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In this supplementary material, we first include more details about the experimental results and the case
studies. Then we perform a more thorough interpretation of the newly introduced notion of generality from
the psychometric perspective (person-fit, IRT, SLODR and the c factor), an evolutionary perspective (g and G
factor in animals, cognitive resources, selective pressure) and a computational interpretation (AGI, competitions
and benchmarks in AI), properly covering the related work in these areas. Finally, we give further insights into
the formal definitions, the properties of generality and the proof of the theoretical results.

A Case studies: details and extended experimental results

The following subsections extend the details about the experimental results shown in the paper.

A.1 Elithorn’s mazes

Elithorn’s Perceptual Mazes [1] take the form of a V-shape triangle, as shown in Fig. S1, where the coloured
dots are superimposed at the intersection of the pathways. The imposed structure of the V-shape maze reduces
the number of uncontrollable variables and holds the shape of the task constant. The goal is to collect as many
yellow dots using a pathway up to the top. Three conditions must be fulfilled in order to successfully complete
the task: (1) the pathway must lie along the lattice line; (2) the pathway can only move in an upward orientation
and stay connected at all times; (3) the pathway must pass through the route with the maximum number of
yellow dots. Therefore, it is critical that the subjects strategise before they begin working on the task.

Figure S1: Maze of rank 10 with 30% saturation.

Given the structural nature of the task, several parameters of the maze have been considered to influence
task difficulty. Previous research found that the two main physical properties that were most pronounced to
influencing the difficulty of the maze were the size of the maze (rank) and the density of the pattern (saturation
level) [2, 3]. The assumption is that the maze difficulty typically increases with size, and monotonically with
saturation up to about 50 percent, where it begins to decrease monotonically thereafter [3]. In a separate
research, Davies & Davies (1965) proposed that a maze would be found more difficult if the number of steps
required to pass through the optimal route was greater. Thus, this was considered as a third variable which
was used to calculate maze difficulty.

The physical parameters used to calculate maze difficulty led to several authors proposing different math-
ematical models of difficulty [4, 2], which are then intrinsic difficulty metrics, in contrast to extrinsic (i.e.,
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Table S1: Intrinsic difficulties for the 23 items.

Item Difficulty Item Difficulty

X247 9.53 X259 16.32
X248 8.88 X260 16.81
X249 11.01 X261 18.05
X250 10.21 X262 19.12
X251 12.16 X263 19.41
X252 11.67 X264 18.26
X253 13.26 X216 11.41
X254 13.54 X217 11.73
X255 14.91 X225 14.10
X256 14.91 X227 14.93
X257 15.77 X233 10.11
X258 15.77

Table S2: Demographics Information.

n %

Gender
- Male 301 61
- Female 195 39
Education
- PhD 16 3.2
- Masters 90 18.1
- Undergraduate degree 204 41.1
- Vocational 28 5.6
- High School 137 27.6
- Secondary school 16 3.2
- Primary school 5 1
Ethnicity
- White 288 58.1
- Asian 145 29.2
- Black 2 0.4
- Mixed ethnic groups 20 4
- Other 41 8.3
Nationality
- United States 87 17.5
- United Kingdom 32 6.5
- India 107 21.6
- Germany 21 4.2
- Poland 20 4
- Others 229 46.2

psychometric or populational) difficulty. In particular, we will use the method proposed by [2]. Following their
notation, 2R is the total number of possible paths to pass in the maze and Um̂ is the number of distinct paths
that allow one to achieve the maximum number of dots for a given maze. For example, if the maximum number
of dots that is permissible to pass is 3, then Um̂ is the number of unique routes through the 3 dots. The
saturation level pSq is an expression for maze density. Finally, the number of steps l required to achieve the
greatest score for any given maze was included as well. The final version of the difficulty function is:

ℏ “ log10

ˆ

2R ˆ
Sa ˆ lb

Um̂

˙

We used the recommended parameters a “ 4 and b “ 4 in the mazeGen R package [5], following [2]. Using
this package, we generated 23 items with a range of difficulties. The difficulties are shown in Table S1. We
administered them to 530 participants via the Cambridge Psychometrics Centre testing website1. The testing
website has over 20 different psychological tests that are made publicly available for people who have access to
the Internet to complete. They have the option to stop completing the test at anytime. Participants do not
receive any form of financial incentives, but they are encouraged to complete by providing immediate feedback
after the end of the test. Responses are binary. The respondent either found an optimal path or not. Of the
530 participants who completed the test, only 496 provided their demographics information Table S2, to which
we restricted our analysis.

Fig. S2 shows the means of the 496 responses for each item vs difficulty. The Pearson correlation is ´0.49,
which is reasonable (more difficult items get worse responses). This is sufficiently high to consider the difficulty
metric to be fit for our purposes.

Fig. S3 perfoms the generality analysis per subpopulations, corresponding to Fig. 4 (top left) in the main
paper.

There are several ways in which we can analyse whether the respondents have a general behaviour. One
simple option seems to calculate the mean result per respondent and their variance. Fig. S4 shows that this
is completely uninformative in this case, as the variance is determined by the mean for binary outcomes, and
the variance of a Bernoulli distribution is pp1 ´ pq, being a function of the mean response p. In any case,
even if the responses were quantitative, one would not expect respondents to have low variance if a wide range
of difficulties is considered, because most would fail at the difficult ones and would succeed at the easy ones.
Actually, as it is expected that respondents fail on the difficult items, if there are some of these, very high
generality —understood as reciprocal of variance— would be impossible.

A common way of analysing “generality” of a population is through factor analysis, trying to identify a
dominant factor that would explain why a result for one item usually entails a similar result for other items.

1www.discovermyprofile.com
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   Pearson correlation: −0.49
Spearman correlation: −0.51

Figure S2: Relation between intrinsic difficulties and the mean responses for the 23 items of the mazes problem.

Elithorn’s mazes
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··· Max spread (inc. step)
··· High spread (constant)
··· Min spread (dec. step)

Corr(cap,spr): −0.29
Mean(cap): 15.61
Mean(spr): 3.88
% Abstruse: 11.79% (23 of 195)
Normalised generality. Mean: 0.29 (corr. with cap.: −0.10)
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Mean(cap): 16.34
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% Abstruse: 12.39% (27 of 218)
Normalised generality. Mean: 0.32 (corr. with cap.: 0.10)
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··· High spread (constant)
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Corr(cap,spr): 0.09
Mean(cap): 14.74
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% Abstruse: 11.69% (29 of 248)
Normalised generality. Mean: 0.29 (corr. with cap.: 0.04)
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··· High spread (constant)
··· Min spread (dec. step)

Corr(cap,spr): −0.71
Mean(cap): 17.62
Mean(spr): 2.98
% Abstruse: 14.92% (37 of 248)
Normalised generality. Mean: 0.32 (corr. with cap.: −0.10)

Figure S3: Detailed results for Elithorn’s mazes (see Fig. 4 (top left) in the main paper). First row: split by
gender. Second: split by education. Third: split by age. Fourth: split by median capability.
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Figure S4: Subjects’ means vs subjects’ standard deviations of 496 respondents and 23 items each of Elithorn’s
Mazes. As responses are binary, the plot just shows the standard deviation of the Bernoulli distribution:
a

pp1 ´ pq.

We perform factor analysis using the R package psych and the function fa. By just limiting to one factor, we
get the 23 loadings for the items between 0.123 and 0.518 (average 0.342). This factor, however, only explains a
proportion of 0.123 of the variance. The scree plot in Fig. S5 shows that for this population and items a single
factor is not enough.
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Figure S5: Parallel Analysis Scree plot for principal component analysis (PCA) and factor analysis (FA) of 496
respondents and 23 items each for Elithorn’s Perceptual Mazes.

This contrasts with a reasonable degree of generality that we found using the generality analysis (see top
left of Fig. 4 in the paper). Factor analysis simply ignores difficulties. Also, factor analysis just tells us whether
there is a dominant factor in the population, but it cannot inform us on whether some particular respondents
are more general than others.

Another common option to analyse this kind of results is to infer IRT models. Using the mirt function
of the homonymous R package and a 2PL model we get the item response curves, all of them with positive
discrimination parameters. The (Pearson) correlation between the estimated difficulties (the positions of the
logistic models) and the intrinsic difficulties is 0.39. The (Pearson) correlation between these estimated diffi-
culties and the response means, shown in Fig. S6, is ´0.94, close to ´1 as expected, which is higher than the
corresponding plot with the intrinsic difficulties (Fig. S2). We now see an almost perfect monotonic relation,
which basically illustrates that IRT difficulty is almost a monotonic transformation of response means, which
makes it hard —if not impossible— to differentiate generality from capability.

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

−3 −2 −1 0 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Difficulty (IRT)

Ite
m

's
 M

ea
n 

R
es

po
ns

e

   Pearson correlation: −0.94
Spearman correlation: −0.83

Figure S6: Relation between IRT-estimated difficulties (2PL) and the mean responses for the 23 items.

Nevertheless, we are interested in having a look at the two measures when using IRT difficulties, even if this
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analysis is a bit circular (we get the difficulties from the results and then we use them to analyse the results).
Fig. S7 shows a higher dispersion than for the intrinsic difficulties and, as expected, we see higher normalised
generalities on average, as the 2PL models assume this for ability. Still, it may be useful to compare individual
agents with this capability and generality.
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Figure S7: Capability vs spread for the Elithorn’s mazes using the difficulties obtained by 2PL IRT models
(scaled to the same range to have comparable units). Compare with Fig. 4 (top left).

A.2 Letter series

Thurstone letter series is a common cognitive test that was introduced for his Primary Mental Abilities theory
[6, 7]. Given a sequence of letters from the Latin alphabet (where the successor of ‘z’ is ‘a’ and the predecessor
of ‘a’ is ‘z’), the goal is to predict the next letter in the series. Fig. S8 shows some examples.

a, b, a, b, a, b, a, b, ...
a, a, a, b, b, b, c, c, c, d, d, ...
c, a, d, a, e, a, f, a, ...
w, x, a, x, y, b, y, z, c, z, a, d, a, b, ...
m, n, l, n, k, n, j, n, ...
r, s, c, d, s, t, d, e, t, u, e, f, ...

Figure S8: Examples of Thurstone letter series (taken from [8]).

In [9, 10] a sequence generator based on computational principles and algorithmic information theory. The
generator was built to ensure stability of the sequence (they should not have exceptions or noise) and its
unquestionability (the shortest program that generates the sequence should not be rivalled by another program
of similar complexity that gives a different continuation to the series). The generation also calculated difficulty
for each sequence x, derived as Ktpxq, its Levin complexity [11, 12] over a minimal instruction set computer
with 14 instructions. Fig. S9 shows a sample of sequences and their intrinsic difficulties.

h “7 : a, b, c, d, ... Answer : e
h “8 : a, a, a, b, b, b, c, ... Answer : c
h “9 : a, d, g, j, ... Answer : m
h “10 : a, c, b, d, c, e, ... Answer : d
h “11 : a, a, b, b, z, a, b, b, ... Answer : y
h “12 : a, a, z, c, y, e, x, ... Answer : g
h “13 : a, z, b, d, c, e, g, f, ... Answer : h
h “14 : c, a, b, d, b, c, c, e, c, d, ... Answer : d

Figure S9: Examples of some of the sequences and their intrinsic difficulties, as generated for the C-test [9, 10].

Reusing this study, we take 35 instances: 20 for prediction as shown in Fig. S9 and 15 for imputation (the
gap is in the middle of the sequence) with difficulties ranging from 7 to 14. All these sequences were applied to
48 young humans with ages between 14 and 18 [9, 10].

Fig. S10 shows the means of the 48 human responses for each item vs difficulty. The correlation is ´0.77,
which is quite strong (more difficult items get worse responses). For our study, we also added new results from
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12 artificial systems, as shown in Table S3. The generality analysis was shown in Fig. 4 (top right). We show a
human-machine split in Fig. S11.
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Figure S10: Relation between intrinsic difficulties and the mean responses for the 35 items of the letter series
problem.

Table S3: Artificial systems used to solve the letter series.

System Description

freq Predicts or imputes the most frequent letter.
last Predicts or imputes the letter just before the end or the gap.
x, y, z, a, b, c Constant models always predicting or imputing the same letter.
repdiff Predicts or imputes according to an arithmetic series.
alternate Predicts or imputes using an arithmetic series using only the even or odd letters

depending on whether the gap is at an even or odd location.
halfright A baseline model predicting or imputing correctly on about half of the sequences (0/1

chosen randomly).
magic Using the web version (nautilus.cs.miyazaki-u.ac.jp/~skata/MagicHaskeller.

html) of MagicHaskeller, an inductive programming system [13, 14, 15].
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Figure S11: Capability vs spread for the letter series showing human-machine split of Fig. 4 (top right).

We also perform factor analysis on this data, using the same methodology as in the previous case, focusing
on the 48 human respondents. As a result, we get the loadings for the 35 items with values between ´0.212 and
0.593 (average 0.215). This is very poor, and the first factor only explains a proportion of 0.093 of the variance.
The scree plot in Fig. S12 shows that for this population and items a single factor is not enough. Again, this
contrasts with a reasonable degree of generality that we found using the generality analysis (Fig. S11, left).

Finally, we also infer IRT models for this case. The Pearson correlation between the estimated difficulties
(the positions of the logistic models) and the intrinsic difficulties is 0.02, but the Spearman correlation is 0.50.
Then, the correlation between the IRT difficulties and the column means (item’s mean response, a proxy for
difficulty) is 0.00 (Pearson) and ´0.60 (Spearman), as we can see in Fig. S13. While difficulties should correlate
negative with responses by construction in IRT, this case is explained by a difficulty value on ´150, an outlier
difficulty value. Compare with the same plot with intrinsic difficulties (Fig. S2). In this case, we should analyse
what the scale of these difficulties mean, the exclusion of outliers and whether we can derive generality from
here. We do not explore this option further for this case.
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Figure S12: Parallel Analysis Scree plot for principal component analysis (PCA) and factor analysis (FA) of 48
human respondents and 35 letter series.
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Figure S13: Relation between IRT difficulties (2PL, estimated from the human population) and the mean
responses for the 35 letter series.

A.3 Object recognition

For the object recognition scenario we used a sample of the results involving 24 objects with 10 variations each,
totalling 240 cases, referred to as “primary test images” and shown in [16, Fig.1A]. Each result in our dataset is
the aggregation of each object (e.g., a zebra with a given distortion) being confronted against the other objects
(e.g., the non-distorted zebra image vs a non-distorted dromedary, a non-distorted zebra vs a non-distorted
guitar, etc.). Because agents have to choose between two images, expected accuracy by chance is 0.5, so we
normalised accuracy as 2x ´ 1q. The agents are six deep convolutional artificial neural networks: ALEXNET,
ZEILER, VGG, GOOGLENET, RESNET and GOOGLENETv3 (inception), the monkeys (macaques) and the
humans. In total we have a non-binary response matrix of 8 rows and 240 columns.

Fig. S14 shows the (unnormalised) average accuracy of the eight agent groups for the 24 objects in this
study. We see that some objects are harder than others, but we will not use this information initially (just the
psychophysical attributes).
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Figure S14: (Unnormalised) accuracies for each the 8 agent groups (2 primate species and 6 ANN architectures)
against the 24 objects we use in our study.
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The psychophysical distortions are created by modifying four image attributes: eccentricity, size, pose and
contrast. Not all of them affect the problem monotonically. For instance, pose has a minimum of performance
at intermediate values, as was shown in [16, Fig.7C]. We derived a formula of difficulty that takes this into
account:

ℏ def
“ speccentricityq ` sp´sizeq ` sppose1q ` sp´contrastq

where sp¨q performs a min-max scaling and pose1 “ ´|1´ pose|, as the minimum distortion is around pose “ 1.
We binned difficulties into 15 equal-width binning, and we removed those bins with less than 4 difficulties,
retaining 233 results from the original 240 cases, filtering the response matrix accordingly.

The ACCs for the eight agent groups can be seen in Fig. S15. Humans and monkeys have smoother curves.
As the population size is high for humans but small for macaques, this is not clearly explained by sample size,
and may be indicative that the effect of the psychophysical distortions is more gradual for primates than ANNs.
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Figure S15: ACCs for the eight agent groups in the object recognition problem. Intrinsic difficulty derived from
the psychophysical parameters.

The results of the generality analysis are shown in the main part of the article. In this case, as we only have
8 agent groups, we cannot do factor analysis or IRT. A populational estimation of difficulty is outlined in [16,
Fig.2] by analysing the “behavioural signatures” (very much like what we show in Fig. S14) or approximated by
the “ones with performance below the 25th percentile”. Note that these difficulties are per object, where they
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determine that recognising a camel is more difficult than recognising a watch. With the difficulties derived from
the psychophysical parameters, we are not using the information about the object, just the level of distortion,
regardless of what object has to be classified. With this, we leave a great deal of the difficulty not been included
in the metric we are using. This is consistent with the fact that the proportion of variance that is explained by
the psychophysical parameters is very small (ă 0.1) [16, Fig.7D].

A.4 Odour span task

There were two main reasons for choosing the Odour (or Olfactory) Span Task (OST), and experiment 2 in
[17] in particular. The first one is that this task has items with an associated difficulty that is very natural
(number of scents to remember). Since capability and spread are in the same scale as the difficulty metric,
the interpretation is very intuitive and it even has units: number of scents. Note that many other metrics of
performance are unitless, such as accuracy. The second reason for choosing this task is that span length is a
very interesting metric, and does have units (also number of scents). Actually, if the generality of an agent were
maximum, span length would be exactly equal to capability (and exactly equal to longest run), as the agent
would be able to perform perfectly until the number of stimuli reaches its capability, falling sharply to zero
afterwards.

However, this extreme does not seem to happen for this experiment. Actually, longest run is usually larger
than span length, which means that some good streaks are obtained when the rat has already seen many stimuli.
Looking back to Fig. 4 (middle right), we can notice that rats have very high capabilities (the average is 50.04
scents), when we think that this really means the number of scents they are able to remember. In particular,
five of the ten rats (T12, T13, S17, S1, V20) had no previous exposure to the stimuli before the experiment,
so whenever they had to choose between the new scent and the old scent in the experiment, the new scent was
totally new. This means that these rats did not have to distinguish between the old scents, just being able to
tell if the scent was new, which could be linked to some basic olfactory physiology rather than memory. These
rats perform better than the other five. However, the other five rats, which had been exposed to all scents
before the task, while worse, still have a capability above 45 scents on average. So this ‘novelty’ interpretation
of the task can only explain part of this exceptional performance. Another partial explanation is combinatorial.
For a very large number of stimuli, the probability that an old scent reappears is high, as it has been in the
pool for a long time. On average, the probability that any scent that appeared before as new is picked again
as old is close to one on expectation (it is a series adding 1{n each time to the probability, with n being the
number of stimuli seen so far). In particular, scent 1 appears 4.85 times in expectation in an experiment with

72 odours (
ř71

i“1 1{i). This basically serves as reminders that may be helpful to remember the old scents.
Taking all this into consideration, we can look at some particular examples in Fig. S16. Rat D2 has an

almost monotonically decreasing curve, going down slowly from 0 to 65, where the data is discontinued. On
the contrary, rat S17 is much flatter, but as it is almost perfect up to difficulty 65 (and the data is continued
assuming the best possible case), we get a lower spread and higher generality. Rat F16 has an abstruse behaviour
and seems to increase for higher number of stimuli. Finally, rat S1 has a very sharp decrease in performance
around difficulty 50. There seems to have reached a saturation point, which would have given this rat a high
generality, but the curve also sharply recovers between 55 and 65. Notwithstanding, spread is still the smallest.

The key element to understand this experiment is that we have ceiling issues. We do not really reach a
number of stimuli where accuracy really falls to zero. This may be the case for larger numbers of stimuli, but
as [17] recognise, that would make the experiment very hard to conduct, as 72 is already a very high number of
trials. But it may well that “rats can recognize the relative familiarity of odors in some fashion that is largely
independent of the number of stimuli to remember. In other words, within a given session, choices may involve
an assessment of the ‘newness’ or ‘oldness’ of a stimulus in relation to the other stimuli present on a given trial,
with the ultimate choice being made towards the least familiar option”. Overall, independently of the ultimate
cause, we have shown that generality analysis is able to detect when generality takes place, and those rats that
are more or less general.

A.5 Feature-based classification

We started with 473 different machine learning classifiers from study number 7306 from OpenML [18]. We
removed all classifiers with accuracy below 0.35, which is roughly what a random classifier would achieve for
this problem, since there are three balanced classes. After this filter, we end up with 419 classifiers. Again, as
in the previous cases, we do not consider any predefined partition of the instances in subdomains (apart from
the three classes). Each machine learning technique can be better or worse for some subgroups (better in some
regions, in dense areas, for some classes over others, etc.). The interesting point of our analysis is precisely this;
we can derive generality without considering any a priori separation of the examples into subdomains.

Fig. S17 shows the points of the aggregated ACC (without really connecting the points of the 419 classifiers
for clarity). The left plot with KDN difficulty shows points that are largely arranged in a steplike manner,
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Figure S16: ACCs for four selected rats in the Odour Span Task. As there are only two choices, the accuracy
of a random guess should be 0.5, so the values in the y-axis are scaled to 2prj,i ´ 0.5q.

with difficulty 0.4 being the tipping point. The aggregated ACC on the right corresponds to TDU difficulty. In
this case, it is also very steplike, but the inflection point takes place at difficulty 4, with no much happening in
difficulties 1 to 3.
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Figure S17: ACCs corresponding to the cases in Fig. 4 (bottom). Left: the intrinsic difficulty metric (KDN in
this case) shows how results are high for low difficulties and low for high difficulties. Right: using TDU difficulty
instead.

Fig. S18 shows the classifiers with best and worst capabilities and generalities, from all the classifiers in
Fig. 4 (bottom) (also using KDN on the left and TDU on the right). While the best capabilities and generalities
suggest what kind of methods can get good results for one or the other, the worst-case plots are simply anecdotal,
produced by bad hyperparameters, as a kind of illustration of what wretched curves look like.

We can delve further into the classifiers shown on Fig. 4 (bottom). Let us identify one technique whose
underlying mechanism is simple and well understood, such as logistic regression, a linear model based on
the original attributes. Given some non-linearities in iris, this classifier does not reach exceptional values in
capability (0.63) for difficulty KDN. However, it turns out to be very general (spread 0.17); as it is based on
hyperplanes, it cannot really specialise too much. Similar results happen for difficulty TDU : capability (4.78)
and generality (0.42).

In order to have a more complete understanding of how several techniques behave under different difficulty
metrics, we can look at the three best classifiers in terms of capability or generality. For KDN , the best three
classifiers in Table S4 are algebraic (linear or non-linear), while the best three in generality in Table S5 are
based on decision rules or decision stumps in ensembles. For a difficulty metric based on multivariate distances,
high generality is given for those methods based on univariate partitions. The distinction gets more blurred in
tables S6 and S7 for difficulty TDU , but models with high generality are now in this case based on a metric
space (except the decision tree ensemble, which samples on the features), while the metric is based on short
descriptions. Further analysis should be needed to find consistent patterns between the type of difficulty and
the generality observed for related and unrelated techniques.
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iris flower classification
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Figure S18: Some ACCs for the iris dataset, showing the most capable, least capable, most general and least
general for metric KDN (left) and TDU (right). Least capable and least general classifiers are usually obtained
when methods are run with inappropriate hyperparameters.

Table S4: Capability and spread of the top three classifiers with highest capability for KDN difficulty. Data
and configuration as in Fig. 4 (bottom left).

Technique - algorithm name (parameter configuration) Capability Spread
1 Neural Network - ‘classif.nnet(3)’ 0.797 0.195
2 Linear Discriminant - ‘classif.lda(9)’ 0.783 0.215
3 Quadratic Discriminant - ‘classif.qda(2)’ 0.766 0.242

Table S5: Capability and spread of the top three classifiers with highest generality for KDN difficulty. Data
and configuration as in Fig. 4 (bottom left).

Technique - algorithm name (parameter configuration) Capability Spread
1 Naive Bayes Tree - ‘weka.NBTree(3)’ 0.525 0.113
2 Stump Ensemble - ‘weka.Dagging DecisionStump(2)’ 0.458 0.124
3 Stump Ensemble - ‘weka.AdaBoostM1 DecisionStump(12)’ 0.575 0.135
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Table S6: Capability and spread of the top three classifiers with highest capability for TDU difficulty. Data
and configuration as in Fig. 4 (bottom right).

Technique - algorithm name (parameter configuration) Capability Spread
1 Linear Discriminant - ‘classif.lda(9)’ 4.80 0.379
2 Logistic Regression - ‘weka.Logistic(5)’ 4.78 0.416
3 Voting Feature Intervals - ‘weka.VFI(1)’ 4.76 0.449

Table S7: Capability and spread of the top three classifiers with highest generality for TDU difficulty. Data
and configuration as in Fig. 4 (bottom right).

Technique - algorithm name (parameter configuration) Capability Spread
1 Support Vector Machine - ‘weka.LibSVM(2)’ 4.65 0.368
2 Decision Tree Ensemble - ‘weka.RandomSubSpace REPTree(4)’ 4.44 0.369
3 Linear Discriminant - ‘classif.lda(9)’ 4.80 0.379

Overall, we have seen that the difficulty metric has a strong effect on the capability and generality measures,
and orders classifiers differently (both in terms of capability and generality), and ultimately differently too from
the order given by the model accuracies.

A.6 Chess (with Opp transformation)

The Opp transformation in Table 1 takes place in situations where the difficulty of the task depends on the
opponent, as happens in many one-vs-one or team-vs-team competitions. To illustrate this case, we analyse the
results of the World Computer Chess Championship (WCCC), usually part of the Computer Olympiad, where
several computer chess players compete against each other. The transformation takes the score of the opponent
as difficulty with values being 1 (wins), 0.5 (draws) and 0 (losses).

Fig. 5 (top) showed the results of the generality analysis for the 2005 and 2015 editions of the competition.
Fig. S19 shows the ACCs of the participants of the 2005 and 2015 editions, taking the score of the opponent as
difficulty (if two or more opponents ended up with the same score, they are considered together as “tasks” of
the same difficulty). This is why we see values (grey circles) on 1 (wins), 0.5 (draws), 0 (losses), but also some
other values. In the end, if we have all possible pairwise matches, we have a difficulty scale that goes between 0
(the opponent has lost all matches) and the total number of participants (the opponent has won all matches).
After this transformation, we can apply generality analysis (GA) as usual.
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Figure S19: ACCs for all the participants in the World Computer Chess Championship using the final score of
the opponent as difficulty. Data from https://www.game-ai-forum.org/icga-tournaments/game.php?id=1.
Left: Reykjavik 2005 with 12 participants. The winner (Zappa) and the last one (Fute) won and lost all
matches respectively except the one between them, which was surprisingly a draw. Right: Leiden 2015 with
9 participants. Here, no low-rank participant beat any high-rank participant, and draws were usually between
participants with close scores. Accordingly, the average generality is higher in this case.

The plots show that both editions show good generality values, with the 2015 edition being actually more
general (although in this case the correlation between generality and capability is negative). We can also conclude
that the degree of transitivity is high, in light to the generality values. Note that in adversarial settings like
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chess, agent transitivity and task transitivity are two sides of the same coin, as tasks are opponents, which are
also participants (if a participant A beats B and B beats C, how likely is it that A beats C?).

A.7 ALE (with Aref and Rnk transformations)

ALE [19] is a collection of old Atari video games that has become very popular for the evaluation of general-
purpose reinforcement learning algorithms interacting with the game at the raw pixel level (screen shots) [20].
These video games have no difficulty metric and each game has different score magnitudes. In order to see
progress in these games, AI researchers have compared their results against humans, using some recorded data
about human performance on all games.

This is exactly the ARef case in Table 1, where our RefAgent would be humans. We start with a response
matrix R with M “ 24 subjects (23 AI systems plus the human reference) and N “ 45 games. The transfor-
mation of R is straightforward in this case. We simply discretise results to 0 or 1 depending on whether the
particular cell in the matrix is greater or lower than the corresponding result for a human for that game. Then,
in order to derive a metric of difficulty for each game, we take a populational approach, the percentage of AI
systems that are below the human score. The higher this proportion, the more difficult the game is. After this
transformation, we can apply generality analysis (GA).

When we do the generality analysis, we can see the measures for the 23 systems and the human reference
(human.noop) in Fig. 5 (second row, left). In this case, as the human reference is always equal to or larger
than itself, we used the convention of setting a score of 0.5 for humans (they are borderline with the human
limit), so we see humans (human.noop) more or less in the middle (and on the constant isometric, as humans are
borderline with humans independently of the difficulty of the problem). Overall, for all other agents generality
is quite high, and R2D2 (the best AI system for this benchmark) only seems to fail (be worse than the human
reference) on one game over the 45 games included here, which is also very difficult.

But can we analyse the data without a human reference? Yes, but the transformation is more convoluted.
Following case Rnk in Table 1, we use a value of c “ 100, getting the result in Fig. 5 (second row, right). We see
that the new right plot is very similar to the left plot, albeit using two different transformations. But now, as
humans have been considered as any other agent, their place in the plot, and its generality, is more meaningful.
Actually, we see that the capability is more or less on average (as in the left plot), but generality is very low in
comparison. In comparison with the population of AI agents, humans do very well on some games and poorly
on others, being less general than most of the AI agents.

Overall, we can trace the dates when the AI agents were introduced for any of the plots of Fig. 5 (second
row). In this way we could analyse the temporal evolution of AI systems in both generality and capability,
from the early systems being worse than humans for many games (usually on the left of the plots) to current
systems, being better than humans for almost all games (more on the right). Figures S20 and Fig. S21 provide
the names of the supplementary files where this evolution is animated.

The animation for the temporal evolution (by month) of AI systems for the ALE benchmark
in terms of capability and generality can be found in the supplementary file:

ale.refHUMAN.capability-vs-spread.evolution.months.mp4

Figure S20: Temporal evolution (by month) of AI systems for the ALE benchmark.

The animation for the temporal evolution (by year) of AI systems for the ALE benchmark
in terms of capability and generality can be found in the supplementary file:

ale.refHUMAN.capability-vs-spread.evolution.years.mp4

Figure S21: Temporal evolution (by year) of AI systems for the ALE benchmark.

The evolution videos show that the improvement has not always been incremental in terms of capability and
generality, until reaching the final point (R2D2), better than humans for all but one game, with high generality
and capability. However, it is important to have in mind that here the algorithm is retrained for each game. In
other words, it is not the same system solving all these games, but the same algorithm (after specific training)
solving each of them separately, with no memory or transfer between the games. Of course, humans need some
training in each of the games, but the number of required episodes in not comparable, mostly because they do
transfer a cross-generalisation. Because of these important differences, significant research in AI is taking place
in systems that can transfer and change between games with little retraining.
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A.8 GVGAI video games (with Rnk transformation)

In the case of the Atari games above, we see that the positions in terms of generality and capability are similar
with the Aref and Rnk approaches, which gives us support for the use of this methodology in cases where we do
not have a reference agent, such as GVGAI. General video game AI (GVGAI) is another popular video game
competition in AI [21, 22], with a benchmark that comprises a large number of real-time 2D grid games. In this
case, we use 23 systems from a competition in which they confronted 49 games [23]. Each game has 5 variations.
We will explore the case where we consider each variation as an independent game (so having 245 items) and a
grouped version where we aggregate the five variations of each game into one (so having 49 items).

Before doing the transformation and the generality analysis, we performed factor analysis. In the ungrouped
case, there were some constant columns, leading to problems in the correlations, but in the grouped case, the
mean of the FA loadings for one factor was 0.60 and the accounted variance was 0.43, which suggests the
existence of a possible general factor in this population.

Now we perform the Rnk transformation (see Table 1), deriving difficulty as the ranks of the AI systems
from which we have collected results, using a generation of new columns with c “ 100. The capabilities and
spreads are shown in Fig. 5 (third row, left ungrouped, right grouped). What we see is that the systems are
quite general (which is consistent to what we got from FA), but they distribute in a quite thin flat band, where
the agents with middle capabilities are more general (at least according to normalised generality) than those
with low or high capability. The results for the ungrouped and grouped cases are very similar, with a little
bit more dispersion on the right plot (probably due to more robustness on the estimation). In the right plot
we can see more clearly that with about the same capability, MnMCTS is more general than TeamTopBug.
Both use different approaches, but the latter may have a tendency to specialisation for some types of games
(independently of its difficulty).

A.9 Physical cognition tasks (with Rnk transformation)

We now explore the results from [24], an empirical analysis of orangutans (Pongo abelii and Pongo pygmaeus)
on five physical cognition tasks: Box Task, Detour Reaching, TubeTrap Task, Honey Tool Task and Reversal
Learning. The study analyses “general cognitive abilities”, so it is interesting to see what the generality measure
can show in this case.

There are 53 orangutans and 5 items. We start with factor analysis, where the mean of the FA loadings is
0.36 and the accounted proportion of the variance is 0.19. This might be partially explained by the low number
of items (5), but in any case we cannot conclude (or rule out) the existence of a general factor.

Let us try generality analysis instead. Again, we use the Rnk transformation with c “ 100 (this generates
500 columns, giving a sufficient resolution of difficulties). The capabilities and spreads are shown in Fig. 5
(bottom row, left). We see important differences in capability and generality for the 53 orangutans (shown with
their names in grey). Some of them, such as Bella, are more general than other more capable ones, such as Julius.
The aggregates (shown in coloured symbols) are very similar for different groups (species, age, etc.), where only
the background results (bkg-*) deviate from their centre (but their subsamples are smaller too). Finally, we
separated the results of low-capability orangutans and high-capability orangutans, with average generalities of
0.73 and 0.75 respectively. Again, no SLODR in the context of GA appears in this case.

A.10 The Primate Cognition Test Battery (with DRef transformation)

Finally, we are going to analyse an increasingly popular battery for the evaluation of a wide range of cognitive
capabilities. Initially introduced for primates in [25], it has also been used or adapted for non-primate ani-
mals. We will use the original data from [25], which evaluates human infants, chimpanzees and orangutans.
We process the results aggregated into six categories: “Space”, “Quantities”, “Causality”, “Social Learning”,
“Communication” and “Theory of Mind”. In this case, we compare populations and not individuals, but inter-
estingly we have the standard deviation of the results for each species in the six categories. So in this case we
are going to use a different transformation, DRef, where we reconstruct a distribution of results for humans.
In order to do this, we use the mean and standard deviation for each category to derive the quantiles using a
beta distribution (more appropriate than a normal distribution as the values are between 0 and 1). With this,
we generate c “ 100 new columns for each category, as we did in the Rnk approach, but in this case looking
at the quantiles of the reference distribution rather than the ranks. Also differently, we derive the difficulty
as the quantiles of the distribution. In other words, results and difficulties are transformed using the human
distribution as a reference.

What we see in Fig. 5 (bottom row, right) illustrates that the generality of humans is higher than chimpanzees
(and their normalised generality also higher than orangutans). Of course we are using humans as a reference
here, but the location of points is basically given by non-human apes not being good at the non-physical
categories, while humans being consistently good for the six categories. While the data in this case is very

32



aggregated to allow for a more refined analysis, the picture of Fig. 5 (bottom row, right) is sufficiently simple
and clear to understand how these apes compare in terms of capability and generality (for the PCTB).

B Psychometric interpretation: generality, the g factor, SLODR
and the c factor

In this section we will analyse the interpretation of the notion of generality in the context of the science
and literature of human intelligence and psychometrics [26]. We will first flesh out the clear connections and
inspirations, and then we will explore some other more profound implications.

B.1 Related metrics and models: person-fit, Guttman scales, reliability and
variable-θ models

The connection between ability and difficulty is has been frequently vindicated as “the foundation of [...]
measures of mental ability” [27]. Accordingly, psychometricians will find the curves and indicators familiar in
some ways. The use of two parameters, difficulty for items, and ability for subjects is common in classical
test theory and especially in item response theory [28, 29]. Also, plotting the performance, or the probability
of correct response, against ability on the x-axis leads to the item characteristic curves. Similarly, plotting
this against difficulty on the x-axis leads to subject or person response curves [30, 31]. It is important to
note, however, that in IRT, both ability (usually denoted by θ) and difficulty (usually denoted by b in logistic
models) are latent factors, which are estimated by making several assumptions: “1) local independence, 2)
unidimensionality, and 3) a specified shape for the item characteristic curve” [31]. The shape is determined
by a model, which is usually a decreasing monotonic function on b ´ θ, such as a logistic function. Then the
parameters are estimated from a response matrix rj,i.

In our case, we are not considering a measurement problem (yet), and we are not (necessarily) plotting
latent variables. Difficulty could be a notion derived from the items themselves, and capability —the metric we
use instead of the psychometric ‘ability’— is not the parameter of any function. Actually, we define capability
—and we use a different term on purpose— as an area, and not the location of the steepest point of any curve.
For models that are symmetric at y “ 0.5, such as 1PL or 2PL logistic models, the area equals this location.
However, for irregular curves not following a model at all, it is the area what is really meaningful. Also, we are
not plotting correct response for each item, but aggregated or expected response per difficulty.

The key question about the assumptions in IRT is that even if some models allow for a discrimination
parameter for the items, so that that the correlation between correct response and ability for all items is relaxed
(it might even be negative), this is not usually the case for ability. For many models, IRT is actually assuming
a strong (negative) correlation between correct response and difficulty for all agents. Note, by the way, that a
fully steplike ACC does not maximise (negative) correlation. In this extreme case, correlation is actually ´0.866
if the step is in the middle of the range of abilities, but it may even be 0 in the limit if the difficulty is not
bounded. The models (including the variable-θ ability models we will mention below) consider that a subject
being better at difficult items than easy items is an aberration, mostly because the models and estimations are
done in such a way that this is assumed not to happen (or should just show a bad fit to the model).

This has actually led to a myriad of person-fit metrics [32], which is a way of analysing subjects at the
individual level. This aims at identifying cases such as “low-ability examinees who copy answers to several
difficult items from a much more able neighbor and very high-ability examinees fluent in another language but
not yet fluent in English, who misunderstand the wording of several relatively easy questions” [31]. But in the
end, all this is about whether the observed curve matches the expected curve. This was not meant to measure
generality.

As there are so many person-fit metrics, some of them are relatively similar to Γ , as defined in this paper.
Especially relevant are those that compare the person response curve with a Guttman conformal curve, which
is a curve that is right for the first r items of lowest difficulty and wrong for the rest (a step function). In
this setting, the closest metric seems to be the norm conformity index [33], which basically counts how many
ranking mismatches there are between a Guttman curve and an observed curve. Another very related metric
is the disagreement index [34], where the agreement index (the sum of the results multiplied by the difficulty
index for all items) is compared with the score of the Guttman conformal curve with the same number of
correct responses (NC score). Since all these metrics are ordinal, and convert the difficulty of the items to ranks
(index), the correspondence to Γ is only direct when we have a uniform distribution of items per difficulty. In
other words, all these metrics take all instances as equally valuable —the NC score is the number of counts, the
number of correct responses—, while the agent characteristic curves shown in Fig. S30 sum with the assumption
of difficulties being uniformly distributed. So, if there are more items for some difficulty values than others,
the count (the NC score) and the area (the capability) would be different. This is intentional, as we are not
interested in a capability according to a set of items, but according to different levels of difficulty. Actually, for
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many difficulties, the number of items might be infinite. Assuming an uneven number of items per difficulty
does not have more support than assuming them uniform. Capability is invariant to this.

Still, because many of these metrics take the step function as a reference, it is important to look at the
Guttman scale or, more precisely, the deterministic model [35, 36], which can be considered a precursor of IRT.
A deterministic model just captures the item response curve as a step, i.e., the probability of correct response is
0 for values below the ability θ and elsewhere. This model produces agent response curves that are also a step
—the Guttman conformal curves— and, hence, they would have infinite generality. Several properties derive
when items (and hence agents) follow this model. In particular, task transitivity and agent transitivity are true
under this model, as shown in §E.2 (properties #6 and #7).

The Guttman scale assumes monotonicity (higher probability of response for higher ability), but there are
many other models (some non-parametric [37, 38] and some parametric [28, 29]) assuming this. The Guttman
model has been used in cases where solving one item means all items of lower levels of difficulty have to be
solved as well. For instance, in arithmetic, at the lowest level of difficulty one might have addition and then
at the next level we can have multiplication. Arguably, one cannot do any multiplications without knowing
addition (although there are very simple cases such as multiplications by zero or by one that do not require
any addition in the process). In general, the Guttman model does not hold for practical sets of items, and it is
mostly used because of its simplicity.

It is important, hence, to say that our notion of generality is not assuming the Guttman model for items (or
a non-ordinal version of it) or a conformal Guttman curve, but just measuring how far the expected responses
of an agent are from that theoretical situation.

Finally, there is a clear resemblance of the notion of generality with “person reliability”, as introduced by
Lumsden [39]. The notion of reliability wants to capture “tremor effects”, i.e., each person has a variability
on its ability θ. Actually, Lumsden models this reliability with a normal distribution and then the agent
characteristic curve turns out to be its CDF. For constant-θ IRT models, like the traditional logistic models
or the Guttman model, the theoretical agent characteristic curve has the same slope for all respondents. This
changes for variable-θ IRT models, where reliability is introduced as an extra parameter (sometimes sacrificing
the discrimination parameter, depending on the degrees of freedom).

In general, without considering any particular model, an agent can get constant θ, with no reliability issues
at all, and still have a flat curve. Simply, the agent is consistently bad at easy problems, like the two top plots
on Fig. S30. It is only when we limit ourselves to some particular models that we can understand the slope of
the curve as a reliability. In other words, variable-θ models assume “that the person trait level varies during
test administration” [40]. By using expected values and thresholds transforming them into accomplishment
values we exclude the reliability component and we focus exclusively on generality. Tremor effects can also be
discounted as they should appear for all difficulty levels.

Perhaps because of this confusion between reliability and generality, the agent reliability metrics are not
as widespread as the person-fit metrics commonly used for constant-θ IRT models. But we have to be careful
about person-fit: “From a constant-θ point of view, person reliability can be considered as a source of misfit
or overfit at the individual level. Thus, the imprecise, highly unreliable respondent [...] will produce an almost
random pattern that will be regarded as misfitting. At the other extreme, the highly reliable respondent is
expected to produce a highly scalable response pattern that fits the stochastic model too well and that will be
regarded as overfitting”. Here, in contrast, with the individual metric of generality, we are not considering any
model to fit. For generality we just examine the distribution of the expected responses in terms of difficulty.

Once the differences between generality and reliability are clarified at the conceptual level, we may be
interested in the connections at the formulaic level. For instance, if we generate expected responses according
to a normal distribution (like the middle right and the two bottom plots in Fig. S30), with a standard deviation
σ we have the following2:

Proposition 1. Assuming a normal distribution on capability, with standard deviation σ, the slope of the ACC
will be ´ 1

σ
?
2π

.

Less trivially, we can show the following lemma and proposition:

Lemma 2. Assuming a normal distribution on capability, with mean µ and standard deviation σ, such that the

location is sufficiently beyond 0 to have negligible mass below 0 (i.e., µ
σ " 0), we have that Mj “

σ2
`µ2

2 .

Proposition 3. With the same assumptions as lemma 2, we have that spread Sj “ σ and Γ “ 1
σ .

The definition of person reliability was just 1{σ [40], so we see the equivalence between reliability and
generality if the agent had an ACC that were complementary of a normal CDF. However, in our case we do
not understand σ as the standard deviation of capability or its measurement and there is no special reason why
this should be normal. A different interpretation appears if we consider the estimation of difficulty to have an

2Proofs in §F.
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error that is normally distributed, with a variance that is constant for all difficulties. We will come back to this
when we discuss possible ways of estimating the difficulty function.

B.2 From individual generality to populational generality: manifolds and the g
factor

As we mentioned in the paper, Charles Spearman found an important phenomenon; when he analysed a set of
different tests taken by the same population, and calculated the correlations between tasks3, he found a positive
average correlation (ρ̄ " 0). A person obtaining good results on a test usually obtained good results on the
others. This phenomenon was known as the ‘positive manifold’ [41, 42], and was stronger the more culture-fair
and abstract the tests were. The correlation does not emanate from the tests only, but depends on the agents in
the population. Despite this dependence on the population, the positive manifold has appeared repeatedly for
different human populations and different sets of tests, provided they are not too linked to particular cultural
or educational backgrounds. Spearman introduced a rudimentary factor analysis to extract a dominant latent
factor, which he called the g factor, explaining a significant part of the subjects’ variance. He called it the g
factor. Since then, this factor has been found systematically in different populations [43, 44] and has predictive
value about many facets of human life, from academic performance to (lack of) religiosity. The controversy
appears when g is associated with general intelligence, and is said to underlie all other factors and facets of
intelligence. In other words, it is not g which has been called into question, but its interpretation.

Note that the theory behind g allows psychometricians to estimate how much of this factor an individual
has, the g score, giving us a latent factor that can characterise and distinguish individuals. But this score is
not generality, but (general) ability. For two different people with the same g score, we could have that one
person achieves good results for many cognitive tests consistently but another person may get a more uneven
performance for the same set. In other words, the predictability of g scores is analysed globally, but still some
individuals may be less predictable than others. One possible reason may be reliability4, but another reason is
simply that some individuals are less general than others. In the end, g was the result of observing a general
factor emerging from human performance on a range of tests. But where does this general factor come from in
the first place? Is it a necessary result if the individuals are really general? This new question is what we try
to explore below.

Let us first analyse the situation where the positive manifold is extreme, with a mean correlation of 1. This
means that all columns in the response matrix rj,i have a correlation of 1. Now let us assume that all columns
are normalised (same mean and standard deviation). The only possible situation for this to happen is that all
columns are equal, @j, i rj,i “ rj,1. So clearly, for each individual we have zero variance in the tests. But this
zero variance between numeric values for a test does not mean infinite generality (which must be calculated
from an ACC). Consequently, we cannot relate this to generality as we do not know the instances in each test
and their difficulty. But let us assume that we convert each response in the response matrix into a step ACC
with capability at the rj,i, or in other words, we assume that ψjphq “ 1 iff rj,i “ rj,1 ě h, and 0 otherwise,
and merge them into a single ACC for each agent j as all of them are equal. Clearly we have that Ψj “ rj,1 as
all of them are steps by definition, also having Γj “ 8. In brief, only under this “thresholding” approach that
constructs step ACCs for a range of tasks, a mean correlation of 1 would imply infinite generality. Actually,
this transformation approach is analysed in §F.4, where we get an interesting and straightforward connection
between generality and row variance in the general case (no extreme manifold).

Secondly, let us now analyse the situation where all agents have maximum generality. Without loss of
generality, we can consider that the rows of the response matrix RMˆN are ordered by increasing capability
(the columns may also be ordered by increasing difficulty but this is irrelevant here). The values for each and
every column in the response matrix rj,i would be of the form 0p1q, with p ` q “ M , i.e., the item response
curves would follow a Guttman model. If p ą 0 and q ą 0 the correlations will be well defined and will be
strictly greater than 0 and there will be a positive manifold. Depending on the distributions of capabilities and
difficulties the magnitude of the average correlations will vary. For instance, it is easy to see that if we consider
a normal distribution of difficulties and an equal normal distribution of capabilities, the mean correlations will
be around 0.47, which is a very important positive manifold. In this situation, we see that individual generality
implies a positive manifold. We do not even need to do factor analysis to check whether individual generality
extends as a populational generality. As Guttman points out, a notion of populational generality can just be
defined “as having all correlations positive or zero”, without the need of “a common factor” [45].

Spearman, and most of the literature after him, analysed the positive manifold for tests instead of items.
Tests group a number of items that are considered to be related (e.g., a maths test) and include a range of

3Pairwise correlation ρr,s is calculated for each pair of tasks µr and µs, columnwise, on a result matrix such as the one shown
in Fig. 1 (top) —but usually with many more rows. Then, all pairwise correlations are averaged into ρ̄.

4With g=1 we can still have that each agent fails a different percentage of the times, but in a completely random way. Actually,
by taking a perfect agent and introducing different levels of systematic noise to form a population, one would get perfect g. This
is not generality.
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difficulties so that we get diversity of results for the test according to the population it is going to be applied
to. So let us consider that items or tasks µi are grouped into tests τk. Now we can construct a new response
matrix where columns k are tests and rows are agents j. We can analyse that by aggregating items into tests,
mean correlations may get much higher under different scenarios.

For instance, let us consider both item difficulties and capabilities following the same normal distribution
(sufficiently far from 0 so that there is negligible mass below 0). In this case, we have that if we group the
items randomly, we can get mean Pearson correlations above 0.99. If the new groups preserve the item difficulty
distributions, for each agent πj we will have exactly the same results for all tests on expectation. As the agents
have different capabilities, we will have a mean Spearman correlation equal to 1 and, if the distributions are
normal, a very high mean Pearson correlation.

Other similar connections can be obtained with some other distributions, assuming that each test preserves
a range of difficulties such that it ensures the differences in capabilities to be represented per each test. This is
actually a very natural condition for a test to be informative (if all respondents got similar values for the test,
then the test would not very informative). As a result, if this variance is preserved, the only strong sufficient
condition for a high manifold to appear is individual generality5.
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Figure S22: Four agent characteristic curves, with the bands showing two possible tests (red and green) grouping
subsets of tasks. Top: We see two maximally general agents. Independently of how the groups are made for
the two tests, provided the same range of difficulties is covered, the curves for each subset would be the same
and so the effect on the populational generality. Bottom: groups can be made in such a way that the green test
gets all positives for the bottom left plot but all negatives for the bottom right plot, and the opposite for the
red test. As a result, the manifold might even be negative. Compare with Fig. 1 (bottom).

5This sufficiency condition does not exclude that populational generality could have been obtained by other means, with all
agents with different capabilities but flat ACCs, as the one on Fig. S30 (top left). This situation would actually require fewer
conditions on the distribution of difficulties (actually difficulties would not play a role for these curves up to the point where the
flat curve stops) but will necessarily require a random sample per difficulty (one could even get negative manifolds if instances
are chosen on purpose to do so). Ultimately, dominance between ACCs (not only different capabilities) would be a more refined
condition for this.

36



Only the maximally general ACCs can ensure that for every possible partition or sampling of instances,
provided the range/distribution of difficulties is kept, the manifold is created, since the capabilities are preserved
for each subtest. This is illustrated at the top of Fig. S22 in contrast with the bottom of the same figure. If
individuals have low generality, choosing sets where a difficulty range is preserved is less important, and the
positive manifold could still appear if the tests are not splitting the items by pockets of speciality. In other
cases, the manifold might even be negative. On the other hand, if individuals have high generality, any partition
of items into tests provided the range of difficulties is preserved would lead to high positive manifolds. In any
case, negative manifolds would never appear.

Negative manifolds are very rare in the literature of human intelligence. Also, having sets of cognitive items
for which difficulty does not play a role seems very unnatural. But still, the evidence might be compatible with
some moderate degrees of generality or some individuals being more general than others. The plausibility (or
necessity) of a particular scenario in light of a positive manifold will depend on a series of assumptions. Of
course, the sufficiency direction is clear: if we are able to measure generality of the individuals in a population
and we know how tests are formed, we can predict the manifold.

B.3 Spearman’s Law of Diminishing Returns (SLODR) and individual generality

There is another source of evidence that can help us with the analysis of the plausibility of individual generality
in light of a positive manifold. This evidence was also first gathered by Spearman. He calculated the correlations
and g factors for the results of two different groups over the same tests: a group of humans A with normal
abilities and a group B with low abilities. The mean correlation for group A was 0.47 while the mean correlation
for group B was 0.78. The proportion of the variance explained by g for the low-ability group (scoring worse)
was much higher than for the normal-ability group (scoring better). The more intelligent a population is, the
less variability is explained by g. Spearman associated this with a possible saturation of g for most able groups,
such as the law of diminishing returns in economics, and since then it became known as Spearman’s Law of
Diminishing Returns (SLODR). The finding has been replicated in many different experimental settings since
then [46, 47, 48].

Spearman argued the items that were only solved by the most able individuals required the combination
of many skills, and g would play a smaller role. Several other explanations have been introduced, such as [46]
and [47]. These explanations have been contested but the very experimental evidence itself has been put into
question. One explanation describes the phenomenon as an artefact of the way items are selected, choosing
narrow ranges of difficulty. Basically, there are no sufficiently challenging items, and very able individuals do
not require to use general intelligence, as they can solve the problems more mechanically. Using the same tests
for both groups, and a ceiling effect given by an insufficient range of difficulties would create the observed effect.
Relatedly, Jensen [43, p. 587] discovered that the most able group showed lower variance than the less able
group. Finally, when the more able group was asked to solve problems of higher difficulty, the SLODR vanished,
and the more able group even showed higher correlations [49].

This observation is more consistent with individuals having generality, such that if the distribution of dif-
ficulties of items is not adjusted for the two subpopulations (or sufficiently wide to accommodate both), the
items would be on the left of the step ACCs for many individuals of the more able group, so the correlations of
the most able group would be smaller. Note that this would not appear for flat ACCs (with very low individual
generality).

In other words, the SLODR, without adjusting the difficulties, would not appear if the individuals were not
general at all. However, it appears if the individuals are highly general. And it is also easy to see that if we
adjust the difficulties, so that the distributions are the same for both groups (and the relative distributions of
abilities are the same), then we would have exactly the same manifold, so no diminishing or increasing returns.

Indeed, there is a pressure about resources when trying to achieve capability. This may make the ACCs
more compact for higher capability, leading to more individual generality for the more able group. That would
entail an augmenting return, as postulated with the so-called Universal Law of Augmenting Returns (ULOAR)
[50]. We will return to these issues under an evolutionary framework (pressure of resources) and also under a
computational framework, by looking at the invariance theorem and the stability of difficulty.

B.4 Individual generality, collective intelligence and the c factor

Finally, let us comment very briefly about collective intelligence. Collective intelligence appears in the natural
world in many ways, as groups of individuals of the same species, the whole species taken as a whole and even
in ecosystems with complex interactions between several species. Here we just limit our analysis to the view of
collective intelligence as teams that have to work together to solve tasks, usually in quite controlled conditions
[51, 52]. While maximum generality is optimal for an individual, it is not for groups [53]. If all the individuals
in a group have maximum generality, the one with highest ability will dominate the rest. By agent transitivity
(property #7), everything any other agent solves will be solved by the dominant agent. Consequently, and the
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result of the group will be at most the result of the best agent in the group. With more specialised agents,
there could be more options to exceed the results of the most capable individual. Of course, this depends on
many assumptions about the dynamics of the groups, with the exact outcomes easier to derive when groups
just combine their capabilities by voting or weighted voting (if confidence is used) [54, 55, 56]. In more realistic
scenarios, redundancy may be needed in a group, and hence more generality or more overlap in the abilities of
the components may be beneficial.

One straightforward way of considering the aggregation of several agents is to consider that each agent is
answering a proportion of the questions, chosen randomly. In the particular case of having N agents with step
ACCs (maximum generality) then we have the conditions of lemma 19 and we have average capability and
spread equal to the standard deviation of the original capabilities. Randomly choosing from general agents with
different capabilities basically creates a non-general composite agent.

Interestingly, the aggregation of several curves for which we do not know the shape could be understood
as a normal distribution on the reliability of the capability, transformed into a sigmoidal cumulative density
function for the ACC. Consequently, findings such as the c factor [51], could be re-analysed by looking at the
individual generalities first, rather than looking at the individual g scores (or IQ scores).

C Evolutionary interpretation: generality and general intelligence
in the animal kingdom

The study of intelligence in animals (including humans) usually distinguishes between domain-general and
domain-specific kinds of cognition. Much debate has been held on the presence of degrees these have in humans
and other non-human animals. This ultimately relates to discussions around modular views of the mind [57]
versus developmental domain-general learning [58]. It is also common to analyse whether social species are
associated with more domain-general cognition, and the so-called social hypothesis (see, e.g., [59, 60, 61, 62]).

The definitions of what is general and what is specialised also vary in the literature, but it is usually
understood as coping with a wide range of cognitive tasks, or flexibility for changing cognitive demands in an
unpredictable environment [63]. Note that this view is similar to the notion of generality we are discussing in
this paper, except for the explicit use of difficulty. In our case, we say that an animal or a species is cognitively
general if it is able to perform equally well on a wide range of problems up to a limited difficulty. This contrasts
with specialised animals or species that display a hardwired fixed repertoire of domain-specific functionalities
where they excel, but are unable to cope with even the simplest tasks beyond the repertoire.

C.1 The g and G factors and intelligence convergence in animal cognition

A data-driven approach to the issue of general intelligence in animal cognition has usually been conducted
with population analyses performed on several non-human species [64]. Burkart et al. [65] provides the most
comprehensive review to date of the study of the correlation manifold in non-human animals, both intra-species
(denoted by g) and inter-species (denoted by G). The main conclusion is that “there is increasing evidence for
g in nonhuman animals, particularly in mice and primates [...] At the interspecific level [...], studies of primates
and birds provide a robust pattern consistent with G” [65]. Although some methodological caveats exist [66],
the evidence is understood as these factors being stronger if they are able (on their own) to explain a high
proportion of the variance of results for a battery of tests in a population (individuals in a species for g, or
species averages in a multi-species analysis for G).

If we represent the performance of several individuals or species for several domains, as shown in Fig. S23, the
evidence for g would be more in alignment with the plot in the middle, which shows that when one individual
displays some performance in one domain the individual tends to display similar performance in the other
domains. This is much in alignment with the early notions of general intelligence in humans and the positive
manifold, as per our early motivation around Fig. 1 (bottom, especially if we rotate the plots) and what we
have just discussed about Fig. S22.

So we are in a very similar situation to the human case. We cannot directly derive individual generality from
these findings unless we postulate further assumptions, especially in terms of the difficulties used for the items in
the domains. Of course, items are wisely chosen with the right difficulty such that there is variability of results
to explain. This variability is basically what is been looked after (a factor that explains a great proportion of the
variance). For instance, if we take Fig. S23 (left) and add more items of low difficulty to domain D2 and D4, we
would simply even the results, as there would be more correct responses for all individuals in these domains. The
contrary is also true: there are spurious ways, by adding further easy or hard instances of particular domains,
to go from the middle plot to something that resembles the leftmost plot. This is one of the key reasons why
ignoring difficulty and considering low variability (as seen in middle plot) as an indication of generality is wrong,
especially when we think of the spurious ways of achieving it. Despite all these problems, it is not customary
to perform a systematic analysis of difficulty (for instance, using cognitive demands for each item, or applying
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D1      D2      D3      D4

domain-specific abilities
largely independent of 

developmental conditions

D1      D2      D3      D4

domain-general abilities
homogeneous

 developmental conditions

D1      D2      D3      D4

domain-general abilities
heterogeneous

 developmental conditions

Figure S23: Three different possibilities for four individuals of a single species for four different domains D1,
D2, D3 and D4. Left: The individuals behave better for some domains than others with very small differences
between the individuals for each particular domain. Middle: The individuals behave equally well for all domains,
but some individuals show higher performance than others, also in a consistent way. Right: At the species level,
there seems to be no difference between domains, but individuals perform differently for some domains, either
by individual differences or by “heterogeneous developmental conditions”. [Adapted from [65, Fig.1].]

IRT). Also, in the first place, the identification of domains (such that they are actually diverse) is one of the
fundamental methodological issues in the analysis of general intelligence in animals. “The issue of task selection
is thus closely linked to the identification of domains in animal cognition, which in fact is part of the empirical
question that needs to be addressed in intelligence research in animals in general, by using batteries as diverse
as possible and statistical procedures that are a priori agnostic to the underlying factor structure” [65]. This
is linked to the problem of dimensionality reduction, which has been highlighted by [66] as possibly being the
cause of spurious results.

C.2 Cognitive resources and generality

In animal cognition, the references to resources (cognitive demands) required for the tasks in several domains
are usually part of the discussions. Burkart et al. [65], for instance, set the question around how much extra
neural tissue is needed, taking into account that domain-specific cognitive adaptations may require much less
additional expensive brain tissue [67] than domain-general cognitive ability, which is also less directly linked
to fitness-relevant benefits. They face “the puzzle that domain-general cognitive ability apparently evolved in
at least some lineages, or perhaps even in birds and mammals in general, even though its evolution has had
to overcome more obstacles compared to the emergence of domain-specific cognitive adaptations” [65]. One
possible theory that explains this puzzle is the cognitive buffer hypothesis [68], which states that this extra effort
in domain-general cognitive processes in larger brains buffers animals against environmental variation, and
pays off for a wider range of behavioural patterns given by innovation, learning and, most especially, cultural
transmission [25, 67, 69, 70].

Evolution usually finds a trade-off between specialised functions and more general capabilities, according to
the effort that has to be put in terms of evolutionary innovations and energy consumption of bigger brains on
one hand and how expectable and regular the tasks that are faced by the species are in their environments.
In particular, Del Giudice and Crespi [71] include a series of trade-offs over four key properties: performance,
robustness, efficiency and flexibility. Clearly, performance, efficiency and flexibility are closely related to ca-
pability, difficulty and generality —although the connections are qualitative rather than quantitative, at the
measurement level. The trade-offs between efficiency vs flexibility and performance vs. flexibility are both
associated with the “generalist-specialist trade-off” . We can see this trade-off in Fig. S24, where we com-
pare the gains and the efforts of a domain-general cognitive enhancement versus a domain-specific cognitive
enhancement.

Of course, how meaningful these numbers are depend on how well we can estimate the effort for general
solutions versus specialised solutions and how likely the specific tasks are versus all other tasks. Actually,
Fig. S24 assumes that all tasks are equally likely (or, more precisely, all difficulties are equally likely). When
some specific behaviours or domains are very likely in the environment of the species, then specialisation will
of course pay off. It is when there is environmental unpredictability in that many tasks are similarly likely,
that the pressure for more general intelligence takes us to the kind of increase like the violet band in the figure
rather than the orange one. Actually, in an environment where most tasks change in a few generations we would
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Figure S24: Using ACCs to represent two different ways in which the capability of a species can be enhanced, with
a domain-general cognitive enhancement (vertical violet rectangle) or a domain-specific cognitive enhancement
(horizontal orange rectangle). Left: both rectangles cover the same area (1 ˆ 1 and 0.1 ˆ 10), and hence
increase capability in a similar amount, but the orange one has a higher expected difficulty, and hence effort

(Mj “
ş11

10
h ¨1 dh “ 10.5 vs Mj “

ş20

10
h ¨0.1 dh “ 15, according to Eq. 2). Right: both rectangles imply the same

extra effort (Mj “
ş11

10
h ¨ 1 dh “ 10.5 vs Mj “

ş17.6

10
h ¨ 0.1 dh « 10.5, according to Eq. 2), but the specialised

one (orange rectangle) now has a smaller area, and hence less increase in capability than the general one (violet
rectangle).

have an ACC closer to the maximally compacted one and maximum generality (as given by the compactness
property, #2), as this would be resource-optimal in order to obtain maximum capability (and maximum success
if tasks are so unpredictable). Of course, many tasks requiring cognition, such as navigating and eating —but
not foraging or hunting— might still be linked to a few particular specialised skills, as they are more constant
in the evolutionary history of many species6.

How difficult a domain-specific functionality is or how much effort it requires can be analysed in different
ways. One first way is to look at the energy effort, by examining the involved neurological modules that are
dedicated for that functionality, and map this with energy consumption. A second approach is to estimate
evolutionary effort by looking at changes in DNA that make the functionality possible (from an ancestor that
did not have it), contrasting with the ecological pressures and other similar functionalities. A third pathway
is to identify these tasks and make them be learnt by systems that do have general capabilities, and estimate
their difficulty from them. In this case, extreme care has to be made for many confounding factors. Finally, a
fourth possibility is to determine the difficulty of tasks intrinsically (e.g., working memory requirements, pattern
complexity, etc.).

C.3 Looking at evolutionary selective pressure through observable scores: capa-
bility and generality

Some less general species are able to solve very complex problems by specialisation that other more general
species cannot do. We can finally look a this in terms of the two observable indexes we have introduced here:
capability and generality. Plotting generality and capability against the level of social interaction (intra-specific
and by diversity of predators), cultural inheritance, neural tissue mass, etc., with octopuses, hyenas, koalas,
raccoons, primates and corvids, among other species, is expected to scatter points on very different locations.
As a result, this could also help us see whether these traits are related, or whether there might be one-directional
causalities. Both capability and generality are observable variables, the first is aggregated performance (the
area under the ACC curve, eq. 1) and the second is a metric of how compact this performance is (how steplike
it looks over difficulty, eq. 5).

Fig. S25 shows a simulation where 200 individuals are generated with random results on 200 items, and we
see different selective pressures on the capability and the cognitive effort on the individuals: no pressure (top
left), pressure on capability (top right), pressure on compactness (bottom left) and both (bottom right). As

6Judith Burkart (PC) suggested that a way of analysing adaptability could consist of giving the subjects control on a choice of
tasks of different difficulty, with this information of that difficulty.
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we see, the correlation between capability and generality increases when there is pressure on minimising effort
(while keeping or maximising capability).
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Figure S25: Distribution of capabilities and generalities of a simulation where 200 individuals are generated on
random results on 200 items. The top left plot shows the original case with no selective pressure. This is not
very interesting as all the ACCs are flat. The top right plot performs a selection per capability, where only those
individuals with capability greater than or equal to 50% survive. The bottom left shows a selection by effort,
where only those individuals that require less than 100% over the minimum possible effort for their capability
(a maximally compacted ACC) survive. Finally the bottom right combines both selections at the same time.

Fig. S26 shows a similar simulation where, in addition, items have a uniform range of difficulty and success
for the tasks is randomly proportional to the difficulty. In both figures the correlations can get very high
since the pressure goes in the same direction: more capability and less effort. This is simply the result of the
compactness property (#3). But again, it is important to notice that as generality and capability become more
correlated (especially in humans) there is a tendency in confounding them, ending up talking about general
intelligence, without knowing clearly whether the emphasis is on generality or capability.

The theory of general intelligence, the positive manifold and the g and G factors have all (in different
degrees) raised bitter controversies. Setting aside the interpretation issues, one of the major arguments against
these theories is that they might be considered statistical artefacts, produced as the result of making some
choices on the items and test batteries. Some of these choices are critical: they should fit the population of
individuals —not too easy, not too difficult, so there is variance to explain. In a very insightful way, Woodley
of Menie et al. [72] break the species groupings by considering humans and chimpanzees together into a single
population and then correct for these “ceiling or floor effects”, by reducing the number of tests to those that have
higher coefficients of variance. Fig. S27 shows the correlation of scores (d) and g loadings on the y-axis against
different values of the variance produced by progressively selecting the tests with higher variance. Although
not mentioned in [72], this analysis is of course closely related to the SLODR (and the alternative ULOAR
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Figure S26: Same as Fig. S25 but with examples of different difficulties (ACCs are triangular originally). Top
left: no selection. Top right: selection by capability. Bottom Left: selection by effort. Bottom Right: selection
by effort and capability. For the two bottom plots, maximum effort set to 25% over the minimum possible effort
(a maximally compacted ACC).

hypothesis) discussed in the previous section, where by adjusting the variance we can get that g and scores can
grow together, as we see in Fig. S27.

By looking at generality, as an individual observable measure, we can simplify the analysis in many ways.
First, the measure does not depend on a population of individuals, so we do not need to determine what is a
sensible group or even consider them into species for the analysis. Second, because we can apply these metrics
for a single individual, we do not need to obtain results for a large and unbiased sample of one species, which
is usually very costly or problematic. Third, generality is algebraically independent from capability, and the
correlation must come then from evolutionary or other kind of efficiency pressures applied to the individual or
the species. For instance, actual plots like Figures S25 and S26 can be used as an alternative to Fig. S27, and
done for individuals of many species together.

Another kind of criticism around the study of general intelligence is about whether “the positive manifold
provides little or no constraint on the possible architectures of cognition” [73]. General intelligence may then
originate from primary specialised modules being boosted by more general secondary modules (or evolved in
this more compressed/abstract way for the economy of the brain), by a wide range of specialised modules that
are switched on or off depending on the task at hand or by a truly general system helped by particular biases
according to what environment demands are most frequent for a species. All this diversity of explanations could
be extended to generality, as a high value of Γ can be obtained in many ways (but not as many as g, as we
discussed in the previous section). As we will see in the following section, looking at individuals that have gone
through no selective pressure, or a different engineering one (i.e., AI systems), can give us a wider theoretical
and empirical scenario to exclude some interpretations of the existing findings. This can help calibrate new

42



Number of tests retained

d*
g 

lo
ad

in
g 

co
rr

el
at

io
n 

m
ag

ni
tu

de

12 11 10 9 8 7 6 5 4 3

−
0.

25
0.

00
0.

25
0.

50
0.

75
1.

00

34.2 35.7 37.4 39.5 42.0 45.0 48.7 53.7 58.9 63.3

Average coefficient of variance in tests retained

Human g loadings
Chimpanzee g loadings
Combined g loadings
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coefficient of variance in the tests retained, choosing them by removing those with smallest variance first. Trends
shown for chimpanzees, humans and a combined population. [Adapted from [72].]

research to come, which is looking at the values of Γ and Ψ in the animal kingdom.

D Computational interpretation: generality and artificial (general)
intelligence

The debate along the spectrum between general intelligence and specialised (or narrow) intelligence has also
pervaded artificial intelligence since its inception. The very early attempts were directed towards a General
Problem Solver [74] and the goal of “generality” [75]. In the following decades, many of these programs failed
to fully realise the complexity of intelligence, while other more narrow applications started to be successful.

In 1978, John McCarthy published a new version of his 1971 Turing Award Lecture on “Generality in
Artificial Intelligence” [76], recognising that one of the major problems was that, if behaviour was represented
by programs, these programs could only cover a finite set of domains or problems.

Of course, these were the times were machine learning was not a dominant paradigm in artificial intelligence.
Nowadays, the use of machine learning techniques, coupled with sufficient data, allows systems to be adapted
to different domains, using the same algorithm, which generalises the data. Generalisation is an intrinsic —if
not definitional— part of learning. Learning is hence the way in which AI systems (and human and non-human
animals) can adapt to unseen situations. In other words, when considering a large and diverse number of tasks,
coding particular solutions for all of them is infeasible, and hence learning becomes the solution.

Consequently, it may seem that (machine) learning systems are then general by definition: give a learning
system sufficient examples and it will learn any possible task. The goal of machine learning, and AI, would be to
define this universal machine learning system. While this idea is still behind some of the narratives in machine
learning and artificial intelligence, there is an important objection to this universal generality: efficiency. Some
systems can potentially learn any function, given a sufficiently large number of examples. The question is how
many examples, how much time and how large the model might be. The answer to —or cause of— this problem
is known as bias. By embedding a particular bias for a learning algorithm, one can accelerate learning for some
problems while making it harder for some other problems.

There are many ways of explicitly or implicitly introducing strong bias to a learning algorithm: specialised
architectures, hyper-parameters, background knowledge, and the very algorithm itself. By using these particular
biases, we can have AI systems that can solve particular pockets of problems: speech recognition, machine
translation, robot navigation, medical diagnosis, face recognition, etc. Interestingly, by a shrewd use of more
and more computing power, some of these algorithms are requiring less physical time (and occasionally fewer
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examples) to learn these tasks, approaching, at least in some areas, the flexibility of some animals.
Still, there is a view that artificial intelligence does not produce general systems [77, 78]. Some prominent

positions even deny the possibility of general intelligence at all, as Yann LeCun puts it: “There is no such thing
as AGI. Intelligence is always specialized” [79]. While the same deep reinforcement learning can learn to play
Go or Chess by just changing the rules [80], the same algorithm cannot learn to navigate a room and play poker
[81, 82]. Of course, there are algorithms that can learn to navigate a room and have similar principles (and even
shared modules underneath) to those playing poker. In either case there is a great amount of hyperparameter
tuning, input and output transformation, and other changes to the architectures and the optimisation operators
to make them work for a different domain. However, recent progress in deep reinforcement learning and
transformers is producing systems where some sort of generality is undeniable [83, 84].

The area known as Artificial General Intelligence [85], where the same system should be able to solve a
range of problems, is still seen as a counterpoint to a bevy of systems that are successful for more narrow
domains, even if they are fuelled by machine learning, and built upon general principles looking for abstract
representations.

Unfortunately, to the dismay of some members of the AGI community, the term AGI is now commonly used
as synonym of ill-defined buzzwords such as human-level machine intelligence, human-level artificial intelligence
or even superintelligence, without a proper analysis of what the ‘G’ in AGI actually means, and how it can be
distinguished from mainstream AI [86].

D.1 Generality and all possible tasks

The reduction of AGI to anthropocentric views of intelligence has an intuitive appeal. We are interested in
those tasks humans can solve. But which are these tasks? Or, more conspicuously, what are the tasks that
humans —the hominids characterised by their general intelligence— cannot do? We can analyse this question
and put the notion of generality to its limits by considering all possible tasks. One possible way of doing this
is by defining the set of all computable tasks, with tasks being framed in a testing scenario, where agents can
learn from experience. In other words, we can consider all possible learning tasks (see [87, 88, 89, 10, 90, 91] for
different ways of doing this). Apart from the particular formulation and setting, the most relevant issue comes
when we realise that as we now have a set of infinite tasks, we need a distribution over them, giving more weight
to some over others.

Let us start with Solomonoff, who defined all possible sequential prediction tasks and an associated distribu-
tion, the algorithmic probability [87, 88]. The set of tasks is just defined by the problem of estimating the next
bits of all the sequences that can be produced by a universal Turing machine UTM. While all sequences can be
generated, their distribution (the algorithmic probability) depends on the reference UTM. In a way, this was
an elegant way of representing the notion of bias in machine learning. Depending on the chosen UTM, some
concepts will be easier to learn than others. Still, the great contribution by Solomonoff was that he showed that
the same algorithm can be used for all UTMs (biases), and convergence can be obtained. A universal learning
algorithm exists, it always works, but it will work more or less efficiently depending on the chosen bias, the
reference UTM. In other words, each UTM assumes a prior about the world, and observations whose underlying
pattern is simpler for the chosen UTM (smaller Kolmogorov complexity) are more likely than those observations
with more complex patterns. Solomonoff integrates Occam’s razor and Epicurus, as his theory considers the
combination of all theories that are compatible with the evidence, weighted by their Kolmogorov complexity.

On the other extreme for the choice of a distribution we find the assumption that every possible problem’s
output is equally likely. In a sequential prediction problem this would be expecting all sequences to be equally
likely or, in classification problems, to consider all combinations of inputs and outputs equally likely. This
is referred to as “block uniformity” [92], a broader type of distribution than the uniform distribution. Block
uniformity is one of the conditions for the famous no-free-lunch (NFL) theorems [93, 89, 94]. They show that,
under these conditions, no learning method can be better than any other on average. A general-purpose learning
system and hence the very notion of ‘general intelligence’ would be simply impossible [95]. Moreover, every
agent would solve exactly the same number of tasks, so there would not be any variability in capability, effort
and of course generality.

The NFL theorems are very relevant, because our observation that learning systems exist and work (in
animals and computers) can only happen if the assumption is not true. This is the important corollary of the
theorems. Apart from a pragmatic or ad absurdum rationale, there are more epistemological ones: choosing all
perceptions as equally likely is difficult to reconcile with a world with physical laws and other agents around
(plants, animals, conspecifics) that do not behave randomly. Actually, if we consider all these subsystems
computable, Solomonoff’s view is more natural, as the output of a UTM fed with random bits is not random. In
other words, what we perceive, our world, is filtered through many machines —laws, mechanisms and agents—,
making those patterns that are produced from systems with limited resources more likely.

From this view of all possible tasks, one can define a (universal) distribution according to the complexity
of the generator of tasks, such as the complexity of the task description. However, one can also define the
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distribution by looking at the complexity of the solution for the task, which can be seen as its difficulty.
This way of weighting solutions by their difficulty is common in psychometrics, but was first introduced in
the context of all (sequential) tasks in [10], recently extended to bidimensional grids [96]. When one goes from
sequential tasks to interactive tasks (such as reinforcement learning [97, 98]), the difference between the smallest
program that generates a task and the smallest program that solves the task becomes illuminating. Setting
the distribution according to the former led to the notion of universal intelligence [99]. Setting the distribution
according to the latter led to the notion of policy-general intelligence, assuming a uniform distribution over
solutions for each task difficulty [100, 101, 91]. We can see some of these choices in Fig. S28.
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Figure S28: Different ways of generating tasks (or deriving their distribution). Top: the probability of a task
is given by its generator. If the number of tasks is infinite, but countable, a uniform distribution is not a
viable option, and a universal distribution must be used instead, making this equal to universal intelligence
[99]. Middle: we first define a distribution of difficulties and then we define tasks according to that difficulty.
In cases where the difficulty of a task can be derived from the definition of the task, this is a good option, as
in [9, 10]. Bottom: again, we first define a distribution of difficulties and then we derive solutions matching
that difficulty. Finally, tasks are generated according to the solution. This is actually an option when the
definition of a task does not say much about the difficulty of the solution, such as interactive tasks, as used
in [100, 101, 91]. Note that for the two bottom rows in the figure, if the difficulty distribution is uniform, the
expected success on a random task drawn from the distribution is equal to the area under the ACC, which is
capability, as for eq. 1. [Adapted from [91, Fig.9.7].]

D.2 The choice of diversity and difficulty

The important thing about a theoretical account of all possible tasks, and especially if we know how we generate
them, is that we can control for two things that are crucial for generality: the diversity and the difficulty of
the tasks. If we look at diversity first, the schema on the top of Fig. S28 makes it very hard to ensure that
the set of tasks is going to be diverse, as we generate tasks according to a distribution on their definition, but
not about their solutions. Besides, if the choice is a universal distribution as in [99], then the distribution is
dominated by a few tasks, which cope most of its probability mass [102, 103]. For the schema in the middle of
Fig. S28, we have at least some range of difficulties but, still, that does not ensure that the solutions might not
all end up being of the same kind. Finally, it is the choice at the bottom of Fig. S28 that ensures diversity by
the most entropic choice of a distribution per each difficulty (assuming the number of solutions per difficulty is
finite). This choice is the uniform distribution.

For instance, Fig. S29 shows an ACC where instances have been generated according to the bottom schema
in Fig. S28. If we consider all difficulties as equally likely, and assume the curve is 1 for h ă 7 and 0 for h ą 14,
then we have the ACC shown in the figure, with capability Ψ “ 9.86 and generality Γ “ 0.39.

A theoretical view also allows us to consider different options for difficulty. Having all tasks sliced by difficulty
provides us with a way to understand the success of an individual in relation to the resources used. For instance,
we can consider difficulty as the complexity of the simplest solution. In order to do this, we assume responses
are binary or are binarised using a threshold, in successful or unsuccessful results, represented by Aπ

µ, being 1 if
π solves µ and 0 otherwise. There are few interesting consequences of this interpretation of difficulty. First, we
have that for every agent, there is a difficulty from which its ACC is always zero, so the area is always finite7.
Second, we can precisely determine how many solutions of a given difficulty there might be. For instance, we
can calculate the resources according to different situations:

• We can consider difficulty as the length of the solution with lowest Kolmogorov complexity, i.e., ℏpµq
def
“

minπ:Aπ
µ“1 Lpπq where Lpπq is the length of the solution π. Then the number of solutions for a given

7Basically that difficulty is determined by the maximum resources of the agent, because if it could be solved with fewer resources,
the difficulty should be lower.
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Figure S29: Average human results on exercises of different difficulty (h) in the C-test [9, 10], with the derived
metrics shown on the plot.

difficulty h would be 2h. In this situation, we can derive from the compactness property (#2) that the
optimal curve is again one with Γ “ 8. To achieve capability Ψ, a non-learning system having predefined
solutions for a large number of tasks would require a minimum of

řΨ
h“0 h2

h “ pΨ ´ 1q2Ψ`1 ` 2 bits, plus
the necessary code or neural wiring for making the switch among the 2Ψ`1 ´ 1 solutions (assuming the
solutions have nothing in common, because exhaustiveness here makes it difficult to compress this into
a more hierarchical or reusable architecture). According to this situation, we can see that the “size” of
the “brain” would grow more than exponentially. On the contrary, if instead of predefined solutions, we
consider a learning system, the size would be reduced as much as we would like, but we would need to
consider the availability of data and the learning effort instead.

• We can understand difficulty with Levin’s Kt complexity, as advocated for in [9, 10, 104, 105, 91] because

of its connection with Levin’s optimal universal search [11, 12]. In this case, we define LSpπ, µq
def
“

Lpπq ` logSpπ, µq where L is the length of the solution π and S the computational steps µ uses to solve

the task π. Difficulty would be ℏpµq
def
“ minπ:Aπ

µ“1 LSpπ, µq. With this, we could still consider that the

number of solutions for a given difficulty would be less than (but still approximately or linear with) 2h.
The result for a non-learning system would be then similar, but now we would have to take into account
the time to determine which problem we are facing, which must choose between 2Ψ`1 ´ 1 solutions. On
the contrary, the resources needed for a learning system using this schema would just simply be the
expected difficulty H “ Ψ{2. This is measured in the logarithm of computational steps8, so the expected
computational steps using a universal search would be 2Ψ{2.

From the above, we see the difference between a system with a predefined repertoire of solutions and a system
that learns those solutions9. Even if the above ignores the training examples or interaction needed to learn the
concepts, we see that there might be a trade-off between pre-wired and learned solutions, depending on the size
limitations and the speed of the system.

The cases above are important to clarify the distinction between nature-vs-nurture and general-vs-specialised.
Whereas we have the tendency to associate inherited functions with specialised functions, this does not have to
be the case a priori, according to the definition of generality we are considering here. This may be a consequence
depending on what resources are most relevant. Note that in the two analyses above, we derive the minimum
resources following the compactness property (#2). Assuming all difficulties equally likely, one should focus on
those policies that require fewer resources. Of course, if some particular pockets of problems of high difficulty
are more likely than many problems of low difficulty then there is a rationale to cover those pockets specifically,
so having less generality.

In all these cases we are using a distribution of tasks that is not based on a particular species or environment
—they are not the tasks a human or animal would find in their lifetime. Accordingly, these distributions can
be criticised as arbitrary. However, it is not true that all humans (and much less all animals) face the same
fixed set of tasks. Precisely because of this, many psychometric tests include very abstract tasks, in an effort
to be independent of particular human groups, and some (like Raven’s matrices) may even look very unrelated

8These would be the witts, as used in property 8 in §E.2.
9Note that this is not related (and also looks apparently opposite) to the distinction between learning tasks and knowing tasks

in [106].
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to the natural (ancient or modern) environments humans face. However, it is well known that IQ tests lack
measurement invariance when applied to other groups (e.g., people with some disabilities, children, etc.), non-
human animals and, most especially, computers. In the latter case, it is not that they are particularly unfair
for computers, but that AI systems can specialise for these tasks [107, 108, 109, 110]. In a way, we can get
generality inside the test, but inability to extrapolate beyond the test. Restricting testing to a particular kind
of tasks facilitates systems that specialise on them, and this is particularly exploited in AI.

Hence the relevance of diversity, and this idea of using all tasks with which we started. But, how much will
the task distribution depend on the representational language or mechanisms used to derive the set of tasks?
The invariance theorem, independently introduced by Solomonoff, Kolmogorov and Chaitin (see, e.g., [111])
says that any universal representational mechanism (language) can code any program as efficiently (in size) as
any other up to a constant that is bounded by (but generally smaller than) the sizes of the definitions of both
languages. This makes the concept of Kolmogorov complexity machine-independent, at least to an additive
constant factor.

However, the definition of “universal intelligence” [99] has been criticised by this dependence on the reference
machine, which is actually leading to different definitions according to what UTM is used to generate the
universal distribution [102, 103, 91]. The main reason is that the invariance theorem appears in the exponent of
the distribution (2´Kpxq), and the additive constant becomes an exponential one. In contrast, the two versions
on the bottom of Fig. S28 put back the invariance theorem as an additive constant on the scale of difficulty.
This means that the scale upon which all other measures are derived is relatively more stable. For instance,
given the spread for an individual using a notion of difficulty on a reference machine, then this spread will be at
most increased by a constant that does not depend on the individual. Also, as capability grows, the invariance
theorem starts having more relevance. This can also be seen in the opposite way: systems with very limited
resources (or capabilities) will be more dependent on the reference machine.

Still, using two different reference machines might lead to very different difficulties for the x-axis in the ACC
and hence different capability and generality scores, which is of course what underlies many discussions about
whether tests are biased against or in favour of a group. But there are many “bias equalisers”, especially in
testing, that can be used to determine capability and generality more independently [112, 113, 114]: 1) intro-
ducing a testing apparatus that is novel for all subjects, 2) analysing differences after ensuring that individuals
are raised in or adapted to the same core knowledge, 3) present problems that have to be solved by combining
or using a set of constructs or elements that are abstract and new. These procedures are common in animal
cognition and human intelligence testing, but not that much in AI research [115, 116, 117].

In practice, we do not need to consider all possible tasks to derive metrics of generality in AI. We can do
this for any test battery or benchmark for which we are interested in deriving the generality of a particular AI
algorithm or agent, be it in machine learning, planning or machine translation. In order to start we only need a
metric of difficulty. It does not have to be a universal metric, as described above, but a customised one instead.
It can be derived in many ways:

• Anthropocentric difficulty: we can use human performance as a reference for the difficulty of a set of tasks.
This can be obtained as an indicator that is inversely related to the success of average humans in each
task.

• Populational difficulty: this can be derived by using a population of AI techniques for the range of
problems. For instance, [118] apply IRT to derive the difficulty of machine learning instances. This idea
can be applied to datasets and other kinds of problems in AI (e.g., the ALE benchmarks, [119]).

• Intrinsic difficulty: any meaningful characterisation of difficulty can be used here, as we have done in
several cases in this paper. For instance, the difficulty of a planning problem can be based on a series of
features about the problem:, such as the number of components, its structure, the degree of noise, etc.
Note that difficulty is different from computational complexity, but time complexity may be an important
factor.

• Integral difficulty: some other notions of difficulty can integrate space resources, computational time,
energy consumption, data required, etc., [120] especially when including very different tasks. For instance,
[121] aligns difficulty with the number of trees used by a random forest classifier, providing a very clean
mapping to resources and effort.

• Opponent difficulty: in those cases where other agents compete or cooperate, we can use the capability
of the opponents (or a measure inversely related to the capability of cooperators). Note that this makes
this option populational as well.

Note that we are working with a notion of difficulty for an expected response above acceptability (Errsj,i ě 1´ϵ),
as defined in §E. So, for all of the above approaches to difficulty, one can vary the threshold ϵ, as a way of
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generating variants of the same instance or task, from those with difficulty 0 (ϵ “ 1) to those with difficulty 8

(ϵ “ 0, assuming no agent is 100% perfect).
The estimation of difficulty will usually have some associated error. If we assume this error to be constant

independently of the magnitude of the difficulty, then we can have a similar result as for proposition 3, and then
the theoretical ACC will be sigmoidal in shape (complementary to the error function). In the case of a view of
difficulty in terms of simplest description, the error can be linked to the constants of the invariance theorem.

In general, whenever an evaluation procedure is established in AI, there is a selection of tasks from a certain
domain and for a particular range of difficulties. For instance, one rarely finds Hofstadter’s “Gödel, Escher,
Bach” [122] as an instance for a machine translation benchmark. It is too hard to be discriminative for AI.
Usually, the benchmark tasks are selected to cover an application area (usually of scientific or industrial interest)
and the difficulty of the items is chosen such that they are neither too easy nor too difficult for the state-of-the-
art algorithms. This is natural, but this is implicitly assuming a type of ACC nobody checks in the first place,
and a very malleable notion of difficulty, adapted to the situation. This also makes the analysis of progress in
AI hard to assess, as the tasks in the domain and their difficulty are changing, like a moving target.

D.3 Generality in competitions and benchmarks in AI

The options for difficulty seen above can be applied to an increasing range of AI competitions and benchmarks
[123], especially those that are aiming at more general-purpose AI. Some of these are the general game playing
AAAI Competition [124, 125], the reinforcement learning competition [126, 127] (which featured the ‘polyathlon’,
with several domains), the genetic programming benchmarks [128, 129], the general video game competition
[130, 21], and the arcade learning environment (ALE) [19, 130], a collection of Atari 2600 video games, which
“has incentivized the AI community to build more generally competent agents” [131]. It is important to note that
the introduction of new platforms and benchmarks where hundreds of tasks can be potentially be implemented
[132, 133] is not usually accompanied with a verification of whether the agents that have highest performance
are also more general (exceptions, [134, 135, 136]). Recognising that the diversity and difficulty of the tasks
must be explicitly determined is one important outcome of our analysis so far, and one a metric of generality
in these terms would help to flesh out.

The GVGAI competition [21, 23, 22], whose results we used in our experiments, aimed at general game
playing. Even if the competition aims at general video game playing, hence the name, the focus is on finding
non-transitivity, such that metalearning through hyper-heuristics and algorithm portfolios is effective [137, 138],
by choosing different agents for different problems. This is also a common thing in ensemble methods [54],
where diversity is positive if results are to be combined. The notion of transitivity is vindicated or assumed in
indicators such as Elo rating [139], which depend on this transitivity, although more complex game topologies
exist [140, 141, 142, 143].

We saw in Fig. 5 (top) in the chess scenario that difficulty is taken from the performance of the opponent.
This is also especially interesting for systems that improve with self-play, like AlphaZero [80]. In these settings,
it is important to check that the system does not get better and better against more competitive opponents
but may end up losing (or drawing more frequently) against weak opponents. This leads us to the more general
question of whether a system that develops over time becomes more or less general [144, 145]. As the system
evolves, we may experience less flexibility but a wider covering of tasks, and this can be studied using metrics
of capability and generality. We can see this in the series of systems from AlphaGo to MuZero. AlphaGo
[146] was the first AI system programmed to defeat professional Go players at the ancient game of Go. The
system relied on human data, domain knowledge and game rules to master the game. AlphaGo is a clear
specialist (low generality), and the actual capability only appears for one task. Then, its successor, AlphaGo
Zero [147], initially had no capability at Go, but it learnt from self-play only providing the game rules. Its
potential capability for Go is thus very high (and very high actual capability after training), but it has very
low actual and potential generality. AlphaZero [80] was then introduced with no actual capability on any game
initially. But after self-playing, it excelled at a diversity of board games: Go, chess and shogi. AlphaZero has
thus potential capability and some potential generality if we consider board games. Finally, we find MuZero
[83], in the pursuit of more general-purpose algorithms. This system does not even require the rules of each
game. MuZero combines AlphaZero’s lookahead-search approaches with new planning abilities. MuZero is able
to match the performance of AlphaZero in the above classic board games, but it also demonstrates significant
success in environments without known dynamics such as the Atari 2600 video games. MuZero has similar or
higher potential capability than AlphaZero but higher potential generality, as it can cover more games.

Another good example of increasing generality in AI is represented by large language models, which have
achieved remarkable performance on a wide range of tasks [84, 148]. Their generality is actual rather than
potential: they cover all these tasks without retraining, using zero-shot or few-shot inference. Of course, they
still have many limitations and fail catastrophically at some very simple examples [149]. Nevertheless, there
is great promise that with more parameters or jointly with other technologies in the future they could become
general —yet not necessarily very capable— systems: consistently good at a very wide range of very simple
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tasks.
In the end, the progress of some techniques in AI can be made in such a way that generality is preserved,

and the ACCs are just translated to the right as the technology improves. We now have tools to check whether
this is the case, or, on the contrary, some new techniques solve more challenging problems at the cost of being
worse at simpler problems. This is particularly relevant as progress in AI can be attained by combining several
approaches, in areas such as ensemble learning or portfolios, where a big switch approach determines which
technique is most appropriate for a particular instance. This modular approach to solving problems may well
end up in specialised solutions and creating gaps, where some relatively simple problems are not solved, with
lack of generality. But this modular approach, combining many specialised solutions, if the set of tasks remains
constant, may increase generality (and capability), especially if the combination covers more of the easy ones
than the difficult ones. Again, we see that generality measures how capability is distributed in terms of difficulty,
but it does not impose constraints on how this is done. It may even include human computation, collective
systems, cognitive services or hybrids, in the same way that humans can be enhanced by personal assistants or
other devices —and increase or decrease their generality because of this.

Of course, if a modular solution requires hundreds of specialised subsolutions, the cost of keeping all them
and designing an appropriate and efficient switch to determine which one to use may end up being less efficient
than a more integrated solution, as we have discussed above. The relation between generality and resources is
another way of looking at compression and generalisation, Occam’s razor, the MML principle, etc., in machine
learning, genetic programming and other areas in AI (e.g., [150, 151, 152]). Actually, the issues of generalisation
and difficulty were usual (although from a different perspective) in the early days of genetic programming
[153] (using the term ‘generality’ as ‘generalisation power’ or ‘avoiding overfitting’). Commonly, the notion of
generalisation is usually linked to whether a model extrapolates from the training data to the test data [154],
and a proper validation will just equate this with performance [155]. But, generality, as introduced in this
paper, just measures the distribution of success across difficulties, and can be applied to learning problems,
planning problems, deductive problems, more in the original spirit of McCarthy [76].

E Formal setting and properties: Further detail

We will consider the evaluation of a set of M agents on a set of N tasks, with results or responses rj,i for each
agent πj and task µi, as represented in the example matrix (numbers in black) in Fig. 1 (top). For each agent we

have its response mean r̄j
def
“ Meanirrj,is, also referred to as agent average performance, and its response variance

σ2
j

def
“ Varirrj,is, also referred to as agent variance10. From here, we could simply define one notion of regularity

as the reciprocal (inverse) of the variance. This would give us 1{σ2
a “ 1{0.016 “ 64.0 and 1{σ2

b “ 1{0.203 “ 4.92
for agents a and b respectively in Fig. 1.

But is the variance produced by unreliability in the measurement, instability in the agent or is it because
the agent really performs much better at some problems than others? We could try to exclude all sources of
unreliability and work at the definitional level. In order to do this, instead of actual responses, we could work
with expected (or ideal) responses. For each agent πj and an instance or task µi, the expected response is
given by Errsj,i. We assume 0 ď Errsj,i ď 1 with 0 meaning worst possible performance and 1 meaning best
possible performance. We would then discretise expected responses as Aj,i “ 1 (‘acceptable’ or ‘accomplished’)
if Errsj,i ě 1´ ϵ and 0 otherwise (‘unacceptable’ or non-accomplished), where 1´ ϵ would be just a threshold11.
For instance, for dichotomous tasks (where agents can only be right or wrong), with an ϵ “ 0.3, we could have
that Aj,i is 1 if the agent is expected to be correct on the instance at least 70% of the times.

This simple transformation would eliminate reliability issues in our analysis of generality. But still, could
then we define generality as being good for all possible problems? First, for many sets of tasks N it is not
possible to have acceptable results for all of them, as some may be very complex or may require more resources
than the agent has. Second, by using binary acceptability, we would have a Bernoulli distribution, and the
variance would just be derived from the agent’s average performance (r̄j ¨ p1 ´ r̄jq) thus making it impossible
to compare the generality of agents with equivalent performance. Part of this connection can be translated to
spread. Consider that all the items are in some interval of difficulties, and hence capabilities 0..q. If we have N
items and an agent is right on all of them, then the ACC would be completely packed on the left, and spread
would be 0. If an agent is wrong on all of them, then the ACC would be zero from 0 to q, but assuming that
the curve is full (saturated) on the left (translation property) then we would still have a spread of 0. Between
these two extreme cases in capability (both with spread 0), as we sort responses by difficulties in the ACC, and
we calculate spread in a different way from variance, we can have results that deviate significantly from the
Bernoulli distribution. For more discussion about this and its relation to the metrics we are about to introduce,
see Appendix F.5.

10For the calculation of Var we use the population variance, not the sample variance, so we divide by N , not N ´ 1.
11The value of ϵ might be different for each task. Actually, by changing the threshold we change the difficulty of the task, which

is actually like having another task.
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The way-out of these two problems is to look at responses in terms of their difficulty. Actually, agents might
be better for easy problems than for hard ones. The quantification of difficulty appears at the core of generality.

E.1 Agent characteristic curves (ACCs) and capability: detail

Let us then consider a difficulty function, ℏ, mapping each task µi to a real value ℏpµiq ě 0. We define an agent
characteristic plot for agent πj as a scatter plot showing accomplishment Aj,i in terms of the difficulty ℏi. In
other words, we plot difficulty on the x-axis and accomplishment on the y-axis.

We can convert these scatter plots (as the dots are always 0s and 1s) into more interpretable curves. In

order to do this, we define ψjphq
def
“ PpAj,i “ 1|ℏpµiq “ hq, or equivalently, the mean of the accomplishment of

agent j on all problems of difficulty h. We then define an agent characteristic curve (ACC) as a plot of ψjphq

as a function of h. Fig. S30 shows six scatter plots (grey circles, all either 0 or 1) and their corresponding ACC
(blue line).

We can look at the leftmost part of the curve. We say that an agent characteristic curve is s-saturated if
@h ď s : ψjphq “ 1. We see that the two first ACCs are not even saturated for s “ 0. On the rightmost
part, we want agent characteristic curves to ensure that the area under these curves is finite. We will assume
difficulty functions that meet this property12.

We copy the definition of capability we gave in Eq. 1,

Ψj
def
“

ż 8

0

ψjphq dh (7)

i.e., the sum of all the mean responses per difficulty, which is the area under the ACC (see Fig. S30 for the
calculated capabilities). Note that in a discrete way, capability is a weighted sum of all tasks according to a
prior uniform distribution (or weight) of difficulties. The area will of course change even with a monotonic
transformation on difficulty, such as a change to a logarithmic scale. Some scales make more sense than others
and give a more meaningful notion of capability, especially if the x-axis can be associated with an additive unit,
as we will discuss later on. These weights can be derived if we know the posterior, how many tasks we have for
each difficulty.

Definition of spread and generality: detail
As capability represents the “mass” (how much of accomplishment we have), but not a probability density

function, we can normalise this moment (dividing by capability) and we can interpret this as the expected
difficulty for agent j for the successful items (binned by difficulty):

Hj
def
“ Eh„fj rhs “

Mj

Ψj
(8)

where fjpxq “ ψjpxq{Ψj . In other words, Hj is the expected difficulty conditioned to accomplishment, i.e.,
average difficulty for all successful item responses.

Now, if we look at Hj as an expected difficulty, then, for a distribution that is fully compacted on the left
(a single step function), this should be half of the capability. This difference can be multiplied by capability
back again and finally square rooted, to make it independent of location and with a unit commensurate with
difficulty, as we will see. The result is known as spread (already introduced in Eq. 4), and is given alternatively
by:

Sj
def
“

b

p2Hj ´ Ψjq ¨ Ψj (9)

E.2 Properties: detail

We now explore the properties to see their full details. We first need to introduce the notion of difficulty
translation, defined as a constant shift of the x-axis (h ` k Ð h). If k is negative we have a translation to the
left, where every result with h ă 0 is cut out. If k is positive we have a translation to the right, and we assume
that ψjphq “ 1 for all h ă k (i.e., we saturate the newly introduced part of the curve). Second, we introduce

the notation for partial areas, i.e., Ψ
rh1:h2s

j
def
“

şh2

h1
ψjphq dh.

Now we can introduce eight important properties. The proofs are given in §F.

1. Translation: any positive translation by k implies that capability becomes Ψj ` k. The same happens
for negative translation if the |k|-leftmost part of the original curve was saturated. On the other hand,
generality is invariant to translation (with the same conditions as above for negative translation).

12We mentioned this is the previous section, but setting a threshold on tasks ensures curves are finite when difficulty is defined
in terms of minimal resources [91], especially in situations where there is a minimum percentage given by chance. Another simpler
option is just to set a maximum difficulty.
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Figure S30: Agent characteristic curves (ACC), showing the behaviour of six different agents in terms of difficulty
ℏ on the x-axis. The responses rj,i for the items i are shown in grey circles. The means for each difficulty are
shown in blue, and connected to form an ACC. We see that different distributions of results give different values
for the metrics: response variance (σ2

j ), capability (Ψj), expected difficulty (Hj), spread (Sj) and generality
(Γj). Curves that have a steplike shape have high generality.

2. Compactness: with equal capability, any equal mass moved to the left of the plot such that Ψ
rh1:h2s

j Ð

Ψ
rh1:h2s

j ` q while Ψ
rh3:h4s

j Ð Ψ
rh3:h4s

j ´ q, with h2 ă h3, will increase Γj .
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3. Maximum generality (minimum spread): given a fixed capability Ψj , the minimum expected difficulty Hj

and the maximum generality Γj are obtained with a decreasing step agent characteristic function abruptly
falling from 1 to 0 on h “ Ψj , where the capability is double the expected difficulty (i.e., Ψj “ 2Hj),
spread Sj “ 0 and generality Γj “ 8.

4. Constant interval: Given a constant function ψjphq “ c from 0 to q, we have Ψj “ cq, Sj “ q
a

cp1 ´ cq

and Γj “ 1{pq
a

cp1 ´ cqq. In the particular case of c “ 0.5 we have Sj “ q{2 and Γj “ 2{q. Any spread
greater than the value for this constant curve is considered ‘abstruse’.

5. Minimum generality (maximum spread): given a fixed capability Ψj , and assuming ψjphq “ 0 beyond
difficulty q, then the maximum expected difficulty Hj and the minimum generality Γj (the most abstruse
result in a bounded interval) are obtained with a increasing step agent characteristic function going sharply
from 0 to 1 on h “ q ´ Ψj (until q), leading to Sj “

a

2Ψjpq ´ Ψjq and Γj “ 1{
a

2Ψjpq ´ Ψjq. With the
same capability, the square spread for this case is exactly twice the square spread for the constant case.

6. Task transitivity: if an agent πj is s-saturated then for every task µb such that Aj
b “ 1 in the saturated

area then for all other tasks a of ℏpµaq ď ℏpµbq we have that Aj
a “ 1. In other words, if this agent solves

a task in the saturated area then it also solves any other easier task. Agents with maximum generality
Γj “ 8 are s-saturated with s “ Ψj , so if a task of a given difficulty is solved we know all other simpler
tasks are solved too.

7. Agent transitivity: if two agents πa and πb have maximum generality Γa “ Γb “ 8 and Ψa ď Ψb then for
every task µi such that Aa

i “ 1 we have that Ab
i “ 1. That means that πb dominates πa or, in other words,

that an agent would solve all tasks a less capable agent solves, provided both have maximum generality.
Note that if generality is not infinite, it is not sufficient to have a curve for πb that covers the curve
for πa. We need to check that πb is s-saturated for at least the maximum value where πb gets non-zero
accomplishment.

8. Same units: if we introduce a unit for difficulty, let us call it witts, then capability is also (additively)
measured in witts, spread is also measured in witts and hence generality is measured in 1{witts.

Some of these properties (especially the transitivities) have been shown when assuming a Guttman (or deter-
ministic) response model [35, 36], as we discuss in §B. Looking again at Fig. S30 we see that the bottom left
and bottom right are basically a translation of each other by k “ 4. We see that the capability is increased by
approximately 4, and the spread and generality are not significantly affected.

F Theoretical results

In this appendix we include the proofs of the properties, their associated lemmata and propositions, the con-
nection between spread and variance for a normal distribution, the aggregation of step curves, the derivation of
Guttman curves through thresholding, and the derivation of the isometrics.

F.1 Proofs of the properties

Despite being straightforward, for completeness we include all the proofs of the properties presented in §E.2.

Proposition 4. Given an agent with capability Ψj, any positive translation by k implies that capability becomes
Ψj ` k.

Proof. A translation creates a new function such that h1 Ð h ´ k and ψjph1q “ 1 for all h1 ă k, so the new
capability Ψ1

j is now:

Ψ1
j “

ż k

0

1 dh1 `

ż 8

k

ψjph´ kq dh “ k ` Ψj

Proposition 5. Given an agent with capability Ψj where the |l|-leftmost part of the original curve was saturated,
any negative translation by k ď l implies that capability becomes Ψj ´ k.

Proof. As the left part of the curve is saturated, Ψj can be decomposed into

Ψj “

ż l

0

1 dh`

ż 8

l

ψjphq dh
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Now the translation removes part of the first term, so the new capability is:

Ψ1
j “

ż l´k

0

1 dh`

ż 8

l´k

ψjph` l ´ ksq dh “ l ´ k ` Ψj ´ l “ Ψj ´ k

Proposition 6. With the same conditions as the above two propositions, generality is invariant to translation.

Proof. For a positive translation, we have that the new effort M 1
j equals:

M 1
j “

ż k

0

h1 ¨ 1 dh1 `

ż 8

k

hψjph´ kq dh

“
k2

2
`

ż 8

k

ph´ kqψjph´ kq dh`

ż 8

k

kψjph´ kq dh

“
k2

2
` Mj ` kΨj

From proposition 4 we have that Ψ1
j “ k`Ψj . Putting both things together into the definition of spread (Eq. 9),

we have:

S 1
j “

b

2M 1
j ´ Ψ12

j “

c

2
k2

2
` 2Mj ` 2kΨj ´ pk ` Ψjq2

“

b

k2 ` 2Mj ` 2kΨj ´ k2 ´ 2kΨj ´ Ψ2
j “

b

2Mj ´ Ψ2
j

As generality is the reciprocal of spread, and spread does not change, then it is invariant to positive translation.
The proof for the negative translation is similar.

Proposition 7. Compactness: any mass moved to the left of the plot such that Ψ
rh1:h2s

j Ð Ψ
rh1:h2s

j ` q while

Ψ
rh3:h4s

j Ð Ψ
rh3:h4s

j ´ q, with h2 ă h3 will increase Γj.

Proof. Clearly, Ψ1
j “ Ψj , since the same mass q is included in the integral one way or the other. We have that

the new effort M 1
j :

M 1
j “

ż h1

0

hψjphq dh`

ż h2

h1

hψ1
jphq dh`

ż h3

h2

hψjphq dh`

ż h4

h3

hψ1
jphq dh`

ż 8

h4

hψjphq dh

Since h2 ă h3, we have that
şh2

h1
hψ1

jphq dh`
şh4

h3
hψ1

jphq dh ă
şh2

h1
hψjphq dh`

şh4

h3
hψjphq dh, and hence M 1

j ă Mj .

Now, from the definition of spread (Eq. 9), we have:

S 1
j “

b

2M 1
j ´ Ψ12

j “

b

2M 1
j ´ Ψ2

j ă

b

2Mj ´ Ψ2
j “ Sj

As spread is smaller, and generality is the reciprocal, this completes the proof.

Corollary 8. Maximum: given a fixed capability Ψj, the minimum expected difficulty Hj and the maximum
generality Γj are obtained with a step agent characteristic function on h “ Ψj.

Proof. By proposition 7, generality is increased as far as we move mass of the function from right to left, while
keeping the area constant. This means that the maximum area with highest generality is obtained by a step
function, whose location must be on h “ Ψj .

Proposition 9. Decreasing step function (maximum generality, minimum spread): given a step function,
capability is double the expected difficulty (i.e., Ψj “ 2Hj), and generality Γj “ 8.

Proof. The area of a step function with location l is:

Ψj “

ż l

0

1 dh “ l

As effort in this situation is:

Mj “

ż l

0

h ¨ 1 dh “
l2

2
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Expected difficulty is just:

Hj “
Mj

Ψj
“
l2

2
“
l

2

So Ψj “ 2Hj and Sj “

b

2 l2

2 ´ l2 “ 0, so its reciprocal is 8.

Proposition 10. Constant curve in an interval: given a constant function ψjphq “ c from 0 to q, we have

Ψj “ cq, Sj “ q
a

cp1 ´ cq and Γj “ 1{pq
a

cp1 ´ cqq.

Proof. We have:

Ψj “

ż q

0

c dh “ cq

and

Mj “

ż q

0

h ¨ c dh “ c
q2

2

and

Sj “

b

2Mj ´ Ψ2
j “

c

2c
q2

2
´ pcqq2 “

a

cp1 ´ cqq2 “ q
a

cp1 ´ cq

We have two examples at the bottom of Fig. S22. For instance, on the left we have Ψj “ cq “ 0.2 ¨ 2 “

5 « 4.97, Sj “
a

cp1 ´ cqq “
a

0.2p0.8q25 “ 10 « 9.93 and Γj “ 1{
a

cp1 ´ cqq “ 1{10 « 0.10. The precision
divergence is given because the curves are not perfectly flat.

Proposition 11. Minimum generality (maximum spread): given a fixed capability Ψj, and assuming ψjphq “ 0
beyond difficulty q, then the maximum expected difficulty Hj and the minimum generality Γj (the most abstruse
result in a bounded interval) are obtained with an increasing step agent characteristic function on h “ q ´ Ψj

(until q), leading to Sj “
a

2Ψjpq ´ Ψjq and Γj “ 1{
a

2Ψjpq ´ Ψjq.

Proof. We have:

Mj “

ż q

0

h ¨ ψjphq dh “

ż q

q´Ψj

h ¨ 1 dh “

„

h2

2

ȷq

q´Ψj

“
1

2
pq2 ´ pq ´ Ψjq2q

and

Sj “

b

2Mj ´ Ψ2
j “

b

pq2 ´ pq ´ Ψjq2q ´ Ψ2
j “

b

2Ψjpq ´ Ψjq

Proposition 12. With the same capability, the square spread for the minimum case (most abstruse case in an
interval) is exactly twice the square spread for the constant case (in the same interval).

Proof. For the constant case we had that Ψj “ cq, plugging this into the result of Sj for the constant case, we
have:

Sj “ q
a

cp1 ´ cq “

d

q2
Ψj

q

ˆ

1 ´
Ψj

q

˙

“

b

Ψjpq ´ Ψjq

Comparing with Sj for the minimum case, and squaring them, we see that one doubles the other. So we have
shown that the square spread for this minimum case is exactly twice the square spread for the constant case.

Proposition 13. Task transitivity: if an agent πj is s-saturated then for every task µb such that Aj
b “ 1 in the

saturated area then for all other tasks a with ℏpµaq ď ℏpµbq we have that Aj
a “ 1.

Proof. If an agent s is s-saturated then Aj
b “ 1 for all tasks such that ℏpµbq ď s. If b is in the saturated area,

any other task a of lower difficulty also is.

Proposition 14. Agent transitivity: if two agents πa and πb have maximum generality Γa “ Γb “ 8 and
Ψa ď Ψb then for every task µi such that Aa

i “ 1 then Ab
i “ 1.
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Proof. It is sufficient to see that both agents will have step functions.

Note that if the generality of πb is not infinite, it is not sufficient to have a curve for πb that covers the curve
for πa. The reason is that there might be values of h for which 0 ă ψphqa ă ψphqb ă 1, and in these cases some
of tasks that make the non-zero value in ψphqa might not be in the tasks that make the value of ψphqb.

Proposition 15. Same units: if we introduce a unit for difficulty, let us call it witts, then capability is also
measured in witts, spread is also measured in witts and hence generality is measured in 1{witts.

Proof. As Ψj is an integral over difficulty and the domain of the function is unitless (accomplishment, which is
a proportion), then Ψj has the same units as difficulty. As Mj includes the factor h in the integral, i.e.,

Mj “

ż 8

k

hψjphq dh

the result is in witts2. Finally, from the definition of spread:

Sj “

b

2Mj ´ Ψ2
j

we get
?
witts2, which means that spread is measured in witts, and the reciprocal for generality.

F.2 Proofs when using a normal distribution for capability

Here we include the proofs about the case where the ACC derives from assuming a normal distribution on
capability. This can be interpreted as an aggregation of step curves where the capability of each is distributed
normally or an agent such that the probability of a correct response depends on the CDF of a normal distribution
using the difference between the capability and the instance difficulty.

Proposition 16. (proposition 1 in the paper) Assuming a normal distribution on capability, with standard
deviation σ, the slope of the ACC will be ´ 1

σ
?
2π

.

Proof. (of proposition 1) We know that a normal distribution with mean µ and standard deviation σ will lead
to the following agent characteristic curve:

ψjphq “ 1 ´ Φ

ˆ

h´ µ

σ

˙

with Φ being the CDF of the standard normal distribution and ϕ being the density function of the standard
normal distribution. The maximum slope of this is the first derivative at µ, which is:

slope “ ´ϕ

ˆ

µ´ µ

σ

˙

“ ´
1

?
2πσ2

e´
p0q2

2σ2 “ ´
1

?
2πσ2

and hence the slope of the ACC will be ´ 1
σ

?
2π

.

Lemma 17. (lemma 2 in the paper) Assuming a normal distribution on the capability, with mean µ and standard
deviation σ, such that the location is sufficiently beyond 0 to have negligible mass below 0 (i.e., µ

σ " 0), we have

that Mj “
σ2

`µ2

2 .

Proof. (of lemma 2) As in proposition 1, we know that a normal distribution with mean µ and standard deviation
σ will lead to the following agent characteristic curve:

ψjphq “ 1 ´ Φ

ˆ

h´ µ

σ

˙

We plug this into the definition of effort and operate a little bit on it in order to put the expression in terms of
the cumulative distribution function Φ of the normal distribution:

Mj “

ż 8

0

h ¨

ˆ

1 ´ Φ

ˆ

h´ µ

σ

˙˙

dh

“ ´

ż 0

´8

h ¨ Φ

ˆ

h` µ

σ

˙

dh
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Fortunately, we can find the following integral of the moment of the CDF on page 402 (second last, entry 10,001)
in [156]:

ż

xΦpa` bxq dx “
1

2b2
`

pb2x2 ´ a2 ´ 1qΦpa` bxq ` pbx´ aqϕpa` bxq
˘

` C

And ϕ is the density function.
In our case, a “

µ
σ and b “ 1

σ , so we can put all things together into:

Mj “ ´

„

1

2b2
`

pb2x2 ´ a2 ´ 1qΦpa` bxq ` pbx´ aqϕpa` bxq
˘

ȷ0

´8

“ ´

„

1

2b2
`

p´a2 ´ 1qΦpaq ´ aϕpaq
˘

ȷ

´ r0 ` 0ss

“
1

2
`

1
σ

˘2

ˆˆ

´µ

σ

¯2

` 1

˙

Φ
´µ

σ

¯

`
µ

σ
ϕ

´µ

σ

¯

˙

Since we are assuming that µ
σ " 0, we have that Φp

µ
σ q « 1 and ϕp

µ
σ q « 0, so we get:

Mj “
1

2p 1
σ q2

ˆ

´µ

σ

¯2

` 1

˙

“
σ2 µ2

σ2 ` σ2

2

“
µ2 ` σ2

2

Proposition 18. (proposition 3 in §B.1) With the same assumptions as lemma 2, we have that spread Sj “ σ
and Γ “ 1

σ .

Proof. (of proposition 3) As the normal distribution is symmetric, we have that the location of the CDF is of
course µ, so the capability Ψj “ µ, and plugging Mj from lemma 2, we have:

Sj “

b

2Mj ´ Ψ2
j “

b

2Mj ´ µ2

“

d

2

ˆ

µ2 ` σ2

2

˙

´ µ2 “ σ

And by the definition of generality we have Γj “ 1
σ .

F.3 Aggregation

We show the following result:

Lemma 19. Given N step ACCs with capabilities a1, a2, . . . , aN , if we average them into a single ACC, we have
a descending staircase ACC with average capability Ψj “ 1

N

řN
i“1 ai and spread Sj being the standard deviation

of the original capabilities.

Proof. We first consider the straightforward claim that Ψj “ 1
N

řN
i“1 ai. As each component has capability ai,

their average will make the capability of the composite, as areas are additive.
Now, let us work with the definition of moment. And let us choose an index such that the capabilities

a1, a2, . . . , aN of the N components are sorted by increasing capability, and for ease of notation, let us consider
a value a0 “ 0. This means that from difficulties h from a0 “ 0 to a1 we will have that all the N components
are correct, so that the response ψjphq is N

N “ 1, from a1 to a2 we will have that N ´ 1 components will be

correct, so that the response is N´1
N , and so on, until the segment beyond aN , whose response is zero. So,

56



Mj
def
“

ż 8

0

h ¨ ψjphq dh

“

ż a1

0

h ¨
N

N
dh`

ż a2

a1

h ¨
N ´ 1

N
dh` ¨ ¨ ¨ `

ż aN

aN´1

h ¨
1

N
dh

“

N
ÿ

i“1

N ´ i` 1

N

ż ai

ai´1

h dh

“

N
ÿ

i“1

N ´ i` 1

N

„

h2

2

ȷai

ai´1

“

N
ÿ

i“1

N ´ i` 1

N

ˆ

a2i ´ a2i´1

2

˙

“
1

2

˜

N
ÿ

i“1

N ´ i` 1

N
a2i ´

N
ÿ

i“1

N ´ i` 1

N
a2i´1

¸

“
1

2

˜

1

N
a2N `

N´1
ÿ

i“1

N ´ i` 1

N
a2i ´

N´1
ÿ

i“1

N ´ i

N
a2i ´

1

N
a20

¸

“
1

2

˜

1

N
a2N `

N´1
ÿ

i“1

N ´ i` 1 ´ pN ´ iq

N
a2i

¸

“
1

2

˜

1

N
a2N `

1

N

N´1
ÿ

i“1

a2i

¸

“
1

2N

N
ÿ

i“1

a2i

Now, we plug everything into the definition of spread

Sj
def
“

b

2Mj ´ Ψ2
j

“

g

f

f

e2
1

2N

N
ÿ

i“1

a2i ´

˜

1

N

N
ÿ

i“1

ai

¸2

“

g

f

f

e

1

N

N
ÿ

i“1

a2i ´

˜

1

N

N
ÿ

i“1

ai

¸2

which is the expression of population standard deviation for the values a1, a2, . . . , aN .

F.4 Scale transformations: from incommensurate values to thresholding

For many existing and future results in comparative cognition, psychometrics and AI we start with a matrix of
results rj,i for task i and agent j. Each response can be a numeric score, or an aggregation of several items, as
the values in black in Fig. 1. In very controlled scenarios, where the magnitudes of each task are binary13 or
correspond to a percentage, or at least in the same scale, we can extract some insight by looking at the variance
of rows [157], —but remember the issues of the variance of a Bernoulli distribution as seen in §E, which we will
discuss further in the following subsection. In general, however, looking at the variance for rows could be very
misleading, as the original magnitudes can increase or decrease this variance in a spurious way. For instance,
what if task µ3 had values in a close interval between 0 and 1, and µ7 ranges in a much larger interval? With
this problematic proxy for generality task µ7 would simply have more weight. If no further information about
the tasks is available, it is hard to put the several columns of this matrix in a way that they are commensurate14.

13Remember the issues of the variance of a Bernoulli distribution as seen in §E, which we will discuss further in the following
subsection.

14The authors of [135], in https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark, illus-
trate this point near their Figure 1, when they realise that averaging rough scores for different games has no meaning, as the scales
are different. However, they further state that “this issue is exacerbated if some tasks are much easier than others. By performing
very well on very easy tasks, agent A can apparently outperform agent B, which performs well on both easy and hard tasks”. This
is an interpretation of generality that looks quite opposite to ours, but note that if we have an agent that solves many instances

57

https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark


The commensurability problem is related to the issue of deriving difficulties when no intrinsic difficulty is
available. When the magnitudes are not commensurate and difficulty is not given, we need a point of reference.
One possibility in these cases is to use a reference agent. For instance, in AI, it is quite common to use humans
as a reference, and convert the score for a game or a task into a binary value that simply represents whether the
agent is above human level. This is the usual approach in collections such as the Atari Games in ALE [19, 158].
In fact, for this scenario, we have used the ARef transformation in Table 1, which simply converts the score to
binary values representing whether the AI system reaches human performance or not. But then we calculate
generality as we have introduced in this paper, using task difficulty, and not as the non-informative variance of
the Bernoulli distribution that appears as result of the binarisation.

Another common option to make the row variance more meaningful is to normalise the columns (with same
column mean and variance) or to use ranks, which in both cases implies a transformation that depends on the
particular population. More precisely, the normalisation of rj,i consists of subtracting the mean and dividing
by the standard deviation. The conversion of rj,i into ranks would consist of replacing each value in a column
i of the matrix by the rank in that column, with values in 1, 2, . . . ,M , with M being the highest rank and 1
is the lowest rank. In either case, we can now calculate a variance or standard deviation per row that can be
more meaningful, as was attempted in the top matrix of Fig. 1.

If this variance is more meaningful now, can we compare it with generality? In order to do this, we can
convert each new value into an actual (step) ACC using the value as a threshold. Namely, we convert each
response in the response matrix into a step ACC with capability at the rj,i, or in other words, we assume that
ψjphq “ 1 iff rj,i ě h, and 0 otherwise. With this trick, we use the population results as difficulty and we
convert each test into a series of instances of different difficulty. With this configuration, we can now calculate
the generality of each row by simply averaging the step ACCs, following the results of lemma 19, and we get
a generality that is simply the reciprocal of the row standard deviation using the normalised or ranked values.
This approach corresponds to the Rnk method in Table 1 when the rj,i are converted into rank values.

Indeed, this rank normalisation is done in [24] (as described in Table S2 and then used in Table S5 of their
supplementary material). This can be seen as a way of circumventing the problem of not having a commensurate
difficulty for all tasks. Under this rank transformation, we can use the rank as a metric of difficulty that is
commensurate for all tasks (for this population of 53 orangutans). With this particular configuration, we could
apply the thresholding approach above and connect row variance with generality.

Of course, this thresholding method assumes a step model, which is too simplistic. As an alternative, we
could use IRT instead. For instance, [159] normalise the data and then use IRT models to work with a different
metric of generality, based on the variance and estimated with a proxy: the slope of the curves. This is related
to, but significantly different from, applying IRT and then using GA as suggested by the IRT transformation
in Table 1.

The minimum sizes in Table 1 (approximate rules of thumb in some cases or statistical analysis in others) are
derived from [160, 161]. Finally, the individual generality score can be applied to situations where the difficulty
of a task depends on other agents taking place in a competing or cooperating role, using the Opp transformation
in Table 1, which is especially necessary for social and adversarial situations [162, 163, 164]

F.5 Bernoulli limits and Interval Relative Squared Spread (IRSS)

In §E, we saw that considering the row variance as some kind of (inverse) proxy for generality did not work:
if we were using a binary acceptability, we would have a Bernoulli distribution, and the variance would be
determined by an average of results (r̄j ¨ p1 ´ r̄jq). Variance would be a quadratic function of rj , with minima
(0) for minimum and maximum average responses (0 and 1 respectively) and maxima (0.25) at 0.5, as we saw
in Fig. S4.

From propositions 9, 11, 10, we identified the highest generality (lowest spread), lowest generality (highest
spread) and the generality and spread for a constant curve of height c in this interval. In Fig. 4 (top left). we
show an example of 496 results going from a minimum capability of 8.88 to a maximum capability of 19.41, as
shown in the x-axis. The figure shows the curves for the maximum spread (in red), a constant curve spread (in
blue) and the minimum spread (in green). We see how the points are all located under the red curve and most
of them (except for 13.31%) below the blue curve.

Note that the interval does not start in 0, but the calculations can be adapted by subtracting the minimum
value (in the example, 8.88) to the capabilities because of the translation property. Then, in Proposition 12, we
showed that the squared spread for the minimum case (most abstruse case in an interval), S 2

max “ 2Ψpq ´ Ψq,
is exactly twice the squared spread for the constant case (in the same interval): S 2

cnst “ Ψjpq´Ψjq, and at the
same distance then to the minimum: S 2

min “ 0.

of low difficulty, this would change average performance but not capability. It is the proportion of each difficulty what matters.
Nevertheless, they do not introduce task difficulty in the analysis, and end up using several percentiles [135, Table 1], suggesting
a column-wise correlational analysis instead, even if this requires some other assumptions and is performed at the level of the
population.
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That means that the expression in the Bernoulli constraint is now translated into squared spreads in a band
that goes from 0 to twice the value Ψjpq ´ Ψjq. And a constant ACC (once for which correct or incorrect
responses do not depend at all on difficulty) would be at the middle. This suggests that we could use a
normalisation of spread, as was given in Eq. 6, copied here for convenience:

s2
def
“

S 2 ´ S 2
cnst

S 2
max ´ S 2

cnst

This Interval Relative Squared Spread (IRSS) —or simply normalised spread— goes from ´1 (minimum spread,
maximum generality) to 1 (maximum spread, minimum generality). Because of this reverse relation of spread
to generality, for convenience, we use the term normalised generality as the negative value of normalised spread,
i.e., γ

def
“ ´s, also going from ´1 (minimum generality) and `1 (maximum generality). Normalised generality

does not have units, and we can use it to compare situations with different difficulty scales.
Note that normalised generality depends on the width if the interval (q). For the same agent, with a

wider range of difficulties, the normalised generality would be more positive, while the unnormalised generality
(and spread) would not change. While the range p´1, 1q might resemble a correlation between difficulty and
accomplishment, the right interpretation of the normalised generality must be as follows: for the items inside a
range of difficulties, a high number means that the system is good at those with low difficulty and bad at those
with high difficulty. Again, values of γ closer to the maximum value (1) would mean that there’s a step curve,
also meaning that difficulty is very predictable about the behaviour of the system.

G Reproducibility: Code and Data

Code and data for reproducibility is available at https://github.com/jorallo/generality, under GNU Gen-
eral Public License (GPL). We use the R programming language [165], which allows us, and everyone else, to
easily compare results with a number of packages for factor analysis, item response theory, etc. Unlike factor
analysis and item response theory, the code for generality analysis does not use any random component, or any
estimation algorithm, and does not rely on parameters (other than the kind of study or options for representa-
tion), so the metrics are completely deterministic and perfectly reproducible. Running the code again should
lead to the same numerical results and representations.

The library includes many functions for analysis and representations. Some of them plot individual ACCs
or perform the full generality analysis, with optional comparison with factor analysis, difficulty extracted
from IRT, etc. All the transformations in Table 1 are also available. The functions are implemented in
generality functions v.X.X.X.R with a wrapper in generality.R that is independent of the version. We
suggest to start with demo v.X.X.R, which includes a simple example on how the functions work.

The library includes particular R files for the following scenarios:

• ale: the Atari video games Arcade Learning Environment (§A.7).

• chess: the World Computer Chess Championship (§A.6).

• ctest: Thurstone letter series using results using the C-test instances (main paper and §A.2).

• damerius: Physical cognition tasks (§A.9).

• dicarlo: Object recognition problems (main paper and §A.3).

• gvgai: General video game AI (§A.8).

• herrmann: The Primate Cognition Test Battery (§A.10).

• lambda: Lambda-One, a benchmark used to compare humans and simple reinforcement learning algo-
rithms, as used in Fig. 2 in the main paper.

• mazes: Elithorn’s Perceptual Mazes (main paper and §A.1).

• odorspan: Odour Span Task (main paper and §A.4).

• openml: Iris classification problem from OpenML (§A.5).

There’s also an evolution.R file that runs the experiments and plots in the supplementary material dealing
with evolutionary selective pressure (section C.3).

The repository includes data folders for many of the above studies, and the data to run the generality
analysis for each scenario.
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