H), 6.91 – 6.82 (m, 4H), 3.92 (s, 2H), 3.79 (s, 3H);  

13C NMR (151MHz, CDCl3) δ 163.1 (d, 1JCF = 245.5 Hz), 158.2, 144.3 (d, 3JCF 

= 7.2 Hz), 132.5, 130.0, 129.9 (d, 3JCF = 8.3 Hz), 124.5 (d, 4JCF = 2.8 Hz), 

115.7 (d, 2JCF = 21.1 Hz), 114.1, 113.0 (d, 2JCF = 21.1 Hz), 55.4, 40.88 (d, 4JCF 

= 1.8 Hz). 

Data in agreement with literature.17 

 

2-(4-methoxybenzyl)thiophene (2j)17 

Following general procedure using 1j (OTs) (66 mg, 0.2 mmol), (4-

methoxyphenyl)boronic acid (91 mg, 0.6 mmol), K3PO4 (127 mg, 0.6 

mmol), Pd(OAc)2 (1.1 mg, 5x10-3 mmol), Xphos (4.8 mg, 1x10-2mmol) in 

THF (0.4 ml) at 50 oC. Purification by silica gel chromatography (25% up 

to 40% CH2Cl2/petroleum ether) gave 2j (31 mg, 0.15 mmol, 77 %). 

1H NMR (600MHz, CDCl3) δ 7.20 – 7.17 (m, 2H), 7.15 (dd, J = 5.1, 1.2 Hz, 

1H), 6.93 (dd, J = 5.1, 3.4 Hz, 1H), 6.90 – 6.84 (m, 2H), 6.80 (dq, J = 3.4, 1.1 

Hz, 1H), 4.12 (s, 2H), 3.81 (s, 3H);  

13C NMR (151MHz, CDCl3) δ 158.3, 144.8, 132.7, 129.7, 126.9, 124.9, 

123.9, 114.0, 55.3, 35.3.  

Data in agreement with literature.17 

 

Methyl 4-(4-methoxybenzyl)benzoate (2k)21 

Following general procedure using 1k (Br) (58 mg, 0.2 mmol), (4-

methoxyphenyl)boronic acid (91 mg, 0.6 mmol), K3PO4 (127 mg, 0.6 

mmol), Pd(OAc)2 (1.1 mg, 5x10-3 mmol), Xphos (4.8 mg, 1x10-2 mmol) in 

THF (0.4 ml) at 50 oC. Purification by silica gel chromatography (4% up to 

8% EtOAc/petroleum ether) gave 2n (46 mg, 0.18 mmol, 89 %). 

1H NMR (600MHz, CDCl3) δ 7.96 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 

7.09 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 3.97 (s, 2H), 3.90 (s, 3H), 

3.79 (s, 3H);  

13C NMR (151MHz, CDCl3) δ 167.2, 158.3, 147.1, 132.3, 130.0, 129.9, 

128.9, 128.1, 114.1, 55.4, 52.1, 41.1.  

Data in agreement with the literature.21 

 

2-(4-Methoxybenzyl)naphthalene (2l)6 

Following general procedure using 1l (56 mg, 0.2 mmol), (4-

methoxyphenyl)boronic acid (91 mg, 0.6 mmol), K3PO4 (127 mg, 0.6 

mmol), Pd(OAc)2 (1.1 mg, 5x10−3 mmol), Xphos (4.8 mg, 1x10−2 mmol) in 

THF (0.4 ml) at 50 °C. Analysis of crude 1H NMR showed 82 % yield, 



Synthesis Paper 

Template for SYNTHESIS © Thieme  Stuttgart · New York 2017-08-30 page 8 of 9 

purification by silica gel chromatography (25 % CH2Cl2/petroleum) gave 

2l (40 mg, 0.16 mmol, 80 %). 

1H NMR (600 MHz, CDCl3 ) δ 7.85 – 7.76 (m, 3H), 7.67 – 7.63 (m, 1H), 7.46 

(dqd, J = 8.2, 6.8, 1.5 Hz, 2H), 7.34 (dd, J = 8.4, 1.8 Hz, 1H), 7.18 (d, J = 8.6 

Hz, 2H), 6.91 – 6.85 (m, 2H), 4.12 (s, 2H), 3.81 (s, 3H);  

13C NMR (151 MHz, CDCl3) δ 158.15, 139.19, 133.74, 133.21, 132.18, 

130.09, 128.17, 127.74, 127.71, 127.67, 127.03, 126.07, 125.42, 114.04, 

55.38, 41.34. 

Data in agreement with the literature.6 

 

1-benzyl-2-methylbenzene (2m)22 

Following general procedure using 1a (OTs) (64 mg, 0.2 mmol), (2-

methylphenyl)boronic acid (82 mg, 0.6 mmol), K3PO4 (127 mg, 0.6 mmol), 

Pd(OAc)2 (1.1 mg, 5x10-3 mmol), Xphos (4.8 mg, 1x10-2mmol) in THF (0.4 

ml) at 50 oC. Purification by silica gel chromatography (1% up to 3% 

EtOAc/petroleum ether) gave 2m (containing ~5% homocoupled boronic 

acid impurity) as a colourless oil (27 mg, 74%). 

1H NMR (600MHz, CDCl3) δ 7.31 – 7.23 (m, 2H), 7.22 – 7.09 (m, 7H), 4.00 

(s, 2H), 2.26 (s, 3H);  

13C NMR (151MHz, CDCl3) δ 140.5, 139.0, 136.7, 130.4, 130.0, 128.8, 

128.5, 126.5, 126.1, 126.0, 39.5, 19.82.  

Data in agreement with literature.22 

 

2-benzylnaphthalene (2n) 

Following general procedure using 1a (OTs) (64 mg, 0.2 mmol), 

naphthalen-2-ylboronic acid (103 mg, 0.6 mmol), K3PO4 (127 mg, 0.6 

mmol), Pd(OAc)2 (1.1 mg, 5x10-3 mmol), Xphos (4.8 mg, 1x10-2 mmol) in 

THF (0.4 ml) at 50 oC. Purification by silica gel chromatography (2% up to 

5% EtOAc/petroleum ether) gave a mixture of 2n and the homocoupled 

boronic acid in a 3:1 ratio. (28 mg, 0.12 mmol, both homo and cross 

coupled products, 46%). 

2l: 1H NMR (600MHz, CDCl3) δ 7.83 – 7.75 (m, 3H), 7.65 (d, J = 1.8 Hz, 1H), 

7.45 (ddd, J = 8.2, 6.8, 1.5 Hz, 2H), 7.36 – 7.28 (m, 3H), 7.28 – 7.20 (m, 3H), 

4.16 (s, 2H);  

13C NMR (151MHz, CDCl3) δ 141.1, 138.7, 133.7, 132.2, 129.1, 128.6, 

128.2, 127.7, 127.7, 127.6, 127.2, 126.2, 126.1, 125.4, 42.2.  

Data in agreement with literature.6 

Homocoupled impurity: 1H NMR (600MHz, CDCl3) δ 8.19 (d, J = 1.7 Hz, 

2H), 7.98 (d, J = 8.5 Hz, 2H), 7.96 (d, J = 7.4 Hz, 2H), 7.91 (dd, J = 8.4, 1.8 

Hz, 4H), 7.53 (dqd, J = 8.2, 6.9, 1.4 Hz, 4H); 13C NMR (151MHz, CDCl3) δ 

138.5, 133.8, 132.8, 128.6, 128.3, 127.8, 126.5, 126.2, 126.1, 125.8.  

Data in agreement with literature.23 

 

Ethyl 3-benzylbenzoate (2o)24 

Following general procedure using 1a (OTs) (64 mg, 0.2 mmol), 3-

ethoxycarbonylphenylboronic acid (116 mg, 0.6 mmol), K3PO4 (127 mg, 

0.6 mmol), Pd(OAc)2 (1.1 mg, 5x10-3 mmol), XPhos (4.8 mg, 1x10-2 mmol) 

in THF (0.4 ml) at 50 °C. Purification by silica gel chromatography (5% 

EtOAC in petroleum ether then a further purification with 30% to 50% 

CH2Cl2/petroleum ether) yielded 2o as a colourless oil (31 mg, 0.13 mmol, 

65%). 

1H NMR (600MHz, CDCl3) δ 7.93 (br s, 1H), 7.91 (dt, J = 6.9, 1.4 Hz, 1H), 

7.39 – 7.35 (m, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.24 – 7.20 (m, 3H), 4.38 (q, J = 

7.2 Hz, 2H), 4.05 (s, 2H), 1.40 (t, J = 7.2 Hz, 3H); 

13C NMR (151MHz, CDCl3) δ 166.7, 141.4, 140.5, 133.4, 130.7, 130.0, 

128.9, 128.6, 128.5, 127.4, 126.3, 60.9, 41.7, 14.3. 

Data in agreement with literature.24  

 

1-chloro-4-(4-methoxybenzyl)benzene (2p)25 

Following general procedure using 1p (OTs) (36 mg, 0.1 mmol), (4-

methoxyphenyl)boronic acid (46 mg, 0.3 mmol), KF (17 mg, 0.3 mmol), 

Pd(OAc)2 (0.6 mg, 2.5x10-3 mmol), Xantphos (2.9 mg, 5x10-3 mmol) in THF 

(0.2 ml) at 60 oC. Purification by silica gel chromatography (25% 

CH2Cl2/petroleum ether) gave 2p (18 mg, 0.08 mmol, 78 %). 

1H NMR (600MHz, CDCl3) δ 7.26 – 7.21 (m, 2H), 7.13 – 7.05 (m, 4H), 6.86 

– 6.81 (m, 2H), 3.89 (s, 2H), 3.79 (s, 3H);  

13C NMR (151MHz, CDCl3) δ 158.2, 140.1, 132.7, 131.9, 130.2, 129.9, 

128.6, 114.1, 55.4, 40.4.  

Data in agreement with literature.25 

 

1-benzyl-4-chlorobenzene (2q)26 

Following general procedure using 1a (Br) (46 mg, 0.2 mmol), (4-

chlorophenyl)boronic acid (78 mg, 0.5 mmol), K3PO4 (127 mg, 0.6 mmol), 

Pd(OAc)2 (1.1 mg, 5x10-3 mmol), Xantphos (5.8 mg, 1x10-2 mmol) in THF 

(0.4 ml) at 50 °C. Analysis of crude 1H NMR showed 94% yield, purification 

by silica gel chromatography (1% CH2Cl2/hexane) gave 2q (28 mg, 0.14 

mmol, 69%). 

1H NMR (600MHz, CDCl3) δ 7.31 (t, J = 7.5 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 

7.23 (t, J = 7.5 Hz, 1H), 7.18 (d, J = 7.5 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 3.97 

(s, 2H);  

13C NMR (151MHz, CDCl3) δ 140.5, 139.6, 131.9, 130.2, 128.8, 128.6, 

128.5, 126.3, 41.2.  

Data in agreement the literature.26 

 

1,4-dichloro-2-(4-methoxybenzyl)benzene (2r) 

Following general procedure using 1r (OTs) (78 mg, 0.2 mmol), (4-

methoxyphenyl)boronic acid (91 mg, 0.6 mmol), K3PO4 (127 mg, 0.6 

mmol), Pd(OAc)2 (1.1 mg, 5x10-3 mmol), Xantphos (5.8 mg, 1x10-2 mmol) 

in THF (0.4 ml) at 50 oC. Purification by silica gel chromatography (25% 

CH2Cl2/petroleum ether) gave 2r (33 mg, 0.12 mmol, 62 %). 

1H NMR (600MHz, CDCl3) δ 7.29 (d, J = 8.5 Hz, 1H), 7.16 – 7.08 (m, 4H), 

6.89 – 6.83 (m, 2H), 4.00 (s, 2H), 3.80 (s, 3H);  

13C NMR (151MHz, CDCl3) δ 158.4, 141.0, 132.7, 132.4, 130.7, 130.6, 

130.6, 130.1, 127.7, 114.2, 55.3, 38.3. 

HRMS m/z: [M] calc’d for [C14H12Cl2O] expect 266.0265; found 266.0253. 

 

Methyl 2-(4-methoxyphenyl)-2-phenylacetate (4)27 

Following general procedure using 3 (76 mg, 0.2 mmol), (4-

methoxyphenyl)boronic acid (91 mg, 0.6 mmol), K3PO4 (127 mg, 0.6 

mmol), Pd(OAc)2 (1.1 mg, 5x10-3 mmol), Xphos (4.8 mg, 1x10-2 mmol) in 

THF (0.4 ml) at 80 oC.  Purification by silica gel chromatography (3% up 

to 5% EtOAc/petroleum ether) gave 5 (27 mg, 0.11 mmol, 53%). Chiral 

HPLC analysis (Chiralcel OD Column, 1 ml/min, 0.5% iPrOH/hexane, tR = 

18.64 min and 19.95 min) of the product showed a racemic mixture was 

obtained. 

1H NMR (600MHz, CDCl3) δ 7.36 – 7.27 (m, 4H), 7.30 – 7.21 (m, 3H), 6.89 

– 6.83 (m, 2H), 4.99 (s, 1H), 3.79 (s, 3H), 3.74 (s, 3H);  

13C NMR (151MHz, CDCl3) δ 173.3, 158.9, 139.1, 130.8, 129.8, 128.7, 

128.5, 127.3, 114.1, 56.3, 55.3, 52.4.  

Data in agreement with literature.27 

 

Fluorene (5)28 

Following general procedure (excluding boronic acid) using 1e (61 mg, 

0.2 mmol, 1 eq.), Cs2CO3 (196 mg, 0.6 mmol, 2 eq.), Pd(OAc)2  (2.2 mg, 

1x10-2 mmol, 5 mol%), Xphos (9.6 mg, 2x10-2 mmol, 10 mol%) in THF (0.4 

ml) at 90 oC. Purification by silica gel chromatography (2% 

CH2Cl2/petroleum ether) gave 5 (14 mg, 0.08 mmol, 41 %).  

1H NMR (600MHz, CDCl3) δ 7.81 (d, J = 7.6 Hz, 2H), 7.56 (d, J = 7.4 Hz, 2H), 

7.39 (td, J = 7.4, 1.0 Hz, 2H), 7.32 (td, J = 7.4, 1.1 Hz, 2H), 3.92 (s, 2H);  
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13C NMR (151MHz, CDCl3) δ 143.3, 141.8, 126.8, 126.8, 125.1, 120.0, 37.0.  

Data in agreement with literature.28 
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