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Abstract
A variant of the ADT method for the determination of gravitational charges as 
integrals at infinity is applied to ‘Chern–Simons-like’ theories of 3D gravity, 
and the result is used to find the mass and angular momentum of the BTZ 
black hole considered as a solution of a variety of massive 3D gravity field 
equations. The results agree with many obtained previously by other methods, 
including our own results for ‘Minimal Massive Gravity’, but they disagree 
with others, including recently reported results for ‘Exotic Massive Gravity’. 
We also find the central charges of the asymptotic conformal symmetry algebra 
for the generic 3D gravity model with AdS vacuum and discuss implications 
for black hole thermodynamics.
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1.  Introduction

In general relativity (GR), conserved ‘charges’ such as mass and angular momentum are 
generically expressible only as integrals at spatial infinity; the prototype is the Arnowitt–
Deser–Misner (ADM) mass formula for an asymptotically-flat spacetime [1]. The method 
used to derive this formula can be adapted to spacetimes that are asymptotic to other ‘back-
ground’ solutions of Einstein’s field equation for which there is a spatial infinity, as shown by 
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Abbott and Deser who focused on the anti-de Sitter (AdS) case [2]; the scope of the method 
was later extended by Deser and Tekin [3]. In principle, this Abbott–Deser–Tekin (ADT) 
method yields a conserved charge for each Killing vector field of the background, expressed 
in terms of an integral over the metric perturbation near spatial infinity. These charges are all 
zero for the background solution itself; they are otherwise non-zero although convergence of 
the integrals is not guaranteed.

Our interest here is in three dimensional (3D) gravity theories; in particular those that admit 
an AdS3 vacuum solution, in which case there will also be a Bañados–Teitelboim–Zanelli 
(BTZ) black hole solution [4]. The BTZ spacetime is parametrized by the dimensionless con-
stants (�m, j), where � is the AdS3 ‘radius’ and m is a parameter with dimensions of mass in 
units for which � = 1. For 3D GR, the ADT method can be used to show that m is the black 
hole mass M, and j is its angular momentum J [5, 6] (see [7, 8] for a more recent discussion). 
However, a feature of the ADT method is that it gives the same results for any two gravita-
tional theories whose field equations become equivalent when linearized about the chosen 
background solution, and this conflicts with results obtained by other methods.

This point is most simply illustrated by a comparison of 3D GR with a negative cosmologi-
cal constant (to allow an AdS3 vacuum) to its ‘exotic’ variant with a parity-odd action [9]. In 
this case the full field equations (and not just their linearizations) are equivalent, as is most 
easily seen from the fact that the action for both can be expressed as a linear combination of 
two SL(2;R) Chern–Simons (CS) actions [9, 10]; after allowing for the freedom to rescale 
the fields and choose the overall sign, there are only two inequivalent linear combinations, 
corresponding to standard 3D GR and its exotic variant. Using a generalization of the ADT 
method to CS gravity proposed in [11], it was argued in [12] that (�M, J) = (j, �m) for exotic 
gravity4. This exchange of the roles of the two BTZ parameters was found previously in [6] 
for the Carlip–Gegenberg 3D gravity action [13], and a similar role reversal occurs [14] for 
conformal 3D gravity [15, 16], which also has a parity-odd action.

These examples suggest that it is important to consider the information contained in the 
quadratic action for metric perturbations at infinity, and not just the linearized field equa-
tions that follow from this action. An nth order linearized gravitational field equation defines 
an nth order partial differential operator but in 3D this operator factorizes (generically) into a 
product of n first-order operators, and the nth order quadratic action becomes equivalent to a 
linear combination of n first-order quadratic actions. After allowing for the freedom to choose 
the overall sign and redefine fields we are left with a choice of (n − 1) relative signs, and hence 
the possibility of off-shell inequivalences for n  >  1. The CS gravity example just discussed 
illustrates this for n  =  2, with the one relative sign distinguishing between the standard and 
exotic variants of 3D GR. A second relative sign becomes possible for n  =  3, and this sign is 
relevant to the comparison between ‘topological massive gravity’ (TMG) [17] and ‘minimal 
massive gravity’ [18], as we explained in a previous work [19]; as we also explained there, it is 
essential to take into account these relative signs in any discussion of semi-classical unitarity.

Here we discuss similar issues in the context of computations of the values of conserved 
charges associated to symmetries of a background solution to which other solutions, such as BTZ 
black holes, are asymptotic. Our aim is to extend the ADT method, and its CS gravity generaliza-
tion, to the ‘Chern–Simons-like’ 3D gravity theories [20–22]. These include CS gravity theories 
as special cases but also the massive 3D gravity theories mentioned above and many others, such 
as ‘new massive gravity’ (NMG) [23] and the recent ‘exotic massive gravity’ (EMG) [24] which 
can be viewed as a massive-gravity extension of exotic 3D GR. Because CS-like gravity actions 
are first-order, all relative-sign differences arising upon linearization are taken into account.

4 See [25, 26] for related work.
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Our main result is a simple and general formula for conserved charges as line integrals 
at spatial infinity. We use this formula to determine the mass and angular momentum of the 
BTZ black hole as a solution of a variety of 3D gravity theories. In particular, we recover the 
results mentioned above for the exotic 3D CS gravity, and previous results for TMG and NMG 
[27]. We also recover the results for MMG reported in [19], and we find the mass and angular 
momentum of the BTZ black hole solution of EMG. We should point out that similar results 
for some of these massive gravity theories have been obtained previously in a series of papers 
[28–31], but many details differ from those presented here.

One of the motivations for this work was the realization that the original ADT method can-
not be consistently applied to those 3D massive gravity theories, such as MMG and EMG, that 
are ‘third way consistent’ (in the terminology of [32]). The point here is that for these cases a 
matter stress tensor is not a consistent source tensor for the metric equation, which means that 
the starting point for the ADT analysis is not available. There is a consistent source tensor [24, 
33] but it does not reduce to the matter stress tensor even in a linearized limit! A variant of this 
difficulty arises even in the simple case of the exotic CS formulation of 3D GR: although it is 
consistent to add a matter source tensor to the right hand side of the source-free Einstein equa-
tion, this is not equivalent to coupling the 3D matter to the dreibein in the usual way (because 
that would produce a parity-violating equation).

One advantage of the method used here to determine the asymptotic charges carried by the BTZ 
black hole is that we start from the most general possible linear coupling of the one-form fields 
(which include auxiliary fields for massive 3D gravity) to a generic 2-form source consistent with 
Noether identities. Ultimately, this source plays no role in the final formula, as is the case for ADT 
but now we do not encounter the problem of an inconsistent initial assumption. What we lose is the 
obvious interpretation of asymptotic charges that is provided by the ADT method; for example, it 
is no longer obvious that the BTZ parameter m is the mass M of the BTZ black hole, but this was 
to to be expected because M �= m for many 3D gravity theories, as we have been emphasizing.

Finally, we compute the central charges of the asymptotic Virasoro ⊕ Virasoro symmetry 
algebra and discuss the implications of our results for BTZ black hole thermodynamics. As 
we have discussed this topic for MMG in [19], we focus here on the generic Chern–Simons-
like model, including EMG, and its EGMG generalization [24]. Our results are both internally 
consistent and consistent with the discussion in [12] for exotic 3D GR, but they disagree with 
some other recent results [34, 35].

2.  Conserved charges in CS-like gravity

The generic CS-like action is the integral over a 3-manifold M  of a Lagrangian 3-form con-
structed by exterior multiplication of n � 2 independent Lorentz 3-vector valued 1-forms 
{ar; r = 1, 2, . . . , n}; the Lorentz vector indices are suppressed. The generic Lagrangian 
3-form, including a coupling of the one-form fields to a set of Lorentz 3-vector valued ‘source’ 
2-forms {Jr; r = 1, 2, . . . n}, is

L =
1
2

grs ar · das +
1
6

frst ar · as × at − ar · Jr ,� (2.1)

where the exterior products of forms is implicit, and we use standard 3-vector algebra (dot 
and cross product) for multiplication of Lorentz 3-vectors. The constants grs and f rst can be 
interpreted as totally symmetric tensors on the n-dimensional ‘flavour’ space spanned by 
{ar; r = 1, 2, . . . , n}; we assume that grs is an invertible metric on this space that we can use 
to raise or lower ‘flavour’ indices. It is customary to impose some additional conditions but for 
the moment we proceed with only those just stated.
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The field equations that follow from the above Lagrangian 3-form are

dar +
1
2

f r
st as × at = J r ,� (2.2)

where we have raised some ‘flavour’ indices with the inverse of grs. Let {ār; r = 1, 2, . . . , n} 
be a solution of the source free equation; i.e.

dār +
1
2

f r
st ās × āt = 0 .� (2.3)

We may expand about this background solution by writing

ar = ār +∆ar .� (2.4)

Substitution into the field equation (2.2) yields

(D̄∆a)r +
1
2

f r
st ∆as ×∆at = J r ,� (2.5)

where, for any set of Lorentz 3-vector fields {Vr} we have

(D̄V)r := dVr + f r
st ās × Vt .� (2.6)

By defining a ‘total source 2-form’ 

J r
tot := J r − 1

2
f r

st ∆as ×∆at ,� (2.7)

we may rewrite the field equation (2.5) in the simple form

(D̄∆a)r = J r
tot .� (2.8)

Now let {ξr; r = 1, . . . , n} be a set of Lorentz-vector scalar fields (we continue to suppress 
the Lorentz indices); we may use them to construct the 2-form

J = J r
tot · ξr .� (2.9)

A straightforward calculation shows that

dJ = (D̄Jtot)
r · ξr + J r

tot · (D̄ξ)r

= (D̄2∆a)r · ξr + J r
tot · (D̄ξ)r ,

� (2.10)

where the second equality uses (2.8). To proceed, we need the following

	 •	� Lemma: Let {Ur}, {Vr} be two sets of Lorentz 3-vectors, either of which may be a set 
of functions or one-forms on M . Then

(D̄2V)r · Ur ≡ −Vr · (D̄2U)r .� (2.11)

		  Proof by calculation:

(D̄2V)r · Ur ≡
{

f r
s[tf s

u]v [(āu · āt)Vv + 2āv(āu · Vt)]
}
· Ur

≡ frs[tf s
u]v [(āu · āt)(Vv · Ur)− 2(Vt · āu)(āv · Ur)]

≡ −frs[tf s
u]v [(āu · āt)(Vr · Uv) + 2(Vr · āv)(āu · Ut)]

≡ −Vr ·
{

f r
s[tf s

u]v [(āu · āt)Uv + 2āv(āu · Ut)]
}

≡ −Vr · (D̄2U)r ,

�

(2.12)
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		  where the third line uses the antisymmetry of frs[tf s
u]v on the index pair (v, r) and sym-

metry under exchange of the pairs (u, t) and (v, r).

Using this lemma we have

dJ = −∆ar · (D̄2ξ)r + J r
tot · (D̄ξ)r .� (2.13)

As (D̄ξ)r = 0 ⇒ (D̄2ξ)r = 0, it follows that

(D̄ξ)r = 0 (r = 1, . . . , n) ⇒ dJ = 0 .� (2.14)

For the next step we use the field equation (2.8) to deduce that

J r
tot · ξr = d [∆arξr]−∆ar · (D̄ξ)r.� (2.15)

It follows that D̄ξ = 0 implies J = d [∆arξr], and hence that
∫

Σ

J =

∮

∂Σ

∆ar · ξr .� (2.16)

It remains for us to relate the set of Lorentz-vector scalar fields {ξr} satisfying (D̄ξ)r = 0 
to symmetries of the background. This can be done as follows: let

ξr = iζ ār ,� (2.17)

where iζ indicates the contraction with vector field ζ. We have

(D̄ξ)r = diζ ār + f r
st ās × iζ āt

= (diζ + iζd) ār − iζ

(
dār +

1
2

f r
stās × āt

)

= Lζ ār ,

�

(2.18)

where we have used the background field equation  (2.3) and the formula Lζ = diζ + iζd 
for the Lie derivative of a form field with respect to a vector field ζ. We thus see that the 
background is invariant under a Lie dragging by ζ when D̄ξr = 0 for ξr = iζ ār, which is the 
generalization to generic background fields of the statement that ζ is a Killing vector field.

	 •	� Summary: For a CS-like gravity theory with a background {ār} such that Lζ ār = 0 
(r = 1, . . . , n) for vector field ζ, the corresponding conserved charge associated with any 
configuration {ar} on a spacelike hypersurface Σ that is asymptotic to the background as 
the boundary circle ∂Σ is approached, is

Q(ζ) =
1

8πG

∮

∂Σ

∆ar · iζ āsgrs ,� (2.19)

		  where ∆ar = ar − ār . The normalization will be justified later.

This result is a very general one. In order for a 3D gravity interpretation to be possible we 
must assume that one linear combination of the {ar} is the invertible dreibein one-form e 
from which a Lorentzian metric may be constructed, so the manifold M  must allow this. 
In addition, it is customary to also assume that another linear combination is the dual spin-
connection one-form ω; the coefficients grs and f rst are then significantly constrained by the 
requirement of local Lorentz invariance. We shall impose both these conditions when we turn 
to applications of the formula (2.19) in the following sections, but neither condition was used 
in its derivation so it applies more generally. In particular, no assumption of local Lorentz 
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invariance was made, so (2.19) will apply to the recent CS-like models of 3D gravity for which 
this assumption is relaxed [36].

Here, we choose a basis for the 1-form fields {ar} such that e and ω  are two basis elements, 
and we insist on local Lorentz invariance. The remaining (n − 2) Lorentz vector-valued fields 
of the basis (for n  >  2) will be assumed to be auxiliary in the sense that they are determined 
algebraically in terms of e and ω  by the full set of field equations. We shall also insist on 
explicit closed form expressions for these auxiliary fields (without resort to an infinite-series 
expansion) but we reconsider this condition in our final Discussion section.

3.  BTZ black hole charges

We now aim to apply the formula (2.19) to determine the mass and angular momentum of 
the BTZ spacetime in the context of various 3D gravity theories, starting with the CS gravity 
theories. The dreibein components are

e0 = N(r)dt , e1 = r (dϕ+ Nϕdt) , e2 =
dr

N(r)
,� (3.1)

where

N2 =
(r2 − r2

+)(r
2 − r2

−)

�2r2 =
r2

�2 − 8Gm+

(
4G j

r

)2

,� (3.2a)

Nϕ =
r+r−
�r2 =

4G j

r2 .� (3.2b)

The (outer and inner) horizon radii r+ and r− are related to the parameters m and j by

�m =
r2
+ + r2

−
8�G

, j =
r+r−
4�G

.� (3.3)

The zero-torsion condition determines the dual Lorentz connection one-form:

ω0 = −Ndϕ , ω1 = −4G j

r
dϕ− r

�2 dt , ω2 =
4G j

r2N
dr .� (3.4)

We shall take the background to be the ‘black hole vacuum’ for which m = 0 and j = 0, 
so that

ē0 =
r
�

dt , ē1 = rdϕ , ē2 =
�

r
dr ,� (3.5)

and

ω̄0 = − r
�

dϕ , ω̄1 = − r
�2 dt , ω̄2 = 0 ,� (3.6)

and hence

∆e0 =
[
N − r

�

]
dt = −4G�m

r
dt + . . . ,

∆e1 =
4G j

r
dt ,

∆e2 =

[
N−1 − �

r

]
dr =

4G�3m

r3 dr + . . . ,

�

(3.7)

E A Bergshoeff et alClass. Quantum Grav. 37 (2020) 035003
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and

∆ω0 = −
(

N − r
�

)
dϕ =

4G�m

r
dϕ+ . . . ,

∆ω1 = −4G j

r
dϕ ,

∆ω2 =
�j

2r2N
dr =

4G�j

r3 dr + . . . ,
�

(3.8)

where omitted terms are subleading in the r → ∞ limit.
Now we consider in turn 3D GR and its exotic variant, taking Σ to be a surface of constant 

t. The isometries of the BTZ black hole vacuum correspond to the two Killing vector fields ∂t 
and ∂φ, and our principal interest here is to determine the relation between the corresponding 
conserved charges for the BTZ black hole in terms of its parameters (m, j).

3.1.  Standard 3D GR

The Lagrangian 3-form for 3D gravity with cosmological constant Λ = −1/�2 is

(8πG)LGR = −e · R(ω)− 1
6�2 e · e × e ,� (3.9)

where G is the 3D Newton constant (which has dimensions of inverse mass). After addition of 
the exact 3-form 12 d[ω · e], the right hand side takes the CS-like form with

geω = −1 , feωω = −1, feee = − 1
�2 .� (3.10)

Application of the formula (2.19) yields

(8πG)QGR(ζ) = −
∮

∂Σ

[∆e · ω̄µ +∆ω · ēµ] ζµ .� (3.11)

Now we consider in turn the two (dimensionless) Killing vector fields �∂t and ∂ϕ of the 
black-hole vacuum background. Using eqs. (3.5)–(3.8) we find that

QGR(�∂t) = − �

8πG

∮

∂Σ

[
∆e1ω̄1

t −∆ω0ē0
t

]
=

�

8πG

∮
4Gmdϕ = �m ,� (3.12a)

QGR(∂ϕ) = − 1
8πG

∮

∂Σ

[
−∆e0ω̄0

ϕ +∆ω1ē1
ϕ

]
=

1
8πG

∮
4G jdϕ = j .� (3.12b)

This agrees with standard results if we make the identification

�M = Q(�∂t) , J = Q(∂ϕ) ,� (3.13)

and this fact justifies our choice of normalization in (2.19). In other words, with this normal-
ization and the above identification of the charges with the BTZ black hole mass and angular 
momentum we have (M, J) = (m, j) for 3D GR.

3.2.  Exotic 3D GR

The Lagrangian 3-form for ‘Exotic Gravity’ is

(8πG)LEG = � LLCS +
1
2�

e · T(ω) ,� (3.14)

E A Bergshoeff et alClass. Quantum Grav. 37 (2020) 035003
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where LLCS is the Lorentz–Chern–Simons 3-form for ω , and T(ω) is its torsion 2-form:

LLCS =
1
2

[
ω · dω +

1
3
ω · ω × ω

]
, T(ω) = de + ω × e ≡ D(ω)e .� (3.15)

In this case the right hand side of (3.14) is of CS-like form with

gee =
1
�

, gωω = � , feeω =
1
�

, fωωω = � ,� (3.16)

and hence

(8πG)QEG(ζ) =

∮

∂Σ

[
�∆ω · ω̄µ +

1
�
∆e · ēµ

]
ζµ .� (3.17)

It is useful to notice here (and for calculations to follow) that
∮

∂Σ

∆e · ēµζµ = 0 (for ζ = �∂t and ζ = ∂ϕ) ,� (3.18)

and hence

(8πG)QEG(ζ) = �

∮

∂Σ

[∆ω · ω̄µ] ζ
µ .� (3.19)

On substitution for ζ, this formula shows that

QEG(�∂t) =
�2

8πG

∮

∂Σ

[
∆ω1ω̄1

t

]
=

�2

8πG

∮

∂Σ

4G j

�2 dϕ = j ,� (3.20a)

QEG(∂ϕ) =
�

8πG

∮

∂Σ

[
−∆ω0ω̄0

ϕ

]
=

�

8πG

∮
4Gm dϕ = �m .� (3.20b)

Notice that the charges for exotic 3D gravity are exchanged with respect those of standard 3D 
GR, in agreement with [12]:

QEG(�∂t) = QGR(∂ϕ), QEG(∂ϕ) = QGR(�∂t) .� (3.21)

3.3.  Conformal 3D gravity

A CS-like action for 3D conformal gravity is [20]

LCG = k [LLCS + h · T(ω)] ,� (3.22)

for arbitrary dimensionless constant k. This reduces to the Van Nieuwenhuizen action [15] on 
solving the zero-torsion constraint imposed by h, and it is a partially gauge-fixed version of the 
Horne–Witten CS action [16]. From this CS-like action we may read off the grs coefficients:

gωω = k , geh = k .� (3.23)

The field equations allow for an AdS3 solution of arbitrary ‘radius’ � and hence for a BTZ 
black hole solution. In either case one finds that

h =
1

2�2 e ,� (3.24)

and hence that

E A Bergshoeff et alClass. Quantum Grav. 37 (2020) 035003
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h̄ =
1

2�2 ē , ∆h =
1

2�2 ∆e .� (3.25)

Taking (3.18) into account, one finds that

QCG(ζ) =
k
�

QEG(ζ) .� (3.26)

This confirms the role reversal of the BTZ parameters for the BTZ black hole as a solution 
of 3D conformal gravity as compared with 3D GR [14]: whereas one might have expected 
QCG(ζ) to be a factor times QGR(ζ), it is instead a factor times QEG(ζ). As for exotic 3D grav-
ity, this exchange of roles is a consequence of having a parity-odd action for parity-preserving 
field equations.

4.  Massive 3D gravity theories

For the class of CS-like theories considered in this paper, the Lagrangian 3-form is constructed 
from a set of n Lorentz-vector valued one-form fields {ar; r = 1, 2, . . . }, one of which is the 
dreibein e (assumed to be invertible) and another is the Lorentz-dual spin connection ω  (which 
is required to ensure local Lorentz invariance). The other (n − 2) fields are assumed to be 
auxiliary, in the sense that the full set of equations of motion can be used to solve for them 
algebraically, in closed form in terms of the dreibein5. This has the following implication: 
for any locally maximally-symmetric solution of the full equations all auxiliary fields will be 
proportional to e.

In this paper, n � 4, so it will be sufficient to consider the n  =  4 case for which there are 
two auxiliary fields; let us call them (h, f ). As the BTZ black hole solution is locally maxi-
mally symmetric (because it is locally equivalent to AdS3) we have

h = che , f = cf e ,� (4.1)

for this solution, where (ch, cf ) are (model-dependent) constants, which implies that

h̄ = chē , f̄ = cf ē ; ∆h = ch∆e , ∆f = cf∆e .� (4.2)

This allows us to simplify the formula (2.19) in applications of it to the 3D massive gravity 
theories of interest here (for which n = 3, 4). This formula reduces to

Q(ζ) =

∮

∂Σ

{
(∆e · ω̄µ +∆ω · ēµ) geff

eω +∆ω · ω̄µ geff
ωω +∆e · ēµ geff

ee

}
ζµ ,

� (4.3)
where

geff
eω = geω + chghω + cf gfω ,

geff
ωω = gωω ,

geff
ee = gee + 2chghe + 2cf gfe + c2

hghh + 2chcf ghf + c2
f gff .

�

(4.4)

The geff
ee  coefficient is irrelevant to the final result for the charges as a consequence of (3.18). 

However, it will be relevant later when we compute the central charges of the asymptotic sym-
metry algebra; we shall then use the fact that the restrictions on the grs and f rst coefficients that 
follow from the assumption of an AdS3 vacuum solution are such that

5 In this sense ω  is also auxiliary but we do not include it among the ‘auxiliary’ fields because of its special status.
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geff
ee =

1
�2 geff

ωω .
� (4.5)

To see this consider the background field equation grsdās + 1
2 frstās × āt = 0 for r = ω. Making 

use of (4.1) and local Lorentz invariance (which imposes fωrs = grs) this equation becomes

geff
ωeD̄ē + geff

ωωR(ω̄) = −1
2

geff
ee ē × ē.� (4.6)

Demanding that AdS3 is a solution with vanishing torsion will then impose (4.5). One could 
interpret this equation as fixing the cosmological constant in terms of the Chern–Simons-like 
coupling constants.

Finally, using the expressions (3.11) and (3.19), we deduce that

Q(ζ) = −geff
eω QGR(ζ) + �−1geff

ωωQEG(ζ) .� (4.7)

This formula greatly simplifies the calculations to follow for various 3D massive gravity 
theories.

4.1. TMG, NMG and GMG

The ‘General Massive Gravity’ (GMG) model introduced in [23] propagates a pair of spin-2 
modes with arbitrary (non-zero) masses m±; parity is violated when m+ �= m−. The special 
case for which m+ = m− = m is the parity preserving ‘New Massive Gravity’, also intro-
duced in [23]; it propagates a parity doublet of spin-2 modes of mass m. The special case 
for which m+ → ∞ for finite m− = µ yields the ‘Topologically Massive Gravity’ model of 
[17]; this propagates a single spin-2 mode of mass µ. Finally, TMG reduces to 3D GR in the 
µ → ∞ limit.

The Lagrangian 3-form for GMG is [20]

(8πG)LGMG = −σe · R(ω) +
1
6
Λ0 e · e × e + h · T(ω) +

1
µ

LLCS

+
1

m2 f · R(ω)− 1
2m2 e · f × f .

�
(4.8)

By the addition of an exact 3-form, this can be put into CS-like form with

geω = −σ , geh = 1 , gfω = − 1
m2 , gωω =

1
µ

.� (4.9)

In the AdS3 vacuum with Λ = −1/�2, and for the BTZ solution, we have

�2Λ0 = −σ +
1

4(�m)2 ,� (4.10)

and (h, f ) = (ch, cf )e with

ch =
1

2µ�2 , cf =
1

2�2 .� (4.11)

Applying the formula (4.4) we find that

geff
eω = −

(
σ +

1
2(�m)2

)
, geff

ωω =
1
µ

,� (4.12)
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and hence

QGMG(ζ) =

(
σ +

1
2(�m)2

)
QGR(ζ) +

1
�µ

QEG(ζ) .� (4.13)

This gives us

�MGMG =

(
σ +

1
2(�m)2

)
�m+

j

�µ
, JGMG =

(
σ +

1
2(�m)2

)
j+

m

µ
.

� (4.14)
From this result we get the result for NMG by taking the µ → ∞ limit and the result for 

TMG by taking the taking the m → ∞ limit:

�MNMG =

(
σ +

1
2(�m)2

)
�m , JNMG =

(
σ +

1
2(�m)2

)
j ,� (4.15a)

�MTMG = σ�m+
j

�µ
, JTMG = σj+

m

µ
.� (4.15b)

4.2.  MMG

The deformation of TMG to MMG [18] consists of adding an interaction term to the TMG 
Lagrangian with parameter α:

(8πG)LMMG = (8πG)LTMG +
α

2
e · h × h.� (4.16)

One might expect that the new interaction term would have no effect on the TMG result 
because the formula (2.19) appears to depend only on the (unchanged) coefficients grs of 
the kinetic terms. However, there is an implicit dependence on the interaction coefficients 
f rst because this affects the background solution; for the case in hand one finds that ω  is not 
torsion-free when α �= 0. The torsion-free connection is

Ω = ω + αh.� (4.17)

In terms of this new connection the MMG Lagrangian 3-form is [19]

(8πG)LMMG =− σe · R(Ω) +
Λ0

6
e · e × e + (1 + ασ)h · T(Ω)− α

2
(1 + ασ)e · h × h

+
1
µ

LLCS(Ω)−
α

µ
h ·

(
R(Ω)− α

2
D(Ω)h +

α2

6
h × h

)
,

�
(4.18)

where D(Ω) denotes the Lorentz covariant derivative with respect to the connection Ω, and 
(as explained in [18]) the definition of MMG includes the restriction (1 + ασ) �= 0. For this 
Lagrangian 3-form, the grs coefficients are

geΩ = −σ , gΩΩ =
1
µ

,� (4.19)

and

geh = (1 + ασ) , ghh =
α2

µ
, ghΩ = −α

µ
.� (4.20)
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For the BTZ solution, e and Ω are given by the 3D GR (and TMG) expressions for e and 
ω , and h  =  che with

ch = µC ,� (4.21)

where the dimensionless constant C is determined, along with Λ0, by the equations

C =
(1 − α�2Λ0)

2[(1 + ασ)µ�]2
, Λ0 = − σ

�2 + α [(1 + ασ)µC]
2 .� (4.22)

In this case h is the only auxiliary field, so

geff
eΩ = geΩ + ch ghΩ = − [σ + αC] ,� (4.23a)

geff
ΩΩ = gΩΩ =

1
µ

.� (4.23b)

As Ω is the same torsion-free connection as used previously in the TMG case, the expressions 
we need for Ω̄ and ∆Ω are exactly the same as those used in the TMG case for ω̄  and ∆ω. The 
formula (4.7) therefore continues to apply, and in this case it tells us that

QMMG(ζ) = (σ + αC)QGR(ζ) +
1
µ�

QEG .� (4.24)

As expected, we recover the TMG result upon setting α = 0.
Applying this result for the two Killing vector fields of the BTZ black hole vacuum, we 

deduce that

�MMMG = (σ + αC)�m+
j

�µ
, JMMG = (σ + αC)j+

m

µ
,� (4.25)

which agrees with [19].

4.3.  EMG and EGMG

Exotic massive gravity (EMG) [24] is the exotic 3D gravity version of NMG [23]; both prop
agate a parity doublet of spin-2 modes, but the EMG equations are found from an odd-parity 
CS-like Lagrangian 3-form. A generalization that leads to a parity-violating metric field equa-
tion was also found in [24] and called there ‘Exotic Generalized Massive Gravity’ (EGMG); 
its Lagrangian 3-form is

(8πG)LEGMG = − �

m2

[
f · R(ω) +

1
6m4 f · f × f − 1

2m2 f · D(ω) f +
ν

2
f · e × e

− m2h · T(ω) + (ν − m2)LLCS(ω) +
νm4

3µ
e · e × e

]
,

� (4.26)
where6

ν =
1
�2 − m4

µ2 .� (4.27)

The EMG Lagrangian 3-form is obtained by taking the µ → ∞ limit.

6 We require ν �= 0 here although the EGMG metric equation has a well-defined ν → 0 limit [24].
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We may read off from (4.26) the non-zero grs coefficients that we will need to apply the 
formula (2.19):

geh = � , gff =
�

m4 , gωω = �
(

1 − ν

m2

)
, gfω = − �

m2 .� (4.28)

The BTZ black hole is a solution of EMG when the components of the dreibein and spin con-
nection are given as in (3.1) and (3.4), respectively, and

h = che, f = cf e ,� (4.29)

for constants

cf = −m4

µ
, ch =

1
2�2 (1 − 1

�2m2 )(1 − �2m4

µ2 ) .� (4.30)

From this we learn that

geff
eω =

�m2

µ
, geff

ωω = �

(
1 +

m2

µ2 − 1
(�m2)

)
,� (4.31)

and hence that

QEGMG(ζ) = −�m2

µ
QGR(ζ) +

(
1 +

m2

µ2 − 1
(�m2)

)
QEG(ζ) .� (4.32)

By taking the µ → ∞ limit we get the corresponding result for EMG:

QEMG(ζ) =

(
1 − 1

(�m)2

)
QEG(ζ) .� (4.33)

This result here differs from the ADT charges computed using the linearized field equa-
tions in [34]. As a check on our result, we observe that

lim
m2→∞

QEMG(ζ) = QEG(ζ) .� (4.34)

This could have been anticipated from the fact that

(8πG) lim
m2→∞

LEMG = �h · T(ω) + �LLCS(ω) ,� (4.35)

which is the Lagrangian 3-form for exotic 3D GR after a re-interpretation of 2�2h as a new 
dreibein.

5.  Central charges for CS-like theories

Under the assumptions listed in the previous sections, it becomes possible to derive a generic 
formula for the central charges of the putative holographic duals to the various CS-like theo-
ries of gravity discussed here. This derivation rests on the realization that the formula (2.19) 
still applies for asymptotic diffeomorphisms, which become true Killing symmetries only 
at the spatial boundary where r → ∞. The treatment of asymptotic symmetries in Chern–
Simons-like theories of gravity was discussed in [37] and reviewed in [19], we will not repeat 
this analysis here in full detail. We only need that generic solutions with asymptotically AdS3 
boundary conditions are described by their Fefferman–Graham expansion, which is finite 
in three dimensions and yields the Bañados metrics given in (5.1) below. We then find the 
asymptotic diffeomorphisms preserving the Bañados metric in all CS-like theories with an 
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AdS3 solution for which the auxiliary fields satisfy (h, f ) = (ch, cf )e, and we use the algebra 
of asymptotic charges to compute the boundary central charges.

5.1.  Asymptotic charges for Bañados solutions

Bañados metrics [38] parameterize the phase space of locally asymptotically AdS3 solutions. 
They are given in terms of two arbitrary state-dependent functions L ±(x±) as

ds2 = dr2 − �2
(

er/�dx+ − e−r/�L −(x−)dx−
)(

er/�dx− − e−r/�L +(x+)dx+
)

,� (5.1)

where x± = t ± ϕ. We are interested in studying transformations of this background which 
correspond to true symmetries of the background only asymptotically. In other words, we 
wish to impose

(Dξ)r = dξr + f r
stas × ξt = δξar ,� (5.2)

where δξar → 0 only at the asymptotic boundary r → ∞. The sub-leading components of 
(5.2) will determine how the state-dependent functions L ± transform under asymptotic sym-
metry transformations.

To proceed we first parameterize the Bañados metrics (5.1) by the following dreibein

e0 =
�

2

(
2er/� − e−r/�(L + + L −)

)
dt − �

2
e−r/�(L + − L −)dϕ,� (5.3a)

e1 =
�

2
e−r/�(L + − L −)dt +

�

2

(
2er/� + e−r/�(L + + L −)

)
dϕ ,� (5.3b)

e2 = dr.� (5.3c)

After solving the torsion constraint de + ω × e = 0 for the spin-connection we find

ω0 =
1
2

(
−2er/� + e−r/�(L + + L −)

)
dϕ+

1
2

e−r/�(L + − L −)dt,� (5.4a)

ω1 = −1
2

e−r/�(L + − L −)dϕ− 1
2

(
2er/� + e−r/�(L + + L −)

)
dt,� (5.4b)

ω2 = 0.� (5.4c)

We wish to find the gauge parameters ξr which preserve the form of ar up to a transformation 
of the state-dependent functions L ±. In general this may be a non-trivial task for the generic 
CS-like theory, however under our working assumptions the problem simplifies.

Let us first use that the auxiliary fields (h, f ) are proportional to the dreibein. This 
implies for gauge parameters ξr corresponding to asymptotic diffeomorphisms that also 
(ξh, ξ f ) = (ch, cf )ξ

e. Hence the only two independent components of ξr that we have to solve 
for are ξe and ξω, corresponding to (possibly linear combinations of) an asymptotic diffeomor-
phism and a local Lorentz transformation.

Then we use that local Lorentz invariance imposes restrictions on the structure constants of 
the CS-like theory involving ω . To be precise, for local Lorentz invariance of the action (and 
corresponding field equations) we need

f r
ωr = 1 & f r

ωs = 0 for r �= s.� (5.5)
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The first of these conditions can be understood as the statement that every derivative d needs 
to be accompanied by a spin-connection ω , and the second condition states that all spin con-
nections arise in this way.

Under these assumptions equation (5.2) for r = (e,ω) becomes

dξe + ω × ξe + e × ξω + c1e × ξe = δξe ,� (5.6a)

dξω + ω × ξω + c2e × ξe = δξω ,� (5.6b)

with

c1 = f e
ee + 2chf e

eh + 2cf f e
ef + c2

hf e
hh + c2

f f e
ff + 2chcf f e

hf ,� (5.7a)

c2 = fωee + 2chfωeh + 2cf fωef + c2
hfωhh + c2

f fω ff + 2chcf fωhf .� (5.7b)

At the same time, solving the field equations for the Bañados metrics with vanishing torsion 
and cosmological constant Λ = −1/�2 tells us that

c1 = 0, c2 =
1
�2 .� (5.8)

Likewise, the conditions on the structure constants and ch, cf  that arise from solving the field 
equations for the Bañados solutions guarantee that (5.2) is satisfied for r = (h, f ).

What remains to be done is to solve (5.6) with (5.8). The solution can be parameterized by 
two arbitrary functions f±(x±) and reads

ξe =
�

2
e−r/�

(
f+(e2r/� − L +) + f−(e2r/� − L −) +

1
2
( f+′′ + f−′′)

)
T0

+
�

2
e−r/�

(
f+(e2r/� + L +)− f−(e2r/� + L −)− 1

2
( f+′′ − f−′′)

)
T1

− 1
2
( f+′ + f−′)T2 ,

�

(5.9)

and

ξω = − �

2
e−r/�

(
f+(e2r/� − L +)− f−(e2r/� − L −) +

1
2
( f+′′ − f−′′)

)
T0

− �

2
e−r/�

(
f+(e2r/� + L +) + f−(e2r/� + L −)− 1

2
( f+′′ + f−′′)

)
T1

+
1
2
( f+′ − f−′)T2.

�

(5.10)

Here Ta (a = 0, 1, 2) are the generators of SO(1, 2). The transformation of the state-dependent 
functions L ± is then given by

δξL
± = f±L ±′ + 2f±′L ± − 1

2
f±′′′.� (5.11)

These are the transformation properties of the left and right moving stress tensors of a con-
formal field theory and ξr (for r = (e, h, f )) encode the usual Brown–Henneaux asymptotic 
Killing vectors ζµ by7 ξr = ar

µζ
µ.

7 This expression holds for r = ω only up to a local Lorentz transformation which is sub-leading towards the bound-
ary and does not contribute to the asymptotic charges.
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Now that we have found the asymptotic transformations (5.2) with parameters ξr we apply 
our formula for the asymptotic charges to obtain

Q[ξr] =
1

8πG

∮

∂Σ

∆ar · ξsgrs

=
1

8πG

∮

∂Σ

(
(∆e · ξω +∆ω · ξe)geff

eω +

(
∆e · ξe

�2 +∆ω · ξω
)

geff
ωω

)
.

�
(5.12)

The effective coefficients geff
rs  are given in (4.4) and we have used the relation (4.5). Using the 

Bañados solutions (5.3) and (5.4) with L ± = 0 as background values for ē and ω̄  we have

∆e0 = − �

2
e−r/� ((L + + L −)dt + (L + − L −)dϕ

)
,� (5.13a)

∆e1 =
�

2
e−r/� ((L + − L −)dt + (L + + L −)dϕ

)
,� (5.13b)

∆e2 = 0,� (5.13c)

and

∆ω0 =
1
2

e−r/� ((L + + L −)dϕ+ (L + − L −)dt
)

,� (5.14a)

∆ω1 = −1
2

e−r/� ((L + − L −)dϕ+ (L + + L −)dt
)

,� (5.14b)

∆ω2 = 0 .� (5.14c)

Together with (5.9) and (5.10) this implies that

Q =
�

8πG

∮

∂Σ

[
−geff

eω(L
+f+ + L −f−) +

1
�

geff
ωω(L

+f+ − L −f−)
]

.� (5.15)

Bañados geometries (5.1) with constant L ± = 2G
� (�m± j) describe the BTZ black 

hole geometry. The Killing vector ∂t corresponds to taking f± = 1 and ∂ϕ corresponds to 
f± = ±1, which allows us to recover the result (4.7) from this formula as well. For a generic 
asymptotic symmetry transformation parameterized by the functions f±(x±) these charges 
become generators of the 2D conformal algebra, with central charges depending on the coef-
ficients of the CS-like model, as we will now show.

5.2.  Central charges

Let us first specialise to the case of 3D general relativity (GR) and exotic gravity (EG). The 
result for GR is

QGR[ζµ] =
�

8πG

∮
dϕ

(
f+(x+)L +(x+) + f−(x−)L −(x−)

)
,� (5.16)

whereas exotic 3D gravity gives:

QEG[ζµ] =
�

8πG

∮
dϕ

(
f+(x+)L +(x+)− f−(x−)L −(x−)

)
.� (5.17)
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The results differ only by a sign but this difference has major consequences. Using the transfor-
mation property (5.11) we see that the Poisson brackets of the charges {Q[ f ], Q[g]} = δf Q[g] 
span two copies of the Virasoro algebra in both cases, but the two central charges for exotic 
gravity have opposite sign:

c±GR =
3�
2G

, c±EG = ± 3�
2G

.� (5.18)

Since the transformation property (5.11) is universal for asymptotically AdS3 spacetimes in 
the sense that it does not depend on the specifics of the CS-like model, the algebra of charges 
still consists of two copies of the Virasoro algebra in the generic case with charges (5.15). In 
contrast, the values of the central charges do depend on the specifics of the CS-like model, and 
they can be written as linear combinations of the GR and EG central charges:

c± = −geff
eωc±GR +

1
�

geff
ωωc±EG =

(
−geff

eω ± 1
�

geff
ωω

)
3�
2G

.� (5.19)

We shall now verify this formula for the known cases discussed in the last section and then 
compute the central charges of EGMG.

5.2.1.  GMG.  For GMG we have computed geff
eω  and geff

ωω in (4.12). Application of the formula 
(5.19) gives

c±GMG =

(
σ +

1
2(�m)2 ± 1

µ�

)
3�
2G

,� (5.20)

which indeed corresponds to the central charge of GMG as reported in [23].

5.2.2.  MMG.  In the case of MMG, we first change variables to Ω = ω + αh such that Ω 
is the torsionless spin-connection. We then apply the formula (5.19) with ω  replaced by Ω 
together with (4.23). The result is

c±MMG =

(
σ + αC ± 1

µ�

)
3�
2G

,� (5.21)

in agreement with [18, 19] .

5.2.3.  EGMG.  We now turn to the computation of the central charges of EGMG. Using 
the effective coefficients (4.31) our formula (5.19) straightforwardly leads to the following 
expression for the EGMG central charges8

c±EGMG =

(
−�m2

µ
±
(

1 +
m2

µ2 − 1
(�m)2

))
3�
2G

.� (5.22)

The limit of µ → ∞ gives the EMG central charges

c±EMG = ±
(

1 − 1
(�m)2

)
3�
2G

.� (5.23)

The limit m → ∞ then reproduces the EG central charges, not those of 3D GR.

8 These expressions are proportional to the coefficients a± found from the quadratic action in [24], in agreement 
with the claim made there that a± ∝ c±, but the constant of proportionality is negative here because of slightly 
different conventions.
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Note that c± = 0 now has two solutions, corresponding to two critical values of µ where 
one of the boundary central charges vanishes, these are

µcrit,1 = ±�m2, µcrit,2 = ± �m2

�2m2 − 1
.� (5.24)

It would be interesting to see whether the logarithmic solutions to EMG studied in [34, 35] at 
µcrit,2 are also solutions at µcrit,1.

The EGMG central charges (5.22) differ from those reported in [35]. The authors of that 
paper derived the central charges by integrating the first law of black hole thermodynamics 
using the ADT-charges, computed in the metric formulation in [34], and then assuming the 
validity of Cardy’s formula. In the next section we will see that integrating the first law with 
the EGMG black hole charges (4.32) will give an entropy consistent with Cardy’s formula 
when the central charges are given by (5.22). In fact, we will show that Cardy’s formula holds 
for any CS-like theory satisfying our assumptions.

6.  Black hole thermodynamics

The first law of black hole thermodynamics states that a black hole of mass M and angular 
momentum J satisfies the first law of thermodynamics

dM − ΩdJ = TdS,� (6.1)

where Ω is the angular velocity, T is the Hawking temperature of the black hole and S the black 
hole (Bekenstein–Hawking) entropy. The mass M and angular momentum J are extensive 
properties and will in general depend on the specific theory under consideration, as will the 
entropy. In general relativity the entropy corresponds to the area of the outer horizon at r  =  r+ 
over 4G in Planck units, but for exotic gravity the entropy is proportional to the area of the 
inner horizon at r  =  r− [12].

From the results of section 4 we see that for the CS-like theories considered in this paper 
we have

�M = Q(�∂t) = −geff
eω �m+ geff

ωω

j

�
,� (6.2a)

J = Q(∂ϕ) = −geff
eω j+ geff

ωω �m .� (6.2b)

The parameters (m, j) of the BTZ black hole spacetime, as well as the Hawking temperature 
and angular velocity of the black hole (which are intensive variables), do not depend on the 
specific theory and can be expressed solely in terms of the horizon radii of the BTZ solution:

T =
r2
+ − r2

−
2π�2r+

, Ω =
r−
�r+

.� (6.3a)

m =
r2
+ + r2

−
8�2G

, j =
r+r−
4�G

,� (6.3b)

Using these relations one can integrate the first law (6.1) and find the entropy of the BTZ black 
hole in the generic Chern–Simons-like theory of gravity. The result is

S = −geff
eω

2πr+
4G

+
geff
ωω

�

2πr−
4G

.� (6.4)
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It is now straightforward to reproduce the known results for the various theories under 
consideration:

SGR =
πr+
2G

, SEG =
πr−
2G

,� (6.5a)

SGMG =

(
σ +

1
2(�m)2

)
πr+
2G

+
1
µ�

πr−
2G

,� (6.5b)

SMMG = (σ + αC)
πr+
2G

+
1
µ�

πr−
2G

.� (6.5c)

When applying our formula (6.4) to EGMG we find the result

SEGMG = −�m2

µ

πr+
2G

+

(
1 +

m2

µ2 − 1
(�m)2

)
πr−
2G

.� (6.6)

In the limit µ → ∞ this reduces to the EMG entropy

SEMG =

(
1 − 1

(�m)2

)
πr−
2G

,� (6.7)

which further reduces to the EG entropy when m → ∞.

6.1.  Cardy formula

Now we wish to verify whether Cardy’s formula holds for the entropy of the generic CS-like 
models. Using the result for the central charge (5.19), the entropy of BTZ black holes (6.4) can 
be accounted for by the Cardy formula in the form

S =
�π2

3
(c+T+ + c−T−) ,

(
T± =

r+ ± r−
2π�2

)
� (6.8)

where T± are the left/right BTZ temperatures.
We wish to express the entropy in the more familiar form of the Cardy formula,

SCardy = 2π
√

c+
6
∆+ + 2π

√
c−
6
∆− ,� (6.9)

where ∆± are the eigenvalues of the Virasoro generators L±
0 . These are the zero modes 

of (5.15) for Bañados geometries describing the BTZ black hole, i.e. metrics (5.1) with 
L ± = 2G

� (�m± j). Using this and the relations (6.3) we find

∆± =

[
−geff

eω ± geff
ωω/�

]
16�G

(r+ ± r−)2.� (6.10)

The Cardy formula (6.9) then yields

SCardy =
π

6�
(
(r+ + r−)|c+|+ (r+ − r−)|c−|

)
,� (6.11)

which agrees with (6.4) only when both c+   >  0 and c−  >  0. Even though any unitary CFT 
meets this assumption, we do not wish to assume c± > 0 here because c−  <  0. for exotic 
gravity. It was already noted in [12] that in this case Cardy’s formula (6.9) should come with 
a minus sign in front of the second term; from (6.11) we see that in general we should take
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S = sign(c+)2π
√

c+
6
∆+ + sign(c−)2π

√
c−
6
∆−.� (6.12)

This is because a negative sign for c+ (or c−) can be understood as taking all left-movers (or 
right-movers) to have energy E  <  0 with a Hamiltonian bounded from above. In order to 
maintain the standard thermodynamical relations this should change the partition function as 
ZL → Z−1

L  (or ZR → Z−1
R ) and hence a minus sign in front of the relevant term in the Cardy 

formula appears [12].

7.  Discussion

The Chern–Simons-like formulation of massive 3D gravity theories is a simple, but surpris-
ingly powerful, generalization of the Chern–Simons formulation of 3D General Relativity. It 
greatly simplifies an analysis of the properties of models like ‘Topologically Massive Gravity’ 
(TMG) and ‘New Massive Gravity’ (NMG), which were first found by other means, and 
it leads naturally to the ‘Minimal Massive Gravity’ (MMG) and ‘Exotic Massive Gravity’ 
(EMG) generalizations that could not have been easily found in any other way. It also leads 
to a simple determination of the requirements for perturbative unitarity and, in those cases for 
which there is an AdS3 vacuum, a determination of the central charges of the asymptotic 2D 
conformal algebra.

Here we have shown that the formalism also leads, by an adaptation of the Abbott–Deser–
Tekin method, to a simple integral formula for asymptotic charges associated to solutions that 
are asymptotic to an AdS3 vacuum. Application to the mass M and angular momentum J of the 
BTZ black hole solution yields a general formula for each of these quantities as a linear com-
bination of the two parameters (m, j) of the BTZ spacetime with coefficients that are linear or 
quadratic functions of the parameters of the CS-like action. The 3D CS gravity theories are 
special cases to which this formula also applies, and for 3D GR it yields the expected result 
that M = m and J = j. Applied to the ‘exotic’ variant of 3D GR (with parity-odd action) the 
formula yields the result that M = j/� and J = �m in agreement with earlier results.

In their CS formulations, it is only a choice of sign that distinguishes 3D GR from its exotic 
variant, and this sign is irrelevant to the field equations. The original ADT method cannot dis-
tinguish between 3D GR and its exotic variant because it makes use only of the field equations. 
This is not obviously a problem but it is certainly a limitation in the context of the AdS/CFT 
correspondence because this is a conjectured equivalence between the partition function of a 
CFT as a function of sources for CFT operators and (in a particular limit) a path-integral over 
the action of a classical gravity theory with corresponding asymptotic boundary conditions. 
Different actions can be expected to correspond to different CFTs [39].

It is actually only the linearized equations (about the AdS background) that are used in the 
ADT method, so this method cannot distinguish between any two 3D gravity models with the 
same linearized equations. An example of such a pair is TMG and MMG and, as we empha-
sised in a previous paper [19], the fact that the quadratic action for these two CS-like models 
is first-order leads to the possibility of an off-shell inequivalence arising from a sign difference 
that has no effect on the linearized field equations. The variant of the ADT method presented 
here for CS-like theories takes account of this different sign and thus gives results for MMG 
that differ from those of TMG (but agree with our own earlier results).

Another pair of 3D gravity models with equivalent linearized equations is NMG and EMG. 
Here the off-shell inequivalence of the respective quadratic actions is obvious because one is 
parity even and the other is parity odd. We have applied our formula to both NMG (finding 
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agreement with earlier results) and EMG, for which we find results that are in disagree-
ment with those found recently in [34, 35]. The main reason for this disagreement is that 
the authors of [34, 35] apply the ADT-method to the linearized EMG field equations in the 
metric formulation but their stress tensor source is not the linearized limit of any consistent 
source tensor for the full EMG equations  [24]. By coupling a generic source tensor to all 
Chern–Simons-like one-form fields we find here results which are both internally consistent 
and consistent with black hole thermodynamics and Cardy’s formula.

Although our formula (2.19) for the asymptotic charges is valid for any Chern–Simons-
like theory, the simplifications for the asymptotic charges of the BTZ black hole (4.7) and the 
central charges (5.19) apply only to theories in which all Lorentz-vector one-form fields other 
than the dreibein and spin connection are auxiliary. Specifically, it must be possible to solve 
the CS-like field equations for any additional Lorentz-vector 1-forms in terms of e and ω , and 
hence in terms of e since we also assume (possibly after a field redefinition that preserves the 
CS-like form of the action) that the CS-like equations imply that ω  is torsion-free; these auxil-
iary fields will then be proportional to e in the BTZ solution of the full CS-like field equations. 
This condition is met by all the 3D gravity models discussed so far9 and by many other CS-like 
theories, examples of which may be found in [40] and the recent [41, 42].

We also assumed that the expressions for auxiliary fields in terms of e are closed form 
expressions rather than infinite-series expansions; this assumption was made in order to avoid 
issues such as the convergence of infinite series, and because it is satisfied for most of the 
best-known 3D gravity theories, but there is no obvious reason our results should not apply if 
this condition is relaxed. There is thus reason to suppose that the results obtained here will be 
applicable to Zwei–Dreibein Gravity [43], and generalizations thereof [44].

Our simplified central charge formula (5.19) will clearly not apply if the background solu-
tion is warped AdS3 [45, 46] because the asymptotic symmetry algebra is then different, and 
neither will our simplified formula (4.7) for black hole charges apply, because the black hole 
solution is different [47, 48]. However, we would still expect our formula (2.19) to apply.
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