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Abstract

This research project aims at providing the aeronautical industry with a modelling

capability to simulate the fuel injection in gas turbine combustion chambers.

The path to this objective started with the review of state-of-the-art numerical

techniques to model the primary breakup of liquid fuel into droplets. Based on this

and keeping in mind the requirements of the industry, our modelling strategy led to

the generation of a mass-conservative method for efficient atomisation modelling on

unstructured meshes. This goal has been reached with the creation of high-order

numerical schemes for unstructured grids, the development of an efficient numeri-

cal method that transports the liquid-vapour interface accurately while conserving

mass and the implementation of an algorithm that outputs the droplet boundary

conditions to separate combustion codes.

Both high-order linear and WENO schemes have been created for general polyhe-

dral meshes. The notorious complexity of high-order schemes on 3D mixed-element

meshes has been handled by the creation of a series of algorithms. These include

the tetrahedralisation of the mesh, which allows generality of the approach while

remaining efficient and affordable, together with a novel approach to stencil gener-

ation and a faster interpolation of the solution. The performance of the scheme has

been demonstrated on typical two-dimensional and three-dimensional test cases for

both linear and non-linear hyperbolic partial differential equations.

The conservative level set method has been extended to unstructured meshes and

its performance has been improved in terms of robustness and accuracy. This was
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achieved by solving the equations for the transport of the liquid volume fraction

with our novel WENO scheme for polyhedral meshes and by adding a flux-limiter

algorithm. The resulting method, named robust conservative level set, conserves

mass to machine accuracy and its ability to capture the physics of the atomisation

is demonstrated in this thesis.

To be readily applicable to the simulation of atomisation, the novel interface-

capturing technique has been embedded in a framework — within the open source

CFD code OpenFOAM — that solves the velocity and pressure fields, outputs

droplet characteristics and runs in parallel. In particular, the production of droplet

boundary conditions involves a set of routines handling the selection of drops in the

level set field, the calculation of relevant droplet characteristics and their storage into

data files. An n-halo parallelisation method has been implemented in OpenFOAM

to perform the computations at the expected order of accuracy.

Finally, the modelling capability has been demonstrated on the simulation of

primary liquid-sheet breakup with relevance to fuel injection in aero-engine com-

bustors. The computation has demonstrated the ability of the code to capture the

physics accurately and further illustrates the potential of the numerical approach.
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Chapter 1

Introduction

Atomisation is the process that transforms bulk liquid into sprays [122]. This pro-

cess plays an important role in a broad range of industries and sciences such as:

aeronautics (rockets and aircraft), automotive engineering, pharmaceutical, power

generation, petro-chemical, manufacturing, agriculture and meteorology.

Although atomisation is widely used and drives the performance of many systems,

the characteristics of the spray produced (e.g., droplet size and droplet velocity

distributions) are still poorly predicted. This is particularly true for aero-engines

which generally rely on air-blast atomisers to inject the kerosene in combustion

chambers.

As the prediction of fuel sprays in gas turbines is of critical importance to max-

imise the combustion efficiency and reduce the aviation emissions, aero-engine man-

ufacturers invest in the generation of numerical methods to model the injection

process.

As part of such a research programme, this work aims at providing the aeronau-

tical industry with a modelling tool to simulate the fuel injection.
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1.1 The aeronautical application

The kerosene is generally injected in combustion chambers as an annular liquid

sheet sheared on either side by a faster co-flowing gas stream. This sheet undergoes

a series of instabilities (longitudinal and transverse) which lead to the fragmentation

of the liquid bulk into liquid structures that further disintegrate into droplets (see

Figure 1.1). This initial process of the atomisation is called the primary breakup

and occurs in the vicinity of the injection point (see Figure 1.1).

(a) (b)

Figure 1.1: Atomisation in a combustion chamber: (a) Cartoon of the kerosene spray

(slice) overlaying the temperature contours in a combustion chamber (courtesy of

Rolls-Royce plc); (b) Close-up in the region of the primary breakup [37]

The formation of the fuel spray also involves the transport of the droplets pro-

duced by the primary breakup, their disintegration into smaller drops and the coa-

lescence of liquid structures. This is the secondary breakup which operates further

away from the bulk liquid.

The mechanisms of the primary breakup initiate the atomisation process, control

the extent of the liquid core and provide initial conditions for the secondary breakup

in the disperse flow region.

2



Chapter 1. Introduction

1.2 Motivations

Due to the increasing concern about global warming and more generally the human

impact on the environment, governments have recently produced more stringent

emission standards for the aeronautical industry. As the production of NOX and

CO2 in gas turbines is affected by the fuel-air mixing in combustion chambers,

aero-engine manufacturers expect to reduce the emissions of greenhouse gas (GHG)

through the optimisation of the fuel injection. As aircraft engines generally operates

under a wide range of conditions, optimising the fuel-gas mixing over the entire flight

envelope is extremely difficult.

The fuel-gas mixing is primarily driven by the atomisation which involves both

the initial fragmentation of the bulk liquid into droplets (primary breakup) and the

transport and further fragmentation of the drops (secondary breakup). Whereas the

secondary breakup is fairly well predicted by the current numerical methods, the

accurate simulation of the primary breakup remains one of the toughest challenge

in computational fluid dynamics (CFD).

However, the potential of the numerical approach to study and simulate the liq-

uid fragmentation is high. With an accurate modelling capability, the aeronautical

industry would not have to rely solely on comprehensive experimental test cam-

paigns and the design of efficient devices would be cheaper. Also, with the recent

progress in experimental measurements of the multiphase flows, the combination of

the numerical tool with the experimental approach would allow the manufacturers

to improve the combustion efficiency, reduce the emissions of GHG and lower the

fuel consumption.

1.3 Approaches to study the primary breakup

The understanding of the mechanisms controlling the primary breakup is currently

limited because of the difficulty in observing and measuring flow properties in the
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dense spray region. The most obvious means of studying the primary breakup,

and historically the first one, is the experimental study. The recent progress in

high-speed camera technology has allowed major advances in the description of the

breakup process and the structure of the spray.

Scientists have also used linear stability analysis to describe the phenomenon,

in particular Rayleigh tackled this approach in 1879 [192, 193]. This theoretical

framework has given useful insight on simple configurations. Unfortunately, many

features of the breakup process are dominated by non-linear phenomena and cannot

be tackled by even weakly non-linear stability analysis. However, the final stages

of liquid fragmentation — the secondary breakup — even though highly non-linear

have been described statistically using scale invariance.

Finally, the numerical characterisation of the primary breakup has grown in pop-

ularity in the past decades. It has proven to be a very difficult problem due to

the wide variety of time and length scales associated with the atomisation. Here,

the challenge consists of capturing the detailed physics of individual breakup events

while representing the complex geometries of the injection devices.

1.4 Numerical modelling of atomisation

1.4.1 Numerical framework

The breadth of turbulence scales calculated drives the choice of the numerical frame-

work: from the calculation of all the scales of motions with direct numerical sim-

ulations (DNS) to the direct representation of the energy containing motions (and

therefore the modelling of the effect of the smaller scale motions) in large eddy simu-

lations (LES) to finally the complete modelling of the turbulence with the Reynolds-

averaged Navier-Stokes (RANS) approach.

The numerical study of atomisation has been tackled at various levels of idealisa-

tion: RANS, LES with and without (Euler/Lagrange and Euler/Euler formulations)
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interface description and DNS. However, only the LES and DNS frameworks with

interface description can provide valuable insight into the fundamental physics of

the primary breakup. This work has then focussed on this type of approach.

1.4.2 Interface description

The description of the interface is necessary to study numerically the underlying

physics of the primary breakup. Various interface description methods have been

developed for the simulation of multiphase flows and the most popular ones can be

categorised into two groups: the methods describing the interface explicitly (moving

mesh and front tracking) and implicitly (volume of fluid and level set). In particular,

implicit interface description methods handle the changes of topology automatically

and offer great potential for the simulation of the atomisation.

The main challenge in developing an interface description method is to produce

an implicit technique that conserves mass (like volume of fluid) while predicting

accurately the interface location (like level set).

1.4.3 Treatment of singularities

The simulation of multiphase flows with interface description generally involves an

immersed boundary — the phase interface — moving in a fixed grid. This bound-

ary is the locus of surface tension forces and material discontinuities that can be

expressed as jump conditions (see Section 3.1.3). Even though, the Weber number

We, is typically very high at aero-engine injection conditions, the breakup occurs

at small scales where We is small and the capillary forces dominant [146].

Although numerically challenging, the accurate modelling of surface tension and

material discontinuities is crucial to the successful simulation of primary breakup.

There are essentially two methods to handle numerically these singularities: the

widely used continuum surface force (CSF) method popularised by Brackbill et al.

[26] and the more recent ghost fluid method (GFM) of Fedkiw et al. [55].
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1.5 Aim of the present work

Building upon the recent improvements of the numerical approach to model the

primary breakup, this work has focussed on the generation of an efficient modelling

capability to simulate the atomisation process in the combustion chambers of indus-

trial gas turbines.

Real engine problems are characterised by the complexity of the mechanical

boundary conditions, the very large breadth of length and time scales involved in

the atomisation process and the limited amount of resource available for the whole

numerical study.

As a result, to be relevant to the industry, a modelling capability has to be

developed for unstructured grids. Indeed, with such an approach, the geometric

details of the injection device would be faithfully represented in a timely manner,

as unstructured meshes are generally generated faster. In addition, due to the

limited amount of resources available, it is essential to base the modelling tool

on numerical methods that provides the best trade-off in terms of accuracy (mass

conservation and interface location) versus computational cost. Finally, the breadth

of length scales governing the spray can only be handled through the use of a sub-

model for the prediction of the primary breakup. Therefore, it is necessary that

the modelling capability outputs the droplet boundary conditions required by the

combustion codes to transport the spray in the combustion chamber.

In order to satisfy the above requirements, the work presented in this document

has focussed on:

• The generation of high-order accurate numerical schemes for unstructured

meshes

• The development of an efficient numerical method that transports the interface

accurately while conserving the mass.

• The implementation of a modelling tool that outputs the characteristics of the

6



Chapter 1. Introduction

droplets produced by the atomisation process.

1.6 Outline of the thesis

This thesis is articulated in two main parts. In the first part, from Chapter 2 to

Chapter 4, the document provides some background on the physics of the primary

breakup, reviews the existing numerical methods to simulate multiphase flows and

compares the available multiphase codes.

Then, in Chapter 5, building upon atomisation modelling tools demonstrated on

idealised configurations, we detail the methodology adopted to produce a capability

to simulate the fuel injection in gas turbines. This chapter operates as a transition

between the two parts of the thesis.

In the second part of this document, we describe the building blocks of the novel

modelling capability produced. In particular, Chapter 6 presents the high-order nu-

merical scheme developed for unstructured meshes and Chapter 7 depicts the mass-

conservative numerical method produced to transport the liquid. Then, in Chapter 8

we describe the additional components of the modelling capability, those making the

numerical tool readily applicable to the simulation of liquid sheet breakup. Finally,

in Chapter 9, the modelling tool is demonstrated on the simulation of the primary

breakup.

The thesis concludes with Chapter 10, where the achievements of this project are

summarised and some follow-on research topics are suggested.
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Chapter 2

Physics of primary breakup

The fundamentals of liquid fragmentation have been studied since the beginning of

the nineteenth century and, although its detailed understanding is limited, scientists

have made significant progress in the physical description of the phenomenon.

This chapter first describes the fundamentals of the physics of multiphase flows

and then presents the principal scientific findings for the breakup phenomenon.

In particular, the current physical description of the primary breakup is given in

Section 2.3 and Section 2.4 for round liquid jets and flat sheets respectively.

2.1 Fundamental forces and dimensional analysis

Neglecting body forces, three forces are involved in multiphase flows: capillary forces,

inertial forces and viscous forces. The balance of these three forces drives the be-

haviour and the shape of the interface.

Multiphase flows (in particular atomisation) introduce a broad variety of length

and time scales and the relative importance of the physical phenomena involved

varies according to the scale considered (e.g. capillary effects dominate at small

scales and inertial effects at large scales). It is therefore necessary to introduce non-

dimensional parameters in order to identify the prevailing physics. For a given length

8
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scale L, three time scales can be estimated, relating respectively to: convection,

surface tension effects and viscous effects. By comparing these time scales, three

non-dimensional parameters can be produced:

Reynolds number (Re): Inertial forces relative to viscous forces,

Weber number (We): Fluid inertia relative to its surface tension,

Ohnesorge number (Oh): Viscous forces relative to surface tension.

Re =
τv
τc

=
ρUL

µ
We =

(
τs
τc

)2

=
ρU2L

σ
Oh =

τs
τv

=
µ√
ρσL

(2.1)

where τc, τs and τv are the characteristic time scales of respectively the convection,

the surface tension effects and the viscous effects.

2.2 Early research interest

Fundamental to the physical understanding of multiphase flows, the surface tension

acts as a singular surface force on the liquid-gas interface and tends to minimise the

surface energy by reducing the interface area. This phenomenon was discovered by

Laplace and Young in 1805 [283].

Savart was the first to show significant interest in liquid fragmentation. In 1833,

he conducted experimental studies discussing the formation and the breakup of

planar jets [213–216]. In particular, [215] and [216] are concerned with jet impacting

a rotating disc and [214] describes the collision of two jets forming a liquid sheet. In

the latter experiment Savart observed the growth of undulations at the jet surface

leading to the breakup of the jet. Later on, Plateau interpreted the effect of surface

tension on these waves [179].

In 1879, Rayleigh formulated the effect of surface tension on breakup [192, 193].

Considering a small sinusoidal perturbations at the surface of a liquid jet, Rayleigh

9



Chapter 2. Physics of primary breakup

demonstrated that the fastest growing wavelength dominates the breakup. He then

derived the drop size produced using mass conservation. The success of his approach

was confirmed by the validation of his calculations against Savart’s experiments.

2.3 Round liquid jet breakup

2.3.1 Jet breakup regimes

The onset of the breakup is related to the growth of small disturbances on the

liquid surface due to the interaction of the liquid jet with the ambient gas. The

modification of the jet velocity affects the relative influence of liquid inertia, surface

tension, viscous forces and aerodynamic forces on the jet.

Figure 2.1: Plot of the breakup length vs. jet velocity and the corresponding breakup

regimes for a round liquid jet resulting in a quiescent gas [124]

By plotting the breakup length against jet velocity four breakup regimes have

been identified (see Figure 2.1):

Rayleigh regime (A–B): In this regime, the capillary forces are responsible for

the breakup. The droplets produced have a diameter larger than the jet and

10
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the breakup occurs many jet diameters downstream of the injection plane.

This regime is describe by Rayleigh’s theory [192].

1st wind-induced (B–C): Here, the aerodynamic forces take over the capillary

forces. This leads to the reduction of the breakup length and results in droplets

of the order of the jet diameter. This regime is describe by Weber’s theory

[270].

2nd wind-induced (C–D): For this regime, the axial symmetry is lost and droplets

are peeled off from the liquid core. The jet flow starts to be turbulent and the

aerodynamic forces produce ligaments on the surface of the liquid core. These

ligaments breakup into droplets smaller than the jet diameter.

Atomization (D →): At these conditions, the jet flow is fully turbulent. This

turbulence in the liquid phase initiates perturbations of the jet interface fur-

ther amplified by the aerodynamic forces. The drop formation starts at the

nozzle exit and results in droplets much smaller than the jet diameter. In this

regime, cavitation can occur in the injection passage and may affect the liquid

fragmentation. The effect of cavitation is multiple: it can either increase the

turbulence level (acceleration of the atomisation process) or laminarise the

jet by limiting the friction on passage walls (remove the turbulent boundary

layer).

2.3.2 Spray structure

Faeth et al. observed the structure of sprays on non-evaporating round pressure-

atomised sprays in still gas [54]. Such a simple configuration allows easy identifica-

tion of the fundamental features of sprays. Faeth et al. justify the non-evaporating

assumption by noting that the dense spray region of combusting sprays involves cool

portions of the flow where the rates of heat and mass transfer are modest [54].

In this configuration, the liquid phase appears in two forms: the liquid core which

11
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extends continuously the liquid phase from the injection hole and the dispersed flow

beyond the surface of the liquid core.

• The liquid core is similar to the potential core of a single phase turbulent jet

but is in general much longer [33].

• The disperse flow region is composed of blobs of liquids and droplets detached

from the liquid core. This region starts with the multiphase mixing layer in

the vicinity of the liquid core and evolves into the dilute spray (lower volume

fraction: below 0.1%).

Figure 2.2: Structure of a pressure-atomised spray in the atomisation regime [54]

The spray is commonly divided in two consecutive regions: the dense spray region

— associated with the presence of the liquid core — and the dilute spray region

corresponding to a lower liquid volume fraction.

The atomisation process involves the primary breakup at the liquid core surface

followed by the secondary breakup of liquid structures in the disperse flow. For a

round jet the primary breakup occurs essentially via the breakup of large droplets

at the end of the liquid core or the pinch off of ligaments formed at the core surface.

The resulting liquid structures in general have irregular shapes and may undergo

further fragmentation (secondary breakup) depending on the relative importance of

the forces acting on them.

12
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2.3.3 Properties of round jet sprays

The properties of such sprays are influenced by a wide range of parameters such

as the nozzle exit flow conditions, occurrence of cavitation in the nozzle, velocity

profiles, turbulence level in both phases, etc . . . In particular, Faeth et al. observed

that the droplet size after the primary breakup and the mixing rate between the two

phases are very dependent on the phase density ratio, the flow development and the

turbulence level at the nozzle exit [54].

From the analysis of experimental data, Faeth et al. also reported that the droplet

sizes, after the primary breakup as well as after the secondary breakup, follow the

universal root-normal distribution characterised by a single moment: MMD/SMD

= 1.2 due to Simmons [233].

2.3.4 Ligament formation

As illustrated in the four different regimes of round jet breakup, the behaviour of

the jet depends strongly upon the relative liquid-gas velocity. Whereas the whole

liquid column is deformed at low relative velocities, leading to the formation of bags

and rims; the liquid jet is merely peeled off at its surface at higher relative velocities

resulting in the formation of ligaments. The latter regime being more relevant to

aero-engine injection, the ligament formation is detailed below.

Fuster et al. [65] summarise the action of primary breakup at high velocities by

two phenomena: the detachment of small ligaments (and droplets) from the jet and

further downstream the breakup of large droplets due to the growth of large scale

instabilities on the jet surface.

While linear stability analysis and weakly non-linear theories — reviewed in [52]

— describe with success the growth of longitudinal (Kelvin-Helmoltz) instabilities

along the jet, the formation of ligaments is not well understood. Two mechanisms

have been proposed to explain the origin of ligaments:

• Faeth et al. [54] hypothesised that if a sufficient level of turbulence is attained
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in the liquid phase, upstream of the nozzle, it could deform the interface and

lead to the breakup. The ligament would therefore be formed thanks to a

turbulent eddy with sufficient energy to overcome surface tension.

• Marmottant and Villermaux [146] modelled the flow around the jet interface

by a two-phase mixing layer. In this framework, they demonstrated (using

stability analysis) that a sufficient relative velocity between phases leads to

the growth of a series of instabilities on the jet surface and then results in the

formation and the breakup of ligaments.

Interface deformation by turbulence in the liquid phase The hypothesis

of Faeth et al. [54] resulted from the analysis of the experimental work of [92, 93,

142, 206, 207, 274–277] on round jets breaking up in a quiescent gas. In particular,

they noted that:

• The droplet sizes after primary breakup are strongly related to both the level

of flow development and the intensity of the turbulence at the nozzle exit,

• The breakup is associated with the presence of a turbulent boundary layer in

the liquid phase, at the nozzle outlet,

• The liquid phase properties govern almost entirely the primary breakup prop-

erties for large density ratios (> 500),

• The onset of turbulent primary breakup is strongly related to the laminar-

turbulent transition in the injector passage.

In addition, basing their analysis on time scale considerations, Faeth et al. argue

that the droplets produced near the nozzle exit (i.e. at the onset of the primary

breakup) are the smallest that can be formed [54]. The size of the smallest drop is

then given by the size of the “critical turbulent eddy” which has just enough kinetic

energy to provide the surface energy to form a drop. When the “critical turbulent
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eddy” reaches the limit of the inertial range of the turbulence, the smallest droplets

are then comparable to the Kolmogorov micro length scale.

Ligament formation through a series of instabilities The assisted at-

omization of a liquid jet comes with the formation of ligaments at the jet surface

(regardless of the geometry) conditioned upon sufficient shear from the gas stream.

These ligaments are regularly spaced in the transverse direction and their number

increases with the gas velocity.

Marmottant and Villermaux describe the ligament formation and breakup in a

sequence of steps for a slow liquid jet sheared by a co-axial gas stream [146]. At

first, the two initially parallel streams of different velocities are subject to the Kelvin-

Helmoltz instability which leads to the formation of axisymmetric undulations on

the liquid interface. The shape of the wave crests become singular as this primary

instability grows and develop into liquid sheets bounded by a rim.

Because the bulk liquid velocity is lower than the travelling speed of the longitu-

dinal undulations at the jet surface, the liquid interface is accelerated perpendicular

to itself, alternatively towards the liquid and the gas phase. When the acceleration

is oriented towards the denser phase, the interface undergoes a Rayleigh-Taylor in-

stability [128, 194, 249] which results in the growth of azimuthal undulations (first

hypothesised by Villermaux and Clanet in [266]). Bremond’s findings corroborate

this hypothesis in [27].

Then, the development of the longitudinal and transverse instabilities leads to the

formation of corrugations at the nodes of their undulations. Initially, these crests

are accelerated with respect to the bulk flow with little deformation until the gas

drag is sufficient to pull them away from the jet and increase their aspect ratio.

Finally, after stretching in the gas stream, these ligaments detach from the liquid

bulk by pinching off their base. With a nearly cylindrical shape, the ligaments are

per se sensitive to the Plateau-Rayleigh instability and thus further fragment into

blobs of liquid.
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Figure 2.3: Photo of the assisted disintegration of a round liquid jet in a co-axial

gas stream [146]

2.4 Liquid sheet breakup

In the planar configuration, the liquid is injected between the two parallel walls of

the injector such that the height of the slit is much smaller than its width in order

to avoid boundary effects.

Although aero-engine injectors usually show an axisymmetric configuration, this

section is of particular relevance to the aeronautical industry as Meyer and Weihs

have demonstrated that the mechanisms are identical for planar and axisymmetric

geometries in the limit of a thin annulus [153]. Meyer and Weihs [153] have also

demonstrated that an annular liquid jet behaves like a full round liquid jet in the

limit of a thick annulus.

A very detailed literature review for the liquid sheet breakup can be found in

[37]. In this section we will simply summarise the main scientific findings in that

field.
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2.4.1 Natural disintegration

The first linear stability calculations for an inviscid 2D liquid sheet in quiescent air

were conducted in the 1950’s: [75, 235, 250, 279]. Hagerty and Shea [75] observed

experimentally the sinuous and varicose modes of the liquid sheet interface predicted

by the theoretical analysis (see Figure 2.4).

(a) (b)

Figure 2.4: The two modes growing along an inviscid liquid sheet: (a) Sinuous mode;

(b) Varicose mode

Crapper et al. [39], Li and Tankin [130] and Ibrahim [98] studied the influence of

the viscosity on the behaviour of the liquid sheet. In particular, their work suggests

that the effect of viscosity on the instability is complex and that it can broaden the

range of wave number corresponding to an unstable liquid sheet.

The large deformations of the sheet occur in the sinuous mode predicted by the

linear stability theory. However, in order to explain the sheet breakup Jazayeri and

Li [105] and Rangel and Sirignano [191] had to conduct non-linear stability analysis.

Their studies relate the breakup to the pinching of the sheet in its thickness through

the effects of the harmonics of the oscillation modes.

2.4.2 Assisted non-linear disintegration

The first experimental study of an assisted disintegration was carried on round liquid

jet configuration by Nukiyama and Tanasawa [161]. This study of a jet sheared by a

co-flowing gas stream highlighted the strong correlation between the drop size and

the gas stream velocity. The equivalent work on a planar jet was done by Rizk and
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Lefebvre [203] and Arai and Hashimoto [8] who also noted, for this configuration,

the important impact of the gas velocity on the SMD and breakup length.

Because the initial deformations of the jet depend strongly on the gas phase, the

presence of a surrounding gas flow changes fundamentally the mechanisms of the

breakup. Cousin and Dumouchel [38] and Barreras [12] produced linear and non-

linear stability analysis specifically for this case and their conclusion was twofold.

First, the same types of mode — sinuous and varicose — grow on the surface of a

liquid sheet sheared by a co-flowing gas; and secondly, the gas and liquid viscosi-

ties and the non-linearity of the interface deformation cannot be neglected in the

analysis.

A major advance on the understanding of the sheet breakup mechanisms was

made in the 1990’s by Stapper et al. [236, 237] and Mansour and Chigier [140,

141]. Noting that the breakup is influenced by a wide variety of parameters, these

authors investigated the breakup regimes obtained for a broad range of conditions.

Specifically, their studies consider the influence of the following physical variables:

surface tension, viscosity, thickness of the sheet (200µm to 1mm), velocities in the

liquid (1 to 5ms−1) and the gas (15 to 60ms−1).

From this set of experiments, Stapper and Samuelsen [236] observed experimen-

tally two regimes (see Figure 2.5):

Cellular breakup: characterised by longitudinal and transverse undulations of

similar wavelengths. The combination of these two modes of perpendicular

undulations lead to the formation of “liquid cells” which eventually break up.

Stretched streamwise ligament breakup: characterised by a much faster growth

of the transverse instability than the longitudinal one. For this regime, which

appears for low liquid velocities, the breakup starts closer to the injector exit.

The two regimes also differ by the initial direction of fragmentation: it starts along

the longitudinal direction for the stretched streamwise ligament breakup, whereas

it starts along the transverse direction for the other regime. However, in both
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instances, the transverse instability and the co-flowing shearing gas stream leads

to the formation of ligaments at the top of the crests. Mansour and Chigier [140]

identified a third breakup regime apparent at low liquid velocities by plotting the

fundamental mode of the sheet undulations against the liquid exit velocity. However,

this regime was less studied by the authors.

Experimental studies [136, 140, 237] suggested that the stretched streamwise

ligament breakup provides the best atomisation (large deformation of the sheet,

wide spray angle and smaller droplets). The mechanism of this regime can be

summarised in a series of steps. At first the liquid sheet undergo a Kelvin-Helmoltz

instability, leading to the quick growth of the sinuous mode, which results in the

flapping of the sheet. This growth carries all along the jet atomisation leading to

the scattered shedding of droplets. Downstream of the zone of flapping, transverse

undulations appear (see [266]) leading to the formation of streamwise ligaments

under aerodynamic forces. These ligaments then stretch and eventually fragment

into relatively large droplets [237]. The liquid blobs produced eventually undergo a

secondary breakup.

(a) (b)

Figure 2.5: The two sheet breakup regimes observed by Stapper and Samuelsen

[236]: (a) Cellular breakup; (b) Stretched streamwise ligament breakup

In the 2000’s various authors have tackled the parameterisation of the primary

19



Chapter 2. Physics of primary breakup

breakup. In particular, Lozano et al. [136] revealed the linear dependence of the

frequency of oscillation against the gas velocity and noted the insignificance of the

influence of the liquid velocity. Lozano et al. [136] and Carentz [31] have also

shown that the reduced oscillation of the global undulation is strongly related to

the momentum ratio gas/liquid. Taking into account the work of Siegler et al.

[232] on the influence of the sheet thickness, the flapping of the sheet has been

characterised by two non-dimensional numbers: the momentum flux ratio and the

reduced frequency of the oscillation. Using the subscripts gas and liq to refer to the

gas and liquid phases respectively, the momentum flux ratio M reads:

M =
ρgasU

2
gas

ρliqU2
liq

(2.2)

The effect of the gas boundary layer on the onset of the sinuous instability has

been studied through both stability analysis and experimental approach. Raynal

[195], Lozano et al. [135, 136] and Marmottant and Villermaux [145, 146] have

concluded that the thickness of the viscous layer — originating from the friction

on the injector walls — has a major influence on the scales of instability. More

precisely, these studies suggest that the thickening of the boundary layer reduces

the growth rate and the wave number for which the growth rate is maximum.

This literature review has highlighted the complexity of the atomisation process. It

has also pointed out that the scientific community has a relatively limited under-

standing of the phenomenon.

As the experimental approach struggles to provide useful insight in the physi-

cal mechanisms controlling the primary breakup, research studies suggest that a

significant breakthrough could be achieved with the numerical approach.

This chapter identifies and describes the fundamental features of the primary

breakup. These will be critical in the choice of a suitable numerical method to

simulate the phenomenon.
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Numerical modelling of

multiphase flows

The numerical tool provides a framework to calculate the solutions of the Navier-

Stokes equations in the idealised representation of an experimental setup. Therefore,

it constitutes an intermediate step between the analytical and the experimental

approaches. The realism of these numerical experiments can be raised up to a

certain limit, depending on the complexity of the problem. More precisely, the level

of idealisation concerns principally: the dimensionality of the domain (2D vs. 3D),

the complexity of the physical models embedded in the equations (e.g. description

of the interface for multiphase flows), the level of sophistication of the boundary

conditions (e.g. velocity profiles) and the treatment of the turbulence.

After detailing the mathematical formulation of the problem in Section 3.1, this

chapter presents the numerical methods available to capture the physics of two-

phase flows. In particular, the modelling strategies handling the smallest scales of

the flow field are considered in Section 3.2, the interface description techniques are

reviewed in Section 3.3 and the means of treating the singularities associated with

the presence of the interface are presented in Section 3.4.
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3.1 Problem formulation

Scardovelli and Zaleski [217] provide the detailed derivation of the governing equa-

tions for multiphase flows with interface modelling. This modelling is based on the

continuum hypothesis, assuming a sharp interface and accounting for the effect of

intermolecular forces at the interface by capillarity. In particular, the framework

detailed in this chapter leads to the problem formulation for two incompressible

immiscible fluids — in the absence of phase change — with relevance to primary

breakup (see [54] for justification).

3.1.1 Navier-Stokes equations

In the Navier-Stokes framework the mass and momentum conservation are respec-

tively given by equations (3.1) and (3.2):

∂ρ

∂t
+ ∇ · (ρu) = 0 (3.1)

∂ρu

∂t
= ρf + ∇ · (P − ρu ⊗ u) (3.2)

with: f : the body forces (essentially gravity g)

P: the stress tensor (molecular rate of transport of momentum), given by:

P = (−p+ λ∇ · u) I + 2µD

where: λ : is the second coefficient of viscosity, which is λ = −2

3
µ, in the Stokes

hypothesis

I : is the unit tensor

D : is the rate-of-strain tensor: D =
1

2

(
∇u + (∇u)T

)
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3.1.2 Incompressible flows

It is generally assumed that both the liquid and the gas are incompressible in multi-

phase flow modelling which supposes that the speed of the flow is much lower than

the speed of sound (Ma ≪ 1) everywhere in the domain considered. This hypoth-

esis leads to equations (3.3) and (3.4) for the mass and momentum conservation

respectively:

∇ · u = 0 (3.3)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + ∇ · (2µD) + ρf (3.4)

This assumption is generally true for most breakup conditions; however Tanguy

[246] has questioned its validity in the case of pockets of gas trapped by ligaments

merging back with the liquid core. Besides, various compressible formulations of

the Navier-Stokes equations have been derived for multiphase flow modelling (see

[154, 160, 190, 212]).

3.1.3 Fluid mechanics with interfaces

The whole multiphase domain can be divided into sub-domains filled with the dif-

ferent phases. In each sub-domain, the Navier-Stokes equations hold, whereas on

the interfaces the connection between domains is simply obtained through mass

and momentum conservation. This leads to the formulation of jump conditions for

quantities discontinuous across the interface.

Material properties Introducing [ ]Γ : the jump condition operator across the

interface Γ , the jump in material properties is expressed by:

[ρ]Γ = ρliq − ρgas (3.5)
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[µ]Γ = µliq − µgas (3.6)

Mass conservation Without phase change, the continuity of fluid velocity

leads to equations (3.7) and (3.8) in the jump notation:

uliq = ugas (3.7)

[u]Γ = 0 (3.8)

Introducing n̂: the unit normal to the interface, equation (3.8) implies that the

velocity of the interface is the normal velocity, V , and that it does not change across

the interface:

V = uliq · n̂ = ugas · n̂ (3.9)

NB: In the case of phase change, the normal velocity is given by u′ = u · n̂ − V ,

in the frame of reference moving with the interface. Applying the Rankine-

Hugoniot equation, the conservation of mass leads to: ρliqu
′
liq = ρgasu

′
gas = q,

where q is the mass transfer from one phase to the other. Expressed in the

general frame of reference, it reads: ρliq (uliq · n̂ − V ) = ρgas (ugas · n̂− V ) = q

The continuity of normal velocities across the interface, obtained for q = 0 , is

a consequence of mass conservation whereas the continuity of tangential velocities

(ut = u− (u · n̂) n̂) is an assumption.

Momentum conservation The momentum conservation across the interface

can be written as the following jump condition:

[−pI + 2µD]Γ · n̂ = σκn̂ + ∇Γσ (3.10)

which can be split into normal and tangential stress conditions (noting : t̂(k) two

independent vectors tangent to Γ):

[−p + 2µn̂ · D · n̂]Γ = σκ (3.11)
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[
µt̂(k) · D · n̂

]
Γ

= t̂(k) · ∇Γσ (3.12)

The surface tension term acts as a force concentrated on the interface. The following

notations have been introduced:

• ∇Γ the gradient operator restricted to the surface.

• σ is the surface tension. In general, σ is assumed constant along the interface

(∇Γσ = 0) which results in a continuous tangential stress across the interface:
[
µt̂(k) · D · n̂

]
Γ

= 0

• κ is the curvature of the interface, defined by:

κ = −∇Γ · n̂ (3.13)

3.1.4 Whole domain formulation

A whole domain formulation can be developed as an alternative to the “jump condi-

tion form” of the previous section. In this formulation the Navier-Stokes equations

are expressed over the whole multiphase domain and the interface is accounted for

through singular source terms. These singular terms balance each other thanks to

the jump conditions.

The presence of the interface does not involve source terms for the mass conser-

vation. Consequently, the continuity equation remains unchanged:

∇ · u = 0 (3.14)

The momentum balance is given by:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + ∇ · (2µD) + ρf + fcap (3.15)

The source term fcap = σκδΓn̂ + (∇Γσ) δΓ (where δΓ denotes a distribution concen-

trated on the interface) has been added to represent the singular capillary forces.
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The jump condition on stress (3.10) allows the balancing of the singularities poten-

tially appearing in the terms: ∇p , ∇. (2µD) and fcap of the momentum equation.

3.1.5 Conservative form

The conservative formulation of the Navier-Stokes equations requires the expression

of the capillary effects by a tensor:

Tσ = −σ (I − n̂⊗ n̂) δΓ (3.16)

Lafaurie et al. [119] showed that the capillary forces could be written as: σκδΓn̂ +

(∇Γσ) δΓ = −∇ · Tσ. In the absence of body force, this leads to the following

conservative form of the momentum balance:

∂ρu

∂t
= −∇ · (pI + ρu ⊗ u + Tσ − 2µD) (3.17)

3.2 Numerical framework

The numerical frameworks suitable to model the primary breakup involve interface

description techniques. They can be split into two main types: direct numerical

simulation (DNS) and large eddy simulation (LES).

3.2.1 Direct numerical simulation of atomisation

The challenges of modelling atomisation

One of the main difficulties of modelling the whole atomisation process comes from

the breadth of length and time scales involved in the governing physical phenomena.

This requirement is particularly challenging for DNS studies aiming to reduce the

uncertainty in the physics by resolving all the length and time scales of the flow. In

addition to the Kolmogorov length scale η — the smallest scale in turbulent flows —

multiphase flows require the resolution of the smallest liquid structure: ζ . However,
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with the change in the topology of the interface, this length scale tends to zero

and therefore cannot be resolved using DNS and a certain level of modelling has to

be introduced to handle this issue. With these models, a proper simulation of the

atomisation process would associate the smallest liquid structure ζ , to the size of

the smallest droplets produced and, according to Gorokhovski and Herrmann [71],

ζ should be resolved by 2 to 5 grid cells.

The interface thickness — typically a few tenths of nanometres — is orders of

magnitude smaller than the smallest scales captured by the DNS (η, ζ). Therefore,

the primary breakup, like any other multiphase flow problem, involves a disconti-

nuity in material properties across the interface. Most simulations assume constant

density and viscosity in each phase and use a Heaviside function to represent these

quantities in the whole domain. In the case of finite volume schemes, the jump

in material properties is treated by defining the discrete control volume value of a

quantity to be the control volume average. This is the preferred approach for volume

of fluid (VOF) and conservative level set approaches [163] as the volume fraction

is already available for these methods. For finite difference methods, the evolution

of the material properties is described by a smeared out version of the Heaviside

function. Finally, the ghost fluid method (GFM) of Fedkiw et al. [55] avoids any

smearing of the interface by solving the two phases separately and imposing the

jump conditions at the interface. This method requires precise knowledge of the

interface location and is therefore geared towards level set methods.

Even at high “global” We, the capillary effects dominate at small scales and

their role in the breakup process needs to be captured [146]. In addition, surface

tension forces are only active on the (nearly) infinitely thin interface and are therefore

singular. It results that another major complexity of modelling the primary breakup

— and more generally any multiphase flow — is the numerical handling of surface

tension. In order to tackle this issue, Brackbill et al. proposed the continuum

surface force (CSF) method [26] which relies on applying the surface tension as a

volume force on a transition region of finite thickness which represents the interface

27



Chapter 3. Numerical modelling of multiphase flows

between the phases. Besides the jump in material properties, the GFM [55] also

allows for the application of surface tension forces with a pressure jump condition

at the interface. The latter approach avoids spreading the capillary forces and

maintains a sharp interface. However, neither method guarantees the exact balance

between the pressure gradient across the interface and the surface tension forces,

with any interface description technique. This leads to the production of “spurious

currents”: unphysical vortices in the vicinity of the interface.

The turbulence is believed to play a significant role in the atomisation process

both on the primary breakup [54] and on the secondary breakup [7] and [65]. At

the typical conditions of injection in aero-engines the Re is high enough so that

the 3D effects on the primary breakup become significant and 2D simulations of

the atomisation are not relevant. However, depending on the configuration studied,

2D simulations may give some insight into the amplification of instabilities on the

interface before the occurrence of non-linearity [65].

The atomisation process involves, per se, very frequent topology changes with

the merging and the breakup of the interface surfaces. Depending on the technique

employed to describe the interface, some “pinching models” may be require to han-

dle this computational complexity. Implicit interface description methods, such as

VOF and level set, handles the topology changes automatically when two interface

segments enter a computational cell. Although straightforward for these methods,

the topology changes are grid dependent. However, if the grid size is adequately

chosen, the smallest droplet produced is significantly larger than the minimum cell

size and the grid dependency of the droplet size distribution should be negligible.

Explicit interface description methods require the use of numerically expensive al-

gorithms for the breakup or the merging of interfaces but they give the opportunity

to introduce physically based models for the pinching.

Besides, the Courant-Friedrichs-Lewy (CFL) condition must account for the ad-

ditional constraints of the multiphase physics. The restriction on the time step must

therefore account for the effect of gravity, viscosity and surface tension [26, 244]. For
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time-dependent flows in a compressible framework, Popinet [182] also noted that the

speed of propagation of sound waves imposes strong restrictions on the time step.

Even though filtering techniques can free the calculation from these restrictions,

Popinet’s studies suggest that the incompressible formulation is more efficient. Be-

sides, since most primary atomisation applications involve low Ma, solving the NS

equation in the variable density incompressible limit can be perceived as a valid

assumption and is the approach chosen in most DNS codes.

Despite all these challenges, some successful DNS of atomisation have been ob-

tained with various interface description techniques. On the Diesel jet configuration,

it is worth mentioning the simulations of Menard et al. [151, 152] with a novel cou-

pled level set-VOF technique (CLSVOF) and Desjardins et al. [47] applying the

conservative level set (CLS) of Olsson and Kreiss [163]. Kim et al. [111] reproduced

the round jet in co-flow of the experiments of Marmottant and Villermaux [146]

by combining the refined level set grid (RLSG) method of Herrmann [85] with the

Lagrangian tracking of the small spherical droplets. The results of these simulations

are further detailed in Section 5.1.

Alternatives to full DNS

DNS is limited on both the maximum We and Re achievable in a simulation. More

precisely, increasing either the We or the Re generally leads to a more complex flow

field with the production of smaller droplets and, in the case of a higher Re, the

generation of smaller vortices. It follows that the resolution required to achieve a

reasonable accuracy is unaffordable for the simulation of the atomisation process in

an aero-engine injector. Consequently, some methods have been developed in order

to work around the difficulty of running brutally DNS on this problem.

In parallel to DNS, some phenomenological models have been proposed in order

to maintain affordable CPU requirements. The existing models are based on the

injection of round blobs from the nozzle and therefore rely on crude simplifications
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to represent the primary breakup. However, these models include some of the fun-

damental mechanisms involved in the breakup process such as interface instabilities

[15], jet turbulence [96], cavitation [113] and droplet shedding [278].

The study of atomisers requires modelling upstream of the nozzle (injection chan-

nels, etc) and dealing with a broad range of scales: from the large scale instabilities

of the jet core to the small scale ligaments. For this purpose, adaptive mesh refine-

ment (AMR) techniques have been developed to scale the simulation with respect

to the relevant quantities (regions of large gradients, large vorticity and small cur-

vature of the interface). These methods allow for accurate simulation of the liquid

atomisation whilst embedding the complex geometry of the injector. Three differ-

ent strategies have been followed for the production of efficiently parallelisable AMR

techniques:

Patch refinement: this approach has been taken by Sussman et al. [241] for their

level set technique. This method involves a hierarchy of nested rectangular

grids, in which each level of refinement is represented by the union of the grid

patches of a given resolution. In order to avoid any numerical artefact of the

AMR, the successive levels of refinement are strictly contained within each

other. Sussman et al. focussed the refinement in the vicinity of the interface

and on regions of high curvature.

Tree-based adaptive solver: this method was developed by Popinet [182, 183]

and combined with a VOF technique. For this technique, the refinement oc-

curs by the equal split of the cell in each of its dimensions, resulting in 4

(respectively 8) leaf cells in 2D (respectively 3D). This type of structure —

called quadtree in 2D and octree in 3D — handles conveniently boundaries

and interfacial flows and is particularly suited for a multigrid implementation.

Popinet combined this technique with the VOF [73] and the marker [185] in-

terface description techniques.

Refined level set grid: this technique is due to Hermann [85, 86]. With this
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technique, the solution of the level set equations are solved on a separate,

high resolution Cartesian grid. Hermann [85] combined this method with the

“narrow-band” methodology of Peng et al. [173]: the number of multiphase

equations solved in a computational cell increase with its proximity to the

interface.

Moreover, Herrmann [84] has developed a numerical approach that models the

interface-turbulence coupling by concentrating all the vorticity at the interface which,

therefore, constitutes a vortex sheet of varying strength. The location and motion

of the interface is described using a level set equation which is combined with a La-

grangian formulation to derive an Eulerian transport equation for the vortex sheet

strength. In the resulting simplified system of equations, the relevant physical pro-

cesses occurring at the interface are explicitly described by additional source terms

accounting for the surface tension effects and the stretching of the interface. Presup-

posing that the level-set/vortex sheet method allows studying directly the physical

mechanisms occurring at the interface, Herrmann [84] anticipates to use this frame-

work to develop closure models for LES of turbulent primary breakup. However,

this approach neglects the viscous boundary layer adjacent to the phase interface

which, according to the experimental studies of Marmottant and Villermaux [146],

strongly affect the onset of the breakup.

Finally, LES has been used as a practical alternative to DNS in the simulation

of primary breakup. Most of the simulations of atomisation presented in the litera-

ture are actually “under-resolved DNS”. In particular, the simulations of Diesel jet

atomisation run by Bianchi et al. [18, 19] or Villiers et al. [44] (see Section 5.1)

are based on an LES formulation for a single phase flow and therefore neglect the

interface sub-grid terms. This kind of approach requires grid convergence studies

in order to demonstrate that the non-resolved small scale interfacial terms have no

impact on the solution.
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3.2.2 Large eddy simulation

Application to multiphase flow simulation

The geometry of the injection device (size of injection chamber, turbulent struc-

tures developing in the injection channels, wakes behind the separator plates, large

turbulent structures in the combustion chamber) has a significant influence in the

atomisation process and needs to be embedded in the simulation [44, 65]. This

point is further corroborated by the LES simulations of Apte et al. [6, 7] and Riber

et al. [200], involving particle laden flows with secondary breakup models. Their

results — validated against experimental data — highlight the importance of large

scale turbulence and secondary breakup in the resulting droplet size and velocity

distributions. The consideration of such a significant amount of geometry suggests

the use of LES which, according to [44]: “only resolves the eddies large enough to

contain information about the problem geometry”.

The application of LES to the simulation of atomisation implies the description

of the physical mechanisms occurring at the non-resolved scales by ad hoc models

that predict small scale behaviour based on large scale parameters. Existing sec-

ondary breakup models [167, 168, 196, 197, 248] assume simple geometries for the

liquid structures in order to simplify the description of their interaction with the gas

phase. However, this simplification does not hold in the case of the primary breakup

which has principally been studied numerically via the full description of the inter-

face dynamics. The adoption of an LES methodology that makes this approach

computationally affordable, is based on the ensemble averaging or the spatial filter-

ing of the NS equations and the production of closure models for the sub-grid terms

[28, 29]. However, this task is challenging and besides the effect of surface tension,

very little work has been done to account for the physical mechanisms occurring at

the interface.

In two-phase flows, turbulent energy can be exchanged between phases through

the interface. Experimental [120] and numerical [62] studies highlight the importance
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of the interaction between the turbulence and the interface. In particular, DNS

studies of Fulgosi et al. [62] on the influence of the multiphase topology on the

turbulence showed that a moving interface does not behave as a solid wall: for

a moving interface the level of anisotropy is lower and the turbulence transfer is

increased.

Based on these findings, Labourasse et al. [118] stress the importance of account-

ing for the complex turbulence-interface interactions in LES of two-phase flows. In

particular, the authors highlight the need to produce sub-grid models of the non-

linear transfer of turbulence energy across the interface. In addition, the authors

noted that, in the transfer of turbulent energy between phases, the oscillations of

the interface lead to the modification of the turbulence energy spectrum: absorption

of high frequencies and release of lower frequencies.

Sub-grid scales

Labourasse et al. [118] have conducted an analysis of the turbulence-interface cou-

pling using DNS (VOF and front-tracking methods) in order to study the sub-grid

transfer through the interface. This work focused on the theoretical basis and the

development of the LES formulation (spatial filtering, modelling of the non-resolved

scale contributions) for multiphase flows.

Labourasse et al. identified three categories of closure terms for the LES of

multiphase flows:

The “classical” sub-grid terms: they reproduce the effect of “sub-grid scales

correlations on the resolved flow”. These terms are common with the single

phase studies of turbulent flows and, according to [118], a large amount of

the existing models (reviewed in [211]) can be re-used for LES of multiphase

flows. However, the relative magnitude of these terms may differ from the

classification of Vreman [267, 268] in the vicinity of the interface.

The “pure interfacial” sub-grid terms: they represent the “sub-grid contribu-
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tion of the interface characteristics” and can be replaced by a jump condition

at the interface.

The misrepresentation of the “mixed phase volume of fluid”: the cells sur-

rounding the interface contain a mixed phase; their representation by thermo-

dynamical and physical laws leads to a sub-grid error. The study of these

terms was tackled by Duquennoy et al. [51] and Mathieu et al. [149] in their

work on contact lines, but no models are currently available for these effects.

Labourasse et al. [118] discussed the relative magnitude of the various sub-grid

scale terms and the precision of the different filtering techniques. In particular,

the authors noted the better performance of mass-weighted filtering processes and

recommended it for LES of turbulent two-phase flows. In their discussion on the

sub-grid terms, Labourasse et al. reported that the most important ones are related

to inertia as in single-phase flows. However, the modification of these sub-grid effects

near the interface excludes the use of a viscosity assumption to model them. The

correct behaviour for these terms has been reproduced by Boivin et al. [21] with

a “Bardina-like-Smagorinsky-like” model. Besides, in their study, Labourasse et al.

also proposed a model for the capillary-induced term.

3.3 Interface description

3.3.1 Overview

The most popular numerical methods accounting for the presence of the interface

in the computational domain transport the interface either explicitly or implicitly.

More recently hybrid methods have been produced to combine the advantages of

several approaches at the expense of CPU time. A forth group of methods gathering

more unusual techniques such as smoothed particle hydrodynamics (SPH), is also

reviewed in this sub-section under the label “alternative methods”.
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Explicit interface description

The changes of topology have to be specified for these methods and it gives the

opportunity to implement some physics-based breakup models. In return, explicit

interface description techniques require the introduction of cumbersome algorithms

to handle merging and breakup of the interface surfaces.

Moving mesh This approach is based on the Lagrangian transport (accord-

ing to the underlying velocity field) of the grid nodes associated with the interface

location. This technique is particularly geared towards the simulation of small am-

plitude motions of the interface and has given accurate results in the case of small

waves and weakly deformed bubbles. In particular, this method has been applied

successfully by Ryskin and Leal [209, 210] to study rising bubbles on a curvilinear

grid and by Magnaudet et al. [138] in the calculation of the flow around spherical

bubbles.

As reported by Hirt et al. [88], in the case of pure Lagrangian transport of the

interface nodes, the mesh can become highly distorted even if frequent regridding

and rezoning are applied during the computation. In order to mitigate this issue,

Hirt developed an arbitrary-Lagrangian-Eulerian (ALE) method [87] for the trans-

port of the grid points. In addition, depending on the flow considered, it can also

be necessary to add or remove grid points. This can be done using the specific

algorithms presented in [61] and [66].

Front tracking The front-tracking method combines the resolution of the flow

properties on a fixed grid with the Lagrangian transport (according to the underlying

velocity field) of a web of massless particles — typically a triangular mesh in 3D —

representing the phase interface. The capillary forces are represented by the CSF

method and interpolated from the interface web to the fixed grid. In line with the

CSF approach, the discontinuities across the interface are smoothed by the use of

delta functions in the transition region between the phases. This technique has
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been used principally by Glimm et al. [69] and Univerdi and Tryggvason [261]. In

particular, the latter authors extended it to 3D [260] and applied it to the simulation

of primary breakup [259].

The main advantage of the front-tracking method is the lack of mesh dependency

of the breakup process. In addition, despite not being inherently mass-conservative,

front-tracking methods generally conserve mass with a very high level of accuracy.

Also, the use of high-order polynomial interpolations in conjunction with surface

tracking can lead to very accurate calculations of surface tension [184, 185].

Surface markers allow for simulation of very thin liquid bridges with high accu-

racy; however Scardovelli and Zaleski [217] noted that this is only an advantage in

the absence of surface tension and when the phases have the same densities and

viscosities: “interface transparent to the fluid”. Otherwise, the sub-grid scales of

the velocity and pressure fields will not be resolved without a modification of the

fixed grid.

Moreover, this technique requires the introduction of heavy algorithms to handle

the changes of interface topology. Also, the topological changes and the interface

distortion can lead to the concentration or the stretching of the marker distribution.

There is, therefore, a need to redistribute these particles and re-mesh the interface.

All of these processes need to be done efficiently in the case of the atomisation where

the breakup and merging of the interface occurs frequently.

Implicit interface description

Implicit interface description methods — often referred to as front capturing —

represent the interface through a scalar field advected in a fixed grid. The extension

to 3D formulations of front-capturing techniques is therefore straightforward. In

addition, with such techniques, the changes of the interface topology are handled

automatically as soon as two interface segments enter the same computational cell.

This feature of front-capturing techniques leads to both the inaccurate predic-
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tion of the breakup time and the undesirable grid dependency of the pinch off and

reconnection processes. However, Gorokhovski and Herrmann argue that if the grid

is fine enough to capture the fundamental mechanisms of the breakup, the solution

should remain acceptable [71]. Consequently, in order to carry any physical signif-

icance, the front-capturing simulations of the primary breakup have to show grid

independence.

The volume of fluid and level set approaches are the two main implicit interface

description methods. Both techniques are most relevant to the modelling of primary

breakup and a whole section has been dedicated to each method. The phase field

method (PFM) — also describing the interface implicitly on a fixed Eulerian grid

— is briefly outlined below.

Phase field method This numerical method describes two-phase flows from

the Van der Waals-Cahn-Hilliard theory of interfaces. This theory considers the

fluid at a mesoscopic scale intermediary between the macroscopic scale of continuum

mechanics and the molecular scale. It leads to a modelled interface of finite thickness

across which the velocity and density vary continuously. The formulation of the

theory is based on Van der Waals model [264] for the free energy density, f , (3.18),

in which C is the “composition variable” and Ψ is C’s “chemical potential”.

f =
1

2
α |∇C|2 + βΨ (C) (3.18)

Cahn and Hilliard extended this formulation to time-dependent flows and produced

a modified version of the Navier-Stokes equations embedding a “continuum forcing”

term [30]. In this framework, the surface tension is derived from the energy density

field.

PFM transports the interface using standard advection techniques and is, there-

fore, easy to implement in 3D, even on unstructured grid. Also, because of its

potential for energy dissipation the numerical implementations of this method are
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generally free of parasitic flows. However, the structure of the modelled interface is

crucial to the calculation of the surface tension and the numerical implementation

of PFM generally lead to thick interfaces (typically 8 cells wide). In order to ad-

dress this major drawback, Jacqmin proposed a “compact method” [101] that thins

up the interface (2 cells wide) at equal accuracy. However, Jacqmin acknowledges

the difficulty of assessing a simulation’s accuracy and noted the sub-linear formal

convergence rate of the method (O
(
h4/5

)
; “higher in practice”).

Jacqmin was one of the first to use such methods to model two incompressible

phases [100]. PFM applications concern in particular the simulation of moving con-

tact lines [102, 223] and interface topology changes [134].

(a) (b) (c)

(d) (e)

Figure 3.1: Main interface description methods: (a) Moving mesh; (b) Front track-

ing; (c) Marker and cell; (d) VOF; (e) Level set

Hybrid methods

Some hybrid methods have been developed: such as marker-LS, marker-VOF, LS-

VOF, in order to combine the advantages of the different approaches. The motiva-
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tion for coupling methods with LS is the advantage of introducing a smooth function

yielding the second-order derivatives needed to calculate the surface tension.

From the point of view of the LS, hybrids methods have been proposed to make

use of better volume conservation properties of auxiliary interface-tracking methods

to correct the LS representation of the interface. In particular, the LS has been

coupled with marker particles — to produce the particle LS (PLS) of Enright et al.

[53] — and with the VOF method that lead to two notable methods: the coupled

LS and VOF (CLSVOF) of Bourlioux [25] (popularised by Sussman and Puckett in

2000 [243]) and the mass-conserving level set method (MCLS) of Van der Pijl et al.

[263]. Both techniques achieve the coupling by defining the volume fraction C, from

the level set function φ as in equation (3.19). Introducing H , the Heaviside function

and Ei, the grid cell considered (3.19) reads:

C (Ei) =
1

|Ei|

∫

Ei

H (φ) dEi (3.19)

Hybrids of the VOF and marker particle methods have been produced in order to

improve the interface reconstruction, limit spurious currents and introduce physical

models for the changes in interface topology. In particular, Lopez et al. produced a

2D marker-VOF method [133] to reduce the flotsam (isolated blobs of liquid, artefact

of the VOF interface reconstruction algorithm) and track liquid structures thinner

than the mesh size. The technique adds to the VOF approach some marker particles

at the mid-point of every cell interface segments and reconstructs the interface using

cubic-splines interpolations. Although the addition of marker particles results in a

better control of the interfacial topology changes, the extension of this method to

3D is very difficult.

Alternative methods

Boundary integral (BI) The boundary integral formulation [132] is based on

three assumptions: the viscous forces are negligible compare to the surface tension
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forces (inviscid flow and therefore Euler equations), the density of the liquid is

much higher than that of the gas (incompressible liquid in a vacuum) and the flow

— initially irrotational remains irrotational. Under these assumptions, the interface

reduces to a free boundary and can be associated to a vortex sheet [108]. The BI

method simulates the evolution of this vortex sheet by solving an integral equation

along the interface. Despite its severe limitations to simple multiphase flows, this

technique has the advantage to concentrate the mesh on the interface. This method

has been applied to jet breakup [143] and pendant drop [219].

Marker and cell (MAC) The oldest computational methods for tracking an

interface is the “marker and cell” approach of Harlow and Welch [76] formulated in

1965 for free-surface flows where the motion of the light phase is neglected. This

method use both a fixed grid — to simulate the motion of the dense phase in the

region delimited by the free-surface — and massless “volume markers” homoge-

neously distributed in the dense phase and transported with a Lagrangian scheme.

This method, extended to two-phase flows by Daly [40], handles topology changes

automatically and conserves mass reasonably well. However, the MAC approach

requires a large number of markers per grid point in order to capture the inter-

face accurately and avoid high levels of numerical diffusion. Besides, as for surface

marker methods, the flow field may concentrate the particles in places and some

specific algorithms have to be implemented to redistribute the markers.

Lattice Boltzmann method (LBM) The LBM (reviewed in [204, 205]) as-

sociates a continuous fluid to a granular fluid, assuming that the motion of both

types of fluid are similar on a large scale. Instead of solving the Navier-Stokes

equations, this method describe the motion of the particles composing the fluid by

solving the discretised Boltzmann equation combined with a collision model for the

particles. This method emerged from the lattice-gas automata (LGA, [17]) which

is based on a simplified model of the particle dynamics. In the LGA model, the
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particles can only move between the nodes of a hexagonal lattice and there can only

be 0 or 1 particle at a certain node moving in a given “lattice direction”. The main

disadvantage of this simple model is the potential rise of statistical noise due to the

Boolean description of the number of particles travelling in a lattice direction. The

LBM solved this problem by using ensemble averages instead of Boolean numbers.

A major drawback common to both LGA and LBM is that these methods describe

the fluid statistically and not necessarily physically.

Smoothed particle hydrodynamics (SPH) Originally developed to solve

problems in astrophysics [68], SPH represents the fluid by a set of particles of prop-

erties distributed over a “smoothing distance” — varying in space and time — using

a kernel function. At a given point, the properties of the fluid are then obtained by

summing the relevant quantity over all the particles in the range of the kernel, so

that the fluid is simulated by the collective properties of the particles. The motion

of the particles is driven by external forces and their mutual interaction. Depending

on their relative distance the particles can either attract (long range) or repel (short

range) each other [155, 156]. The surface tension is then obtained by the repulsion

forces between particles belonging to different phases. With SPH, a large number of

phases can be simulated by introducing as many types of particle and the changes

in interface topology are handled automatically. However, this technique is compu-

tationally intensive and is less attractive than implicit interface description methods

(VOF and LS) for simple two-phase flow situations.

3.3.2 Formulation of the VOF method

This method captures the interface through the transport of the volume fraction,

Ci,j, in the computational domain. The volume fraction — also known as colour

function — represents the volume (respectively the area) occupied by one phase in

a 3D (respectively 2D) computational cell. Consequently, the colour function takes
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values between 0 and 1 in the cells cut by the interface and either 0 or 1, depending

on the phase, in the rest of the domain (see consistency equation (3.20)). However,

numerical errors can drive the volume fraction out of this range and some specific

algorithms have to be implemented to avoid non-physical values of Ci,j .

0 ≤ Cn
i,j ≤ 1 (3.20)

In 1974, DeBar implemented the first VOF method to simulate multiphase flows

with a 2D Eulerian formulation for compressible flows [45]. Nowadays, most imple-

mentations of the VOF method are based on an incompressible formulation of the

Navier-Stokes equations because of the resulting level of simplification. However,

some authors have implemented the VOF technique in the compressible formulation:

see for example [154, 160, 190].

The VOF method involves two stages: the reconstruction of the interface followed

by the transport of the volume fraction. Both of these steps only require the knowl-

edge of the volume fraction and the velocity field (for the latter algorithm) in the

cell considered and its neighbours. This makes the VOF method local and there-

fore highly parallelisable. Also, introducing d, the dimension of the computational

domain and N , the number of cells in one dimension, the advection of the interface

scales as O
(
Nd−1

)
which is small compare to the update of the velocity field.

The major advantage of the VOF method is that it is inherently mass-conservative

(expressed for VOF methods by equation (3.21)). More precisely, in an incompress-

ible formulation, if the technique is implemented with the appropriate numerics

(conservative numerical schemes) it conserves exactly the mass of each phase.

∑

i,j

Cn+1
i,j =

∑

i,j

Cn
i,j (3.21)

The main drawbacks of the VOF method are the uncertainty on the curvature cal-

culation (approximate interface reconstruction) and the diffusion of the interface
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(CSF). In the case of under-resolution (radius of curvature of the order of the grid

size), this leads to inaccuracies in the calculation of the capillary forces and the

frequent occurrence in VOF simulations of spurious currents (see Section 3.4). How-

ever, the method remains robust in the limit of very large curvature of the interface

typically encountered during topology changes.

Interface reconstruction algorithm

The determination of the interface curvature — needed for the calculation of the

surface tension — requires the knowledge of the interface shape. For this purpose

the “interface reconstruction” algorithm is implemented in the method and, based

on the volume fractions in a 3× 3 block in 2D (3× 3× 3 block in 3D), provides the

interface location in the cell at the centre of the block.

A broad variety of methods have been developed over the years which can be

gathered in three main groups of algorithms: the simple line interface calculation

(SLIC), the piecewise linear interface calculation (PLIC) and the piecewise parabolic

interface calculation. In the case of a linear interface reconstruction, the various

methods differ on the means to determine the normal n̂ to the segment. Once the

orientation of the surface is known, the approximated interface is completely defined

by the volume fraction in the cell considered.

Novel interface reconstruction methods have been developed in order to reduce the

discontinuities at the cell faces caused by the PLIC representation. In particular,

Manservisi et al. have proposed a method that does this in two steps for a 2D

computational domain [139]. At first, the average curvature is calculated at the cell

considered using a PLIC algorithm with a least square procedure in a 3 × 3 block.

Then, from the two intersections of the fitted circle with the face of the cells, an

internal point is added to better approximate the curvature and conserve the colour

function.
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Simple line interface calculation These methods reconstruct the interface

in each cell by a segment aligned with the grid. Being very simple, SLIC algorithms

[89, 159] are usually crude (at best first-order accurate) and lead to the production

of a large amount of flotsam in the transport of the colour function, even in the

case of simple velocity fields (translation, rotation). The original method of Noh

and Woodward [159], calculating the segment location from a 3× 1 block, has been

improved by Chorin [35] — who reconstructs a “stairs-shape interface” by using

a 3 × 3 block — and later by Lafaurie et al. [119]. Because of the geometrical

specificities of an interface reconstructed using SLIC, this method is coupled with

the split advection algorithm.

Piecewise linear interface calculation Amongst the various algorithms pro-

duced for approximating the interface, the most commonly used is the piecewise lin-

ear interface construction (PLIC) method which reconstructs the interface in each

cut cell by a line in 2D (a plane in 3D). Most PLIC algorithms reconstruct the inter-

face as a discontinuous sequence of segments in 2D (polygons in 3D) with “asymp-

totically small discontinuities” [217]. The generation of a continuous interface is

generally perceived as an unnecessary complexity.

Already implemented in the earliest VOF method of DeBar [45], the PLIC method

continues to attract the interest of many authors. In their review of the VOF

algorithms, Pilliod and Puckett assessed the performance of the main PLIC interface

reconstruction schemes against their convergence rates with grid refinement [178].

The test problems used by Pilliod and Puckett involved the typical approximation

of lines, circles, crosses and slotted disks [284].

Based on the principle that a second-order PLIC algorithm reconstructs exactly a

linear interface, Pilliod and Puckett categorise the methods of Puckett and Saltzman

[190] (centre of mass), Parker and Youngs [172] and the central difference algorithm

as first-order accurate whereas the least square volume of fluid interface reconstruc-

tion algorithm (LVIRA) [188] and the efficient LVIRA (ELVIRA) [176] demonstrate
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second-order accuracy. Notable VOF-PLIC algorithms have also been produced by

Ashgriz and Poo [9], Li [129], Margolin et al. [144] and Rider and Kothe [202].

Piecewise parabolic interface calculation In order to improve the accuracy

of the curvature estimation and therefore reduce the spurious currents, Renardy and

Renardy have proposed an algorithm that approximates the interface by piecewise

paraboloids (in 3D) through least square fit [198]: parabolic reconstruction of surface

tension (PROST). Their method reduces significantly spurious currents and satisfies

spatial convergence but these advantages comes at great computational expenses.

Propagation of the interface

Following the reconstruction of the interface, the volume fraction is transported

by the velocity field through advection algorithms. The volume fraction field is

then updated at the new time step according to the reconstructed interface and

the velocity field at the current time step. The calculation of the fluxes at the

cell boundaries is done either independently along each coordinate direction with

an “operator split” advection algorithm [129, 218, 238] or with an “unsplit” (or

“multidimensional”) algorithm [36, 177, 202] that transports the volume fraction

in one step. Both split and unsplit advection schemes are generally based on a

conservative formulation of the conservation law for the colour function (equation

(3.22)):
∂C

∂t
+ ∇ · (Cu) = 0 (3.22)

Unsplit algorithms are more complex but lead to more accurate simulations as they

account for the fluxes in the diagonal directions (e.g. from (i, j) to (i + 1, j + 1)).

The accuracy of the advection algorithms is typically assessed by standard tests

consisting in the transport of simple geometric shapes such as lines, crosses, circles

and slotted disks [284] in a constant velocity field (translation, rotation, reverse

single vortex of Rider and Kothe [202]).
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(a)

(b) (c)

(d) (e)

Figure 3.2: Main interface reconstruction techniques for VOF methods: (a) Ideal

interface; (b) SLIC; (c) Chorin (1980)’s technique; (d) PLIC; (e) FLAIR

The advection of the colour function is both critical, since it drives the mass

conservation properties of a VOF method, and difficult (complexity of “splitting” the

incompressibility condition). In particular, limitations of some existing advection

schemes lead to the violation of the consistency condition (3.20) or the random

production of “wisp” (different from “flotsam”, see [80]) in the bulk of each phase
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(Ci,j = ε or Ci,j = 1 − ε with ε ≪ 1). Such inconsistencies of advection algorithms

have been mitigated by the use of diffusion algorithms to redistribute the volume

fraction in neighbouring cells [119] or the filtering of the colour function resulting in

the loss of mass conservation (3.21).

(a) (b)

Figure 3.3: Interface advection algorithms for VOF methods: (a) Operator split

advection; (b) Unsplit advection

Operator split advection algorithm This method calculates sequentially

the fluxes at the cell boundaries in each coordinate direction. Each advection step

in a given direction is immediately followed by an interface reconstruction based on

the collection of intermediate (or final for the transport in the last direction) volume

fractions. The calculation of the fluxes is done by geometric construction given the

latest approximated interface in each cell. This approach requires therefore as many

interface reconstructions per time step as there are dimensions in the computational

domain. By alternating the sweep direction (“Strang splitting”, [238]), the advec-

tion algorithm can reach second-order accuracy. Pilliod and Puckett combined the

“Strang splitting” with the ELVIRA interface reconstruction algorithm to obtain a

formally second-order accurate interface-capturing algorithm [178].

Unsplit algorithm Unsplit algorithms transport the colour function in one

step by considering the time evolution of the interface and anticipating the possible
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distribution of heavy fluid (Ci,j = 1) in the cell. Despite requiring only one interface

reconstruction per time step, multidimensional schemes are more complex than op-

erator split algorithms (treatment of fluxes in the diagonal directions) and therefore

harder to implement.

Both first-order [16, 36] and second-order [10, 80, 81, 177, 202] accurate algo-

rithms have been developed over the years. Unsplit algorithms produce better results

than fractional step methods, especially for complicated problems — e.g. unstable

displacement in porous media — where split methods (both first and second-order

accurate) generally lead to the distortion of the interface (“push-pull” or “staircase”

phenomenon, see [16]). In addition, unsplit algorithms resolve better regions of high

variation of the derivatives such as corners of the interface.

3.3.3 Formulation of the level set method

The LS formulation is based on the transport of a continuous function, φ (x, t), in the

computational domain according to the underlying velocity field. In this framework,

the φΓ level set (φΓ = 0 usually) of the function φ represents the interface and φ

takes values below φΓ in one fluid and above φΓ in the other [169, 170, 228]. From

a numerical point of view, a smooth function is desirable and φ is generally taken

as the signed distance function from the interface.

|∇φ| = 1 (3.23)

The background theory for this method was developed by Sethian [224–227] and

the level set technique was originally formulated in [170] to follow fronts propagating

with curvature-dependent speeds (crystal growth, flame propagation). For such

problems, the equations of motion take the form of Hamilton-Jacobi equations with

parabolic right hand sides that account for the curvature effects. This approach has

been implemented in a compressible framework by Mulder et al. [157] to produce a

compressible level set formulation for two-phase flows.
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The algorithms developed by Osher and Sethian [170] to follow the propagation

of fronts are based on techniques from hyperbolic conservation laws. The authors

rely upon essentially non-oscillatory (ENO, [77, 79, 230, 231]) numerical schemes

to cope with the formation of large gradients in front propagating problems and

preserve the sharpness of the interface. Such numerics have been further developed

by Liu et al. [131] and later by Jiang and Shu [107] who proposed weighted ENO

(WENO) schemes that offer better precision/robustness trade-offs.

The level set method operates in three steps: at first, the level set function is

defined as the signed distance function (3.23) between any point of the domain and

the interface: φ = 0 on the interface, φ > 0 in one phase, φ < 0 in the other

phase. Then, the scalar φ is transported according to the velocity field (3.24). Once

advected, φ is no longer a signed distance function and a “re-distancing” algorithm

(Section 3.3.3) is applied to maintain φ as a signed distance function to the interface

and prevent φ from becoming irregular.

∂φ

∂t
+ u · ∇φ = 0 (3.24)

Like the VOF method, the LS technique handles topology changes naturally. The

main advantage of this method is that it provides the precise front location directly

(no interface reconstruction). This results in the accurate determination of the

interface geometric properties (normal: (3.25) and curvature: (3.26)) and therefore

better calculation of surface tension forces. Besides, the LS formulation is easy to

implement and can be formulated in N dimensions. In particular, since it does not

reconstruct the interface, this method can be extended to 3D more easily than VOF

which requires specific algorithms for this purpose.

n̂ =
∇φ
|∇φ|

∣∣∣∣∣
φ=0

(3.25)

κ = −∇ ·
( ∇φ
|∇φ|

)∣∣∣∣∣
φ=0

(3.26)
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The major drawback of this method is that it does not inherently ensure mass

conservation. Although the implementation of an iterative re-initialisation algorithm

[244] partially corrects this issue, the method does not conserve mass accurately.

In order to address this, various methods have emerged: modified re-distancing

algorithms [32, 242], refinement strategies [86] coupling with VOF [150–152, 243,

263], coupling with marker particles [53] or alternative definition of the scalar field

(conservative LS, [163]).

Re-initialisation algorithm

The advection of the scalar φ (3.24) does not ensure that the level set remains a

signed distance function and certain multiphase flow features (high velocity gradi-

ents, interface topology changes) can lead to an irregular level set function (jump at

the interface, spreading). In such instances, the level set function no longer satisfies

the condition (3.23) which is yet required for the precise location of the interface

and the accurate calculation of the its geometric properties ((3.25) and (3.26)). It is

therefore necessary to add a constraint on the transport of φ to maintain the condi-

tion (3.23) without moving the front. This operation, performed by the re-distancing

algorithm, keeps the interface thickness constant.

Originally, re-distancing routines were explicitly searching for the zero level set to

re-initialise φ around the interface. These techniques were computationally expen-

sive [34] and generally lead to severe distortions of the interface. The re-distancing

algorithm of Sussman et al. [244] bypasses the search of the interface by correcting

iteratively the position of the level sets — with respect to the zero level set — such

that (3.23) is satisfied.

In that method, the constraint added on the advection of φ takes the form of a

partial differential equation (3.27) solved on an artificial time step at the end of each

physical time step. Once the artificial steady state reached in the whole domain,
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(a) (b)

Figure 3.4: Level sets of a water drop falling under gravity [244]: (a) No re-

initialisation; (b) Re-initialisation

the re-initialisation is complete. Introducing τ , the artificial time step of the re-

initialisation procedure and sign, the sign function mollified around the interface,

this equation reads:
∂d

∂τ
= sign (φ) (1 − |∇d|) (3.27)

with: d (x, t, τ = 0) = φ (x, t)

This algorithm formally conserves the position of the interface. Indeed, when the

re-initialisation is complete, either |∇φ| = 1 and the property of signed distance

function is recovered or sign (φ) = 0 and x belongs to the interface. At the end of

the iterative process, the level set φ (x, t) is reset to d (x, t, τ = τfinal) in the whole

domain.

The accurate calculation of the interface geometric properties requires the level set

to satisfy (3.23) only in the vicinity of the interface. Since this algorithm starts the

re-initialisation near the interface and propagates outwards in the normal direction,

the re-initialisation of the level set is generally obtained with few iterations per

physical time steps (2 to 3 in practice).

Despite formally maintaining the position of the zero level set, the algorithm of

Sussman et al. still moves the interface slightly in practice. To mitigate this and im-
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prove the mass conservation properties of the level set method, Sussman et al. [242]

and Chang et al. [32] have proposed modified versions of the re-distancing algorithm

based on the addition of a constraint (for instance related to the curvature of the

interface) in the solution of (3.27). However, these methods do not systematically

re-distribute the mass appropriately (where it was originally lost) and therefore still

do not satisfy mass conservation exactly.

Conservative level set

Olsson and Kreiss proposed in 2005 the “conservative level set” (CLS) method [163]

based on an alternative definition of level set function. Instead of a signed distance

function, the method transports a hyperbolic tangent function ψ (x, t), that resem-

bles a smeared out liquid volume fraction. As a result, ψ goes smoothly from 0 (in

one phase) to 1 (in the other phase) in a transition region of constant thickness.

The location of interface is then given by the ψΓ = 0.5 level set. Recalling that φ

is the signed distance from the interface and introducing ǫ, a parameter controlling

the thickness of the interface, ψ is defined by:

ψ =
1

2

(
tanh

(
φ

2ǫ

)
+ 1

)
(3.28)

The level set is transported in two steps: starting with the advection and followed by

the re-initialisation of the level set that maintains the thickness of the transition layer

constant and preserves the smoothness of ψ’s profile. In the case of an incompressible

flow, these equations read:
∂ψ

∂t
+ ∇ · (uψ) = 0 (3.29)

∂ψ

∂τ
+ ∇ · (ψ (1 − ψ) n̂) = ǫ∇ · (∇ψ) (3.30)

Both steps are implemented with conservative numerical schemes in order to ensure

52



Chapter 3. Numerical modelling of multiphase flows

that ψ is conserved in a divergence free velocity field. However, as the interface has

a finite thickness, this property only leads to the conservation of the volume (in 3D)

bounded by the ψΓ = 0.5 level set in the case of a flat interface [47]. It results that

the volume conservation of the CLS method improves as ǫ decreases for an arbitrary

shape of the interface.

However, a minimum resolution of the level set profile is required for the accurate

calculation of the interface geometric properties ((3.25) and (3.26)) so that Olsson

and Kreiss recommend: ǫ = ∆x/2, where ∆x is the mesh spacing. In the case of the

complex velocity field and topology changes — typical of primary breakup situations

— no satisfactory trade-off can be obtained for ǫ and the inaccurate calculation of n̂

and κ lead to numerical instabilities. Starting from that method, Desjardins et al.

[47] attempted to mitigate this issue by reconstructing the signed distance function

φ from ψ using Sethian’s fast marching methods [229].

In conclusion, the CLS method reduces the numerical errors accumulated in the

advection of the level set function and, as a result, significantly improves the mass

conservation for the same computational cost as the standard LS technique. Like

hybrid methods, such as PLS [53] or CLSVOF [152, 243, 263], the technique of

Olsson and Kreiss partially solves the mass conservation problem of the level set

method but at a much lower cost. Therefore, the conservative level set method

is a good starting point to develop a numerical method for the simulation of the

atomisation process. It is however necessary to improve the numerical behaviour of

the method in terms of accuracy and stability.

3.4 Treatment of singularities

After presenting the physical origin of the surface tension, this section gives a brief

overview of the principal means of handling singularities numerically. The emphasis

has been placed on the descriptions of the continuum surface force (CSF) [26, 175]

and the ghost fluid method (GFM) [55] as these two techniques are particularly
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popular in multiphase CFD.

3.4.1 Physical origin of the surface tension

Microscopically, the surface tension is due to an imbalance of molecular forces in

the liquid, close to the interface. In the bulk of the liquid, the intermolecular forces,

maintaining the cohesion of the medium, are at equilibrium as each molecule is

pulled equally in all directions by the surrounding molecules (see Figure 3.5). At

the interface, an imbalance arises due to the lack of — or the difference in —

the attractive force from the molecules constituting the medium beyond the free

surface. Consequently, the molecules located at the interface are pulled inwards by

the molecules deeper in the same phase. As this inward force is counterbalanced by

the resistance of the liquid to compression (short range repulsion forces between the

constitutive molecules) equilibrium is reached at a state of minimal energy which

corresponds to a minimum of interfacial area.

Figure 3.5: Attractive interactions for two molecules: one in the bulk of the liquid

and the other one at the interface [42]

In continuum fluid mechanics, it translates as a surface force acting locally —

in both normal and tangential direction — on the fluid particles of the interface.

The liquid surface then resembles an “elastic skin” in tension and this tension can

be perceived as the necessary force to maintain the energetic equilibrium of the
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molecular cohesion [42]. Upon certain conditions (presence of surfactant, etc . . . ),

the surface tension may vary along the interface which results in the flow from high

surface tension regions to low surface tension regions.

The balance of the normal stresses of two static fluids meeting at an interface of

zero thickness is given by the Young-Laplace equation (3.31). This equation relates

the pressure difference across the interface to the shape of the interface and the

surface tension σ. Introducing the principal radii of curvature R1 and R2 at the

point of the surface considered, (3.31) reads:

∆p = σ

(
1

R1
+

1

R2

)
= σκ (3.31)

3.4.2 Continuum surface force

The CSF method is based on the smoothing of the discontinuous quantities over a

thickened interface (typically 2 to 3 cells wide). It applies the surface tension as

a volume force in this transition region (see Figure 3.6). This technique, generally

associated with the whole domain formulation (see Chapter 3.1), involves introduc-

ing mollified Heaviside and Dirac delta functions in order to make discontinuous

quantities differentiable.

Although robust and easy to implement, this method does not always reproduce

faithfully the physics near the interface, as it diffuses the surface location and the

associated jump conditions. It also relies upon a choice of interface thickness which

drives the trade-off between the accuracy of the interface location and the instability

of the calculations. In addition, both the CSF and the continuum surface stress

(CSS; see last paragraph of this sub-section) formulations of this method tend to

produce non-physical velocities near the interface — the spurious currents — due

to the numerical imbalance between surface tension and pressure gradient.
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Figure 3.6: Illustration of the continuum surface force method in 2D [26]

Material properties

Assuming the material properties (density, viscosity) to be constant in each phase

(see Section 3.1), the equation (3.32) gives the value of a given material property, γ,

in the whole computational domain. Using the subscripts gas and liq to refer to the

gas and liquid phases respectively and noting H the Heaviside function, it reads:

γ (x) = γgas +H (x − xΓ) (γliq − γgas) (3.32)

The numerical implementation of (3.32) varies according to the type of scheme

used and the method employed to capture the interface. For interface description

methods that calculate directly the colour function C (VOF, CLSVOF, CLS, see

Section 3.3), the material property considered is then given by:

γ = γgas + C (γliq − γgas) (3.33)

For interface description methods that compute the distance from the interface

φ, i.e. level set methods, the material properties is given by equation (3.34). Intro-

ducing, Hε, the Heaviside function mollified over a distance proportional to ε, (3.34)

reads:

γ = γgas +Hε (φ− φΓ) (γliq − γgas) (3.34)
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Surface tension forces

In his analysis of blood flows in the heart, Peskin [175] developed the “immersed

boundary method” to model numerically the surface force exerted by the heart on

the blood. In his framework, the heart wall is modelled by a moving boundary, Γ,

“immersed” in a fixed grid domain. This membrane interacts with the fluid through

a singular surface force, fΓ, approached by a volume force, fΩ, spread on a few cells

surrounding the “immersed boundary”. Introducing the thickness, h, of the region

Ω, surrounding the boundary, then the volume force should give the correct surface

force per unit area when h→ 0:

lim
h→0

∫

∆Ω

fΩ (x) dΩ =

∫

∆Γ

fΓ (xΓ) dΓ (3.35)

In the integrals of (3.35), the area ∆Γ represents a portion of the interface and ∆Ω is

the small volume of thickness h bounding it. In his formulation, Peskin introduces

an interpolation function, δε, to mollify the Dirac function on a few cells around

the boundary. This convolution kernel satisfies δε → δΓ when ε → 0, where ε is a

parameter of the kernel function, proportional to h. Using the interpolation function

δε, the surface integral of fΓ can be approximated by the following volume integral:
∫

Γ

fΓ (xΓ) dΓ ≈
∫

Ω

fΓ (x) δε (x − xΓ) dΩ (3.36)

This method has been applied to the numerical handling of surface tension forces by

Brackbill et al. [26] in their “continuum surface force” (CSF). Using the CSF model

and assuming the surface tension uniform (fΓ (x) = σκ (x) n̂ (x)), an expression can

be found for the capillary forces fcap in (3.15). When the colour function is directly

available, fcap is approximated by:

fcap ≈ σκ∇C (3.37)

Similarly, for level set methods the capillary forces are approximated by:

fcap ≈ σκ∇φδε (φ− φΓ) (3.38)
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Continuum surface stress

The CSF method implements the surface tension forces from the formulation of the

momentum balance given in (3.15). In (3.15), the surface tension forces are simply

added as a source term on the right hand side of the equation after the calculation

of the interface curvature. Evolving from the CSF, Lafaurie et al. produced the

continuum surface stress (CSS) [119] by expressing the capillary effects as a tensor

(3.16). The CSS then models the surface tension by an added correction in the

momentum stress tensor, based on the local gradient of the volume fraction.

Due to this tensorial formulation of the capillary effects, the CSS is based on a

conservative form of the momentum balance (3.17) and therefore formally conserves

the momentum. Although, the CSS results in stronger spurious currents than CSF,

unlike CSF, this method tends to reduce the magnitude and the spread of these

non-physical velocities under grid refinement [198].

3.4.3 Ghost fluid method

In order to mitigate the limitations of the CSF, Fedkiw et al. [55] proposed a

numerical method that retains a sharp interface, respects the jump conditions and

significantly reduces the spurious currents. The GFM achieves this by extending

continuously the domain of discretisation of each phase into the other phase in a

“ghost region”. This region is typically 3 to 5 cells thick, depending on the movement

of the interface and on the stencil employed.

Although formally in a single fluid formulation, the GFM involves solving the

two phases separately and connecting them through the interfacial jump conditions.

In particular, the surface tension is applied via a pressure jump condition (3.39)

derived from the normal stress conditions (3.11) in the case of an inert interface (no

phase change, no reaction). For a uniform surface tension, the set of jump conditions

linking the two phases reduces to:

[ρ]Γ = ρliq − ρgas (3.5)
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[µ]Γ = µliq − µgas (3.6)

[p]Γ = 2 [µ]Γ n̂ · D · n̂− σκ (3.39)

Once the jump conditions are estimated from the interface characteristics, the

method extends continuously the discontinuous quantities in each “ghost region”

in order to calculate their discrete derivatives. At each time step, a specific algo-

rithm defines these ghost cells so that the boundary conditions for the Navier-Stokes

equations are satisfied. It leads to the simultaneous presence of the two fluids at

every grid point in the two “ghost regions”. In this narrow band around the inter-

face, two sets of mass, momentum and energy equations are solved (using standard

methods), one for the real fluid and the other for the ghost fluid. The appropriate

solution — corresponding to the real fluid at a given location — is then chosen

according to the phase marker of the interface description method (e.g. the sign of

the distance function for LS method).

Figure 3.7: Illustration of the ghost fluid method in 1D [246]

The principle of the method in 1D is illustrated in Figure 3.7 for a given variable

f discontinuous across the interface Γ. Designating Ω− and Ω+ the two domains

separated by Γ, the jump of f , a (xΓ) is defined in (3.40) as a function of xΓ ∈ Γ. In

the LS-GFM framework of Fedkiw et al. [55], a (xΓ) can be expressed as a function

59



Chapter 3. Numerical modelling of multiphase flows

of the distance from the front φ (3.41).

[f ]Γ = f+ − f− = a (xΓ) (3.40)

aΓ =
ai |φi+1| + ai+1 |φi|

|φi| + |φi+1|
(3.41)

Using these notations, the ghost values f g−i+1 in Ω− and f g+i in Ω+ are defined re-

spectively by (3.42) and (3.43), and the discrete derivative for f is given by (3.44)

in cells crossed by the interface [152].

f g−i+1 = f+
i+1 − aΓ (3.42)

f g+i = f−
i + aΓ (3.43)

∂f

∂x

∣∣∣∣∣
i+ 1

2

=
fi+1 − fi

dx
− aΓ

dx
(3.44)

Fedkiw et al. originally combined the GFM with the level set method which calcu-

lates directly the distance from the interface φ. This interface-capturing method is

ideally associated with the GFM as the interface location and the jump conditions,

essential to the GFM, can be easily derived from φ. As a result, the implementation

of the GFM in a level set solver is wieldy: it reduces to the addition of routines to

define and treat the ghost cells. In addition, the GFM being applicable to a broad

range of jump conditions, the LS-GFM method can be extended to vaporising and

reacting two-phase flows [158]. Early implementation of this method for the simula-

tion of incompressible two-phase flows are reported in [109]. Further developments

of this technique can be found in [90, 91].
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3.4.4 Alternative methods

Immersed interface method (IIM) LeVeque and Li have developed this

method to handle jump conditions by applying them directly into the stencil of

discretisation [127]. LeVeque and Li combine these jump conditions with Taylor

series expansions about the interface to derive their difference scheme. Although this

method is precise and reaches second-order accuracy, its algorithms are complex and

difficult to extend to 3D. Successful implementation of the IIM for the simulation

of incompressible Navier-Stokes equations with immersed boundaries are reported

in [126].

“Cut-cell” techniques Popinet and Zaleski developed a 2D front-tracking al-

gorithm (surface markers connected by cubic splines) in order to improve the mod-

elling of surface tension [185]. The authors take advantage of the front-tracking

method to produce a novel technique to represent the surface tension based on the

idea that the interface is a sharp discontinuity. This technique reduces significantly

the spurious currents on the classical test cases (equilibrium bubble, capillary wave

and Rayleigh-Taylor instability) and could be extended to the treatment of other

discontinuous terms across the interface. However, this method relies on complex

geometric considerations and its implementation to 3D is not straightforward.

Parabolic reconstruction of surface tension (PROST) Renardy and Re-

nardy developed a novel technique to handle surface tension by calculating the

curvature of the interface from the least square fit of a quadratic approximation of

the interface [198]. Thanks to a finer approximation of the curvature, this algorithm

dramatically reduces the spurious currents (2 to 3 orders of magnitude lower than

with CSF or CSS) and shows better spatial convergence than both CSF and CSS

methods. However, such improvement in the accuracy of the method comes at a

great computational cost.
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3.4.5 Spurious currents

Spurious currents are non-physical velocities — in general vortices — that may

occur in the vicinity of the interface when the interfacial forces are modelled. Most

numerical methods modelling surface tension produce these undesirable features.

These includes front-tracking methods, lattice-Boltzmann methods (in which they

were first observed, see [74]) and CSF methods. In their VOF/PLIC implementation

of the CSF, Lafaurie et al. [119] measured the order of magnitude of these currents

in the case of an equilibrium (static) bubble between two phases of equal density

and viscosity (see Figure 3.8). They reported the following relation:

up ∼ 0.01
σ

µ
(3.45)

In practice, there are essentially two numerical reasons for the occurrence of spurious

Figure 3.8: Spurious currents in an equilibrium bubble; obtained with the CSF

method [198]

currents. The first one is the discrete imbalance between the surface tension and the

associated pressure gradient across the interface and the second one is the inaccurate

evaluation of the surface curvature.
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François et al. mitigated the first problem with the “balance-force algorithm”

[59], developed for VOF methods with a CSF model of the interface. This technique

eliminates the spurious currents up to machine accuracy (when the curvature is

exactly known) by using compatible discrete approximations of the pressure and

the volume fraction gradients in the discretised momentum equation. Herrmann

applied the same methodology to correct the numerical imbalance in his refined

level set grid framework [86]. The LS technique have also been combined with the

GFM of Fedkiw et al. [55] and the “sharp-interface method” of Sussman et al. [245]

and both achieved very low magnitudes of spurious currents because they apply the

jump conditions directly on a sharp front.

As surface tension models are becoming more and more accurate, the reduction

of spurious currents relies heavily on the accurate estimation of the curvature. For

VOF methods, the difficulty comes from the discontinuity of the volume fraction

at the interface location and has been addressed by using convolution operations

[273], height-function approaches [83, 183, 240, 245] and high-order interface recon-

struction algorithms [183, 198]. With LS methods, the inaccuracies in curvature

calculations arise from the fact that the interface does not generally pass through

the grid nodes which results in the use of interpolation techniques [137]. Herrmann

reached second-order accuracy with his “interface projected curvature evaluation”

method [86] based on the distribution of the curvature in the whole computational

domain.

In the case of large surface tension and large density ratios, the spurious currents

tend to limit the range of capillary number (Ca) and Laplace number (La) that

can be simulated accurately, in a similar manner that the Re limits the DNS of

homogeneous flows. In particular, above a critical La, corresponding to a large

value of σ, the spurious currents dominate the flow and their growth can lead to the

destruction of the interface. Introducing the characteristic velocity U , and length
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L, the Ca and La are defined in equations (3.46) and (3.47) below:

Ca =
µU

σ
(3.46)

La =
σρL

µ2
(3.47)

Low values of surface tension can also lead to the destruction of the interface.

This happens for first-order VOF methods, which are unstable in the absence of

surface tension and produce flotsam. Besides, at low Re, a small surface tension

leads to a large Ca which results in the creation of cusps in the interface.

This chapter describes the various options available to study the primary breakup

with the numerical approach. From this literature review, it appears that the simu-

lation of the primary breakup requires an interface-capturing technique to account

for the effect of the geometry on the atomisation process. In particular, the cost-

effective conservative level set method, demonstrated on the primary breakup of

Diesel jets, appears as a good candidate. In addition, due to the breadth of length

and time scales involved in the atomisation process, the LES framework seems nec-

essary to simulate more realistic injection devices.
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Two different open source multiphase codes have been identified: Gerris [181] and

OpenFOAM [271]. Both codes use VOF to capture the interface and are fairly

well-known and recognised in the field of multiphase CFD.

The two codes are briefly described in Section 4.1 and their comparative perfor-

mance is assessed on typical test cases in Section 4.2. Finally, in Section 4.3, both

numerical capabilities are applied to the simulation of the primary breakup.

4.1 Available codes

4.1.1 OpenFOAM

OpenFOAM was originally developed by Henry Weller at Imperial College in Lon-

don. This code is more a “C++ toolbox” for the numerical solution of continuum

mechanics problems than a dedicated CFD solver for multiphase flows. In that

regard and thanks to the flexibility given by the C++ language, OpenFOAM is

an ideal platform for the customisation and the development of novel CFD meth-

ods. OpenFOAM uses finite-volume numerics on unstructured meshes and therefore

can handle complex geometries easily. In particular, unstructured meshes can be

imported into OpenFOAM from commercial packages (Fluent, Gambit, etc . . . ).
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Thanks to its flexibility and its versatility, OpenFOAM is already a very popular

open source code used by several companies and universities around the world. The

main issue of the code is its lack of documentation, especially on the implemen-

tation of the boundary conditions. Indeed, the official documentation [165, 166]

details more the general philosophy of the code than it explains how to use it on a

practical problem, as no guidance is given for most of the tutorials. However, some

relevant information can be obtained from the “OpenFOAM message board” and

from reports or presentations produced by OpenFOAM users.

OpenFOAM already embeds several solvers that handle multiphase flows with a

volume of fluid approach. In particular, two different solvers have been identified

as relevant test platforms: the DNS solver interFoam and the LES version of it

lesInterFoam.

4.1.2 Gerris

The CNRS (France), and in particular the group lead by Stephane Zaleski, has

built up a strong capability in the simulation of multiphase flows. Over the years,

this team and its former members (Jie Li, Denis Gueyffier, Stephane Popinet) have

developed several codes (SURFER, Gerris) and perfected the VOF method imple-

mented. Stephane Popinet wrote Gerris in C, using quadtree (octree in 3D) finite

volume discretisation, to solve mainly multiphase flow problems. This code cannot

handle unstructured meshes and treats solid parts as a third phase.

In Gerris, the computational domain is made of 1×1 adjacent boxes, each initially

refined to a given level l with: ∆x = 1/2l. For example a 1 × 2 domain will be

made of two adjacent boxes and a 128 × 256 mesh will be produced by refining the

domain seven times (27 = 128). The mesh adaptation tool allows the user to set the

refinement of each box constituting the domain between two values and according

to a set of chosen criteria.

Although fairly unknown in the past few years, Gerris has recently gained in
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popularity thanks to the performance of its method. The lack of a user guide is

counterbalanced by detailed online tutorials and the profusion of test cases. Further

information can be obtained through the message board. The main drawback of

this code is the difficulty to develop it, as it was originally written for expert users

to be efficient but not “developer friendly”.

This code gathers state-of-the-art numerical methods for VOF interface descrip-

tion: balanced-force CSF formulation, general height-function interface curvature

[183] and uses tree-based adaptive mesh refinement [182].

4.2 Code validation

4.2.1 Advection algorithm

The assessment of the advection algorithm of a VOF code requires simulating an

interface “transparent” to the flow field. This is achieved by simulating two inviscid

phases of identical density with zero surface tension. In the following sub-section,

L refers to the length of the computational domain and the error field is calculated

by:

∆C = Ct=0
i,j − Ct=1

i,j ∀i, j (4.1)

where C is the colour function.

Rotation and translation of a cross The advection of a 2D cross in a solid

body rotation field is a simple test case to assess the performance of the interface

transport algorithm. The computational domain is a square box delimited by the

points (−1;−1) and (1; 1). The cross is made of a 0.6× 0.6 square from which four

smaller 0.2×0.2 squares are subtracted at each corner (see Table 4.1). The cross has

been transported in two different ways with the same velocity field: a pure rotation

of the cross about its centre (0; 0), and a translation along a circular trajectory

(Ctraj = (0; 0), Dtraj = 1). The details of both simulations are summarised in
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Table 4.1. The end of the simulation is reached after one revolution for t = 1s.

The results of the rotation and the translation are respectively reported in Fig-

ure 4.1 and Figure 4.2 for both codes. OpenFOAM and Gerris perform the rotation

similarly, maintaining the general cross shape. These results compare reasonably

well with the review of the existing advection algorithms performed by Pilliod and

Puckett [178]. As expected the maximum departures from the original shape occur

at the corners. The contours of difference in volume fractions with the original shape

are slightly asymmetrical for OpenFOAM. On the translation problem, Gerris’ ad-

vection algorithm performs equally well and the results present the same pattern as

in the rotation case. However, OpenFOAM breaks down on this problem, showing

surprisingly bad results not only on the corners of the cross but also along its sides

(especially the top of the cross).

Table 4.1: Simulation settings for the advection of a 2D cross

Rotation Translation

Velocity field: ux = −2πy ; uy = 2πx

Grid size: ∆x = L/128
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On the translation problem, Gerris has also been run with adaptive mesh refine-

ment based on a curvature criterion (see Table 4.4) ideally suited for such problem.

With a level of refinement of 7 (∆x = L/128). The mesh adaptation tool has been

set to refine (resp. coarsen) the mesh up (resp. down) to level 8 (resp. 6) in regions

of high (resp. low) curvature. Not only does this feature significantly improve the

accuracy of the results but — thanks to the coarsening — it also accelerates the

calculation by about 40 %.

The slotted disk of Zalesak Another classic test of the quality of an advection

algorithm is the solid body rotation of a slotted disk. This problem, first set by

Zalesak [284], is particularly difficult as it involves sharp corners and a thin slot

within a solid geometrical shape. Depending on the quality of the scheme, this

latter feature may disappear resulting in a modified topology. The computational

domain is a square box delimited by the points (−1;−1) and (1; 1). The shape is

made of a disk of diameter 0.6, centred on (0; 0.5) from which a vertical rectangle

of 0.1 × 0.5 is subtracted (see Table 4.2). The slotted disk is then translated along

a circular trajectory (Ctraj = (0; 0), Dtraj = 1) like the cross in the previous case.

The simulation settings for this problem are given in Table 4.2. The end of the

simulation is reached after one revolution for t = 1s.

The results, summarised in Figure 4.3, show that both codes maintain the topol-

ogy of the slotted disk. However, as in the previous test case, Gerris significantly

outperforms OpenFOAM. In particular, OpenFOAM produces unexpected wiggles

on the top of the disk. Like in the case of the advection of the 2D cross the worst

results are obtained on the top of the translated geometry: the region that travels

the most.

Disk in a deformation field This test assesses the ability of the code to

represent thin ligaments on coarse grids and to avoid the generation of flotsam. In

the first half of the simulation (up to t = 3s) a 0.3 disk, centred on (0.5; 0.75) in
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Table 4.2: Simulation settings for the advection of a slotted disk

Velocity field: ux = −2πy ; uy = 2πx

Grid size: ∆x = L/128

a square box delimited by the points (0; 0) and (1; 1), is deformed into a spiral by

a prescribed velocity field. In a second time interval (from t = 3s to t = 6s), the

opposite velocity field is prescribed so that the original disk is recovered at the end

of the calculation (see Table 4.3).

The simulation results, presented in Figure 4.4, highlight the superior perfor-

mance of Gerris over OpenFOAM. Concerning the representation of thin ligaments,

Gerris maintains a continuous spiral for an extra 90 ◦ (at t = 3s) with respect to

OpenFOAM. In addition, at the end of the second phase, Gerris recovers better the

initial disk. At the final time, the contours of difference in volume fractions suggest

that OpenFOAM does not recover the topology of the disk and creates small liquid

structures on the left of the disk.

The adaptive mesh refinement routine of Gerris has been tested with different

refinement criteria to highlight the importance of the choice of a criterion. In Ta-

ble 4.5, the contours of difference in volume fractions are given at the final time,
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Table 4.3: Simulation settings for the disk in a deformation field

Velocity field for t ∈ [0; 3] (s): ux = −∂ψ
∂y

; uy = ∂ψ
∂x

Velocity field for t ∈ [3; 6] (s): ux = ∂ψ
∂y

; uy = −∂ψ
∂x

With: ψ = 1
π

sin2 (πx) sin2 (πy)

Grid size: ∆x = L/128

t = 6s, for the simulations without AMR, with adaptation based on the gradient of

colour function (C) and with adaptation based on the curvature. Apart from the

criterion, the adaptation settings are the same as for the translation of the cross.

The results clearly show that for an interface with a lower curvature (except at the

tip of the spiral), the adaptation based on the gradient of the color function performs

better. Logically, the higher number of cells resulting from this adaptation criterion

leads to a longer simulation time.
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Table 4.4: Performance of the adaptive mesh refinement on the translation of a 2D

cross — Error field, grid size ∆x and duration of the calculation tcalc

No adaptation Adaptation

∆x = cst = L/128 ∆x = L/64 − L/256

tcalc = 28.1s tcalc = 16.7s

Table 4.5: Performance of the adaptive mesh refinement on the disk in a deformation

field — Error field, grid size ∆x and duration of the calculation tcalc

No adaptation Adaptation — ∇C Adaptation — κ

∆x = cst = L/128 ∆x = L/64 − L/256 ∆x = L/64 − L/256

tcalc = 50.6s tcalc = 77.7s tcalc = 59.2s
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OpenFOAM Gerris

Interface at t = 1s

Error field

Figure 4.1: Performance of the advection algorithms on the rotation of a 2D cross

— Comparison OpenFOAM vs. Gerris
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OpenFOAM Gerris

Interface at t = 1s

Error field

Figure 4.2: Performance of the advection algorithms on the translation of a 2D cross

— Comparison OpenFOAM vs. Gerris
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OpenFOAM Gerris

Interface at t = 1s

Error field

Figure 4.3: Performance of the advection algorithms on the slotted disk of Zalesak

— Comparison OpenFOAM vs. Gerris
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OpenFOAM Gerris

Interface at t = 3s

Interface at t = 6s

Error field

Figure 4.4: Performance of the advection algorithms on a disk in a deformation field

— Comparison OpenFOAM vs. Gerris
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4.2.2 Basic two-phase flows

Rayleigh-Taylor instability This test case is usually used to demonstrate

the numerical convergence of an interface description method. The Rayleigh-Taylor

instability is also used to study the capability of code to capture thin ligaments in

the presence of surface tension and with a significant density ratio between phases.

Simulations of the Rayleigh-Taylor instability have been carried out with various

interface description methods by many authors in both 2D and 3D [133, 185, 189,

260].

The problem is set in a rectangular box (free-slip boundary conditions imposed

on all four walls) of 1m×4m in which two phases of different densities and identical

viscosities equally share the domain. The heavier fluid occupies the top half of

the domain and is initially separated from the light fluid by a cosine interface of

maximum amplitude 5×10−2m. Under buoyancy effects and because of the original

perturbation of the interface, the heavier fluid falls into the light one. The details

of the simulation settings are given in Table 4.6.

Table 4.6: Simulation settings for the Rayleigh-Taylor instability

Initial interface position: y = −0.05 cos (2πx)

Density: ρ1 = 1.255kgm−3 ρ2 = 0.1694kgm−3

Viscosity: µ1 = µ2 = 3.13 × 10−3kgm−1s−1

Surface tension: σ = 1 × 10−2Nm−1

Gravity: g = 9.81ms−2

Mesh size: 128 × 512

The problem, as formulated in [189] has been simulated with OpenFOAM and

Gerris. The results of both codes, presented in Figure 4.5, compares satisfactorily

with the calculations presented in [133, 185, 189]. However, as demonstrated in the
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previous section, Gerris captures better the thin liquid structures. In particular, a

close up in the region of the “mushroom cap” — formed by the penetration of the

denser phase — highlights significant differences on the outer edge of the mushroom

cap at t = 1s.

The simulation on a finer mesh (256×1024) with OpenFOAM confirms the higher

accuracy of Gerris (see Figure 4.6). Also, the comparison of the two OpenFOAM

simulations (128× 512 vs. 256× 1024) suggests that the correct capture of the thin

ligaments has a strong influence on the overall simulation results: lower penetration

of the dense phase and wider opening of the mushroom cap. In addition, OpenFOAM

seems to create wiggles in the neck of the stalk close to the cap. These waves on the

interface are not perceptible in other calculations (Gerris and [133, 185, 189]) and

seem to shrink — in both amplitude and wavelength — with mesh refinement.

This problem has been run with “adaptive mesh coarsening” based on two criteria:

the vorticity and the gradient of the colour function. In Figure 4.7, the meshes

obtained with and without AMR are represented in parallel to the contours of colour

function and vorticity, so that the link between the pattern formed by the adapted

mesh and the adaptation criterion appears clearly. Because the AMR is based on

an octree architecture, the same accuracy of interface description is guaranteed but

at much lower computational cost. In particular, this “adaptive mesh coarsening”

divides the number of cells by 2.7 and the simulation time by 7.

Falling drop in a pool This test case was set by Sussman et al. in [241] in

order to test their level set - AMR framework. It consists in simulating the “splash”

produced by an axisymmetric droplet impacting a liquid surface in the case of a large

density ratio (water and air). This simulation involves both merging and pinching of

interfacial surfaces with respectively the impact of the droplet on the pool interface

and the subsequent splash.

The domain is a 2mm × 4mm box set with the following boundary conditions:

axisymmetry on the left wall, free-slip on the bottom and the right wall and outflow
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on the top wall. The 1mm water drop is projected — from an initial height of

0.5mm — with a velocity of 4ms−1 towards a pool of water that fills the bottom

half of the domain. The details of the simulation settings are presented in Table 4.7.

Table 4.7: Simulation settings for the falling drop in a pool

Droplet parameters: φdrop = 1 × 10−3m u = (0 − 4 0) (ms−1)

Density: ρ1 = 1000kgm−3 ρ2 = 1.225kgm−3

Viscosity: µ1 = 1.137 × 10−3kgm−1s−1 µ2 = 1.78 × 10−5kgm−1s−1

Surface tension: σ = 7.28 × 10−2Nm−1

Reynolds number: Re = 3520

Weber number: We = 220

Mesh size: 128 × 256

The contours of volume fractions predicted by Gerris and OpenFOAM are pre-

sented in Figure 4.8 for five time steps (t ∈ [0; 0.55] ms). The simulation results

compare well with the contours in [241] and the two codes provide the same inter-

face topology for most of the time steps. However, once again, Gerris seems to treat

better the small inclusions of one phase into the other: thin liquid structures and

bubbles. In particular, at t = 0.2ms whereas OpenFOAM has already separated the

coronet from the bulk of the liquid, Gerris has maintained the integrity of the liquid

structure. Also, from t = 0.15ms to t = 0.55ms, although both codes represent the

toroidal bubbles produced at the impact of the drop on the surface, OpenFOAM

seems to diffuse them rapidly whereas Gerris maintains their integrity on the same

mesh. It is hypothesized that OpenFOAM’s diffusion of the small structures (e.g.

resulting in the loss of thin ligaments) is related to the advection algorithm. In-

deed, the poor performance of this scheme, highlighted in Section 4.2, suggests that

OpenFOAM struggles to maintain the topology and the integrity of structures when
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transported over relatively long distances.

Phase inversion This problem was set by Labourasse et al. in [118] in order to

test the capability of a method to simulate strongly deformed dynamic interfaces in

view of predicting turbulent two-phase flows. In addition, because of the existence

of a theoretical solution, this problem also assesses the mass conservation properties

of the technique tested.

The problem is set in a square box (free-slip boundary conditions imposed on all

four walls) of 1m×1m. The bottom left-hand corner of the box is filled with a square

0.5m × 0.5m inclusion of oil while the rest of the domain (3/4 of the box) is filled

with water (see Table 4.8). Under buoyancy effects, the oil phase reaches the top

quarter of the domain. The material and environmental properties are such that the

surface tension forces are dominating and the oil progresses to its final position —

the top quarter of the computational domain — through a series of steps involving

strong deformations of the interface and numerous topology changes.

The contours of volume fractions predicted by Gerris (mesh: 1282) and by Open-

FOAM (meshes: 1282 and 2562) are presented in Figure 4.9, Figure 4.10 and Fig-

ure 4.11 for various time steps (t ∈ [1; 100] s). The simulation results compare

reasonably well with the contours in [118]. Some differences between Gerris’ and

OpenFOAM’s predictions are perceptible on the simulation results obtained with

the 1282 mesh. These differences get stronger as the interface is more and more dis-

torted (t ∈ [6.25; 22.25] s), and then fade out as the interface topology gets simple

again (t ∈ [34.75; 100] s).

This problem presents some “chaotic behaviour” in terms of interface topology,

since a small difference at the beginning of the simulation leads to a completely

distinct pattern when the distribution of phases is the most homogeneous. The

buoyancy effects finally assist the convergence of the phase distribution, for all sim-

ulations, towards the simple pattern of the theoretical solution.

In the early stages of the simulation (t ∈ [1; 6.25] s) the pattern of the multi-

80



Chapter 4. Multiphase codes

Table 4.8: Simulation settings for the phase inversion

Oil inclusion in water (Loil = 0.5m)

Density: ρ1 = 1000kgm−3 ρ2 = 900kgm−3

Viscosity: µ1 = 1 × 10−3kgm−1s−1 µ2 = 1 × 10−1kgm−1s−1

Surface tension: σ = 4.5 × 10−2Nm−1

Gravity: g = 9.81ms−2

phase flow predicted by OpenFOAM on the refined mesh seems to be halfway be-

tween OpenFOAM’s and Gerris’ on the coarse mesh. This suggests that Gerris also

performs better on the phase inversion problem.
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OpenFOAM

t = 0.2s t = 0.7s t = 0.8s t = 0.9s t = 1s t = 1s

Gerris

t = 0.2s t = 0.7s t = 0.8s t = 0.9s t = 1s t = 1s

Figure 4.5: Simulation results for the Rayleigh-Taylor instability — Interface pre-

dicted by OpenFOAM (top) and Gerris (bottom)
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Original mesh — 128 × 512 Refined mesh — 256 × 1024

Figure 4.6: Performance of OpenFOAM on the simulation of the Rayleigh-Taylor

instability — Detail of the interface in the region of the neck at t = 1s for meshes:

128 × 512 (tcalc = 6126s) and 256 × 1024 (tcalc = 35688s)
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Constant mesh Adapted mesh Volume fractions Vorticity

Figure 4.7: Performance of Gerris on the simulation of the Rayleigh-Taylor instabil-

ity without surface tension — Results at t = 1s for constant mesh (Ncells = 65536 ;

tcalc = 1338s) and adapted mesh with lmax = 7 (Ncells = 24274 ; tcalc = 193s)
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OpenFOAM

t = 0s t = 0.15ms t = 0.2ms t = 0.35ms t = 0.55ms

Gerris

t = 0s t = 0.15ms t = 0.2ms t = 0.35ms t = 0.55ms

Figure 4.8: Volume fractions predicted by the codes for the falling drop in a pool

— Volume fractions predicted OpenFOAM (top) and Gerris (bottom)
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OpenFOAM OpenFOAM Gerris

1282 2562 1282

t = 1s

t = 2.25s

t = 4.5s

Figure 4.9: Volume fractions predicted by the codes for the phase inversion — Time

t = 1s, 2.25s, 4.5s
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OpenFOAM OpenFOAM Gerris

1282 2562 1282

t = 6.25s

t = 9.75s

t = 22.25s

Figure 4.10: Volume fractions predicted by the codes for the phase inversion —

Time t = 6.25s, 9.75s, 22.25s
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OpenFOAM OpenFOAM Gerris

1282 2562 1282

t = 34.75s

t = 42.25s

t = 100s

Figure 4.11: Volume fractions predicted by the codes for the phase inversion —

Time t = 34.75s, 42.25s, 100s
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4.3 Simulation of atomisation

Two types of simulation have been considered in order to take advantage of the best

features of both codes: the simulation of atomisation with sub-grid scale modelling,

using OpenFOAM (lesInterFoam, see [44] for details on SGS), and without, using

Gerris. The settings of all spray calculations are presented in tables 4.9, 4.10 and

4.11, and the corresponding non-dimensional numbers are given in Table 4.12.

The simulation of liquid breakup with SGS models involved reproducing the

results of Villiers et al. on the atomisation of Diesel jet [44] and extending this

approach (similar physical properties and domain dimensions) to the breakup of an

axisymmetric sheet. The latter calculation was done on a very coarse mesh as a

mean to illustrate the capability of OpenFOAM.

The simulations of flat sheet breakup without SGS models have been run using

Gerris with similar domain dimensions, fluid densities and surface tensions. How-

ever, in order to illustrate the effect of We on the spray, the viscosity has been

reduced for both fluids. Indeed, the turbulence in the flow field has a strong effect

on the primary breakup [54, 146] and to obtain a spray in a smaller computational

domain, we have artificially increase the Re in both phases. Also, as demonstrated in

experimental studies [135, 136, 145, 146, 195], thinning the vorticity layer increases

the growth rate of the interfacial instabilities and therefore reduces the breakup

length. The effect of the Weber number on the breakup (see Section 2.4) has been

illustrated on three simulations of increasing We. For the highest We, the build-up

of instabilities and the onset of the breakup are presented.

Due to the significant influence of turbulence build-up in the injection pipe [54,

146], the flow in the injection channel has been modelled for a distance of three to

five injection hole characteristic lengths depending on the configuration of the spray

calculation.
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Table 4.9: Physical properties for the spray calculations with SGS models

Fuel Gas Ratio fuel/gas

Density, ρ (kgm−3) 840 20 42

Viscosity, µ (kgm−1s−1) 5 × 10−3 1.7 × 10−5 294

Surface tension, σ (Nm−1) 2.61 × 10−2

Table 4.10: Physical properties for the spray calculations without SGS models

Fuel Gas Ratio fuel/gas

Density, ρ (kgm−3) 840 20 42

Viscosity, µ (kgm−1s−1) 5.952 × 10−6 8.5 × 10−7 7

Surface tension, σ (Nm−1) 2.61 × 10−2
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Table 4.11: Geometrical parameters for all the spray calculations in Section 4.3

Diesel jet Curved sheet Flat sheet

Configuration cylindrical annular prismatic

Nozzle outlet shape disk (d) annulus (t) rectangle (h)

Nozzle outlet dimension 2 × 10−4m 2 × 10−4m 2 × 10−4m

Separating plates thickness — 2 × 10−5m 2 × 10−5m

Domain tangential extent 90 ◦ sector 90 ◦ sector width W = 5h

Domain radial extent diameter D = 5d thickness T = 5t height H = 5h

Channel length 3d 3t 5h

Domain length 13d 13t 15h

Table 4.12: Non-dimensional numbers for all the spray calculations in Section 4.3

Diesel jet Curved sheet Flat sheet

Reliq 15500 67 56500 56500 56500

Regas — 18800 94100 188000 377000

We 1.36 × 106 9300 410 2100 9300

Oh 7.55 × 10−2 7.55 × 10−2 9.0 × 10−5 9.0 × 10−5 9.0 × 10−5
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4.3.1 Simulations of liquid breakup with SGS model

The two geometries modelled with SGS models involve an axisymmetric configu-

ration (jet and annular sheet breakup). In order to keep the computational cost

reasonable, only a 90 ◦ sector has been modelled. No turbulence boundary condi-

tions have been set at the injection of the phases: it has been assumed that the

appropriate level of turbulence would be developed in the channels modelled. This

assumption would require sensitivity studies on the length of the pipe modelled and

the results should be compared with the outcome of the method of Klein et al. [112]

to generate velocity data artificially.

Diesel jet breakup Like all the simulation settings of this case, the mesh in

the radial direction is identical to the one shown in [44]. It can be found in one of

the tutorials of the lesInterFoam solver for a 2D geometry. The total number of cells

of this 90 ◦ sector (see Figure 4.12) is halfway between the coarse and fine meshes

in [44]. The overall refinement strategy for this mesh is geared to accommodate the

formation of small liquid structures at the interface. In particular, the highest level

of refinement is at the radius of the injection hole, in the vicinity of the nozzle outlet

to represent at best the instabilities triggering the onset of the breakup.

The simulation results have been commented and analysed in detail in [44] and

their validity is considered in Section 5.1.1. Only the first stages of the injection,

corresponding to the onset of the breakup, are presented in Figure 4.13 below.

The build-up of longitudinal waves along the interface is apparent in the injection

channel (t = 1 × 10−6s) and, once the jet has passed the nozzle outlet, in the vicinity

of the nozzle. However, the expected transverse instabilities, due to a Rayleigh-

Taylor type of instability [146], do not appear clearly until t = 3.508 × 10−6s when

thin ligaments start to form. This delay in the growth of these instabilities could

be due to incorrect levels of turbulence in the liquid or a lack of resolution in the

azimuthal direction.
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In addition, at t = 1 × 10−6s, some “dimples” are present along the interface at

the tip of the liquid jet. However, these features seem to follow the mesh too closely

and are certainly a numerical artefact due to the lack of resolution in the channel.

Further simulation on a finer mesh should address this question.

As explained in [44], the modelling of a sector when simulating jet breakup pre-

vents the jet to flap and consequently extends significantly the jet core length. In

particular, the large droplet at the tip of the jet (t = 3 × 10−6s) would have broken

off earlier in a full 3D simulation.

The expected gradual rise in vorticity magnitude and its spread is apparent on

the simulation results. This highlights the strong interaction between the turbulence

and the liquid structures and emphasised the need to develop sub-grid scale models

to better capture this phenomenon.

Axisymmetric sheet breakup This case is simply the extension of the Diesel

jet problem to an axisymmetric sheet breakup. The extent of the computational

domain is based on the same approach and the mesh has been designed with the

same philosophy (see Figure 4.14). In order to account for the effect of the separator

plates on the onset of the breakup (see [65]), the geometry modelled comprises

separator plates of finite thickness around which the mesh is particularly refined.

This case has been run in order to demonstrate OpenFOAM’s capability to simulate

sheet breakup. The mesh produced being very coarse, the analysis of the calculation

should be understood as provisional until further mesh convergence studies confirm

these results. No quantitative results should be expected from this simulation.

The same physical properties have been taken for the phases in presence but their

condition of injection have been modified to come closer to aero-engine conditions.

In particular, the gas stream is co-flowing (‖ugas‖ = 40ms−1) on either side of the

liquid sheet such that the atomisation is assisted. Also, the velocity of the fuel

injection has been reduced from ‖uliq‖ = 460ms−1 to ‖uliq‖ = 2ms−1. The resulting

non-dimensional number (We and Reliq) are significantly lower than for the Diesel
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jet case. The use of the exact same properties between the two cases allows direct

comparison of the performance of the injection systems. Besides, the properties of

the two phases in the Diesel jet injection and the aero-engine application, although

different, are of the same order of magnitude.

The earliest stages of the sheet atomisation are presented in Figure 4.15, from the

growth of interfacial waves, in the injection channel, to the onset of the breakup.

Longitudinal instabilities are clearly apparent on the simulation results from t =

4.5× 10−4s, on top of which transverse instabilities appear around t = 5.5× 10−4s.

Besides, the pattern of the vorticity contours originally (t = 1.54 × 10−4s) re-

sembles Von Karman streets as the gas is injected on either sides of the liquid

injection “crown”. The vorticity contours then evolve to a less structured pattern

(t = 3 × 10−4s) and the turbulent structures seem to interact with (potentially ini-

tiate) the flapping of the liquid sheet.

Two different breakup mechanisms have been identified in this calculation: one

resulting from the effect of the longitudinal wave (mechanism A, see Figure 4.16) and

the other one due the combined effect of both longitudinal and azimuthal instabilities

(mechanism B, see Figure 4.17).

The first mechanism involves the breakup of large liquid structures at the peak of

a longitudinal wave which then further fragments into streamwise ligaments, them-

selves breaking up into droplets under Plateau-Rayleigh instability.

The second mechanism leads to the formation of droplets through the combined

effect of instabilities in both longitudinal and transverse directions. The orthogonal

undulations stretch, and eventually tear, the liquid sheet at their peaks, leaving

liquid blobs at their nodes. This process is illustrated Figure 4.17, where the trans-

verse instability first tears the flapping liquid sheet in the longitudinal direction.

Then, a longitudinal wave, superimposed on the flapping mode, breaks up the large

longitudinal structures into droplets.
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Isometric view of the domain — 6.83 × 105 cells

Detail of the nozzle outlet region

Figure 4.12: Simulation of Diesel jet breakup with OpenFOAM — Mesh of the

domain
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t = 1 × 10−6s t = 2 × 10−6s

t = 3 × 10−6s t = 3.508 × 10−6s

Figure 4.13: Simulation of Diesel jet breakup with OpenFOAM — Interface location,

volume fractions and vorticity contours for the onset of the breakup
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Isometric view of the domain — 1.86 × 105 cells

Detail of the nozzle outlet region

Figure 4.14: Simulation of axisymmetric sheet breakup with OpenFOAM — Mesh

of the domain
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t = 1.54 × 10−4s t = 3 × 10−4s

t = 4.5 × 10−4s t = 5 × 10−4s

t = 5.5 × 10−4s t = 6 × 10−4s

Figure 4.15: Simulation of axisymmetric sheet breakup with OpenFOAM — Inter-

face location, volume fractions and vorticity contours for the onset of the breakup
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t = 8 × 10−4s t = 9 × 10−4s

t = 9.5 × 10−4s t = 9.7 × 10−4s

t = 9.8 × 10−4s t = 9.9 × 10−4s

Figure 4.16: Simulation of axisymmetric sheet breakup with OpenFOAM — Inter-

face location, volume fractions and vorticity contours for the breakup mechanism

A
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t = 1 × 10−3s t = 1.01 × 10−3s

t = 1.02 × 10−3s t = 1.03 × 10−3s

t = 1.04 × 10−3s t = 1.05 × 10−3s

Figure 4.17: Simulation of axisymmetric sheet breakup with OpenFOAM — Inter-

face location, volume fractions and vorticity contours for the breakup mechanism

B
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4.3.2 Simulations of sheet breakup without SGS model

Three calculations of flat sheet breakup are presented in this section, corresponding

to three different gas velocities and therefore three different Weber numbers. All of

these simulations have been run on the same geometry and with the same initial mesh

(see Figure 4.18, top part). The geometry modelled is derived from the simulation

of the axisymmetric sheet breakup and includes separator plates of finite thickness

as recommended in [65].

The mesh is statically refined in the region where the liquid phase is expected in

order to capture finer liquid structures. The resulting grid is then made up of cells

of two different sizes: ∆x = 7.8µm in central part of the domain, and ∆x = 15.6µm

elsewhere. During the calculation, it can happen that a small liquid structure,

originally captured in the refined part of the grid, reaches the coarse part of the

grid. Conveniently, when using statically refined mesh in Gerris, in such instance

the code will automatically refine the mesh around the liquid structure in order to

maintain its initial level of resolution (see Figure 4.18, bottom part). In the case of

the simulation of atomisation at high We, this generally results in the rise of the

cell count as the calculation time goes by.

Although very powerful for the calculation of multiphase flows, Gerris does not

include sub-grid scale models. Therefore the validity of any simulation with Gerris

(as it is currently), relies upon sufficient grid refinement to capture all the scales

of the multiphase flow (turbulence and liquid structures). Table 4.13 provides the

smallest scales of the multiphase flow: the Kolmogorov scale for both the liquid and

the gas phase, and the droplet diameter obtained at We = 10, when the surface

tension effects become important.

It is clear from this table that even at the lowest Weber number, none of the

Kolmogorov scales are captured by the calculation. This is also true for the smallest

liquid structures requiring at least two to five grid cells for a reasonable resolution.

In particular, for the simulation at the lowest Weber number (We = 410), the finest
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grid size should be quartered to capture the dWe=10 liquid structure. This further

emphasises the need for sub-grid scale modelling in multiphase flows.

Even though all the scales are not resolved, some qualitative results may still

be valid for these simulations, as several authors have successfully extracted useful

information from calculations run at a similar level of resolution. These calculations

may be perceived as some sort of “implicit large eddy simulations” (ILES), where

the sub-grid contributions reduce to numerical diffusion (see [72] for a review of the

method).

Table 4.13: Smallest scales of the flow field for all simulations without sub-grid scale

model — Assuming a turbulence intensity of 5% in the liquid and 10% in the gas

Simulation We = 410 We = 2100 We = 9300

Liquid phase Kolmogorov scale, ηliq 0.52µm 0.52µm 0.52µm

Gas phase Kolmogorov scale, ηgas 0.42µm 0.25µm 0.15µm

Droplet diameter at We = 10, dWe=10 4.9µm 0.96µm 0.22µm

Maximum mesh size, ∆xl=6 15.6µm

Minimum mesh size, ∆xl=7 7.8µm

Sheet breakup at We = 9300 The evolution of the interface in the early

stages of the fuel injection is presented in this paragraph for the sheet breakup at

We = 9300. The growth of instabilities on the interface before the liquid leaves

the channel is presented in Figure 4.19, and the onset of the breakup is shown in

Figure 4.20

The interface starts to undergo some instabilities quite early in the injection

channel (clearly observed at t = 4 × 10−5s). These waves, deforming the surface in

both vertical and horizontal directions, grow rapidly to the point of generating small

102



Chapter 4. Multiphase codes

pockets of gas near the separator plates, on either side on the horizontal symmetry

plane (t = 4 × 10−5s).

At t = 1 × 10−4s the instabilities have deformed the interface so strongly that

some wave peaks announce the birth of ligaments, especially in the vicinity of the

small pockets of gas where the surface is the most distorted. At this time step, the

interface is already strongly asymmetric.

From t = 1 × 10−4s onwards, droplets start to form: this is the onset of the

breakup. The undulations start to produce distinctive “cells” at the interface with

sharper boundaries. The liquid phase covers parts of the separator plates, and from

the edges of these plates, at the location of the undulation peaks, thin ligaments are

growing and shedding droplets of similar diameter.

All through these early stages of the breakup, the vorticity contours present

patterns resembling Von Karman streets. These patterns of vorticity contours get

more and more complex as the calculation time goes by, but maintain roughly the

same large scale structures.

Effect of the We on sheet breakup The effect of the Weber number on

the sheet breakup has been illustrated with three simulations run at increasing

gas velocities, and therefore increasing We. The different breakup configurations

obtained are shown in Figure 4.21, Figure 4.22 and Figure 4.23.

At low Weber number, We = 410, the liquid bulk extends downstream of the

injection point and relatively thick ligaments are produced, leading to the breakup

into large droplets. When the Weber number is increased to 2100, the interface

adopts a totally different topology characterised by a shorter liquid bulk. At such

conditions, the ligaments and droplets produced are much smaller and spread further

outwards from the injection plane leading to a wider spray angle. When increasing

the Weber number to 9300, similar trends are observed with the shortening of the

liquid bulk and the decrease of the mean ligament thickness and droplet diameter.

It is worth mentioning that all three simulations of atomisation eventually lead
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to the formation of non-physical cylindrical liquid structures in the middle of the

computational domain. This further emphasise the fact that Gerris’ development is

still ongoing and that this code is aimed at academic research rather than component

design.
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Domain at t = 0s — 2.96 × 106 cells

Domain at t = 1.24 × 10−4s for We = 9300 — 3.51 × 106 cells

Figure 4.18: Simulation of flat sheet breakup with Gerris — Mesh of the domain
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t = 2 × 10−6s t = 4 × 10−5s

t = 6 × 10−5s t = 8 × 10−5s

t = 9 × 10−5s t = 1 × 10−4s

Figure 4.19: Simulation of flat sheet breakup with Gerris — Interface location and

vorticity contours for the build-up of instabilities at the interface at We = 9300
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t = 1 × 10−4s t = 1.02 × 10−4s

t = 1.04 × 10−4s t = 1.06 × 10−4s

t = 1.08 × 10−4s t = 1.1 × 10−4s

Figure 4.20: Simulation of flat sheet breakup with Gerris — Interface location and

vorticity contours for the onset of the breakup at We = 9300
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Figure 4.21: Simulation of flat sheet breakup with Gerris — Interface location,

velocity magnitude and vorticity contours at We = 410 (t = 1.78 × 10−4s)
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Figure 4.22: Simulation of flat sheet breakup with Gerris — Interface location,

velocity magnitude and vorticity contours at We = 2100 (t = 1.54 × 10−4s)
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Figure 4.23: Simulation of flat sheet breakup with Gerris — Interface location,

velocity magnitude and vorticity contours at We = 9300 (t = 1.24 × 10−4s)
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Atomisation modelling

The design of injectors relies heavily on testing as no numerical method has so

far been able to provide validated quantitative results on a real air-blast atomiser

geometry. However, in the past years this problem has attracted the interest of

many scientists who have developed a broad variety of approaches to come closer to

simulating the atomisation process and understand real injection systems.

The main successful attempts to model the atomisation process on simplified

configurations are presented in Section 5.1. Then, in Section 5.2, we review the

current approaches adopted by scientists to extend their modelling capability to the

simulation of real engine geometries. Finally, in Section 5.3, we detail our strategy

to simulate the fuel injection in a combustion chamber.

5.1 Demonstrated numerical capabilities

5.1.1 LES with VOF

The LES-VOF approach of Villiers et al. [44] has been applied to Diesel jet breakup

using OpenFOAM. Even though the droplet size distribution obtained showed a

strong grid dependency, the results of the simulations compared successfully with

spray angle and liquid core length measurements. In this study of the atomisation
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with LES, the authors primarily assumed that the unresolved eddies, surface pertur-

bations and droplets did not affect the onset of the breakup. In addition, the method

neglects the sub-grid scale effects of the surface tension and the interface-turbulence

interaction.

Despite the poor VOF method employed (see Chapter 4), the calculations picked

up the non-linear growth of Kelvin-Helmholtz instabilities along the jet surface but

did not reproduce the mushroom shape (see Figure 5.1) typical of Diesel jets [150,

152]. The study also highlighted the sensitivity of the onset of the breakup to the

turbulence generated in the nozzle upstream of the injection point. In addition,

the comparison of a 90 ◦ sector simulation with full 3D calculations emphasised the

three-dimensionality of the primary breakup. Sector models lead to the artificial

limitation of the large scales of motion resulting in erroneous predictions of breakup

length and spray angle.

Figure 5.1: LES-VOF simulation of a Diesel spray atomisation (full 3D, ∆xmin =

10µm, pipe L/D > 40) [44] — Contour of volume fraction

In their study, Villiers et al. assessed the degree of atomisation with the mean

surface density, which increases with the level of interface distortion and with the

concentration of small droplets. The analysis of the atomisation (droplet sizes and

shapes) implied that breakup calculations reproduced the relative importance of

surface tension, aerodynamic forces and inertia according to the scale considered.
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In particular, the dominant influence of surface tension at small scales was illustrated

by the spherical shape of small droplets whereas the predominance of aerodynamic

forces and inertia at large scales was suggested by the elongated shape of the large

liquid structures.

The effect of turbulence in the injection channel was also investigated qualitatively

by Bianchi et al. using an LES-VOF approach [19]. Further simulations of Bianchi

et al. [18] on a finer mesh (∆x = cst = 4µm) produced quantitative information

about the effect of the nozzle regime on the atomisation process (see Figure 5.2). In

particular, the authors noted that this phenomenon affected strongly the core length

and the atomised mass but had almost no impact on the droplet size distribution

because of the very high Weber number We, and Ohnesorge number Oh, of the

liquid jet.

(a) (b)

Figure 5.2: LES-VOF simulation of a Diesel spray atomisation (∆x = 4µm) —

Effect of nozzle regime on the liquid surface perturbations at the injection point

[18]: (a) Renozzle = 1625; (b) Renozzle = 8725

5.1.2 VOF with adaptive mesh refinement

Fuster et al. ran the VOF-AMR code Gerris [183] to simulate a hollow-cone atomiser

at realistic automotive injection conditions [65]. In this work, the vorticity and the

gradient of the tracer variable were used as criteria for the mesh refinement.
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At first, Fuster et al. validated the code’s capability to capture the behaviour

of instabilities against the predictions of the viscous linear theory. In particular,

Gerris matched the theoretical predictions for the temporal growth of disturbances

within 5% for a broad range of conditions (parameters: density and viscosity ratios,

surface tension).

Then, solving all the scales of the turbulence in both phases, the authors studied

the onset of the instabilities, on a jet in co-flow, assuming that the unresolved

liquid structures do not affect the appearance of waves on the interface. The high

Re simulations, run in 2D (complex flow field, high resolution: ∆xmin = 0.8µm),

relied on a random vertical velocity (in the gas or the liquid phase) to trigger the

instabilities; therefore avoiding the need to introduce any geometrical parameters

in the analysis. In contrast, the low Re simulations, run in 3D, relied only on

the modelled separator plate and the difference in inlet velocities to destabilise the

interface.

The high Re calculations pointed out that the onset of the instabilities is strongly

related to the turbulence at the inlet of both phases and that the amplification of

the waves leads to the transition into the non-linear regime. These simulations also

highlighted the sensitivity of the modes to the evolution of the bulk flow downstream

(changes in velocity profiles, thickening of the boundary layer). Although good

agreement was obtained with the theory in the linear part of the jet, the three-

dimensionality of the flow — essentially downstream of the transition into the non-

linear regime — suggested that 2D calculations were unsuitable for regions of the

flow in the non-linear regime.

The low Re cases, run in 3D, captured the transverse instabilities that appear

further downstream of the injection point. These simulations confirmed the two-

dimensionality of the jet near the inlet and therefore tended to validate the 2D

approach at the beginning of the linear regime region (before the growth of transverse

instabilities). The addition of some injector geometry to the computational domain

demonstrated the influence of both the thickness of the separating plate and the
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vortices produced in the injection channels. In particular, these vortices appeared

to affect significantly the primary breakup process and interacted strongly with the

droplets generated.

Finally, Fuster et al. conducted a parametric CFD study of swirl-atomisers, inves-

tigated the sensitivity of the solution under grid refinement and validated their calcu-

lations
(
(ρliq/ρgas)CFD = 30/1

)
against experimental results

(
(ρliq/ρgas)EXP = 700/5

)
.

The numerical results appeared to be very sensitive to mesh refinement (see Fig-

ure 5.3) for both the small structures of the flow (droplets) and the big features of

the spray (spray angle, breakup length). However, despite a significant difference in

density ratio, the high resolution simulation (∆xmin = 9µm) reproduced the general

features of the spray (cone angle, change of slope, breakup length) and the droplet

size distribution. Because of the breadth of scales involved in the atomisation pro-

cess, the simulation of the whole system is required to understand the operation of

real injectors. This has been made possible — for a simple fuel injector — thanks

to the use of adaptive meshing techniques that handle these issues efficiently.

(a) (b) (c)

Figure 5.3: VOF simulation of a swirl outward-opening jet (full 3D) [65] — Contour

of volume fraction in a median for various mesh sizes: (a) ∆xmin = 56µm; (b)

∆xmin = 28µm; (c) ∆xmin = 9µm

115



Chapter 5. Atomisation modelling

5.1.3 Coupled LS-VOF combined with GFM

Menard et al. [150, 152] performed a CLSVOF simulation of a Diesel jet atomisation

in the second wind-induced regime (see Chapter 2) using the GFM to handle the

singularities. This method is particularly suited for the simulation of atomisation,

as it minimises the mass loss thanks to the “VOF correction”, retains an accurate

description of the interface geometry, due to the level set formulation, and applies

accurately the jump conditions on a sharp interface with the GFM.

Menard et al. did not embed any sub-grid scale modelling in their framework,

therefore aiming for DNS. The true DNS assumptions were questionable in both

[152] (∆x = 2.34µm) and [150], where the most refined mesh (∆x = 1.17µm) was

closer to resolve the smallest scales of both the turbulence (∆x/η ≈ 1.5) and the

liquid structures (∆x/Dmin ≈ 0.5 at We = 10).

(a) (b)

Figure 5.4: CLSVOF/GFM simulation of a Diesel spray atomisation [152] — (a)

Liquid-gas interface near the injection point; (b) Developing spray

In their numerical framework, Menard et al. avoided simulating part of the in-

jection system by generating turbulent inflow boundary conditions with the method

of Klein et al. [112], which produces correlated random velocities based on a given

length scale. The simulations of the Diesel jet reproduced satisfactorily the breakup

length, the spray angle, the mushroom shape of the tip of the jet and the 3D insta-

bilities near the injection point (see Figure 5.4).
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Nevertheless, in their analysis of the evolution of the droplet distribution under

grid refinement, the authors noted that the insufficient level of resolution affected

their calculations. In particular, they concluded that the coarseness of the grid

resulted in the predominant occurrence of a “numerical” breakup process for both

droplets and thin ligaments. However, on instances of physical breakup, these cal-

culations matched the prediction of droplet sizes as a function of ligament thickness

given in [146].

5.1.4 RLSG combined with Lagrangian tracking

Kim et al. have combined the RLSG-balance force method of Herrmann [86] with

the Lagrangian tracking of small droplets to produce near DNS of a liquid jet in

co-flow [111]. The settings of the simulation match the experimental conditions

of [146]. Kim et al. introduced a novel procedure to take small spherical liquid

structures (i.e. no ligaments) out of the level set formulation in order to transfer

them into a “Lagrangian stochastic spray” model.

The transfer of droplets into a Lagrangian spray model saves computational time

while retaining an accurate description of the liquid phase. Indeed, the atomisation

process produces a large amount of droplets and describing all the liquid struc-

tures with a level set formulation becomes very expensive in the early stages of the

development of the jet. In addition, Lagrangian spray models have demonstrated

satisfactory performance in the representation of the secondary breakup. However,

in [111], the transfer of droplets is only based on the size and the shape of the par-

ticle and does not account for the frequent occurrence of droplets re-entering the

bulk of the liquid [1].

The calculations showed qualitative agreement with the experimental results of

[146]. In particular, it reproduced the series of instabilities (longitudinal Kelvin-

Helmoltz followed by azimuthal Rayleigh-Taylor) leading to the formation of liga-

ments. The ligament’s stretching, pinch off and breakup under Plateau-Rayleigh
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instability were also satisfactorily reproduced (see Figure 5.5). However, as in

[44, 150, 152], the droplet size distribution appeared grid dependent and the peak

of the droplet size distribution was also obtained for a droplet diameter of twice the

minimum grid size. Kim et al. still claimed some level of grid-convergence of the

droplet size distribution for droplets larger than two G-grid cells (finest grid size in

the RLSG framework).

(a) (b)

Figure 5.5: Round liquid jet sheared by co-flowing air (Regas = 3770 ; Reliq = 295)

— (a) Experiments [146]; (b) RLSG/Lagrangian tracking simulation [111]

5.1.5 Conservative LS with GFM

Desjardins et al. modelled Diesel jet atomisation with an improved CLS method

combined with the GFM to treat the singularities [47]. This method maintains

satisfactory mass conservation — required for the stability of the calculation and

the accuracy of the results — at a much lower computational cost than the CLSVOF

method of Menard et al. [150, 152]. Desjardins et al. did not include any sub-grid

scale models, therefore aiming for DNS with a constant grid size of ∆x = 3.9µm.

However, Desjardins et al. did not extract any quantitative information from their

simulation, conscious that true DNS would not be reached with such resolution.
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The simulation domain and conditions were similar to [152] but did not include

any turbulent inflow conditions nor any modelling of the injection channel. Although

this questions the realism of this simulation, as most authors [18, 19, 44, 146] ac-

knowledged the importance of this factor, it facilitated the study of the induction

of turbulence in the gas phase by the resulting jet. In particular, Desjardins et al.

highlighted annular vortical structures generated by the jet in the gas and reported

their strong interactions with liquid structures.

(a)

(b)
(c)

Figure 5.6: CLS/GFM of Diesel spray atomisation [47] — (a) “Mushroom shape”

of the jet tip shedding droplets; (b) Ligament formation and breakup; (c) Detail of

the liquid structures

5.2 Towards an industry-friendly approach

5.2.1 Development of sub-grid scale models

Most importantly, the main authors have realised the need to develop models for the

sub-grid contribution of the interface (in particular for LES of atomisation). As the

thickness of the interface is of the order of a few tenths of nanometres, the resolution

requirements for representing the smallest liquid structure in the case of a topology

change (“zero-sized connecting ligament at the very instance of the breakup” [71])
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would be unmanageable in the simulation of turbulent primary breakup; let alone

the violation of the continuum assumption of the Navier-Stokes equations. There-

fore, the generation of sub-grid scale models (droplet pinch off, interface-turbulence

interaction, interfacial sub-grid contributions, ligament breakup, etc . . . ) is essential

to produce numerical simulation of atomisation that carries a physical significance.

For this purpose, various authors are developing specific numerical methods that

embed a physical description of the interface [84, 118]. In this context, Van der

Waals-Cahn-Hilliard frameworks, such as the phase field methods [101], also seem

promising.

5.2.2 Realistic boundary conditions

Many authors have observed — both numerically and experimentally — the impor-

tance of the boundary conditions (inflow and geometry) on the liquid jet atomisation

and have identified the need to reproduce them accurately. The accurate applica-

tion of both the velocity profiles (boundary layers in liquid and gas phases — [146])

and the inlet turbulence [18, 44, 54] are critical to predict the onset of the breakup

and the growth of perturbations at the interface. In particular, the inlet turbulent

conditions have been prescribed in two different ways: some authors have simulated

the flow in the injector channels [18, 44] whereas others have developed specific

procedures [112, 150, 152] to avoid the extra computational cost of an extended

domain.

As pointed out by Fuster et al. [65], the understanding of real injection systems

requires the resolution of large scale turbulent structures as these eddies interact

with themselves and with the liquid particles. As a result, these vortices, resulting

from the geometry of the whole system, strongly influence the overall structure of

the spray and the final droplet distribution. This is further confirmed by the high

level of accuracy obtained by [6, 7, 67, 200] in the LES of atomising sprays with

stochastic modelling of secondary breakup.
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In order to embed such a large amount of geometry in the numerical calculation,

the use of adaptive mesh refinement is an efficient way to deal with the breadth of

scales involved in the atomisation process [86, 182]. It is also necessary to optimise,

the use of computational power. For this purpose, Peng et al. developed a “narrow-

band” approach, for level set methods, that localises the resolution of the equations

of the interface-capturing method [173]. With the same aim of reducing the compu-

tational cost, Kim et al. transferred the small droplets from the interface-capturing

technique to a Lagrangian spray model [111]. This technique can be further im-

proved by implementing a criterion that accounts for the droplets re-entering the

bulk of the liquid phase. More generally, the authors have concentrated their effort

on developing highly parallelisable methods usually based on VOF and/or LS in-

terface description. Also, some authors have focussed on the development of LES

formulations for atomisation modelling. Such frameworks can include much more

geometry than DNS, which is never truly achieved in high Re atomisation.

5.2.3 Accurate description of the interface

The internal geometry of aero-engine injectors is very complex and has a dominant

influence on the spray pattern. In order to account for the effect of these geometrical

details on the spray characteristics, the numerical frameworks have to embed a

method to capture the interface. As none of the available methods have satisfactorily

described the atomisation, the development of interface description methods is on-

going.

In the recent years, many authors have invested a lot of effort in the correction

of the flaws of the existing methods. More precisely, in the case of VOF interface-

capturing techniques, significant improvements have been made on the treatment of

surface tension [59, 183] and the reconstruction and the advection of the interface

(see [178] for a review). For level set methods, the mass conservation properties

have been enhanced either by coupling with VOF (CLSVOF — [25, 150, 152, 243])
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or, more cheaply, by modifying the scalar advected (CLS — [47, 163]).

The hybridising of existing interface description methods has been very popu-

lar in the past ten years. In particular, the LS, VOF and marker methods have

been coupled — two by two — to combine the relative advantages of the different

techniques. Although these approaches have usually given accurate results, they

generally involve high computational cost [53, 133, 150, 152, 185]. In addition to

that drawback, the coupling with surface marker particles is in general very difficult

to extend to 3D and does not always represent physically the sub-grid scales of the

hydrodynamic field [217].

The difficulty of developing efficient new ways of describing the interface and

the complexity involved in the correction of the existing techniques have led many

scientists to consider transforming obsolete or “exotic” methods developed in other

fields of science. For instance, the smoothed particle hydrodynamics (SPH) of Gin-

gold and Monaghan [68], originally developed for astrophysics calculations, seems

to attract a lot of interest nowadays. Although these methods tackle the problem of

primary breakup with a fresh perspective, they do not generally describe multiphase

flow problems with the appropriate physics.

5.2.4 Numerical implementation of the physics

The challenge of handling the complex physics involved in the atomisation process

is directly related to the treatment of the interface. The numerical description of

material discontinuities and surface tension has been tackled with significant success

in the past years. In particular, Fedkiw et al. have produced the ghost fluid method

[55] — essentially directed towards LS formulations — that retains a sharp interface

while accurately applying the jump conditions. Furthermore, the popular contin-

uum surface force method has been significantly improved by François et al. who

produced a “balanced force algorithm” [59] to maintain the exact balance between

the surface tension forces and the pressure jump across the interface. These methods
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have significantly reduced the occurrence of unphysical velocities (spurious currents)

near the interface and the focus is on the development of accurate calculations of

the interface curvature [86, 183, 198] to fully address this problem.

The addition of the compressibility effects in multiphase flows (e.g. [154] for VOF,

[157] for LS) has been considered by few authors. Tanguy and Menard [150, 246]

have noticed the potential need for a compressible formulation from code instabil-

ities arising in the simulation of pockets of gas trapped between liquid membranes

during the formation of ligaments. Considering the simplifications resulting from

the incompressible formulation and taking into account the large amount of work

invested in the development of dedicated numerical schemes, the generation of an

efficient compressible multiphase solver remains also a challenge.

5.2.5 Summary

The main authors have pursued the development of the following fields to improve

the simulation of atomisation:

• Generation of SGS models for LES of atomisation

• Development of hybrid interface description methods to maximise the advan-

tages of the different techniques

• Correction of VOF and LS flaws

• Adaptive mesh strategies

• Simulation of primary breakup with a compressible formulation

• Lagrangian tracking of small droplets

More practically, the understanding of primary breakup and more generally the

successful simulation of high Re atomisation is of particular relevance to the numer-

ical calculation of the reacting flow in combustion chambers. Therefore, in order
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to focus the generation of methods on the industrial problem, there is a need to

assess the droplet size below which the liquid structures have negligible effects on

the reacting flow.

Furthermore, with the advent of high pressure propulsion systems, the injection

of fuel may occur at supercritical conditions. In such an environment, the surface

tension becomes negligible and the concept of interface is questionable [71]. Just like

the computation of primary breakup, the numerical simulation of “supercritical fuel

injection” is an open field of research with strong implications for both the industry

and the environment.

5.3 A modelling capability for fuel-injector design

Now that the state-of-the-art and the current trends in atomisation modelling have

been presented, this section provides the structure of the CFD capability developed

to simulate the atomisation process in aero-engine combustors.

The requirements of the industry are listed in Section 5.3.1 and the strategy

adopted to meet these objectives is detailed in Section 5.3.2. Then, the structure of

the resulting modelling tool is outlined in Section 5.3.3.

5.3.1 Industry requirements

To satisfy the industry’s need for a modelling capability simulating fuel-injection,

this project has focussed on the following criteria to develop a novel multiphase flow

solver:

• Handling of the complex geometries of modern aero-engines fuel injectors.

• Fast computations to provide results within engineering time scales.

• Accurate calculations to capture the physics of the atomisation.

• Mass conservation of the liquid fuel.
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• Robust numerical formulation to ensure simulation convergence for all oper-

ating conditions.

• Production of data ready to be exploited by combustion codes.

• Parallelised solver to make the most of the available computational power.

5.3.2 Modelling strategy

In order to represent faithfully the geometry of the injection device in a timely man-

ner, the method developed is geared towards general unstructured grids. Besides,

as unstructured meshes are generally faster to generate, the use of such numerical

methods allows to significantly reduce the mesh generation task of the CFD design

study.

As CFD studies need to satisfy engineering time scales without compromising on

the quality of the calculation, our approach maximises the amount of pre-processing

operations. Once stored in text files, the mesh-dependent variables can be read

directly before any new calculation on a given mesh. It results that the amount of

run-time operations required is minimal and that high-order schemes run as fast as

low-order ones. Since a given geometry will be tested at many different conditions

with the same mesh, this pre-processing strategy makes the overall CFD study very

efficient.

In addition, the mass conservation of the fuel present in the flow field is critical

to accurate combustion predictions. As the solver developed can also be used as a

sub-model for combustor design, the two-phase flow modelling is based on an im-

proved conservative level set method that ensures mass conservation while remaining

cheaper than accurate coupled level set-VOF.

The modelling capability has been implemented with a WENO scheme developed

for unstructured meshes [186, 187]. In our numerical experiments, moving from the

high-order linear to the WENO formulation of the scheme has proven to increase
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dramatically the stability of the method in the case of very large density ratios (see

Section 8.4). In particular, our modelling capability has demonstrated significantly

more robustness than the low-order method of OpenFOAM on the falling droplet

case of Sussman et al. [241].

The method outputs droplet fields and statistics that can be directly imported

into Lagrange tracking solvers for combustion modelling purposes. The dataset

produced by the multiphase modelling capability is also useful to analyse the per-

formance of a given injector design. Once identified in the flow-field, the droplets

are removed from the level set field and transferred into a droplet field. With this

approach the atomisation process is described accurately at a lower computational

cost.

Finally, a significant amount of effort as been placed in the parallel implemen-

tation of the method. It involved parallelising the unstructured numerical scheme,

the novel conservative level set method and the droplet transfer.

5.3.3 Outline of the solver

As mentioned in the previous sub-section, the code involves both pre-processing

and run-time operations. The pre-processing being only performed once on a given

mesh. The pre-processing operations involve producing mesh dependant variables

for:

• The high-order scheme developed for general unstructured meshes (see Chap-

ter 6). Most of the pre-processing computational time is devoted to that task.

• The high-order gradient involved in the interface normal calculation (see Sec-

tion 7.3).

• The transfer of droplets (see Section 8.2).

• The parallel run of the method (see Section 8.3).
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For the run-time operations, the modelling capability developed presents the

following structure:

1. Update of the physical properties of the multiphase flow-field according to the

liquid volume fraction.

2. Transport of the liquid volume fraction represented by a conservative level set

field.

3. Calculation of the surface tension term.

4. Update of the turbulence properties if using a LES framework.

5. Pressure-velocity coupling as described in [208]. The discretised momentum

equation is first constructed and then a “correction loop” is performed. At

each iteration of that loop the pressure equation is solved and the momentum

is corrected based on the pressure change.

6. Transfer of droplets from the level set field to the “Drops” field and output of

the discrete phase characteristics.

In the generation of this numerical tool, the main focus has been placed on the

development of a novel high-order scheme for unstructured meshes (see Chapter 6)

and the production of a robust conservative level set method (see Chapter 7). These

essential building blocks of the new modelling capability produced have then been

implemented in parallel with an algorithm to output droplet fields and characteristics

(see Chapter 8).
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A high-order scheme for general

unstructured meshes

In this chapter, we detail the methodology developed, and implemented in parallel,

to construct high-order schemes — linear and WENO — on 3D mixed-element

unstructured meshes, consisting of general convex polyhedra. This numerical scheme

can formally reach arbitrarily high order of accuracy in space.

The construction of WENO schemes on 3D unstructured meshes is notoriously

difficult, as it involves a much higher level of complexity than 2D approaches. This

due to the multiplicity of geometrical considerations introduced by the extra dimen-

sion, especially on mixed-element meshes. Therefore, we have specifically developed

a number of algorithms to handle mixed-element meshes composed of convex poly-

hedra with convex polygonal faces.

The linear reconstruction procedure produced for 3D mixed-element unstruc-

tured grids is detailed in Section 6.3.1. Then, in Section 6.3.2, the main points of

the WENO reconstruction are presented. In Section 6.3.2, the computation of the

numerical flux is explained. The application of the technique to the solution of the

level set equation is considered in Section 6.4. Results are presented in Section 6.6

for a set of test cases in 2D and 3D.

128



Chapter 6. A high-order scheme for general unstructured meshes

6.1 WENO schemes for unstructured meshes

WENO schemes were originally developed for Cartesian grids [107, 131]. They

were an evolution of the essentially non-oscillatory (ENO) schemes introduced by

Harten et al. in 1987 [77, 78] to achieve high-order accuracy and non-oscillatory

properties near discontinuities such as shock waves in high-speed compressible flows.

As the interest in unstructured meshes grew, WENO schemes were constructed for

triangular [60, 95] and tetrahedral meshes [49, 50, 286]. However, the construction of

such schemes is much more complicated on unstructured meshes than on Cartesian

grids as no particular direction can be identified in the distribution of the elements.

The basic principles of the construction of WENO schemes for triangular meshes

were presented by Friedrich [60], based on the work of Abgrall [4]. Later, Dumbser

and Käser extended these ideas to tetrahedral meshes [49] and defined an approach

to devise arbitrarily high-order schemes. Titarev et al. [254] improved this approach

for two-dimensional (2D) computational domains and produced high-order schemes

on mixed-element 2D meshes. We have extended the approach of Dumbser and

Käser [49] and Titarev et al. [254] to 3D mixed-element unstructured grids for

linear hyperbolic equations [186]. In [187], we presented an extension of our scheme

[186] to general polyhedral cells and applied it to the solution of the level set equation

and the Burgers’ equation.

6.2 Overview of the numerical scheme

Looking ahead to the need to solve hyperbolic conservation laws to capture the

interface (see Chapter 7), the design of our high-order accurate numerical scheme

is based on two theorems: Godunov’s theorem [70] and the Lax-Wendroff theorem

[121]. The Lax-Wendroff theorem implies that if the hyperbolic conservation laws

are solved with conservative numerical schemes, the conserved variable — in our

case the smeared out liquid volume fraction (see Chapter 7) — should be conserved
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exactly. As for Godunov’s theorem, it suggests that it is necessary to resort to a

non-linear numerical scheme (e.g. WENO) to reach a high order of accuracy without

generating oscillations.

The scope of the method is restricted to general hyperbolic systems of first-order

partial differential equations [49, 50]. Such systems may be expressed in 3D as:

∂

∂t
U +

∂

∂x
F (U) +

∂

∂y
G (U) +

∂

∂z
H (U) = 0 (6.1)

where U is the vector of conserved variables and F (U), G (U) and H (U) are the

vectors of the fluxes respectively in the x, y and z directions.

The computational domain is denoted by Ω and is discretised using conforming

elements Ei of volume |Ei| and boundary ∂Ei. Integrating (6.1) over the element

Ei leads to: ∫∫∫

Ei

∂

∂t
U dEi +

∫∫∫

Ei

∇ · A dEi = 0 (6.2)

with the divergence of the second rank tensor A = (F,G,H) given by:

∇ · A =
∂

∂x
F (U) +

∂

∂y
G (U) +

∂

∂z
H (U)

Assuming that the control volume Ei is fixed and therefore independent of time t

and introducing Ui, the cell average of the conserved variables at time t, we can

re-write the first term on the left-hand-side (l.h.s.) of (6.2) as:

∫∫∫

Ei

∂

∂t
U dEi =

d

dt

∫∫∫

Ei

U dEi = |Ei|
d

dt
Ui (6.3)

Inserting (6.3) in (6.2), and applying the divergence theorem to the second term on

the l.h.s. of (6.2), leads to the finite volume formulation:

d

dt
Ui +

1

|Ei|

∫∫

∂Ei

A · n d(∂Ei) = 0 (6.4)

where n = (nx, ny, nz) is the outward unit vector normal to the surface ∂Ei and

A · n d(∂Ei) is the flux component normal to ∂Ei.
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Splitting the integral over the contour of the element ∂Ei into Li integrals over the

faces Fl of Ei, and introducing the vector Anl
= A · nl (nl being the outward unit

vector normal to Fl), we express the second term on the l.h.s. of (6.4) as:

∫∫

∂Ei

A · n d(∂Ei) =
Li∑

l=1

∫∫

Fl

Anl
d(Fl) =

Li∑

l=1

Ail (6.5)

The inter-cell flux Ail associated with the face Fl of the element Ei is efficiently

calculated with a Gauss-Legendre quadrature of appropriate order. Inserting (6.5)

into (6.4) leads to:

d

dt
Ui +

1

|Ei|

Li∑

l=1

Ail = 0 (6.6)

In order to time-advance the cell-averages of the variables, the finite volume

scheme (6.6) requires the determination of the inter-cell fluxes. A reconstruction

operator is therefore necessary in each element Ei to provide the point-wise values of

the solution as needed by the flux evaluation. By using a polynomial reconstruction

operator, the finite volume method can reach arbitrarily high orders of accuracy

in space on any type of grid. If coupled with the ADER method of Toro et al.

[110, 221, 222, 252, 253, 256–258], this methodology would lead to a arbitrarily

high-order numerical scheme in both space and time. In this work, we coupled the

scheme with a Runge-Kutta time scheme which is theoretically limited in its order

of accuracy [3].

The difficulty is to design an efficient polynomial reconstruction that would allow

high-order accuracy while remaining cost-effective. A linear reconstruction operator

applied on a single stencil in general will produce spurious oscillations in the vicinity

of discontinuities. As multiphase flows systematically involve a severe discontinuity

(e.g. density jumps of several orders of magnitude) it is crucial to mitigate this

deficiency. For this purpose, we make use of weighted essentially non-oscillatory

(WENO) schemes [49, 95, 106, 107, 131, 186, 251, 285, 286]. The WENO recon-

struction is performed on unstructured meshes by applying a linear reconstruction
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procedure to the various WENO stencils and combining the polynomials obtained

for each stencil, according to the solution-dependent weights.

A feature of the methodology presented here is the tetrahedral decomposition of

the mesh to handle the geometrical complexity of 3D mixed-element meshes. This

makes our technique quite general and appropriate for most industrial problems.

6.3 Numerical formulation

6.3.1 Methodology for the linear reconstruction

The linear reconstruction is presented in this section for a scalar variable, however its

extension to vector variables is straightforward. For each cell of the computational

domain, the linear reconstruction procedure produces a polynomial representing the

variable u (x, y, z, t) everywhere in the cell. The stencil S of cells Ej is used to

generate the interpolating polynomial on the targeted cell E0. For convenience the

first element of the stencil is the targeted cell. Hence:

S =

jmax⋃

j=0

Ej (6.7)

For each cell of the mesh, the polynomial p (x, y, z, t) is reconstructed from the

cell-averages of the variables in the cells of the associated stencil S. The reconstruc-

tion is performed with the constraint that the integral of the polynomial over the

targeted cell equals the cell-average value in this cell. This conservation condition

is expressed as:

u0 =
1

|E0|

∫∫∫

E0

p (x, y, z) dx dy dz (6.8)

The polynomial reconstruction in physical coordinates x = (x, y, z) on a general

unstructured mesh requires the consideration of scaling effects. However, it is crucial

for the generality of the method to undertake the reconstruction in a reference space

ξ = (ξ, η, ζ) where scaling effects do not apply (see [49]). As well as elegantly
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simplifying the polynomial reconstruction, working in a reference space prevents the

cumbersome introduction of inaccurate scaling factors.

It is necessary to relate the physical coordinates to the reference coordinates by

the mapping x = x (ξ, η, ζ). This operation requires the coordinates of four different

vertices of the targeted element Ei: one for the origin of the frame, and three others

— linked to the origin by an edge of Ei — to form the basis. For each cell in the

mesh, the inverse of this cell-dependent mapping: ξ = ξ (x, y, z) is applied to the

targeted cell and its stencil. This leads to a stencil in the reference space:

S ′ =

jmax⋃

j=0

E ′
j (6.9)

Since the spatial average is not affected by the affine transformation ξ = ξ (x, y, z),

the conservation condition is also valid in the reference space. With p (ξ, η, ζ) defined

as the outcome of the polynomial reconstruction in the reference space, we have:

u0 =
1

|E ′
0|

∫∫∫

E′

0

p (ξ, η, ζ) dξ dη dζ (6.10)

To design a method for the determination of p (ξ, η, ζ), it is convenient to express

the polynomial in a basis of polynomial functions: {φk (ξ, η, ζ)}k=0...K . Introducing

the degrees of freedom ak, each associated to a given basis function, we write:

p (ξ, η, ζ) = u0 +

K∑

k=1

akφk (ξ, η, ζ) (6.11)

Therefore, the interpolating polynomial is completely defined by the set of (K + 1)

basis functions φk and their associated degrees of freedom ak. Also, the integer K

is related to the degree of the polynomial r by the expression:

K =
(r + 1) (r + 2) (r + 3)

6
− 1 (6.12)

The basis functions must be constructed so that the conservation condition (6.10)

is respected. This implies that the mean value of each basis function over E ′
0 is null.
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As in [254], we choose:

φk = ψk −
1

|E ′
0|

∫∫∫

E′

0

ψk dξ dη dζ (6.13)

where {ψk} = ξ, η, ζ, ξ2, ξ · η, . . . , ζr k = 1, . . . , K.

Knowing the basis functions, we can calculate the degrees of freedom ak by requir-

ing that the cell-averages of p (ξ, η, ζ) over each cell E ′
j of the stencil S ′ is equal to

the corresponding cell-average of the variable: uj. This is expressed by the formula:

uj =
1∣∣E ′
j

∣∣

∫∫∫

E′

j

p (ξ, η, ζ) dξ dη dζ j = 1, · · · , jmax (6.14)

= u0 +

K∑

k=1

(
1∣∣E ′
j

∣∣

∫∫∫

E′

j

φk (ξ, η, ζ) dξ dη dζ

)
ak j = 1, · · · , jmax (6.15)

= u0 +
K∑

k=1

Ajkak j = 1, · · · , jmax (6.16)

where Ajk is the cell-average of the basis function φk over the cell E ′
j of S ′.

Introducing bj = (uj − u0) in (6.16), the system of equations for the degrees of

freedom ak takes the matrix form:
K∑

k=1

Ajkak = bj j = 1, · · · , jmax (6.17)

It can be seen from (6.15) and (6.17) that the reconstruction matrix A is solu-

tion independent. This means that the time-consuming operations required for the

determination of the ak can be pre-processed.

The solution of (6.17) provides the polynomial needed for the calculation of the

inter-cell fluxes (see Section 6.2). The determination of the fluxes depends on the

problem considered and on the Riemann solver chosen. The application of this

numerical method to the transport of the level set is detailed in Section 6.4.

Generation of a central stencil

In [186, 187], the stencil generation was performed by constructing — for each cell

of the domain — the most compact stencil S in the physical coordinate system
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x = (x, y, z). Then, all of the stencils S were mapped to the reference coordinate

system ξ = (ξ, η, ζ) to produce the stencils S ′. In addition, to identify the most

compact stencil in the physical space we proposed a novel method that gathered

layers of “point-neighbours” (see Figure 6.2) for the stencil selection.

(a)

(b)

Figure 6.1: Point-neighbours approach in 2D — (a) Schematic of the point-

neighbours (green) of a targeted cell (red); (b) Layers of cells added to the dynamic

list at each iteration: in indigo, the cells added at the 1st iteration; in blue, the cells

added at the 2nd iteration

Although this approach performed remarkably well on fully unstructured grids,

numerical experiments showed that on anisotropic structured meshes — such as

boundary layer meshes — this methodology lead to sub-optimal polynomial recon-

struction of the solution. To mitigate this issue, the method has been modified, such

that in the current algorithm:

• The selection of stencil cells is performed among layers of “face-neighbours”.

Although this approach generally leads to less compact stencils, the set of cells

produced extends further into the mesh for a given stencil size. As a result,
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the selection algorithm has the option to reduce the redundancy of data on

anisotropic structured meshes and the degrees of freedom are better defined.

• The compactness of the stencil is sought in the reference space ξ, such that

the anisotropy of the mesh is cancelled out.

While still performing very well on fully unstructured grid, this novel approach

systematically produces accurate polynomial reconstructions on anisotropic struc-

tured grid.

In the rest of Section 6.3, “face-neighbours” will be referred to as “neighbours”

and the compactness of the stencil will be meant in the reference space. Besides,

for the sake of simplicity, the pictures presented in this section have been generated

assuming that the compactness in x and ξ lead to the same stencils.

Number of cells of the stencil The purpose of the stencil is to provide a

dataset (uj , Ej) for the polynomial reconstruction. Hence the number cells in the

stencil jmax should be greater than or equal to the number of degrees of freedom

K (see (6.12)). However, a stencil with the minimum number of cells may lead to

unstable schemes on general meshes [49, 254]. Also, in the case jmax = K the square

matrix A may not always be invertible for specific geometrical configurations. As a

result, larger stencils are considered to maintain robustness. Typical sizes are: 1.5K

in 2D and 2K in 3D [13, 110, 162].

Compact stencil in the mapped space In preparation for the determination

of stencils for high-order schemes, we choose to pre-define the list of neighbours for

each cell in the mesh. This list gathers all the cells that share a face with a given cell

(see Figure 6.2 for an illustration in 2D). Creating such a data structure significantly

simplifies the algorithm for stencil generation and increases the speed of the overall

process.

Starting from the neighbours of the targeted cell E0, the method progresses by an
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Figure 6.2: Schematic of the point-neighbours (green) of a targeted cell (red) — in

2D

iterative search over the neighbours of the cells in a dynamic list. The neighbours of

all the cells in the list are consequently added to the list at each iteration. The cells

added at a given iteration can be perceived as an additional layer of cells surrounding

the cells already present in the list. This is illustrated in Figure 6.3. The loop stops

when the total number of cells in the list is greater than or equal to jmax. Then, the

cells in the list are sorted according to their centre-to-centre distance to the targeted

cell E ′
0 in ξ. In order to produce a compact stencil in the reference space, the jmax

cells closest to E ′
0 are selected for the stencil.

Mapping to a reference space Let us consider M0 = (x0, y0, z0) to be any

vertex of the targeted element E0 and M1 = (x1, y1, z1), M2 = (x2, y2, z2), M3 =

(x3, y3, z3) to be three different vertices of E0 linked to M0 through an edge of E0

such that the frame of reference R0 =
(
M0,

−−−−→
M0M1,

−−−−→
M0M2,

−−−−→
M0M3

)
is direct. The

mapping x = x (ξ, η, ζ) can be expressed as:





x

y

z




=





x0

y0

z0




+ J





ξ

η

ζ




(6.18)
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Figure 6.3: Layers of cells added to the dynamic list at each iteration: in indigo, the

cells added at the 1st iteration; in blue, the cells added at the 2nd iteration — in 2D

where the Jacobian of the transformation J is given by:

J =





x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0



 (6.19)

The algorithm applies the inverse of the mapping to the cell centres and vertices.

For a generic point Px = (xP , yP , zP ), the inverse transformation providing Pξ =

(ξP , ηP , ζP ) is: 



ξP

ηP

ζP




= J −1





xP − x0

yP − y0

zP − z0




(6.20)

and the volumes of the transformed elements E ′
j are given by:

∣∣E ′
j

∣∣ =
∣∣J −1

∣∣ |Ej | (6.21)
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Noting that the mapping gives dx dy dz = |J | dξ dη dζ and using (6.21), we can

prove that the conservation condition (6.10) is maintained after the affine transfor-

mation:
∫∫∫

Ej

p (x, y, z) dx dy dz = |Ej |uj (6.22)

|J |
∫∫∫

E′

j

p (ξ, η, ζ) dξ dη dζ = |J |
∣∣E ′

j

∣∣ uj

In preparation of the mapping algorithm, we choose to pre-define the list of “edge-

neighbours” for each point of each cell in the mesh. This list gathers all the points

of a given cell that share an edge with a given point of this cell (see Figure 6.4).

As with the list of “face-neighbours” for the stencil generation, this data structure

significantly simplifies the implementation and speeds up the overall process.

Figure 6.4: Schematic of the edge-neighbours (green vertices) of a given point (red

vertex) in a given cell (thick lines) — for a hexahedral cell

Determination of the reconstruction matrix

As explained at the beginning of this section, the determination of the degrees of

freedom ak of the polynomial reconstruction involves the integration of the basis

functions φk over the cells of the transformed stencil E ′
j (see (6.15) and (6.16)).
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Each of these integrations is an element of the reconstruction matrix A involved in

the equation for the degrees of freedom ak (6.17). Combining (6.13) and (6.15), we

get:

Ajk =
1∣∣E ′
j

∣∣

∫∫∫

E′

j

(
ψk −

1

|E ′
0|

∫∫∫

E′

0

ψk dξ dη dζ

)
dξ dη dζ

=
1∣∣E ′
j

∣∣

∫∫∫

E′

j

ψk dξ dη dζ − 1

|E ′
0|

∫∫∫

E′

0

ψk dξ dη dζ j = 1, · · · , jmax (6.23)

Therefore, equation (6.23) reduces the calculation of Ajk to a simple combination

of monomial integrations over E ′
j and E ′

0. According to Stroud [239], the most

efficient way of calculating such multiple integrals over simple geometrical domains

is to use Gauss-Legendre quadratures. However, Gaussian quadratures are only

available over simple geometries such as unit n-simplexes or unit n-cubes. Even in

the specific case of an unstructured hexahedral mesh, the trilinear mapping from a

unit cube to a hexahedral cell is often non-invertible (see [262] for the conditions of

non-degeneracy for hexahedral cells).

As a result, we choose to decompose each element of the mesh systematically into

tetrahedra. Since a unit 3-simplex can always be mapped to a tetrahedron through

an invertible transformation, the Gaussian quadratures can proceed. The method

developed sums the Gaussian quadratures of the monomials calculated over all the

tetrahedral sub-elements of a cell and then applies equation (6.23) to provide the

matrix elements Ajk.

Tetrahedralisation of the mesh In order to ensure the convergence of the

tetrahedralisation, we chose to split the polyhedral cells into tetrahedra that all

have the centre of the original element as a vertex. In this manner, the polyhedron

can be decomposed regardless of the way its faces are split and the tetrahedral

decomposition is always possible. The faces of the elements (convex polygons) are

split into as many triangles as they have sides using the face centre as common
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vertex. This guarantee the convergence of the tetrahedral decomposition on generic

meshes composed of convex polyhedra (see Figure 6.5).

Figure 6.5: Tetrahedralisation of a convex polyhedron — In solid grey: a sub-

element; in red: construction lines for the sub-elements; pink point: cell centre;

shaded face: face decomposed; green point: centre of the face considered

To minimise the number of tetrahedra, the pyramids are still split into two sub-

elements and the quadrilateral faces are split in two triangles. This method ensures

the convergence of the tetrahedralisation as long as the quadrilateral faces are de-

composed before the cells. This decomposition is illustrated for hexahedral and

pentahedral cells in Figure 6.6.

Calculation of the degrees of freedom

Inversion of the reconstruction matrix As mentioned above in this section,

in order to ensure the stability of the scheme on general meshes, the method collects

more data than needed for the polynomial reconstruction by constructing a stencil of

jmax > K elements. This leads to the over-determination of the system of equation
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(a) (b) (c)

Figure 6.6: Tetrahedral decomposition ensuring convergence — In solid grey: a sub-

element; in red: construction lines for the sub-elements; pink point: cell centre. (a)

Pyramid into 2 tets; (b) Pentahedron into 8 tets; (c) Hexahedron into 12 tets

(6.17) for the degrees of freedom ak.

Such a system is generally solved using a least-squares approach [49]. However,

Titarev et al. [254] stated that such a method was not optimum for polynomial

reconstruction of order higher than three. Indeed, they argue that the condition

number of the linear system — produced by the application of the least-squares

method for high-order polynomials — is approximately the square of the condition

number of the matrix A. This results in a potential lack of accuracy “for smooth

problems and very fine meshes” [254].

Consequently, we follow the same approach as Titarev et al.: direct matrix fac-

torisation of A with a singular value decomposition (SVD) procedure. This is more

demanding in computational time and storage than other methods, but it is con-

sidered as the most reliable method to compute the degrees of freedom, as it deals

better with “errors in data, round-off errors and linear dependence” [57].

With A a real jmax ×K matrix with jmax ≥ K, we can write [58]:

A = UΣVT (6.24)

where U is the jmax ×K matrix of the K orthonormalised eigenvectors associated
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with the K largest eigenvalues of AAT , such that UTU = IK , V is the K × K

square matrix of orthonormalised eigenvectors of ATA, such that VTV = IK , and

Σ = diag (σ1, · · · , σK) where σi are the non-negative square roots of the eigenvalues

of AAT . The matrices U and V can then be used to transform the equation (6.17)

into an equivalent diagonal set of equations:

Aa = b

(
UΣVT

)
a = b

Σ
(
VTa

)
=
(
UTb

)

Σa = b (6.25)

In order to illustrate the need to introduce a tolerance τ , below which singular values

are neglected, let us assume that rank (A) = K. Then, none of the singular values

σk is equal to zero and one may solve equation (6.25) by setting:

ak =
bk
σk

(6.26)

In the case of small σk, this may lead to undesirable sensitivity of the ak to in-

accuracies in the data and round-off errors. Hence, in order to compute a robust

solution for the degrees of freedom, it is necessary to neglect all the singular values

smaller than a given tolerance τ , representative of the accuracy of the data and the

floating-point arithmetic. As a consequence, Σ is replaced by Στ = diag (στ,k) in

(6.25) such that whenever σk < τ , στ,k is set to zero. Since it is always preferable

to minimise the coefficients, whenever στ,k = 0, then ak = 0.

However, as the method calculates the degrees of freedom for all the cells of the

mesh, storing the (3 ×Ncells) matrices produced by the SVD is memory consuming.

To mitigate this, we chose to compute and store the “effective” Moore-Penrose

pseudo-inverse A†
τ of A [57] which also further reduces the number of run-time
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operations. This matrix can be defined in terms of the tolerance τ as:

A†
τ = VΣ†

τUT

where: Σ†
τ = diag

(
σ†
τ,k

)
with: σ†

τ,k =






1

σk
if σk > τ

0 otherwise

(6.27)

Run-time operations for the degrees of freedom All the above steps of

the linear reconstruction are pre-computed and the results are stored. The run-time

operations for the degrees of freedom then reduce to two trivial steps for every cell

in the mesh:

1. The generation of the vector of data b required for the calculation of the

degrees of freedom in (6.17). The components of b are computed from the

cell-averages of the variable uj (t) in the cells of the stencil S at a given time

t:

bj = uj (t) − u0 (t) j = 1, · · · , jmax (6.28)

2. The determination of the degrees of freedom from the “effective” pseudo-

inverse A†
τ and the vector of data b:

a = A†
τb (6.29)

When rank (A) < K the equality in (6.17) no longer holds and Aa is only approxi-

mately equal to b. There exists a set of solutions S which minimises the Euclidean

norm of the residual:

S = {a | |Aa− b|2 = min} (6.30)

It can be shown that the pseudo-inverse provides the shortest vector â that minimises

the norm [57, 174]:

â = A†
τb =⇒





â ∈ S

∀ a ∈ S : |â|2 ≤ |a|2
(6.31)
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Hence, the solution (6.29) is the least-squares solution to the system of equations

(6.17).

6.3.2 Methodology for WENO schemes

As in Section 6.3.1, the WENO reconstruction procedure is presented in this section

for a scalar variable, however its extension to vector variables is straightforward. The

WENO reconstruction operator is based on several stencils Sm: one central stencil S0

— generated in the same way as in Section 6.3.1 — and several sectoral stencils that

cover all spatial directions in the vicinity of the targeted cell Ei. For convenience, the

first element of the stencil is taken as the targeted cell. The appropriate minimal

number of one-sided stencils that ensures the self-adaptation of the scheme near

discontinuities is obtained by selecting one sectoral stencil per internal face of the

cell.

For the cell faces near the boundaries of the domain, the associated one-sided

stencil may have to be discarded as the sector may not encompass enough cells

depending on the order of the scheme. As a result, the number of sectoral stencils

NSi
per mesh cell Ei varies according to the location of the cell with respect to the

boundaries. The set of stencils for a given cell is then:

U =

NSi⋃

m=0

Sm (6.32)

Once the set of stencils is generated for all the cells of the mesh, the method

proceeds with the linear polynomial reconstruction on each stencil Sm of each cell

Ei as described in Section 6.3.1. The WENO polynomial reconstruction is then

given by the convex combination of all the polynomials pm (ξ, η, ζ) associated with

the stencils Sm. Introducing the non-linear WENO weights wm related to the stencils

Sm, we have:

pWENO (ξ, η, ζ) =

NSi∑

m=0

wmpm (ξ, η, ζ) (6.33)
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where:

pm (ξ, η, ζ) = u0 +
K∑

k=1

a
(m)
k φk (ξ, η, ζ) (6.34)

wm =
γm

NSi∑
m=0

γm

with: γm =
dm

(ε+ ISm)p
(6.35)

The expression for the non-linear weights (6.35) involves the following parameters:

• dm, the linear weight. Since the central stencil generally performs better for

smooth solutions, following Dumbser and Käser [49] we choose to attribute a

much larger linear weight to the central stencil.

• ISm, the oscillation indicator which characterises the level of smoothness of

the solution on the stencil Sm. A smooth solution leads to a smaller oscillation

indicator and therefore a larger weight.

• ε, a small positive number introduced in γm to prevent the denominator from

becoming zero.

• p, the exponent of the oscillation indicator, devised to ensure that the contri-

bution of non-smooth stencils vanishes.

We have chosen the following typical values for the WENO parameters [49, 110, 254]:

dm =





103 if m = 0

1 otherwise

ε = 10−6

p = 4

(6.36)

From the expressions for ISm given in [49, 254], the following matrix formulation

can be derived:

ISm =

K∑

p=1

a(m)
p

(
K∑

q=1

Bpqa
(m)
q

)
(6.37)
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In (6.37), Bpq is an element of the oscillation indicator matrix B. With r denoting

the order of the linear polynomial reconstruction, and noting that γ = Λ − α − β,

the elements of B are expressed as:

Bpq =
r∑

Λ=1

Λ∑

α=0

Λ−α∑

β=0

∫∫∫

E′

0

∂Λ

∂ξα∂ηβ∂ζγ
φp × (ξ, η, ζ)

∂Λ

∂ξα∂ηβ∂ζγ
φq (ξ, η, ζ) dξ dη dζ

(6.38)

As for the reconstruction matrix A, it may be seen from (6.38) that the oscillation

indicator matrix B is solution independent, and hence the time consuming oper-

ations required for the determination of ISm can be pre-processed. In addition,

the elements Bpq involve the integration of polynomials on the targeted cell in the

reference space E ′
0. As for the computation of A we shall apply a Gauss-Legendre

quadrature.

The WENO polynomial pWENO can be expressed as a function of the modi-

fied degrees of freedom ãk by introducing (6.34) in equation (6.33) and using the

condition
∑
m

wm = 1 [254]:

pWENO (ξ, η, ζ) =

NSi∑

m=0

wm

(

u0 +

K∑

k=1

a
(m)
k φk (ξ, η, ζ)

)

= u0 +

K∑

k=1




NSi∑

m=0

wma
(m)
k



φk (ξ, η, ζ)

= u0 +
K∑

k=1

ãkφk (ξ, η, ζ) (6.39)

The combination of the (NSi
+ 1) set of degrees of freedom a

(m)
k into a single set of

modified degrees of freedom ãk, as in [254], simplifies the algorithm and speeds up

the computation of the WENO reconstruction.

Generation of the sectoral stencils

In order to ensure the self-adaptability of the scheme near discontinuities, additional

one-sided stencils are associated with the targeted cell. To minimise the number of
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stencils, Titarev et al. suggested the following guidelines [254]:

1. The stencils are disjoint (apart from the targeted cell).

2. The union of one-sided stencils covers the whole space surrounding the targeted

cell.

3. The stencils are compact. We improved the methodology reported in [254] by

choosing the stencils compact in the reference space ξ (see Section 6.3.1): i.e.

in a given sector of the physical space the stencil gathers the jmax elements

having the minimum centre-to-centre distance to the targeted cell in ξ.

As the mapping is trilinear, a given sector Sl of the physical space contains the

elements Ej — images of the elements E ′
j under the mapping x = x (ξ, η, ζ) — such

that the inverse images E ′
j are themselves contained in the sector of the reference

space S ′
l, inverse image of Sl under x = x (ξ, η, ζ). Therefore gathering elements in

Sl for the stencil selection, is identical to gathering them in S ′
l.

Definition of the sectors In order to remain as general as possible on a 3D

mixed-element unstructured mesh, we aim to take as many compact stencils as there

are internal faces FIl of the considered element E0 (i.e. faces of E0 that are not on

a domain boundary). For each face FIl, we choose to define the sector — in which

the stencil will be constructed — from the contour of FIl and the centre C0 of the

cell E0. As illustrated in Figure 6.7, the cells selected to form the sector stencil have

their centre in the portion of physical space:

• encompassing the centre of the face FIl.

• delimited by the surface of the cone Cl admitting C0 as apex and the contour

of FIl as directrix.
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This approach satisfies all of the three rules given above. In particular, the sectoral

stencils cover all the spatial directions in the vicinity of the targeted cell. As a

result, the “reverse sectors” of Käser et al. [49, 110] are unnecessary. This leads to

a smaller number of stencils and thus to a faster method.

As mentioned at the beginning of Section 6.3.1, it is not always possible to find

jmax cells in a sector when the internal face considered is close to a boundary (see

Figure 6.7). The algorithm implemented systematically discards any stencil of less

than jmax elements to ensure the robustness of the scheme in the vicinity of a

boundary. It follows that the actual number of one-sided stencils of a given cell E0

is at most the number of its internal faces NFI :

NSi
≤ NFI (6.40)

Mapping to the first octant In order to assess efficiently which cells have

their centre lying in the sector, it is convenient to map the sector to the octant

(+,+,+) in a transformed space X = (X, Y, Z) so that only the cells whose centres

have all positive coordinates in X can be selected. However, such a mapping is

only possible if the directrix of the cone Cl encompassing the geometric sector is a

triangle (see Figure 6.8). Taking the centre of the targeted cell C0 = (xC0 , yC0, zC0)

and introducing JQ as the Jacobian of the affine transformation that maps the

octant (+,+,+) to the sector delimited by Cl, we can write:





x

y

z




=





x0

y0

z0




+ JQ





X

Y

Z




(6.41)

where the matrix JQ is built from the coordinates of the three vertices of the triangle

FIl, the directrix of Cl.

We extend this methodology to non-tetrahedral cells by splitting, into NT tri-

angles, all the internal faces FIl of the mesh. The cells belonging to the sector Sl
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Figure 6.7: Ten-cells sectoral stencils of E0 coloured by sector; discarded stencil

hatched in grey; domain boundaries hatched in black — as produced by the fast

search procedure in 2D

delimited by Cl belong to the union of sub-sectors Sli delimited by the cones Cli

associated with the NT triangles:

Sl =

NT⋃

i=1

Sli (6.42)

The sub-sectors Sli are therefore successively mapped to the octant (+,+,+) and

for each potential stencil cell Ek, we produce and test a condition of inclusion of

its centre Ck (expressed in X(i): the transformed space associated to Sli) in the

various sub-sectors. Using the symbol
∑

to indicate the repeated use of the logical
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Figure 6.8: Mapping to the first octant (+,+,+)

disjunction, our condition reads:

Condk =

NT∑

i=1

(Ck ∈ Sli) (6.43)

=

NT∑

i=1

(
pos

(
X

(i)
Ck

)
× pos

(
Y

(i)
Ck

)
× pos

(
Z

(i)
Ck

))
(6.44)

where:

∀x ∈ R : pos (x) =





1 if x ≥ 0

0 if x < 0
(6.45)

The above test guarantees that cells whose centres belong to several sub-sectors are

added just once to the list of sector members. It avoids the need for a cumbersome

and time-consuming iterative test against all the cells already identified as sector

members. In order to optimise the procedure, the internal faces are split into a

minimal number of triangles, such that NT = 1 for triangular faces (no split),

NT = 2 for quadrilateral faces and NT = number of sides for polygonal faces. As

this split of the internal faces is performed in any case during the tetrahedralisation

algorithm (see Section 6.3.1), the tetrahedral decomposition of the mesh is run prior

to the generation of the one-sided stencils.

151



Chapter 6. A high-order scheme for general unstructured meshes

Selection of the stencil cells The cells whose centre belongs to a sector —

the “sector members” — are added to the corresponding one-sided stencil if:

• They are not already part of another sectoral stencil of E0. This ensures

that the one-sided stencils remain disjoint when the cell centre of a potential

stencil element lies on the boundary of the sector. Such a particular case

occurs frequently on Cartesian meshes.

• There are no more than (jmax − 1) cells in this sector with a shorter centre-

to-centre distance to E ′
0 in ξ. This ensures the compactness of the stencil in

the reference space.

The strategy adopted to produce a fast algorithm is to divide a very large central

stencil in as many sectors as appropriate. Therefore, a much bigger temporary

central stencil SU is produced (see Section 6.3.1), sorted according to the centre-

to-centre distance to the targeted cell in ξ and finally split into the appropriate

number of sectoral stencils (see Figure 6.9). Therefore, the search procedure starts

with building a compact central stencil of NU cells that should encompass a sufficient

number of cells to produce all the one-sided stencils. NU is defined by:

NU = (NFI + 1) jmax (6.46)

The extra jmax cells resulting from the (+1) in (6.46) provide a buffer of cells neces-

sary to accommodate the selection of sectoral stencils near convoluted boundaries.

In order to remove the cumbersome and time-consuming test conditions related

to the compactness and separation of the stencils, a dynamic list is initially identified

to the stencil SU . Taking advantage of the fact that the cells in SU are already sorted

according to their centre-to-centre distance to E ′
0 in ξ, the membership of the cells

in a given sector is tested sequentially for each cell in the list. This guarantees the

compactness of the one-sided stencils in the reference space. The procedure stops

either when jmax cells have been added to the stencil or when all the cells in the list
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Figure 6.9: Thirteen-cells sectoral stencils of E0 coloured by sector: the coloured

thick lines indicate the progression of the search; discarded stencil hatched in grey;

domain boundaries hatched in black — as produced by the fast search procedure in

2D

have been tested. The condition requiring disjoint stencils is ensured by removing

the cells selected at each iteration. This fast search algorithm produces the best

dataset for an accurate reconstruction of the solution, as the remaining stencils are

very compact in ξ.

Determination of the oscillation indicator matrix

On a general unstructured mesh, the oscillation indicator matrix B is solution in-

dependent and therefore can be pre-processed. We have derived a computationally

153



Chapter 6. A high-order scheme for general unstructured meshes

convenient expression for the elements of B. Let us first rewrite equation (6.38) as:

Bpq =

r∑

Λ=1

Λ∑

α=0

Λ−α∑

β=0

∫∫∫

E′

0

∂Λ

∂ξα∂ηβ∂ζγ
φp (ξ, η, ζ)× ∂Λ

∂ξα∂ηβ∂ζγ
φq (ξ, η, ζ) dξ dη dζ

(6.38)

with: Λ = α+ β + γ

Simplified expression for Bpq The term Bpq is a triple sum of integrals

over the targeted element E ′
0. Each integral is calculated through Gauss-Legendre

quadratures over the NT tetrahedral sub-elements Tl of E ′
0, resulting in the quadru-

ple sum:

Bpq =

r∑

Λ=1

Λ∑

α=0

Λ−α∑

β=0

NT∑

l=1

∫∫∫

Tl

∂Λ

∂ξα∂ηβ∂ζγ
φp ×

∂Λ

∂ξα∂ηβ∂ζγ
φq dξ dη dζ (6.47)

The integrands involve the product of the partial derivatives of order (α, β, γ), in

(ξ, η, ζ), taken on two different polynomial basis functions: φp and φq. As the basis

functions are constructed to satisfy the conservation condition (6.12), the expression

for the basis functions φk is simply the sum of a monomial ψk with a constant Ck,i

(dependent on the cell E ′
i and the monomial ψk, see (6.15)):

φk = ψk + Ck,i (6.48)

Since the order of the partial derivative is greater than or equal to one, the constants

disappear and we reduce each integrand IDα,β,γ
pq to a product of two monomials:

Bpq =

r∑

Λ=1

Λ∑

α=0

Λ−α∑

β=0

NT∑

l=1

∫∫∫

Tl

IDα,β,γ
pq dξ dη dζ (6.49)

=
r∑

Λ=1

Λ∑

α=0

Λ−α∑

β=0

NT∑

l=1

∫∫∫

Tl

∂Λ

∂ξα∂ηβ∂ζγ
ψp ×

∂Λ

∂ξα∂ηβ∂ζγ
ψq dξ dη dζ (6.50)

Since a product of monomials is a monomial, the elements of B are multiple sums

of integrals of monomials over E ′
0. The integrations of the monomials of the highest

degree D clearly occur for the basis functions of the highest degree when the order
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of the partial derivative is lowest: Λmin = 1. As a result, the highest degree D to

be considered is expressed by:

D = 2 (r − Λmin)

= 2r − 2 (6.51)

The associated number of non-constant monomials of degree less than or equal to

(2r − 2) is then:

KIS =
r (4r2 − 1)

3
− 1 (6.52)

Derivation of the integrands of Bpq Similarly to the determination of the

elements of A, the calculation of the Bpq involve a combination of integrals of mono-

mials. However, in the computations of B, the degree of the monomials to be inte-

grated reaches (2r − 2) and the integrations are only performed over the targeted

cell E ′
0. In order to perform the integration, we express the integrand IDα,β,γ

pq as a

monomial. Introducing (A,B,C) ∈ J0, rK3 such that
{
1 ≤ A+B+C ≤ r

}
, we can

express the monomial ψk (ξ, η, ζ) by:

ψk (ξ, η, ζ) = ξAηBζC (6.53)

Applying to ψk the partial derivative of order (α, β, γ), in (ξ, η, ζ), leads to:

∂Λ

∂ξα∂ηβ∂ζγ
(ψk) = KDξ

(A−α)η(B−β)ζ (C−γ) (6.54)

where:

KD =






A !
(A−α) !

× B !
(B−β) !

× C !
(C−γ) !

if (A ≥ α) ∩ (B ≥ β) ∩ (C ≥ γ)

0 otherwise
(6.55)

KD can be expressed in a more convenient manner by using the function “pos”

introduced in Section 6.3.1:

KD = pos (A− α) × pos (B − β) × pos (C − γ) × A !
(A−α) !

× B !
(B−β) !

× C !
(C−γ) !

(6.56)
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Then, introducing: (A1, B1, C1, A2, B2, C2) ∈ J0, rK6 such that
{
1 ≤ Ai + Bi +

Ci ≤ r , i = 1, 2
}

and making use of (6.56), we express the integrand IDα,β,γ
pq as a

monomial:

IDα,β,γ
pq = KEξ

(A1+A2−2α)η(B1+B2−2β)ζ (C1+C2−2γ) (6.57)

with:

KE = pos (A1 − α) × pos (B1 − β) × pos (C1 − γ) × A1 !
(A1−α) !

× B1 !
(B1−β) !

× C1 !
(C1−γ) !

× pos (A2 − α) × pos (B2 − β) × pos (C2 − γ) × A2 !
(A2−α) !

× B2 !
(B2−β) !

× C2 !
(C2−γ) !

(6.58)

Efficient computation of B By inserting (6.57) in (6.49) we derive the final

formulation for the elements Bpq:

Bpq =

r∑

Λ=1

Λ∑

α=0

Λ−α∑

β=0

NT∑

l=1

∫∫∫

Tl

KEξ
(A1+A2−2α)η(B1+B2−2β)ζ (C1+C2−2γ) dξ dη dζ (6.59)

It may be noted that:

• The K integrals of monomials of degrees up to r are readily available from the

algorithm for computing the reconstruction matrix A.

• The calculation of the different matrix elements Bpq generally involves many

of the same monomial integrations over the targeted cell E ′
0.

Therefore we choose to store the list of KIS integrals of monomials over E ′
0 for each

cell of the mesh. The elements of B are then efficiently computed from this list of

integrals by applying the formula (6.59). It is worth noting that only the integrals

of monomials of degree higher than r have to be calculated, as the first K integrals

of the list have already been computed (see Section 6.3.1).

Calculation of the modified degrees of freedom

Since the modified degrees of freedom ãk are a function of both the WENO weights

wm and the degrees of freedom a
(m)
k associated to the stencil Sm (see (6.39)), the
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calculation of the ãk is performed at run time. This computation takes the following

steps:

1. The generation of the vector of data bm for each stencil Sm of each cell of

the mesh. The components b
(m)
j are computed from the cell averages of the

solution u
(m)
j (t) in the cells of Sm at a given time t:

b
(m)
j = u

(m)
j (t) − u

(m)
0 (t) j = 1, · · · , jmax ; m = 0, · · · , NS (6.60)

2. The determination of the (NS + 1) vectors of degrees of freedom am from

the effective pseudo-inverses
(
A†
τ

)(m)
of the reconstruction matrices and the

vectors of data bm:

am =
(
A†
τ

)(m)
bm m = 0, · · · , NS (6.61)

3. For each stencil Sm, calculation of the smoothness indicator ISm from the

oscillation indicator matrix B and the vector of degrees of freedom am:

ISm = aTm (B am) m = 0, · · · , NS (6.62)

4. Calculation of the WENO weights wm from the smoothness indicators ISm

(see (6.37) and (6.38)).

5. For each cell of the mesh, calculation of the vector of modified degrees of

freedom ã from the (NS + 1) vector of degrees of freedom am and the WENO

weights wm:

ã =

NS∑

m=0

wmam (6.63)

6.3.3 Determination of the numerical flux

With the details of the polynomial reconstruction procedure in mind, let us derive

the flux calculation for the system of equations (6.1). This is a necessary step, since

some of the simplifications relevant to tetrahedral grids [49] and 2D mixed-element
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meshes [254] do not apply here. Recalling the equations derived in Section 6.2, we

can express (6.1) in the following finite volume form:

d

dt
Ui +

1

|Ei|
Li∑

l=1

∫∫

Fl

Anl

(
U−,U+

)
d(Fl) = 0 (6.64)

Here Anl
(U−,U+) represents the numerical flux in the direction normal to the face

Fl (nl being the outward unit vector normal to Fl) as a function of the reconstructed

solution on either side of Fl: U±. The superscripts “−” and “+” refer to the spatial

limit respectively on the inside and the outside of the targeted cell Ei with respect

to its face Fl. In particular, U− represents the reconstructed solution calculated on

Fl using the polynomial interpolation of the solution in Ei and U+ represents the

reconstructed solution calculated on Fl using the polynomial interpolation of the

solution in the neighbouring cell Ejl.

Hyperbolic systems of linear PDEs

The exact Riemann solver As in [49], we choose to use the exact Riemann

solver to express the numerical flux between Ei and Ejl. In order to express this

flux, we first introduce the Jacobian matrix of the system in the normal direction

JNl
. Noting that JX is the Jacobian of the vector of fluxes in the x direction F (U)

we have (see [255]):

∂

∂x
F (U) =

∂F

∂U

∂U

∂x

= JX
∂U

∂x
(6.65)

with JY and JZ as the Jacobian matrices of the vectors of fluxes G (U) and H (U),

we can re-write (6.1) as:

∂

∂t
U + JX

∂

∂x
U + JY

∂

∂y
U + JZ

∂

∂z
U = 0 (6.66)

Recalling nl = (nlx, nly, nlz) from Section 6.2, JNl
is expressed as:

JNl
= JXnlx + JY nly + JZnlz (6.67)
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In order to express the numerical flux Anl
, we introduce (after [255]) the diagonal

matrix of eigenvalues ΛNl
= diag (λl1, λl2, · · · , λlP ) of JNl

and the left and right

eigenvector matrices: LNl
and RNl

, so that JNl
= LNl

ΛNl
RNl

. Defining the matrix

absolute value operator: |JNl
| = LNl

|ΛNl
|RNl

with |ΛNl
| = diag (|λl1|, |λl2|, · · · , |λlP |),

the numerical flux — associated with the exact Riemann solver — between Ei and

Ejl becomes [49, 255]:

Anl

(
U−,U+

)
=

1

2

(
(JNl

+ |JNl
|)U− + (JNl

− |JNl
|)U+

)
(6.68)

Computation of the numerical flux Introducing the expression (6.68) in

the finite volume formulation (6.64) leads to:

0 =
d

dt
Ui +

1

|Ei|
Li∑

l=1

1

2
(JNl

+ |JNl
|)
∫∫

Fl

U− d(Fl)

+
1

|Ei|
Li∑

l=1

1

2
(JNl

− |JNl
|)
∫∫

Fl

U+ d(Fl) (6.69)

Since the reconstruction procedure relies on a mapping to avoid introducing cum-

bersome scaling factors, the reconstruction is performed on a reference space ξ. As

a result, the polynomial representing the solution U is only known as a function of

ξ. Therefore, we relate the integrals in (6.69) to their counterparts over the faces

F ′
l of E ′

i in the reference spaces ξ− and ξ+ associated respectively to E ′
i and E ′

jl
:

∫∫

Fl

U± d(Fl) =
|Fl|
|F ′
l |

∫∫

F ′

l

U±
(
ξ±, t

)
d(F ′

l ) (6.70)

As the transformation from the physical space to the reference space is affine, the

ratio of square roots of the Gram determinants involved (see [117]) is constant and

may be taken out of the integrals.

In the case of a vector variable U, exactly the same basis functions φk are used for

the polynomial reconstruction of all the components up of U, since the functions φk

are only dependent on the mesh. As each component of the vector variable can be
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considered as a scalar variable, a set of k modified degrees of freedom ãk is calculated

at each time step for every scalar variable up. Therefore there are as many modified

degrees of freedom associated with φk as there are components in U, and these are

gathered in the vector ãk.

Recalling the equation for the polynomial reconstruction of a scalar variable

(6.39), the formulae for U− (ξ−, t) and U+ (ξ+, t), at time t = n∆t, are:






U−
(
ξ−, t

)
=
(
Ui

)(n)
+

K∑

k=1

(ãk)
(n)
i (φk)i

(
ξ−
)

U+
(
ξ+, t

)
=
(
Ujl

)(n)
+

K∑

k=1

(ãk)
(n)
jl

(φk)jl
(
ξ+
)

(6.71)

Replacing U− (ξ−, t) and U+ (ξ+, t) in (6.70) by their expressions in (6.71) leads to:






∫∫

Fl

U− d(Fl) = |Fl|
(
Ui

)(n)
+

|Fl|
|F ′
l |

K∑

k=1

(
(ãk)

(n)
i

∫∫

F ′

l

(φk)i
(
ξ−
)

d(F ′
l )

)

∫∫

Fl

U+ d(Fl) = |Fl|
(
Ujl

)(n)
+

|Fl|
|F ′
l |

K∑

k=1

(
(ãk)

(n)
jl

∫∫

F ′

l

(φk)jl
(
ξ+
)

d(F ′
l )

)

(6.72)

In (6.72), the integrals of the basis functions (φk)i (ξ
−) and (φk)jl (ξ

+) are inde-

pendent of the solution U. Hence the integrals of the k basis functions (φk)i (ξ
−)

are pre-computed for all the faces F ′
l of all the transformed elements E ′

i. As a re-

sult, the integrals of (φk)i (ξ
−) and (φk)jl (ξ

+) are readily available for the run-time

calculation of the inter-cell flux between any neighbouring cells.

Surface integrals of the basis functions Recalling that the basis functions

φk are constructed from the monomials ψk (see (6.13)), the expression for the kth

basis function of the element Ei: (φk)i is:

(φk)i = ψk −
1

|E ′
i|

∫∫∫

E′

i

ψk dξ dη dζ (6.73)
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Therefore, the integral of the basis function (φk)i is expressed as:

∫∫

F ′

l

(φk)i
(
ξ−
)

d(F ′
l ) =

∫∫

F ′

l

ψk
(
ξ−
)

d(F ′
l ) −

|F ′
l |

|E ′
i|

∫∫∫

E′

i

ψk dξ dη dζ (6.74)

In (6.74), the triple integral of the monomials ψk over the volume E ′
i is calculated

during the linear reconstruction (see Section 6.3.1) and is therefore readily available.

As in Section 6.3.1, in order to maximise the efficiency of the method, we choose to

calculate the surface integral of the monomial ψk over the face F ′
l with a Gaussian

quadrature. Since the affine transformation of a convex polyhedral does not gen-

erally result in the standard domain required by Gauss-Legendre quadratures, we

take advantage of the tetrahedralisation of the mesh and, for each face F ′
l , sum the

Gaussian quadratures produced for the NTl
triangles T ′

lm constituting F ′
l :

∫∫

F ′

l

ψk
(
ξ−
)

d(F ′
l ) =

NTl∑

m=1

∫∫

T ′

lm

ψk
(
ξ−
)

d(T ′
lm) (6.75)

Hyperbolic systems of non-linear PDEs

In the general case, the flux Anl
(U−,U+) (see (6.64)) varies along the face Fl.

Consequently, as we perform the integration of the flux with a Gauss-Legendre

quadrature, Anl
(U−,U+) is evaluated at each Gauss point xβ of each triangle Tlm

constituting the face Fl.

The solution being reconstructed in the mapped space, the integral of the flux

are calculated over the transformed face F ′
l . Re-writing (6.64) with the integral

expressed over F ′
l leads to:

d

dt
Ui +

1

|Ei|
Li∑

l=1

|Fl|
|F ′
l |

∫∫

F ′

l

Anl

(
U−,U+

)
d(F ′

l ) = 0 (6.76)

For each point of the Gaussian quadrature, the reconstructed solutions on either

side of the face, U−
β and U+

β , are evaluated at the mapped Gauss point in their

respective transformed space: ξ−
β and ξ+

β . Introducing the weights of the Gaussian
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quadrature kβ and the Riemann solver Â, the integral of the flux can be expressed

as follows:

∫∫

F ′

l

Anl

(
U−,U+

)
d(F ′

l ) =

NTl∑

m=1

∫∫

T ′

lm

Anl

(
U−,U+

)
d(F ′

l )

=

NTl∑

m=1

Nβ∑

β=1

kβÂ
(
U−
β ,U

+
β

)
(6.77)

As suggested by the equations above, the integrals of the basis functions can no

longer be pre-processed when solving non-linear PDEs. However, the values of the

basis functions on each Gauss point can be pre-computed to save computational run

time.

6.4 Application to the level set equation

6.4.1 Finite volume formulation of the level set equation

The WENO scheme presented in the previous section is to be used in the transport

of the level set scalar function ϕ for application to multiphase flows. Introducing

the velocity u = (u, v, w), the transport equation for ϕ may be expressed as:

∂ϕ

∂t
+ u · ∇ϕ = 0 (6.78)

Assuming an incompressible flow we have ∇u = 0, so that (6.78) can be re-written

as a hyperbolic conservation law:

∂ϕ

∂t
+ ∇ · (ϕu) = 0 (6.79)

In terms of the coordinates (x, y, z), (6.79) becomes

∂ϕ

∂t
+

∂

∂x
(uϕ) +

∂

∂y
(vϕ) +

∂

∂z
(wϕ) = 0 (6.80)
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Comparing equation (6.80) to equation (6.1) provides the equalities:





F (ϕ) = uϕ

G (ϕ) = vϕ

H (ϕ) = wϕ

=⇒






A = (F,G,H)

= (uϕ, vϕ, wϕ)

Anl
(ϕ−, ϕ+) = A · nl

(6.81)

In (6.81), ϕ− represents the reconstructed level set function calculated on Fl using

polynomial interpolation of the solution in Ei, while ϕ+ represents the reconstructed

level set function calculated on Fl using polynomial interpolation of the solution in

the neighbouring cell Ejl.

From (6.81) and (6.64), we express the transport equation for the level set in the

finite volume form:

d

dt
ϕi +

1

|Ei|
Li∑

l=1

∫∫

Fl

Anl

(
ϕ−, ϕ+

)
d(Fl) = 0 (6.82)

The normal component of the flux Anl
for the level set equation can be obtained by

expressing (6.78) in terms of the coordinates to give:

∂ϕ

∂t
+ u

∂ϕ

∂x
+ v

∂ϕ

∂y
+ w

∂ϕ

∂z
= 0 (6.83)

Identifying equation (6.83) with equation (6.66) provides the equalities:





JX = u

JY = v

JZ = w

=⇒






JNl
= unlx + vnly + wnlz

= u · nl
= unl

(6.84)

Using (6.84) in (6.68), the normal component of the flux may be expressed as:

Anl

(
ϕ−, ϕ+

)
=

1

2

(
(unl

+ |unl
|)ϕ− + (unl

− |unl
|)ϕ+

)
(6.85)

6.4.2 The Riemann problem for the level set equation

Simple manipulations of (6.83) demonstrates its rotational invariance (see Chapter

3 of [255]) according to:

A · nl = (F,G,H) · nl = nlxF + nlyG+ nlzH = F̂ (6.86)

163



Chapter 6. A high-order scheme for general unstructured meshes

where F̂ is the flux vector expressed in the direction nl, the first axis of the rotated

Cartesian frame (nl, sl, tl). The expression for F̂ is:

F̂ = (u · nl)ϕ = unl
ϕ (6.87)

In our three-dimensional space, the rotated Cartesian frame is obtained by apply-

ing successively two rotations around the angles θl1 ∈ [0, 2π] and θl2 ∈ [0, π]. The

equation (6.86) is valid ∀ (θl1, θl2) ∈ [0, 2π]× [0, π] (see Figure 6.10 for an illustra-

tion in 2D). Since we are dealing with a single scalar equation, the rotation matrix

Tl (θl1, θl2) (see [20, 255]) and its inverse both reduce to the scalar unity. From (6.81)

and (6.82), the finite volume formulation of (6.83) can be expressed as:

d

dt
ϕi +

1

|Ei|
Li∑

l=1

∫∫

Fl

(F,G,H) · nl d(Fl) = 0 (6.88)

Figure 6.10: Rotated Cartesian frame in 2D: (nl, sl) — the first axis nl is orthogonal

to the arbitrary boundary ∂Ei of the control volume Ei

Using the rotational invariance of (6.83) we re-write (6.88) in the rotated Cartesian

frame (nl, sl, tl), where the direction nl is normal to the inter-cell boundary Fl.

Noting F̂ , Ĝ and Ĥ , the flux vectors respectively in the directions nl, sl and tl, we
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have:

d

dt
ϕi = − 1

|Ei|
Li∑

l=1

∫∫

Fl

(
F̂ , Ĝ, Ĥ

)
· nl d(Fl)

= − 1

|Ei|
Li∑

l=1

∫∫

Fl

(
F̂ , Ĝ, Ĥ

)
· (1, 0, 0)T d(Fl)

= − 1

|Ei|
Li∑

l=1

∫∫

Fl

F̂ d(Fl) (6.89)

Therefore, as mentioned in [255], the numerical fluxes across the Li faces Fl of

the element Ei result from the equation written in the rotated frame (nl, sl, tl).

Consequently, the flux across Fl is given by the one-dimensional equation:

∂ϕ

∂t
+
∂F̂

∂nl
= 0 (6.90)

Equation (6.90) leads to the Riemann problem:

PDE:
∂ϕ

∂t
+ unl

∂ϕ

∂nl
= 0

IC: ϕ (nl, 0) = ϕ0 (nl) =





ϕ− if nl < 0

ϕ+ if nl > 0






(6.91)

Equation (6.91) admits an exact solution:

ϕ (nl, t) = ϕ0 (nl − unl
t) =





ϕ− if nl − unl

t < 0

ϕ+ if nl − unl
t > 0

(6.92)

so that the flux Anl
(see (6.81)) across Fl (i.e. at nl = 0 with t > 0), reads:

Anl

(
ϕ−, ϕ+

)
=





unl

ϕ− if unl
> 0

unl
ϕ+ if unl

< 0
(6.93)

The formulation of the flux in (6.93) is equivalent to the expression for Anl
(ϕ−, ϕ+)

given in (6.85). Thus, the finite volume formulation of the level set equation on 3D

unstructured grids has been related to its associated Riemann problem.
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6.5 Application to the Burgers’ equation

6.5.1 Finite volume formulation of the Burgers’ equation

In this section we extend the application of the WENO scheme to the solution

of the Burgers’ equation. Considering the variable ϕ and introducing the vector

v = (a, b, c) fixed in R
d, the Burgers’ equation for ϕ may be expressed as:

∂ϕ

∂t
+ v · ∇

(
ϕ2

2

)
= 0 (6.94)

As v is fixed in R
d, (6.94) can be re-written as a hyperbolic conservation law:

∂ϕ

∂t
+ ∇ ·

(
ϕ2

2
v

)
= 0 (6.95)

In terms of the coordinates (x, y, z), (6.95) becomes

∂ϕ

∂t
+

∂

∂x

(
a
ϕ2

2

)
+

∂

∂y

(
b
ϕ2

2

)
+

∂

∂z

(
c
ϕ2

2

)
= 0 (6.96)

Comparing equation (6.96) to equation (6.1) provides the equalities:






F (ϕ) = aϕ
2

2

G (ϕ) = bϕ
2

2

H (ϕ) = cϕ
2

2

=⇒






A = (F,G,H)

=
(
aϕ

2

2
, bϕ

2

2
, cϕ

2

2

)

Anl
(ϕ−, ϕ+) = A · nl

(6.97)

The Burgers’ equation can then be expressed in the following finite volume form:

d

dt
ϕi +

1

|Ei|
Li∑

l=1

∫∫

Fl

Anl

(
ϕ−, ϕ+

)
d(Fl) = 0 (6.98)

6.5.2 The Riemann problem for the Burgers’ equation

As in Section 6.4, simple manipulations of (6.96) demonstrates its rotational invari-

ance according to:

A · nl = (F,G,H) · nl = nlxF + nlyG+ nlzH = F̂ (6.99)
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where F̂ is the flux vector expressed in the direction nl, the first axis of the rotated

Cartesian frame (nl, sl, tl). The expression for F̂ is:

F̂ = (v · nl)
ϕ2

2
= vnl

ϕ2

2
(6.100)

Therefore, the flux across Fl is given by the one-dimensional equation:

∂ϕ

∂t
+
∂F̂

∂nl
= 0 (6.101)

Equation (6.101) leads to the Riemann problem:

PDE:
∂ϕ

∂t
+

∂

∂nl

(
vnl

ϕ2

2

)
= 0

IC: ϕ (nl, 0) = ϕ0 (nl) =





ϕ− if nl < 0

ϕ+ if nl > 0






(6.102)

For the PDE (6.102), the characteristic speed λ (ϕ) is given by:

λ (ϕ) =
dF̂

dϕ
= vnl

ϕ (6.103)

Equation (6.102) admits an exact solution:

If λ (ϕ−) > λ (ϕ+) : ϕ (nl, t) =





ϕ− if nl − St < 0

ϕ+ if nl − St > 0

with: S = ∆ bF
∆ϕ

=
vnl

2
(ϕ− + ϕ+)

If λ (ϕ−) ≤ λ (ϕ+) :






ϕ (nl, t) = ϕ− if nl

t
≤ λ (ϕ−)

λ (ϕ) = nl

t
if λ (ϕ−) < nl

t
< λ (ϕ+)

ϕ (nl, t) = ϕ+ if nl

t
≥ λ (ϕ+)






(6.104)
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so that the flux Anl
(see (6.97)) across Fl (i.e. at nl = 0 with t > 0), reads:

If λ (ϕ−) > λ (ϕ+) : Anl
(ϕ−, ϕ+) =






vnl

(ϕ−)
2

2
if S > 0

vnl

(ϕ+)
2

2
if S < 0

with: S =
vnl

2
(ϕ− + ϕ+)

If λ (ϕ−) ≤ λ (ϕ+) : Anl
(ϕ−, ϕ+) =






vnl

(ϕ−)
2

2
if 0 ≤ vnl

ϕ−

0 if vnl
ϕ− < 0 < vnl

ϕ+

vnl

(ϕ+)
2

2
if 0 ≥ vnl

ϕ+






(6.105)

6.6 Performance of the scheme

The approach described above was implemented in parallel and in C++ using the

framework provided by the open source CFD toolkit OpenFOAM. In order to reach

the appropriate level of accuracy in parallel, the size of the halo surrounding each

processor’s sub-domain varies with the order of the polynomial reconstruction.

In all the simulations presented, the time discretisation is performed with a third-

order Runge-Kutta scheme [231]. As we test WENO schemes of different order, let

us introduce WENOr, the WENO scheme based on a polynomial reconstruction of

order r.

6.6.1 Level set test cases

In all of the test cases considered in this section, we are advecting the level set scalar

function ϕ according to equation (6.78) only. No re-distancing is applied as we are

concerned mainly with assessing the performance of the WENO scheme.
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Two-dimensional test cases

Two-dimensional meshes For these simulations, the mesh is made up of

a single layer of three-dimensional elements: wedges for the “triangular” mesh,

hexahedra for the Cartesian mesh and both wedges and hexahedra for the hybrid

mesh. As a result, the mesh is in fact three-dimensional as the code employed

manages only 3D elements.

A front view of the three types of mesh used is given in Figure 6.11 for the

resolution L/64, with L being the length of the domain. Each two-dimensional

mesh is shown on the left with a section of the corresponding three-dimensional

mesh on the right. Three different resolutions have been considered: L/64, L/128

and L/256. The unstructured meshes have been generated so that — for a given

resolution — the sides of the elements have the same length. As a result, the mesh

density is higher for the “triangular” mesh and in the triangular region of the hybrid

mesh.

Translation of a slotted disk The simulation settings for the solid body

rotation of a slotted disk are given in Section 4.2.1 and the results for this problem

are presented in Figure 6.12. This figure provides the solution obtained with the

WENO3 scheme after one revolution for three different resolutions of L/64 (red

line), L/128 (green line) and L/256 (blue line) on three types of grids: Cartesian,

triangular and hybrid (top to bottom). The results illustrate the convergence of the

solution under grid refinement regardless of the type of mesh. Indeed, for all test

cases, the level set contour for the resolution L/256 is closer to the initial contour

in both the smooth circular part of the disk and in the region of the slot where both

the width of the slot and the sharp corners are well captured.

The results are comparable across mesh types and, as intended, no significant

degradation was observed when running the test case on general unstructured grids.

On the triangular grid, the accuracy of the scheme is slightly better as this mesh is
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characterised by a higher density of elements for the same edge length.

Disk in a deformation field The simulation settings for the disk in the defor-

mation field are given in Section 4.2.1 and the results for this problem are presented

in Figure 6.12. This figure provides the solution obtained with the WENO3 scheme

at t = 3s for three different resolutions of L/64 (red line), L/128 (green line) and

L/256 (blue line) on three types of grids: Cartesian, triangular and hybrid (top

to bottom). The solution obtained with the WENO3 scheme on the triangular

grid (highest mesh density) of resolution L/256 has been taken as the reference case

(black line), as it provides the results closest to the “exact solution” as obtained with

the marker particle method by Rider and Kothe [201] or with the hybrid particle

level set method by Enright et al. [53].

For all test cases, under grid refinement the scheme demonstrates a greater ability

to capture thin ligaments, regardless of the type of mesh. Indeed, when the mesh

resolution is increased, the tail of the spiral becomes systematically longer. As with

the previous test case, no significant degradation of the results were observed on

general unstructured grids. It is worth also noting that the results obtained with

this WENO3 scheme without re-distancing compare very well with existing methods

that use WENO schemes of order five together with re-distancing (see [37, 246]).

NB: In order to compare the performance of the scheme with the work of previous

authors, the above two-dimensional test cases have been run with typical set-

tings. However, the comparison of the zero level set computed at a later time

should further differentiate the high-order schemes from the low-order ones [3].
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Cartesian meshes

4096 cells (hexes) 262144 cells (hexes)

Triangular (left) and tetrahedral (right) meshes

9192 cells (wedges) 250704 cells (tets)

Hybrid meshes

7976 cells (hexes & wedges) 234843 cells (hexes, pyramids & tets)

Figure 6.11: Meshes for the level set 2D (left column) and 3D (right column) test

cases
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Cartesian mesh

Triangular mesh

Hybrid mesh

Figure 6.12: Zero level set for the translation of a slotted disk (left column) and the

disk in a deformation field (right column) — In black: the reference; in red: solution

for L/64; in green: solution for L/128; in blue: solution for L/256
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Three-dimensional test case

Three-dimensional meshes For the three-dimensional test case, the meshes

have been designed to maintain similar mesh density on the three types of mesh

considered (see Figure 6.11, right column, top to bottom): Cartesian mesh (262144

hexes), tetrahedral mesh (250704 tets) and hybrid mesh (234843 elements). With

such meshes, we extend our comparison of the performance of the scheme to 3D

Cartesian grids and unstructured meshes.

Sphere in a deformation field LeVeque extended the case presented in Sec-

tion 6.6.1 (see [125]) by considering a sphere in a three-dimensional deformation

field given by:






u (x, y, z) = 2 · sin2 (πx) · sin (2πy) · sin (2πz)

v (x, y, z) = − sin (2πx) · sin2 (πy) · sin (2πz)

w (x, y, z) = − sin (2πx) · sin (2πy) · sin2 (πz)

(6.106)

In this test, the domain is delimited by the points (0; 0; 0) and (1; 1; 1) and the

simulation follows a sphere of radius 0.15, centred on (0.35; 0.35; 0.35). The results

obtained with the WENO3 scheme for the sphere in the deformation field are given

in Figure 6.13. This figure provides the initial level set field (top row) together

with the solution obtained at t = 0.3125s (middle row) and t = 0.625s (bottom

row) on the three types of grids considered: Cartesian (left), tetrahedral (middle)

and hybrid (right). Therefore, this test case demonstrates the numerical scheme

on three-dimensional meshes. It also provides a means to assess the comparative

performance of the scheme on various types of 3D mesh.

As for the two-dimensional test cases, the results are comparable for all three

types of mesh. The results obtained on the Cartesian mesh are slightly better in

terms of smoothness. However, it is worth noting that the Cartesian mesh contains

more elements than the tetrahedral mesh (by 5%) and the hybrid mesh (by 12%). It

is clear from the results that the present approach works well on fully 3D structured,
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unstructured and mixed-element meshes.
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t = 0s

t = 0.3125s

t = 0.625s

Figure 6.13: Zero level set for the sphere in a deformation field on a Cartesian mesh

(left column), a tetrahedral mesh (middle column) and a hybrid mesh (right column)

— Time t = 0s, 0.3125s, 0.625s
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6.6.2 Numerical convergence study

As in [286], we have chosen to demonstrate the numerical convergence of the WENO

scheme on the advection of a sine function. The scalar field is transported in a cube

with periodic boundary conditions, such that the solution at t = 1 should match

the initial field. The linear equation solved and the initial field are given below:





∂u
∂t

+ 2∂u
∂x

+ 2∂u
∂y

+ 2∂u
∂z

= 0, (x, y, z) ∈ [−1; 1]3

u (x, y, z, 0) = sin (π (x+ y + z)) + sin (2π (x+ y + z))
(6.107)

We have solved this equation using both WENO3 and WENO4 schemes on Carte-

sian, tetrahedral and hybrid meshes. Three different level of refinement have been

considered for this study. Similarly to the 3D meshes in Section 6.6.1, the unstruc-

tured meshes have been generated so that — for a given resolution — the different

types of mesh have roughly the same number of elements.

The results of the numerical convergence study are presented in tables 6.1 to

6.3. These tables provide the numerical error in the L1 and L2 norms and their

associated convergence rates calculated using the number of cells Nc in the domain.

Introducing the error in the Lp norm ELp and the level of grid refinement k, the

formula for the order O(k)
Lp reads:

O(k)
Lp =

ln

(
E

(k−1)
Lp

E
(k)
Lp

)

ln

(
3

√
N

(k)
c

N
(k−1)
c

) (6.108)

Although the numerical convergence study is only based on three levels of refine-

ment, the results illustrate that both WENO3 and WENO4 seem to systematically

reach a convergence rate significantly higher than the order r of their respective

polynomial interpolations. As in [49], we even observe that the order reached by the

WENO schemes tends to r+1 regardless of the type of mesh. A more comprehensive

convergence study should confirm the trends observed.

In the case of the WENO4 scheme and for the maximum level of resolution

considered, the full order of r+ 1 is not yet reached when calculating the error with
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the L2 norm. However, the convergence rate seems to increase much faster for the

WENO4 scheme as the mesh is refined. A similar apparent loss of relative accuracy

has been observed by Pilliod and Puckett [178] with high-order schemes on coarse

grids. This phenomenon could also be due to the methodology employed to refine

the mesh [3]. Indeed, in [49] Dumbser et al. refined their tetrahedral meshes by

splitting the elements of the coarse mesh. As this methodology can be cumbersome

for mixed-element meshes, it has not been applied in this study.

Table 6.1: Numerical convergence study for the Cartesian meshes — Error and

associated order given for both WENO3 and WENO4

Scheme Number of cells EL1 OL1 EL2 OL2

WENO3 4096 4.8322 × 10−1 — 5.321 × 10−1 —

32768 3.5328 × 10−2 3.77 3.9349 × 10−2 3.76

262144 2.7226 × 10−3 3.70 3.1798 × 10−3 3.63

WENO4 4096 5.5752 × 10−1 — 6.0496 × 10−1 —

32768 5.4309 × 10−2 3.36 6.1376 × 10−2 3.3

262144 1.8432 × 10−3 4.88 3.2140 × 10−3 4.26

A plot of the error in the L2 norm against the normalised computational time

is given for both the WENO3 and the WENO4 scheme in figures 6.14 and 6.15

respectively. These graphs illustrate once again that the convergence rates reached

by the WENO schemes are independent of the type of grid.

It is interesting to note that figures 6.14 and 6.15 also suggest that — when

applying the WENO schemes to the transport of a smooth field — the tetrahedral

grids are more computationally efficient than the hybrid and Cartesian grids. This

can be explained by the considering the number of side stencils per element and the

linear weight given to the side stencils (see Section 6.2). The WENO reconstruction

method attributes to an element as many side stencils as it has faces. As a result,
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Table 6.2: Numerical convergence study for the tetrahedral meshes — Error and

associated order given for both WENO3 and WENO4

Scheme Number of cells EL1 OL1 EL2 OL2

WENO3 3511 4.5490 × 10−1 — 5.1014 × 10−1 —

27983 3.1000 × 10−2 3.88 3.5946 × 10−2 3.83

251906 1.7644 × 10−3 3.91 2.4047 × 10−3 3.69

WENO4 3511 5.2429 × 10−1 — 5.8559 × 10−1 —

27983 5.2578 × 10−2 3.32 5.8891 × 10−2 3.32

251906 1.8486 × 10−3 4.57 2.5985 × 10−3 4.26

for a given number of cells, the Cartesian mesh would involve more side stencils per

element than the tetrahedral mesh. The average number of side stencil per element

of the hybrid mesh (as constructed in figure 6.11) would lie in between the two.

Therefore, the Cartesian mesh requires the largest amount of CPU time followed by

the hybrid mesh and then by the tetrahedral mesh. As we chose to give much smaller

linear weights to the side stencils than to the central stencil (see Section 6.2), for

smooth solutions, the contribution of the additional side stencils to the accuracy of

the calculation is not sufficient to offset the additional computational cost incurred.
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Table 6.3: Numerical convergence study for the hybrid meshes — Error and associ-

ated order given for both WENO3 and WENO4

Scheme Number of cells EL1 OL1 EL2 OL2

WENO3 2945 5.6115 × 10−1 — 6.2401 × 10−1 —

27234 6.5903 × 10−2 2.89 8.8502 × 10−2 2.63

201293 4.4836 × 10−3 4.03 6.1391 × 10−3 4.00

WENO4 2945 5.8506 × 10−1 — 6.5202 × 10−1 —

27234 9.5779 × 10−2 2.44 1.2464 × 10−1 2.23

201293 5.4088 × 10−3 4.31 7.7781 × 10−3 4.16

Figure 6.14: L2 error vs. normalised CPU time for the WENO3 applied to the linear

equation
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Figure 6.15: L2 error vs. normalised CPU time for the WENO4 applied to the linear

equation
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6.6.3 Extension to a non-linear PDE

In order to demonstrate the capability of the WENO scheme on a non-linear PDE,

we choose to solve the 3D Burgers’ equation on a hybrid mesh of 1.73 × 106 cells.

The equation is solved with the WENO3 scheme in a cubical domain with periodic

boundary conditions. We use the same initial condition as in [286], such that the

shock occurs at time t = 5
π2 . The settings of the simulation are given below:






∂u
∂t

+ ∂
∂x

(
u2

2

)
+ ∂

∂y

(
u2

2

)
+ ∂

∂z

(
u2

2

)
= 0, (x, y, z) ∈ [−3; 3]3

u (x, y, z, 0) = 0.3 + 0.7 sin
(
π
3

(x+ y + z)
)

(6.109)

The results of the calculation are given in Figure 6.16. A contour plot of the

solution on the surface of the domain is shown in the top left corner of Figure 6.16.

In the top right corner, we show a contour plot of the solution on the cut at z = 0.

Finally, in the bottom part of the figure, we compare the numerical solution to the

exact solution along the line x = y in the plane z = 0.

As intended, the scheme resolves the shock sharply with no trace of oscillatory

behaviour. In addition, as suggested by the bottom picture of Figure 6.16, the

numerical solution matches very well the exact solution all along the line considered.
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(a) (b)

(c)

Figure 6.16: Solution for the 3D Burgers’ equation on the hybrid mesh at t = 5
π2 —

(a) Contour plot of the surface of the domain; (b) contour plot on the cut at z = 0;

(c) exact solution (dashed line) and numerical solution (circles) along the line x = y

in the plane z = 0
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Robust conservative level set

method

The method developed is based on the conservative level set method (CLS) of Olsson

et al. [164]. This is partly because this method generally offers a better trade-off

between mass conservation and computational cost than other interface description

methods — including state-of-the-art coupled level set-VOF (see for example [152]).

In addition, the method can be considered as mature, as it has been successfully

applied to the simulation of round liquid jet atomisation by Desjardins et al. [47].

Therefore, the risk associated with implementing and improving such a method is

low.

This chapter first provides a brief overview of the robust conservative level set

method and then describes the main building blocks of this interface-capturing tech-

nique. In particular, the transport of the level set scalar is detailed in Section 7.2,

the calculation of the interface normal is presented in Section 7.3 and the flux lim-

iter algorithm is explained in Section 7.4. Finally, the performance of the method

is assessed in Section 7.5.
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7.1 Overview of the method

As for the CLS method, the level set field transported, ϕ, can be initialised as a

hyperbolic tangent profile of the signed distance function from the interface (φ).

Introducing ǫ, a coefficient controlling the thickness of the interface, the field ϕ

reads:

ϕ =
1

2

(
1 + tanh

(
φ

2ǫ

))
(7.1)

With such a definition for the level set field ϕ, the phase boundary is located at

ϕ = 1
2
. Although the hyperbolic tangent profile localises the phase transition in the

close vicinity of the interface, ϕ only tends to zero or one, at an infinite distance

in, respectively, the gas phase or the liquid phase. To mitigate this issue, the solver

as designed also offers the opportunity to set the initial field as the following sine

profile:

ϕ =






0 if φ < −ǫ
1

2
+
φ

2ǫ
+

1

2π
sin

(
πφ

ǫ

)
if − ǫ ≤ φ ≤ ǫ

1 if φ > ǫ

(7.2)

The profile given in (7.2), will guarantee that the transition region will not be

bigger than 2ǫ.

As in [163, 164], the level set field ϕ represents the liquid volume fraction and we

are taking advantage of the constant thickness of the interface to apply the surface

tension via the continuum surface force method. As a result the material properties

are given by:

ϕ =





ρ = ρgas + (ρliq − ρgas)ϕ

µ = µgas + (µliq − µgas)ϕ
(7.3)

As the interface is of constant thickness, this method is analogue to a phase field

method (see for example [100]). Therefore, it offers the possibility to implement

additional equations to describe the interface behaviour on a mesoscopic scale.

The robust conservative level set method (RCLS) that we have developed for

finite volume general unstructured meshes operates in three steps:
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1. Advection of the liquid volume fraction ϕ.

2. Re-initialisation of the level set field to maintain the interface thickness con-

stant.

3. Adjustment of the flux of liquid volume fraction to maintain boundedness.

The steps 1 and 2 are described in Section 7.2, and the third step is presented in

Section 7.4. The calculation of the interface normal, required by the re-initialisation

step, is detailed in Section 7.3.

7.2 Transport of the level set

7.2.1 Mathematical formulation

In the general case, the transport of the liquid volume fraction ϕ can be expressed

by the equation (7.4). Introducing the velocity vector u = (u, v, w), (7.4) reads:

∂ϕ

∂t
+ u · ∇ϕ = 0 (7.4)

As we are assuming an incompressible framework, (7.4) can be re-written as the

following hyperbolic conservation law:

∂ϕ

∂t
+ ∇ · (ϕu) = 0 (7.5)

Even high-order numerics such as the WENO scheme described in Chapter 6

will eventually diffuse the interface. As a result, there is a need to re-initialise the

level set profile ϕ to maintain the interface thickness constant. To achieve that,

a compression flux is applied normally to the interface in the transition region.

Because the compression flux alone would reduce the interface thickness to nearly

zero, leading to a less robust method, a diffusion term is added in the re-initialisation

equation. This diffusion term is also applied in the direction normal to the interface,

to prevent any tangential diffusion from moving the phase boundary. Introducing
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the interface normal, n̂, and the artificial time, τ , along which the equation is solved,

the re-initialisation equation reads:

∂ϕ

∂τ
+ ∇ · (ϕ (1 − ϕ) n̂) = ǫ∇ · ((∇ϕ · n̂) n̂) (7.6)

which can be re-written as the following conservation law:

∂ϕ

∂τ
+ ∇ ·

((
ϕ (1 − ϕ) − ǫ (∇ϕ · n̂)

)
n̂
)

= 0 (7.7)

The above equation is solved to steady state, i.e. until the initial level set profile

is recovered. All the way through this iterative process, the interface normal, n̂, is

kept constant.

7.2.2 Finite volume discretisation

We choose to calculate the numerical fluxes using the exact Riemann solver for

both (7.5) and (7.7). As the numerical formulation of the advection equation has

already been given in Section 6.4, we will focus on the re-initialisation equation in

this sub-section.

Outline of the numerical formulation

In order to solve equation (7.7), we choose to view it as a hyperbolic conservation law

in which the gradient ∇ϕ, in the diffusion term, is considered as a constant vector

field during each artificial time step m. This gradient is then updated after each

iteration of the re-initialisation step. As the normal to the interface is kept constant

all the way through the re-initialisation step, the dot product in the diffusion term

is constant for each ∆τ . In the rest of this section, we note this constant scalar field

ϕ
(m)
n̂ for the mth artificial time step, so that we have:

(∇ϕ · n̂)(m) = ϕ
(m)
n̂ (7.8)

This approach incurs a “splitting error” in artificial time. However, as we are

solving the re-initialisation problem to steady state, the accuracy of the artificial
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time evolution is not important. Besides, as we use a Runge-Kutta (RK) scheme

for the temporal discretisation, we introduce a stronger coupling with the diffusion

term as we update the gradient field after each RK sub-step.

In [163], Olsson and Kreiss solve the above equations on Cartesian grids using

a total variation diminishing (TVD) scheme with a Superbee limiter. They in-

troduce the diffusion term in the re-initialisation equation to stabilise their CLS

method. With our numerical formulation — conservative finite volume WENO

scheme and exact Riemann solver — only simulations involving very large density

ratios (ρliq/ρgas ≈ 1000) require the diffusion term to be stable.

Alternative numerical treatment

We have also considered treating the equation (7.6) as a hyperbolic conservation law

with a source term; the source term being the diffusion term. Such a PDE can be

solved by splitting (7.6) into the compression problem (7.9) and the source problem

(7.10). This approach also incurs a “splitting error” in artificial time.

The compression problem is given by the following homogeneous non-linear hy-

perbolic equation:
∂ϕ

∂τ
+ ∇ · (ϕ (1 − ϕ) n̂) = 0 (7.9)

It yields the intermediate scalar field ϕ(1) which serves as initial condition for the

following source problem:

∂ϕ(1)

∂τ
= ǫ∇ ·

((
∇ϕ(1) · n̂

)
n̂
)

(7.10)

Regardless of the temporal discretisation employed to solve (7.9) and (7.10),

Runge-Kutta or Euler, no significant differences with the other approach were no-

ticed. As the first approach — which includes the diffusion term in the flux calcula-

tion — is marginally faster and appears to be more rigorous, it has been implemented

in the final version of the code.
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Derivation of the numerical flux

Let us consider a discretisation of the computational domain involving conforming

elements Ei of volume |Ei| and boundary ∂Ei. Integrating (7.7) over the element

Ei leads to:

∫∫∫

Ei

∂ϕ

∂τ
dEi +

∫∫∫

Ei

∇ ·
((
ϕ (1 − ϕ) − ǫϕ

(m)
n̂

)
n̂
)

dEi = 0 (7.11)

Applying the divergence theorem to (7.11) and simplifying leads to:

d

dτ
ϕi +

1

|Ei|

∫∫

∂Ei

(
ϕ (1 − ϕ) − ǫϕ

(m)
n̂

)
n̂ · n d(∂Ei) = 0 (7.12)

where n is the outward unit vector normal to the surface ∂Ei.

Splitting the integral over the contour of the element ∂Ei into Li integrals over

the faces Fl of Ei, and introducing the outward unit vector normal to Fl: nl, we

re-write (7.12) as:

d

dτ
ϕi +

1

|Ei|

Li∑

l=1

∫∫

Fl

(
ϕ (1 − ϕ) − ǫϕ

(m)
n̂

)
n̂ · nl d(Fl) = 0 (7.13)

Introducing the coordinates of the normal to the interface n̂ = (n̂x, n̂y, n̂z), (7.7)

can be re-written in terms of the coordinates (x, y, z):

0 =
∂ϕ

∂τ
+

∂

∂x

(
n̂x
(
ϕ (1 − ϕ) − ǫϕ

(m)
n̂

))
+

∂

∂y

(
n̂y
(
ϕ (1 − ϕ) − ǫϕ

(m)
n̂

))

+
∂

∂z

(
n̂z
(
ϕ (1 − ϕ) − ǫϕ

(m)
n̂

))
(7.14)

Comparing equation (7.14) to equation (6.1) provides the following equalities:






F (ϕ) = n̂x
(
ϕ (1 − ϕ) − ǫϕ

(m)
n̂

)

G (ϕ) = n̂y
(
ϕ (1 − ϕ) − ǫϕ

(m)
n̂

)

H (ϕ) = n̂z
(
ϕ (1 − ϕ) − ǫϕ

(m)
n̂

)
(7.15)
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so that we have:




A = (F,G,H)

=
(
n̂x
(
ϕ (1 − ϕ) − ǫϕ

(m)
n̂

)
, n̂y
(
ϕ (1 − ϕ) − ǫϕ

(m)
n̂

)
, n̂z
(
ϕ (1 − ϕ) − ǫϕ

(m)
n̂

))

Anl
(ϕ−, ϕ+) = A · nl

(7.16)

The re-initialisation equation can then be expressed in the following finite volume

form:
d

dτ
ϕi +

1

|Ei|

Li∑

l=1

∫∫

Fl

Anl

(
ϕ−, ϕ+

)
d(Fl) = 0 (7.17)

As for the linear equation (see Section 6.4) and the Burgers’ equation (see Sec-

tion 6.5), simple manipulations of (7.14) demonstrate its rotational invariance ac-

cording to:

A · nl = (F,G,H) · nl = nlxF + nlyG+ nlzH = F̂ (7.18)

where F̂ is the flux vector expressed in the direction nl, the first axis of the rotated

Cartesian frame (nl, sl, tl). Introducing ϕ
(m)
n̂ the face-averaged gradient of the level

set in the direction of the normal to the interface, the expression for F̂ reads:

F̂ = (n̂ · nl)
(
ϕ (1 − ϕ) − ǫϕ

(m)
n̂

)
= n̂nl

(
ϕ (1 − ϕ) − ǫϕ

(m)
n̂

)
(7.19)

Therefore, the flux across Fl is given by the one-dimensional equation:

∂ϕ

∂τ
+
∂F̂

∂nl
= 0 (7.20)

Equation (7.20) leads to the Riemann problem:

PDE:
∂ϕ

∂τ
+

∂

∂nl

(
n̂nl

(
ϕ (1 − ϕ) − ǫϕ

(m)
n̂

))
= 0

IC: ϕ (nl, 0) = ϕ0 (nl) =





ϕ− if nl < 0

ϕ+ if nl > 0






(7.21)

For the PDE (7.21), the characteristic speed λ (ϕ) is given by:

λ (ϕ) =
dF̂

dϕ
= n̂nl

(1 − 2ϕ) (7.22)
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Equation (7.21) admits an exact solution:

If λ (ϕ−) > λ (ϕ+) : ϕ (nl, τ) =





ϕ− if nl − Sτ < 0

ϕ+ if nl − Sτ > 0

with: S = ∆ bF
∆ϕ

= n̂nl
(1 − (ϕ− + ϕ+))

If λ (ϕ−) ≤ λ (ϕ+) :






ϕ (nl, τ) = ϕ− if nl

τ
≤ λ (ϕ−)

λ (ϕ) = nl

τ
if λ (ϕ−) < nl

τ
< λ (ϕ+)

ϕ (nl, τ) = ϕ+ if nl

τ
≥ λ (ϕ+)






(7.23)

so that the flux Anl
(see (7.16)) across Fl (i.e. at nl = 0 with t > 0), reads:

If λ (ϕ−) > λ (ϕ+) : Anl
(ϕ−, ϕ+) =






n̂nl

(
ϕ− (1 − ϕ−) − ǫϕ

(m)
n̂

)
if S > 0

n̂nl

(
ϕ+ (1 − ϕ+) − ǫϕ

(m)
n̂

)
if S < 0

with: S = n̂nl
(1 − (ϕ− + ϕ+))

If λ (ϕ−) ≤ λ (ϕ+) :

Anl
(ϕ−, ϕ+) =






n̂nl

(
ϕ− (1 − ϕ−) − ǫϕ

(m)
n̂

)
if 0 ≤ n̂nl

(1 − 2ϕ−)

n̂nl

(
1
4
− ǫϕ

(m)
n̂

)
if n̂nl

(1 − 2ϕ−) < 0 < n̂nl
(1 − 2ϕ+)

n̂nl

(
ϕ+ (1 − ϕ+) − ǫϕ

(m)
n̂

)
if 0 ≥ n̂nl

(1 − 2ϕ+)






(7.24)

As explained in Section 6.3.3, when considering non-linear hyperbolic equations

such as (7.8), the Riemann problem has to be solved locally, i.e. for each point of

the Gaussian quadrature. The overall flux through the face is then integrated over

Fl.
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7.2.3 Temporal discretisation

Noting the time variation of ϕ: L (ϕ), the finite volume form of an hyperbolic

conservation law then reads:

d

dt
ϕi = − 1

|Ei|

Li∑

l=1

∫∫

Fl

Anl

(
ϕ−, ϕ+

)
d(Fl)

= L (ϕ) (7.25)

Runge-Kutta schemes

We have chosen to use Runge-Kutta schemes for both the advection and the re-

initialisation steps. Introducing αi,k and βi,k, the coefficients of a general Runge-

Kutta scheme, the liquid fraction at the ith Runge-Kutta iteration is given by the

formula below:

ϕ(i) =
i−1∑

k=0

αi,kϕ
(k) + βi,k∆tL

(
ϕ(k)

)
(7.26)

We choose the three-stage, third-order strong-stability preserving (SSP) Runge-

Kutta scheme of Shu and Osher [230]: SSP(3, 3). This scheme is widely used in

conjunction with WENO schemes because of its stability and accuracy [169, 269].

The coefficients of this scheme are given in the table below.

Table 7.1: Coefficients of the Runge-Kutta scheme SSP(3, 3) of Shu and Osher [230]

αi,k βi,k

1 1

3
4

1
4

0 1
4

1
3

0 2
3

0 0 2
3

Other SSP Runge-Kutta schemes were tested (taken from [269]), but the SSP(3, 3)

offered the best trade-off between stability, accuracy and computational cost for our

numerical formulation.
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The solution of the incompressible Navier-Stokes equations in OpenFOAM admits

the volumetric flow rate as a variable instead of the velocity. As a result, in order

to update the volumetric flow rate after the transport of the liquid volume fraction

ϕ, it is necessary to derive the contribution to the flux for each Runge-Kutta step.

The expression for the liquid volume fraction at the end of the Runge-Kutta

scheme (iteration n) can be re-written as:

ϕ(n) = Kαϕ
(0) +

n−1∑

k=0

Kβk∆tL
(
ϕ(k)

)
(7.27)

where the coefficients Kα and Kβk are functions of the coefficients of the RK scheme,

αi,k and βi,k, designed such that:

Kα = 1 (7.28)

n−1∑

k=0

Kβk = 1 (7.29)

The contribution to the total flux of the kth RK iteration has to be weighted

by the coefficient Kβk. We have demonstrated that Kβk is given by the following

formula:

Kβk =

n−k−1∑

j=0

Ck+j (7.30)

with:

j = 0 : Ck = βi,k

j = 1 : Ck+1 = αi,k+1 × βk+1,k

j ≥ 2 : Ck+j = αi,k+j ×
(
βk+j,k +

j−1∑
m=1

αk+j,k+m × Cm+k

αi,k+m

)






(7.31)

Stability restrictions on the artificial time step

As the temporal discretisation of the re-initialisation equation is performed with an

explicit scheme, it is necessary to consider the stability restrictions associated with
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the numerical solution of (7.7). Olsson and Kreiss identify the viscous term in (7.7)

as the driver of numerical instabilities and suggest the following condition [163]:

∆τ ≤ K
(∆x)2

ǫ
(7.32)

From numerical experiments conducted with a Runge-Kutta scheme, Olsson and

Kreiss established that the stability is typically obtained with: K = 1
4
.

7.2.4 Choice of the parameter ǫ

The main parameter of the conservative level set method is the coefficient ǫ that

drives the spread of the hyperbolic tangent profile in (7.1). Therefore ǫ effectively

controls the thickness of the phase transition.

From (7.1), it is clear that ϕ ∈ [0; 1]. However, as mentioned in Section 7.1, the

level set scalar only reaches exactly zero and one at infinity in the gas and liquid

phases respectively. As a result, the width of the phase transition is estimated using

threshold values for the liquid volume fraction. The hyperbolic tangent profile being

symmetrical around ϕ = 1/2, we take: ϕlow = 0.05 and ϕhigh = 1 − ϕlow = 0.95

which concentrates 90% of the phase transition. Then, we have the following formula

for the interface thickness δ:

δ = 2ǫ ln

(
1 − ϕlow
ϕlow

)

≈ 6ǫ (7.33)

It is preferable to model the interface as thin as possible, since a sharp interface

represents better the reality of the physics and involve less smearing of the material

properties and the surface tension. A small ǫ is also desirable to minimize the

effect of the re-initialisation step. Indeed, although Olsson et al. proved that the

re-initialisation step would not move the phase boundary (ϕ = 0.5) in 1D [164],

this property has yet to be demonstrated for two and three-dimensional domains.

However, if ǫ −→ 0 it is certain that the re-initialisation step will not move the

0.5-contour of ϕ.
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Nevertheless, the interface needs to have a minimal thickness, so that the gradient

of ϕ and the interface normal are accurately calculated. A minimum value for ǫ also

results from a “stability study” of the 1D re-initialisation equation. Olsson et al.

performed this study for a finite element method in [164]. We will apply below the

same methodology for finite volume methods. Let us re-write the equation (7.11) in

the one-dimensional case:

∫

Ei

∂ϕ

∂τ
dEi +

∫

Ei

∇ ·
((
ϕ (1 − ϕ) − ǫϕn̂

)
n̂
)

dEi = 0 (7.34)

As we are solving the re-initialisation equation to steady-state, we are effectively

seeking ϕn that satisfies the following equality in 1D:

xi+1∫

xi

ϕn (1 − ϕn) dx = ǫ

xi+1∫

xi

ϕnx dx (7.35)

where xi and xi+1 are the borders of the 1D element Ei along the coordinate x.

We note: hi = xi+1 − xi , ϕi = ϕn (xi) and ϕi+1 = ϕn (xi+1). In a finite volume

framework, the scalar ϕ is constant and equal to ϕi over each element Ei centred

on xi. Assuming the xi of the 1D mesh equidistant, then equation (7.35) will read

after integration:

hi
2

(
ϕi (1 − ϕi) + ϕi+1 (1 − ϕi+1)

)
= ǫ (ϕi+1 − ϕi) (7.36)

In the case where ϕi ≈ ϕi+1 ≈ 0, linearising the above equality around zero leads

to:

ϕi+1 ≈
ǫ+ hi/2

ǫ− hi/2
ϕi (7.37)

As a result, if ǫ < hi/2, ϕi and ϕi+1 will have opposite signs and ϕn may oscillate.

A similar analysis when ϕi ≈ ϕi+1 ≈ 1 leads to:

ϕi+1 ≈
ǫ− hi/2

ǫ+ hi/2
ϕi +

hi
ǫ+ hi/2

(7.38)
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Therefore, the same constraint appears in the general case when linearising around

unity. However, instability is less likely as the formula relating ϕi+1 to ϕi involves a

second term which is always positive.

In conclusion of this stability study, in order to maintain a stable solution of the

re-initialisation equation, it is necessary to choose:

ǫ ≥ 1

2
∆x (7.39)

On unstructured grids, as the mesh size varies, it is safer to take ǫ ≥ 1
2
max (∆x).

After Olsson and Kreiss, we choose to take ǫ proportional to the grid size:

ǫ = C∆x (7.40)

The consequence of that choice is twofold:

• The equations solved for the transport of the liquid volume fraction change as

the grid is refined.

• As ∆x decreases, the profile of the conservative level set in the phase transition

region is resolved using the same number of cells.

Olsson and Kreiss recommended to use ǫ = C (∆x)1−d with d ∈ [0; 1] when

convergence could not be obtained. In particular, they used d = 0.1 in one of the

numerical tests of [163].

7.2.5 Initialisation of the conservative level set field

On simple test cases, the signed distance function from the interface, φ, may be

calculated analytically so that the initial conservative level set field ϕ(0) can be

easily derived by applying the formula (7.1) in each cell of the mesh.

If the field cannot be calculated analytically, one way to obtain ϕ(0) is to compute

φ first by solving the re-distancing equation (3.27) to steady state [32, 242, 244] or

by using Sethian’s fast marching method [229]. However, none of these methods

exists for general polyhedral meshes.
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Another option, described by Olsson and Kreiss in [163], is to initialise ϕ as

a VOF field — setting 0 in the cells containing gas and 1 in the cells containing

liquid — and then to solve the re-initialisation equation (7.7) to steady state. This

procedure will produce an initial conservative level set field of reasonable quality.

For a generic distribution of liquid on a general polyhedral mesh, this is the only

viable method.

7.3 Calculation of the interface normal

7.3.1 Mathematical formulation

The face-averaged gradient, ∇ϕx, is required for the calculation of the interface

normal, the non-linear flux and the surface tension forces. Let us recall the definition

of ∇ϕx below:

∇ϕx =
1

|Fl|

∫∫

Fl

∇ϕx d(Fl) (7.41)

Desjardins observed in [46] that the quality of the gradient field calculation was

important to avoid spurious oscillations. To resolve this issue, we have chosen to

take advantage of the polynomial reconstruction of the scalar field ϕ. As the poly-

nomial reconstruction is performed in a reference space ξ = (ξ, η, ζ) — where scaling

effects do not apply (see Section 6.3.1) — the smeared out liquid volume fraction

ϕ is approximated by a WENO polynomial according to the following formula (see

Chapter 6):

ϕWENO (ξ, η, ζ) = ϕ0 +

K∑

k=1

ãkφk (ξ, η, ζ) (7.42)

where the ãk are the degrees of freedom of the WENO polynomial reconstruction

and the φk (ξ, η, ζ) are the basis functions of the polynomial reconstruction (see

Section 6.3.2).

This polynomial — already calculated by the high-order WENO scheme for the

linear flux of the advection equation — embeds both the essentially non-oscillatory
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characteristic (required to avoid the spurious oscillations mentioned by Desjardins)

and high-order approximation of the gradient.

As the gradient is needed in the physical space, the Jacobian of the mapping

transformation, J , has to be introduced in the calculation, according to:

∇ϕx =
(
J −1

)T ∇ϕξ (7.43)

Based on equations (7.41), (7.42) and (7.43) and recalling that F ′
l is the face Fl

in the mapped space, the following expression can be derived for the face-averaged

gradient:

∇ϕx =
K∑

k=1

ãk

(
1

|F ′
l |
(
J −1

)T
vk

)

︸ ︷︷ ︸
pre-computed

(7.44)

where the vector vk reads:

vk =





Ak

∫∫

F ′

l

ξ(Ak−1)ηBkζCk d(F ′
l )

Bk

∫∫

F ′

l

ξAkη(Bk−1)ζCk d(F ′
l )

Ck

∫∫

F ′

l

ξAkηBkζ (Ck−1) d(F ′
l )





(7.45)

The added cost for the above calculation is fairly small as the the degrees of

freedom are computed for the flux determination and since the terms multiplying

the ãk in (7.44) are precomputed.

Besides, the integrals of the monomials in (7.45) are simple combinations of the

volume integrals of the monomial and the surface integrals of the basis functions.

Let us recall the definition of the basis functions:

φk = ψk −
1

|E ′
i|

∫∫∫

E′

i

ψk d (E ′
i) (7.46)

with: {ψk} = ξ, η, ζ, ξ2, ξ · η, . . . , ζr k = 1, . . . , K.
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It results that the integrals of the monomials, ψk, involved in vk can be calculated

from: ∫∫

F ′

l

ψk d (F ′
l ) =

∫∫

F ′

l

φk d (F ′
l )

︸ ︷︷ ︸
pre-computed for the flux

−|F ′
l |

|E ′
i|

∫∫∫

E′

i

ψk d (E ′
i)

︸ ︷︷ ︸
pre-computed for Ajk

(7.47)

As a result, even the pre-processing step is not expanded significantly as both of

the integrations on the r.h.s. of (7.47) have already been performed: the first one

for the flux calculation and the second one for the polynomial reconstruction.

7.3.2 Numerical tests

The performance of the high-order approximation of the gradient has been tested

on a triangular grid. The conservative level set has been set such that the contours

of ϕ follow a sine function (see Figure 7.1). Besides, various interface thicknesses

have been considered: in this study the CLS parameter ǫ takes values in the range:

[0.5; 2].

ǫ = 0.5∆x ǫ = 1∆x ǫ = 2∆x

Figure 7.1: Contour plots of the CLS field for gradient performance tests — Interface

thicknesses: ǫ = 0.5∆x, 1∆x, 2∆x

The performance of the high-order gradient approximation has been measured

against a typical low-order gradient calculation that provides the face-averaged gra-
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dient
(
∇ϕ
)
l
for the face Fl. The determination of

(
∇ϕ
)
l
is based on the cell-averaged

gradient of the elements Ei and Ej separated by the face Fl. Introducing the face-

interpolated scalar ϕl and the centres Cl, Ci and Cj of respectively Fl, Ei and Ej ,

the application of Gauss’ theorem to
(
∇ϕ
)
i
leads to:

(
∇ϕ
)
i
=

1

|Ei|
Li∑
l=1

ϕl |Fl|nl where:






ϕl = fxϕi + (1 − fx)ϕj

fx =
|Cl − Cj|

|Cl − Cj| + |Cl − Ci|
(7.48)

Applying the same face-interpolation method to the gradient, the face-averaged

gradient then reads:

(
∇ϕ
)
l
= fx

(
∇ϕ
)
i
+ (1 − fx)

(
∇ϕ
)
j

(7.49)

The results of the computations are shown in Figure 7.2 and 7.3. Figure 7.2

compares the low and high-order approaches in terms of gradient magnitude for

three different thicknesses: ǫ = 0.5, ǫ = 1 and ǫ = 2. Similarly, in Figure 7.3, the

performance of the low and high-order calculations are compared for the horizontal

component (direction x) of the gradient. The component of the gradient in the

vertical direction is not shown here as it closely matches the gradient magnitude.

The contour plots in Figure 7.2 and 7.3 demonstrate the superior performance of

the high-order gradient calculation. In particular, in Figure 7.2, the contour plots

clearly show that the gradient is sharper with the high-order approach. Besides, the

convoluted sine shape of the interface does not affect the quality of the high-order

gradient which remains homogeneous all along the contours of ϕ. This is not the

case for the low-order approach. Indeed, regardless of the interface thickness, the

contour plots of low-order gradient magnitude presents several irregularities along

the phase boundary at ϕ = 1
2
.

In Figure 7.3, the contour plots of the x-component of the low-order gradient also

show some irregularities near the phase boundary, where the variation of ϕ is the
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steepest. This suggests a tendency for the low-order method to generate spurious

oscillations. In addition, the low-order method is affected by the type of mesh.

This is particularly obvious for the thickest interface. As expected, the high-order

gradient is free of spurious oscillations and copes remarkably well with unstructured

meshes.

In conclusion, the high-order gradient calculation offers a significant gain in ac-

curacy and is free from spurious oscillations.

NB: By default, the modelling capability calculates the gradient of ϕ using the

high-order approach. However, the gain in performance offered by this method

may vary, depending on the test case considered. For example, no significant

improvements were observed for the Rayleigh-Taylor instability test case. To

offer more flexibility to the user, the code leaves the option to revert back to

the low-order approach to save computational time.
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Low order High order

ǫ = 0.5∆x

ǫ = 1∆x

ǫ = 2∆x

Figure 7.2: Comparative performance of the gradient calculation: low order vs. high

order — Gradient magnitudes for interface thicknesses: ǫ = 0.5∆x, 1∆x, 2∆x
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Low order High order

ǫ = 0.5∆x

ǫ = 1∆x

ǫ = 2∆x

Figure 7.3: Comparative performance of the gradient calculation: low order vs. high

order — Gradient in the direction x for interface thicknesses: ǫ = 0.5∆x, 1∆x, 2∆x
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7.4 Multidimensional universal limiter with ex-

plicit solution

As noted in [46, 269], WENO schemes are not necessarily total variation bounded

(TVB), even when coupled with a total variation diminishing (TVD) Runge-Kutta

time integration. However, as our conservative level set field represents the liquid

volume fraction in the domain, non-physical values of ϕ such that ϕ < 0 or ϕ > 1

cannot be tolerated. Indeed, such non-physical values may worsen over millions of

time steps and eventually the density, calculated from ϕ, may end up negative in

some cells. This would then crash the solver employed to solve the Navier-Stokes

incompressible equations.

As a result, we decided to use the multidimensional universal limiter with explicit

solution (MULES) of Weller [166], used by default in OpenFOAM to maintain the

boundedness of the VOF field. It is worth mentioning that the addition of such a

flux limiter algorithm to the RCLS will reduce the overall order of accuracy of the

interface-capturing method [3].

To our knowledge, Weller has not presented his algorithm in any publication. The

only available description of the method is given by Massé in [148]. This section

presents the MULES method based on Massé’s thesis and on OpenFOAM’s routine

for MULES.

7.4.1 Overview of the method

MULES calculates a limited flux through the face Fl, F̂L,l, for the liquid volume

fraction ϕ such that for each cell Ei, the conservative level set at time tn+1, ϕ
(n+1)
i ,

remains bounded by the minimal and maximal values of the solution in its neigh-

bouring cells Ejl at the previous time step tn :

min
jl

(
ϕ

(n)
jl

)
≤ ϕ

(n+1)
i ≤ max

jl

(
ϕ

(n)
jl

)
jl = 1, · · · , Li (7.50)
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Let us note ϕ
(n+1)
i,min and ϕ

(n+1)
i,max , respectively the minimum and the maximum ad-

missible values for ϕ
(n+1)
i in (7.50). To ensure that no non-physical values will be

propagated, both ϕ
(n+1)
i,min and ϕ

(n+1)
i,max are then clipped between 0 and 1, using the

following clipping operator:

clip (x) = max (min (x, 1) , 0) (7.51)

MULES follows the basic principles of the flux-corrected transport (FCT) of Boris

and Book [22–24], in the format described by Zalesak [284]. In order to satisfy the

boundedness criterion (7.50), MULES calculates the limited flux F̂L,l through Fl

face by face by taking the weighted average of two fluxes for ϕ:

• The flux computed with a first-order upwind scheme for the advection equation

only: F̂U,l. This flux leads to a bounded solution but is diffusive.

• The sum of the fluxes computed with the high-order scheme (see Chapter 6),

F̂HO,l, for both the advection equation and the re-initialisation equation. This

flux leads to a high-order accurate solution that is not systematically bounded.

As the weighting varies from face to face, the FCT computation of the limited flux

is non linear.

Introducing the limiter factor λl — calculated for each face Fl of the mesh — the

expression for the limited flux then reads:

F̂L,l = (1 − λl) F̂U,l + λlF̂HO,l (7.52)

The flux of liquid volume fraction F̂l through a given face Fl represents the amount

of liquid going through Fl during a given time step ∆t. Although not numerically

calculated as such, the flux is physically identical to:

F̂l = |Fl| (Ul · nl)ϕ

where Ul is the face-averaged velocity vector over Fl and nl is the outward face

normal of the cell considered Ei. As a result, the flux is positive when the liquid is
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exiting the cell Ei and negative when entering it. Of course, for two neighbouring

cells Ei and Ej , separated by the face Fl, the flux through Fl is equal in magnitude

and of opposite sign for each cell.

Introducing the correction flux F̂C,l defined as the difference between F̂HO,l and

F̂U,l:

F̂C,l = F̂HO,l − F̂U,l (7.53)

The expression for the limited flux (7.52) can then be re-written as:

F̂L,l = F̂U,l + λlF̂C,l (7.54)

Once the limiter factor computed and the limited flux calculated according to

(7.54), the scalar field ϕ is updated using an Euler time integration, such that:

ϕ
(n+1)
i = ϕ

(n)
i − ∆t

|Ei|

Li∑

l=1

F̂L,l (7.55)

7.4.2 Determination of the limiter factor

The limiter factor λl is calculated iteratively such that the boundedness condition

(7.50) is satisfied. λl directly derives from the re-formulation of the condition (7.50)

in terms of fluxes. The bounds for the liquid volume fraction in Ei at time tn+1

correspond, in terms of fluxes, to the maximum temporal variation of liquid volume

in Ei,
(

∆Vliq

∆t

)

i
:

• The minimum ϕ
(n+1)
i,min corresponds to the maximum decrease of liquid volume

in Ei.

• The maximum ϕ
(n+1)
i,max corresponds to the maximum increase of liquid volume

in Ei.
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These temporal variations — homogeneous to a flux — read respectively:






(
∆Vliq
∆t

)outmax

i

=
ϕ

(n)
i − ϕ

(n+1)
i,min

∆t
|Ei|

(
∆Vliq
∆t

)inmax

i

=
ϕ

(n+1)
i,max − ϕ

(n)
i

∆t
|Ei|

(7.56)

so that fluxes limited by the temporal variations in (7.56), will lead to a bounded

solution for ϕ.

Weller’s algorithm searches iteratively the maximum value of λl that satisfies the

boundedness criterion. Starting from λ
(0)
l = 1 — i.e. F̂L,l = F̂HO,l — which leads to a

high-order accurate solution, the algorithm progressively increases the contribution

of F̂U,l to the flux by reducing λl.

To achieve that, the fundamental principle of MULES is to split the sum of

correction fluxes for a given cell Ei into the sum of outflow and the sum of inflow

correction fluxes. Then, in each cell, and at a given iteration k of the algorithm, an

average limiter factor (λouti )
(k)

is defined for all the faces that support an outflow

correction flux and another one (λini )
(k)

is defined for all the faces that support an

inflow correction flux.

These average limiter factors are introduced in the boundedness conditions ex-

pressed in terms of fluxes. These conditions then read:

(
∆Vliq
∆t

)outmax

i

=
(
λouti

)(k)∑

l,out

F̂C,l −
∑

l,in

λ
(k−1)
l F̂C,l +

Li∑

l=1

F̂U,l (7.57)

(
∆Vliq
∆t

)inmax

i

=
(
λini
)(k)∑

l,in

F̂C,l −
∑

l,out

λ
(k−1)
l F̂C,l −

Li∑

l=1

F̂U,l (7.58)
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where the sums of outflow and inflow fluxes in Ei are calculated the following way

for a given flux F̂l: 




∑

l,out

F̂l =

Li∑

l=1

max
(
F̂l, 0

)

∑

l,in

F̂l =

Li∑

l=1

min
(
F̂l, 0

)
(7.59)

As a flux exiting a cell — and therefore decreasing the amount of liquid volume

in the cell — is positive, the sum of upwind fluxes F̂U,l on all the faces of Ei is then

added on the r.h.s. of (7.57). Similarly, the sum of upwind fluxes is subtracted on

the r.h.s. of (7.58).

The average limiter factors (λouti )
(k)

and (λini )
(k)

are then calculated from (7.57)

and (7.58) respectively.

As can be seen in the boundedness condition relating to the maximum decrease in

liquid volume (7.57), (λouti )
(k)

weights the sum of outflow correction fluxes while the

limiter factor obtained at the previous iteration λ
(k−1)
l weights individually each of

the corresponding inflow correction fluxes. Similarly, in the boundedness condition

relating to the maximum increase in liquid volume (7.58), (λini )
(k)

weights the sum

of inflow correction fluxes while the limiter factor obtained at the previous iteration

λ
(k−1)
l weights individually each of the corresponding outflow correction fluxes.

Then, the algorithm takes as limiter factor for the face Fl at the current iteration

k, λ
(k)
l , the minimum of three values:

• The relevant average limiter factor in one of the adjacent cells Ei: (λouti )
(k)

if

the correction flux through Fl is exiting Ei, (λini )
(k)

otherwise.

• The relevant average limiter factor in the other adjacent cell Ej :
(
λinj
)(k)

if the

correction flux through Fl is entering Ej ,
(
λoutj

)(k)
otherwise.

• The limiter factor at the previous iteration: λ
(k−1)
l .
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The algorithm iterates m times — with m specified by the user — to produce a

final limiter factor λ
(m)
l for each face Fl of the mesh.

7.5 Performance of the method

This section compares the performance of the RCLS with established multiphase

numerical methods:

• The VOF method of OpenFOAM: interFoam

• The accurate conservative level set (ACLS) method of Desjardins et al. [46, 47]

For this comparative study, the RCLS transports the scalar field ϕ using a

WENO3 scheme, the CLS coefficient is set to ǫ = 0.5∆x and the re-initialisation

of the hyperbolic tangent profile is only performed every five time steps (see Sec-

tion 9.2.2).

Comparison with interFoam

The relative performance of the transport algorithms is assessed on the following

test cases (defined in Section 4.2.1): Zalesak’s slotted disk (on a 1282 Cartesian

mesh) and the disk in a deformation field (on a 2562 Cartesian mesh).

As can be seen in Figure 7.4, the RCLS method clearly outperforms interFoam

on both test cases. In particular, the ligament predicted by our transport algorithm

is longer and the interface is free from non-physical wiggles.

Comparison with ACLS

In order to compare the method of Desjardins et al. with the RCLS, we have

performed the computation of the disk in a deformation field as set in [47]. In this

publication, the deformation field defined by the authors differs from the one given

208



Chapter 7. Robust conservative level set method

RCLS interFoam

Zalesak

Spiral

Figure 7.4: Performance of the transport algorithms of interFoam and the RCLS

method — Results for Zalesak’s slotted disk (Zalesak) and the disk in a deformation

field (Spiral)
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RCLS ACLS [47]

Figure 7.5: Performance of the transport algorithms of the ACLS and the RCLS

methods — Results for the disk in a deformation field (as set in [47])

in Section 4.2.1. As in [47], we set the stream function to:

ψ =
1

π
sin2 (πx) cos2 (πx) cos

(
πt

T

)
(7.60)

with T = 8s

The resulting velocity vector u reads:

u =

(
∂ψ

∂y
,−∂ψ

∂x

)
(7.61)

As in [47], the calculation was performed on a 2562 Cartesian mesh with a constant

time step of ∆t = 0.002s. The predicted level set contours are given in Figure 7.5

at t = T
2
, when the stretching is maximal. As can be seen in Figure 7.5, the RCLS

clearly outperforms the ACLS of Desjardins et al. on this test case.
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7.6 Interpretation of the method

The RCLS method transports a scalar ϕ defined as the hyperbolic tangent profile

of the signed distance to the interface. The scalar ϕ is transported in a conservative

manner (see Chapter 6) such that it remains conserved to machine accuracy (Lax

and Wendroff provided some theoretical background for this assertion in [121] and

our numerical experiments, presented in Section 8.4, confirm it). In addition, the

transition between phases, characterised by this hyperbolic tangent profile, is kept

to a constant thickness.

If applied in the same spirit as Olsson and Kreiss [163] and Desjardins et al. [47],

the RCLS method transports a function of the distance to the interface. The phase

boundary being defined by the contour ϕ = 0.5, all the volume encompassed by that

surface can be considered as filled with liquid. Such an interpretation of ϕ leads to

a level set formulation of the RCLS.

However, as the interface thickness is kept constant, the scalar transported ϕ can

be identified to the liquid volume fraction (see Section 7.1). When interpreting ϕ

as such, the RCLS resembles a VOF method with an interface of constant thick-

ness. The interface reconstruction generally required by VOF methods is no longer

required here, as the hyperbolic tangent profile provides a smooth field to calculate

the interface gradient.

The RCLS method can therefore be perceived as both a level set method and a

volume of fluid method.
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A mass-conservative method for

efficient atomisation modelling in

parallel

At run time, the modelling capability developed involves three main building blocks:

the transport of the level set scalar ϕ, the pressure-velocity coupling and the output

of droplet boundary conditions for Lagrangian spray models. All of these operations

are performed in a conservative way such that throughout the whole computation

no mass is lost.

The transport of the level set is the main item of this work and has already been

described in chapters 6 and 7. In this chapter we present the additional building

blocks that make the code readily applicable to the atomisation of liquid sheets. In

particular, the solution of the incompressible Navier-Stokes equations is detailed in

Section 8.1, the algorithm for the droplet transfer is explained in Section 8.2 and

the parallelisation of the whole code is reviewed in Section 8.3. Finally, the perfor-

mance of the modelling capability on typical two-phase flow test cases is reported

in Section 8.4.
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8.1 Solution of the incompressible Navier-Stokes

equations

8.1.1 Conservative formulation

The governing equations for multiphase flows with interface modelling are given

in Chapter 3. Implementing in these equations the CSF description of the sur-

face tension (see Chapter 3), leads to the following conservation formulation of the

incompressible Navier-Stokes equations:

∇ · u = 0 (8.1)

∂ (ρu)

∂t
+ ∇ · (ρu ⊗ u) = −∇p + ρg + σκ∇ϕ+ ∇ · (2µD) (8.2)

where the rate-of-strain tensor D reads:

D =
1

2

(
∇u + (∇u)T

)
(8.3)

In his implementation of the incompressible Navier-Stokes equations, Weller re-

formulates some terms of the momentum equation (8.2). In particular, the viscous

stress term is re-expressed to improve the efficiency of its numerical determination

[208]:

∇ · (2µD) = ∇ ·
(
µ
(
∇u + (∇u)T

))

= ∇ · (µ∇u) + (∇u) · ∇µ+ µ∇ (∇ · u)

= ∇ · (µ∇u) + (∇u) · ∇µ (8.4)

Similarly, a modified pressure pd is introduced to simplify the specification of the

pressure boundary conditions [208]. pd is defined by:

pd = p− ρg · x (8.5)

The gradient of pd then reads:

∇pd = ∇p− ρg − (g · x)∇ρ (8.6)
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Finally, inserting (8.4) and (8.6) into (8.2) leads to the formulation of the momentum

equation as used in the code:

∂ (ρu)

∂t
+∇· (ρu⊗ u) = −∇pd +∇· (µ∇u)+ (∇u) ·∇µ− (g · x)∇ρ+σκ∇ϕ (8.7)

Before describing the solution procedure for the system of equations formed by

(8.1) and (8.7), let us consider the system of linear algebraic equations resulting

from the discretisation of these governing equations.

8.1.2 Systems of linear algebraic equations

Although the methodology presented in this sub-section applies directly to any ten-

sorial quantity, for the sake of clarity we will consider a vector variable u. For each

control volume Ei of a mesh that contains N cells, the discretisation procedure of

the governing equation for u leads to the following algebraic equation at the time

tn:

aiu
n
i +

∑

j

aju
n
j = ri (8.8)

where ui and uj refer to the value of u in, respectively, the considered element Ei

and its neighbours Ej . The coefficients ai, aj and the vector ri result from the

discretisation of the governing equation for u.

As the solution in the considered cell ui depends on the solution in its neighbour-

ing cells uj , writing the equation (8.8) for each control volume produces a systems

of algebraic equations. This system can be expressed in the following matrix form:

AU = R (8.9)

where:

A is a N × N matrix of scalars. This square matrix is sparse and is made of

the ai coefficients on the diagonal and of the aj coefficients elsewhere.
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U is a vector of vectors. This column vector gathers N vectors, one for each

cell in the mesh. In particular, the ith row of the vector U contains ui: the

solution in the cell Ei.

R is a vector of vectors. This column vector gathers N vectors, one for each

cell in the mesh. Similarly to U, the ith row of the vector R contains ri: the

source vector for the cell Ei.

The matrix A can be split into two matrices: a diagonal matrix AD that gathers

the coefficients ai and the matrix AOD which contains the off-diagonal coefficients

aj :

A = AD + AOD (8.10)

AD being diagonal, it only contains N scalar elements that can be stored in the

column vector AD.

Let us now introduce the vector of vectors AH, defined by:

AH = R −AODU (8.11)

The next sub-section, which describes the handling of the pressure-velocity cou-

pling, involves semi-implicit discretisations of the equations (8.1) and (8.7). In that

solution procedure, the data contained in AD and AH is used in conjunction with

terms of the momentum equation treated explicitly. In these data manipulations,

AD and AH should no longer be perceived as vectors but as fields: AD correspond-

ing to a scalar field and AH to a vector field. In order to remain coherent in terms

of notation, we note the scalar field relating to AD: aD and the vector field relating

to AH : aH .

8.1.3 Pressure-velocity coupling

The incompressible Navier-Stokes equations are discretised in a semi-implicit man-

ner such that the restriction on the time step remains low. The pressure veloc-

ity coupling is handled with the pressure-implicit with splitting operators (PISO)
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method of Issa [99]. This non-iterative method proceeds through a series of predic-

tor and corrector steps that approximate the exact velocity and pressure fields with

improving accuracy as the number of PISO loops increases.

The method as implemented in the code involve three steps: the “momentum

predictor”, the “pressure solution” and the “explicit velocity correction” [103]. The

last two steps being iterated as many times as required to reach a given accuracy.

Issa demonstrates that two loops are sufficient if the equations are discretised with

second-order accurate schemes [99].

In his implementation of the PISO algorithm, Weller uses the principle of the

pseudo-staggered grid of the Rhie and Chow interpolation [199] to remove the

checker-board pressure oscillation. In that procedure, Weller introduces the vol-

umetric flow rate Q stored at the face centres. The scalar Ql associated to the face

Fl corresponds to:

Ql = ul · Fl (8.12)

where Fl = |Fl|nl
However, Ql is not calculated directly from (8.12) because the velocity field u

being a collocated variable, ul would have to be interpolated and the field Q would

not satisfy the continuity equation.

It is convenient to use the volumetric flow rate as a variable in a finite volume

framework for incompressible flows because this quantity often appears in the dis-

cretised formulations of the equations through the application of Gauss’ theorem.

Momentum predictor

In order to calculate the predicted velocity Weller applies the following semi-implicit

discretisation to (8.7):

[[
∂ρ [u]

∂t

]]
+J∇·(ρu ⊗ [u])K = −∇pd+J∇·(µ∇ [u])K+(∇u) ·∇µ−(g · x)∇ρ+σκ∇ϕ

(8.13)
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In (8.13), we are using same convention as Weller’s [208, 272], which notes in

double brackets the terms treated implicitly and in single brackets the sought vari-

able of the equation. Therefore in (8.13), while the unsteady term, the convection

term and the diffusion term are treated implicitly, all the other terms are treated

explicitly. Besides, only the velocity vectors in single brackets, [u], are unknown.

As all other quantities are taken from the previous time step, the notation implies

that the convection term is linearised.

Let us detail how the convection and the diffusion terms are discretised:

• The volume integration and the linearisation of the convection term are applied

the following way:

∫∫∫

Ei

∇ · (ρu ⊗ [u]) dEi =

Li∑

l=1

Fl · (ρu ⊗ [u])l

=

Li∑

l=1

(Fl · ul) (ρ [u])l

=

Li∑

l=1

Ql (ρ [u])l (8.14)

in which Ql, taken from the previous time step, satisfies the continuity equa-

tion.

• The volume integration of the diffusion term leads to:

∫∫∫

Ei

∇ · (µ∇ [u]) dEi =

Li∑

l=1

Fl · (µ∇ [u])l

=

Li∑

l=1

µlFl · (∇ [u])l (8.15)

NB: All throughout this section, the subscript l refers to the face value of the

associated quantity.

The solution of the discretised equation (8.13) produces a first guess for the

velocity: u∗ (as noted by Issa in [99]) which does not satisfy the continuity equation.
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Pressure solution

Let us write below the momentum equation without the surface tension force, the

gravity force and the pressure gradient:

∂ (ρu)

∂t
+ ∇ · (ρu ⊗ u) = ∇ · (µ∇u) + (∇u) · ∇µ (8.16)

The equation (8.16) is discretised in the same semi-implicit way as was the equa-

tion (8.7) in the momentum predictor step:

[[
∂ρ [u]

∂t

]]
+ J∇ · (ρu ⊗ [u])K = J∇ · (µ∇ [u])K + (∇u) · ∇µ (8.17)

As described in Section 8.1.2, a semi-implicitly discretised equation such as (8.17)

results in a system of algebraic equations that can be put in a matrix form. We note

A, the matrix of that algebraic system.

Two fields are then constructed from the system of algebraic equations resulting

from (8.17) (see Section 8.1.2):

• A scalar field aD gathering the diagonal coefficients of A.

• A vector field aH built from the off-diagonal coefficients of A, the source vector

and the predicted velocity field u∗.

Introducing aD and aH in (8.13), leads to the following semi-discretised formula-

tion of the momentum equation:

u =
1

aD
(aH − (g · x)∇ρ+ σκ∇ϕ) − 1

aD
∇pd (8.18)

The first term on the right hand side of (8.18) is homogeneous to a velocity, but

lacks the contribution of the pressure gradient to satisfy the momentum equation.

We denote it as uNP and rewrite (8.18) as:

u = uNP − 1

aD
∇pd (8.19)
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Expressing the velocities on the cell face ul as the face interpolation of (8.19) leads

to:

ul = uNPl −
(

1

aD

)

l

(∇pd)l (8.20)

As u is now sought such that it satisfies the continuity equation, introducing (8.19)

in (8.1) leads to:

∇ · uNP = ∇ ·
(

1

aD
∇pd

)
(8.21)

Calculating the volume integration of (8.21) using Gauss’ theorem results in:

Li∑

l=1

Fl · uNPl =

Li∑

l=1

Fl ·
((

1

aD

)

l

(∇pd)l
)

(8.22)

Li∑

l=1

QNP
l =

Li∑

l=1

Fl ·
((

1

aD

)

l

(∇pd)l
)

(8.23)

where QNP
l is the volumetric flow rate associated to uNPl . Weller calculates QNP

l

according to:

QNP
l =

(
1

aD

)

l

(
Fl · (aH)l − (g · x)l Fl · (∇ρ)l + (σκ)l (∇ϕ)l

)
(8.24)

The solution of (8.23) provides the new pressure field noted p∗d by Issa in [99].

Explicit velocity correction

The volumetric flow rates are then updated according to:

Ql = Fl · ul

= Fl ·
(
uNPl −

(
1

aD

)

l

(∇pd)l
)

= QNP
l − Fl ·

((
1

aD

)

l

(∇pd)l
)

(8.25)

As (8.22) is satisfied, the updated volumetric flow rates are conservative.
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Weller then reconstructs the velocity field from Q starting with the following

assumption:
Li∑

l=1

nl (Fl · u) =

Li∑

l=1

nl (Fl · ul) (8.26)

Now, let us introduce the symmetric tensor Dl = nl ⊗ Sl. The dyad Dl has the

following property:

Dl · u = (nl ⊗ Fl) · u

= nl (Fl · u) (8.27)

where Dl maps the velocity vector u onto a vector parallel to nl with a magnitude

|nl| (Fl · u) ≈ Ql. Therefore Dl maps u onto a vector ≈ nlQl.

Introducing (8.27) into (8.26), leads to:

Li∑

l=1

(
(nl ⊗ Fl︸ ︷︷ ︸

Dl

) · u
)

=

Li∑

l=1

nl (Fl · ul) (8.28)

Applying to the left hand side of (8.28) the distributivity of the inner product of a

tensor by a vector, and replacing Fl · ul by the volumetric flow rate Ql on the right

hand side of (8.28) leads to:

(
Li∑

l=1

Dl

)
· u =

Li∑

l=1

nlQl (8.29)

Let us now introduce the symmetric tensor D defined by:

D =

Li∑

l=1

Dl (8.30)

Since D is symmetric and made of real coefficients, it can be inverted. Multiplying

on either side of (8.29) by D−1 finally provides the reconstructed velocity field:

u = D−1 ·
(

Li∑

l=1

nlQl

)

=

(
Li∑

l=1

nl ⊗ Fl

)−1

·
(

Li∑

l=1

nlQl

)
(8.31)
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The velocity field produced by equation (8.31) is the new velocity field denoted as

u∗∗ by Issa in [99]. The solution procedure then repeats the pressure solution and

the explicit velocity correction steps a given number of times. Each new iteration of

the PISO loop starts from the pressure and velocity fields calculated at the previous

PISO iteration.

Typically, the systems of algebraic equations produced for the pressure-velocity

coupling are solved by using either the pre-conditioned conjugate gradient (PCG)

or the generalised geometric-algebraic multi-grid (GAMG).

8.2 Droplet transfer

8.2.1 Motivations

The need for droplet transfer arises from the computational modelling of atomisa-

tion. As described in Chapter 2, the process of atomisation transforms a jet of liquid

into droplets. It generally involves two stages: the primary breakup where drops

are detaching from the core of the liquid jet and the secondary breakup where the

droplets produced at the previous stage further disintegrate into smaller droplets.

Although there are some reliable secondary breakup models, the primary breakup

— highly dependent on the geometry of the injection device — has to be modelled

directly using interface description methods like RCLS. However, the faithful mod-

elling of the spray requires the simulation of both the primary and the secondary

breakups. In order to reduce the computational cost of the modelling capability

Kim et al. [111] had the idea to remove the droplets from the level set formulation

to send them into a Lagrange tracking framework equipped with an appropriate

secondary breakup model.

This strategy allows the modelling capability to represent both types of breakup in

the same computation while significantly reducing the computational cost. Indeed,

as illustrated in Section 4.3, under aero-engine conditions, the droplet size can reduce
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to very small values and the mesh refinement required to resolve such small liquid

structures is unaffordable.

8.2.2 Outline of the method

In our implementation, the droplets satisfying certain criteria (see Section 8.2.4)

are removed from the level set field ϕ at specific times tnR. In order to reduce the

computational cost, this transfer only occurs at the output time step (time step

at which the fields computed are written out by the code). This strategy aims

at providing a better trade-off in terms of computational cost versus resolution of

droplets.

Once identified and removed from the field ϕ, the droplets are then stored in two

ways:

• The level set field associated with the removed droplets is stored into a “Drops”

field. Therefore, “Drops” is the level set field gathering all the drops produced

between tn−1
R and tnR in the state in which they were at tnR. The field “Drops”

has two purposes: it allows us to conduct further analysis on the droplets

(calculation of specific geometrical parameters, etc. . . ) and gives the option

to restart from tnR with the level set field as it was before the droplet removal.

• Some characteristics of the droplets removed at tnR are calculated and stored

in lists (Section 8.2.5). These data are the boundary conditions required by

Lagrange tracking schemes to simulate the spray with a secondary breakup

model. Once produced on a sub-model of a fuel injector, these lists can be

imported by combustion codes for the simulation of the reacting flow in a

combustion chamber.

The algorithm operates the transfer of droplets in five steps:

1. Blob search: this routine searches through the computational domain to iden-

tify coherent liquid structures of any shape and size.
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2. Drop selection: the algorithm searches through the blobs identified and se-

lects the ones that match the droplet criteria (see Section 8.2.4). Because

the selection criteria are based on droplet characteristics, the generation of

the boundary conditions for the Lagrange tracking schemes is also performed

during this step.

3. Transfer drops: the level set field associated to the droplets is removed from

the field ϕ. After this step, the hyperbolic tangent profile is lost.

4. Write drop characteristics: the boundary conditions for the combustion codes

are written out.

5. Re-initialisation of ϕ: the level set field is re-initialised in order to reconstruct

the hyperbolic tangent profile of ϕ. As the re-initialisation is done in a con-

servative way, this step does not affect the mass conservation properties of the

modelling capability.

8.2.3 Identification of blobs

Definition of a blob

We consider blobs as liquid structures of arbitrary shapes, sizes, positions and ve-

locities. The search algorithm defines a blob B as a group of cells Ei that satisfies

the following criteria (see Figure 8.1 for a 1D representation of the criteria given

below):

• The cells Ei are face-neighbours, i.e. each cell of the blob shares at least one

face with another cell of the blob (see Figure 8.3 for an illustration on a 2D

mesh.).

• In each cell of the blob, the liquid volume fraction is above a given threshold

ϕLmin, such that it can be considered as containing some liquid. This condition
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reads:

∀Ei ∈ B : ϕi ≥ ϕLmin (8.32)

• All the cells Ek surrounding the blob B — i.e. sharing at least one face with a

cell Ei of B — have a liquid volume fraction below ϕLmin, such that they can

be considered as “gas”. This condition reads:

∀Ek ∈ {face-neighbours ofEi} : ϕk < ϕLmin (8.33)

Search algorithm

The search algorithm starts by storing all the cells containing liquid into the list

“liqRest”. Then, as long as the list “liqRest” is not empty, the routine performs the

following operations:

1. Consider the first element of “liqRest”: E1

2. Add layers of cells around E1 in a similar way that cells were gathered for the

generation of a central stencil in Chapter 6 (see Section 6.3.1). However, here

the layers consist of face-neighbours of the cells belonging to the previous layer,

that are not already in the blob and that contain some liquid (see condition

(8.32)). The addition of layers is continued until the algorithm produces an

empty list for the current layer. At that point, no face-neighbour with a liquid

volume fraction greater or equal to ϕLmin could be found by the algorithm,

such that the blob is surrounded by “gas”.

3. Remove the cells of the blob constituted from the list “liqRest”. As a result,

that list only gathers cells that contain liquid and that have not yet been

attributed to a blob.
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Figure 8.1: Schematic of a blob on a 1D mesh — Hyperbolic tangent profile (in red),

liquid volume fraction in the blob (light green) and liquid volume fraction outside

of the blob (in purple)

8.2.4 Selection of drops

Definition of a droplet

Once the list of blobs constructed from the level set field ϕ, the selection algorithm

identifies the liquid structures that qualify as droplets. We choose to define a droplet

D as a group of ND cells Ei that satisfies the following criteria:

• A droplet contains at least one cell with a volume fraction above a given

threshold: ϕDmin.

• A droplet has an equivalent diameter Deq smaller than a given threshold:

Dmax.

• A droplet has to be fairly spherical.

• As it is about to be sent into a Lagrange tracking scheme, a droplet should not

be on the verge of coalescing with the core of the liquid jet C (largest liquid

structure).

225



Chapter 8. A mass-conservative method for efficient atomisation modelling in
parallel

Figure 8.2: Illustration of the principle of face-neighbours used to define blobs

The first criterion can be expressed the following way:

∃Ej ∈ D | ϕj ≥ ϕDmin (8.34)

As mentioned in Section 7.2, the solution of the advection equation diffuses the

hyperbolic tangent profile, such that patches of cells containing small amounts of

liquid may appear in the solution. Although the re-initialisation of the profile will

get rid of these patches, the user has the option to solve the re-initialisation equation

only periodically and not at every time step (see Section 9.2.2). In the case of a

droplet transfer occurring between two re-initialisation steps, the criterion (8.34)

guarantees that these patches are not mistaken for droplets.

The limitation on the droplet size (second criterion) reads:

Deq ≤ Dmax (8.35)

Introducing the volume of the droplet VD, the equivalent diameter reads:

Deq =
3

√
6VD
π

(8.36)

This maximum diameter can be set by the user either as a multiple of ∆x (char-

acteristic length scale of the mesh) or as an actual dimension in metres. In order

to simulate directly the secondary breakup or to account for the coalescence of the

blobs, the user may want to keep in the level set formulation all the liquid structures
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that can be resolved by the mesh. However, depending on the parameters of the La-

grangian spray model and on the targeted computational cost, it may be necessary

to increase Dmax.

After Kim et al. [111], we choose the following expression for the sphericity

criterion:

rmax < Deq (8.37)

The condition (8.37) formulates that the maximum radius of the droplet rmax is

smaller than the droplet’s equivalent diameter. We define rmax as the maximum

distance between the centre of mass of the droplet CD and the centre of a cell

belonging to the droplet Ci. The expression for rmax reads:

rmax = max
Ei∈D

(∣∣∣
−−−→
CDCi

∣∣∣
)

(8.38)

This criterion ensures that non-spherical blobs — such as detached ligaments —

remain in the level set field. Typically, detached ligaments would undergo Plateau-

Rayleigh instabilities and breakup into a row of droplets. Such breakup phenomena

are not generally accounted for by Lagrangian spray models.

Berlemont has observed small broken-off droplets flowing back into the core of

the liquid jet in DNS studies of round jet atomisation [1]. To account for this

phenomenon we have introduced a direction criterion in the droplet selection (see

Figure 8.3 for an illustration in 2D). Introducing the droplet and liquid core centres

of mass, respectively CD and CC, and the relative droplet velocity (with respect to

the liquid core):
−→
∆u = uD−uC , we express the direction criterion the following way:

−→
∆u · −−−→CCCD > 0 (8.39)

In order to account for both the droplets flowing towards the liquid core and the

droplets being caught up by the liquid jet, the criterion involves the dot product of

the relative droplet velocity with the relative droplet position (with respect to the

centre of mass of the liquid core). Although this criterion does not guarantee to
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leave in the level set field all the droplets that would coalesce with the liquid core,

it is calculated quickly and remains quite effective.

Figure 8.3: Illustration of the direction criterion for the droplet selection — For the

pictured velocities and positions of the droplet D and the liquid core C, the direction

criterion is not met and D is left in the level set field

Selection algorithm

The selection algorithm progresses through the list of blobs and assesses whether

the current blob qualifies as a droplet. To improve the efficiency of the selection

process, the routine evaluates the droplet criteria in sequence, performing the most

discriminating tests first. As soon as a test is failed, the code skips to the next blob

in the list.

First, the routine identifies the core of the liquid jet and computes its properties

for the determination of the direction criterion. The liquid core is defined as the

largest blob that contains at least NC cells. The minimum number of cells in the

liquid core NC is either set directly by the user or through the specification of the

characteristic length scale of the liquid jet.

Then, the code goes through the list of blobs produced by the search algorithm

and performs the following steps:

1. Test whether the current blob B contains more than NC elements. If so go to

the next blob.

2. Check that the blob contains at least one cell Ej with ϕj ≥ ϕDmin. If it does

not go to the next blob.
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3. Calculate the characteristics of the blobs: volume VB, centre of mass CB, mass-

averaged velocity uB, mass mB and momentum pB. As the calculation of these

quantities involves going through all the cells in the current blob, they are all

performed in the same step.

4. Calculate the equivalent diameter of the blob: DeqB from VB using (8.36). Test

if DeqB is larger than the maximum diameter Dmax. If so, go to the next blob.

5. Calculate the maximum radius of the liquid structure from the blob’s centre

of mass CB by applying (8.38). Test the sphericity of the current blob. If it

does not satisfy the condition (8.37), go to the next blob.

6. If the domain contains cyclic or processor boundary conditions BCcyclic (see

Section 8.3), test if the current blob contains a cell on the border BCcyclic. If

so, go to the next blob.

7. Test the direction criterion for the current blob. If it does not satisfy (8.39),

go to the next blob.

8. At this point of the loop, the current blob has satisfied all the droplet criteria.

Therefore its characteristics, calculated in the previous steps, are stored in the

relevant droplet lists.

8.2.5 Drop characteristics of interest

Droplet removal techniques

As mentioned in Section 7.1, the conservative level set method transports a hyper-

bolic tangent profile ϕ of the signed distance function from the interface φ. As a

result, the level set field ϕ only tends to zero or one, at an infinite distance in,

respectively, the gas phase or the liquid phase. We handle this ambiguity in the

definition of blobs (Section 8.2.3) by considering that a cell Ei contains some liquid
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if the associated level set scalar ϕi is above a minimum threshold ϕLmin. It results,

that several options are available to remove the droplets from the level set field.

Figure 8.4: Illustration of the first droplet removal technique: “option 1”

The code offers to the user two means of removing the droplets. The first option

(“option 1”) is to remove all of the “liquid volume fraction” by setting ϕi = 0 in all

the cells Ei that belong to the considered droplet D. The other option (“option 2”)

is to truncate the profile by removing only ϕi − ϕLmin from each droplet cell, thus

setting ϕi = ϕLmin in each cell of D. Figures 8.4 and 8.5 present the fields obtained

after removing the blob pictured in Figure 8.1 using respectively the first and the

second technique. After the droplet removal the level set field is re-initialised (in a

conservative manner), such that the hyperbolic tangent profile is recovered.

Depending on the technique chosen, the droplet characteristics are not calculated

in the same way. Indeed, it is crucial to account for liquid volume fraction actually

removed in order to maintain mass conservation all the way through the calculation.

Characteristics outputted

Some droplet characteristics are calculated from the amount of liquid in each cell of

the droplet. As a result, depending on the option chosen by the user, two alternative
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Figure 8.5: Illustration of the second droplet removal technique: “option 2”

formulae exist to compute these quantities.

The droplets characteristics calculated and stored by the algorithm are:

• The volume VD, given by:

Option 1: VD =

ND∑

i=1

|Ei|ϕi (8.40)

Option 2: VD =

ND∑

i=1

|Ei| (ϕi − ϕLmin) (8.41)

• The mass mD, calculated from VD according to:

mD = ρliqVD (8.42)

• The centre of mass CD, expressed as:

Option 1:
−−→
OCD =

1

VD

ND∑

i=1

|Ei|ϕi
−−→
OCi (8.43)

Option 2:
−−→
OCD =

1

VD

ND∑

i=1

|Ei| (ϕi − ϕLmin)
−−→
OCi (8.44)
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• The mass-averaged velocity vector uD, given by (8.45) and (8.46) below:

Option 1: uD =
1

VD

ND∑

i=1

|Ei|ϕiui (8.45)

Option 2: uD =
1

VD

ND∑

i=1

|Ei| (ϕi − ϕLmin)ui (8.46)

• The mass-averaged momentum vector pD, calculated from the mass and the

mass-averaged velocity vector using (8.47) below:

pD = mDuD (8.47)

• The equivalent diameter DeqD, calculated according to (8.36).

8.2.6 Test cases

In this section, the performance of the droplet transfer is demonstrated on a static

case and on the Rayleigh-Taylor instability.

Illustration of the algorithm

This basic test case consists in the sole application of the droplet transfer on a given

level set field populated with blobs of various shape, size, position and of different

liquid volume fractions. In this test, no equations are solved such that the only field

modified is ϕ and this modification is done by running the algorithm described in

the above sub-sections. It follows that the direction criterion cannot be tested by

this case.

This test is performed on a the domain D = [−0.5; 0.5]× [−2; 2] metres — in the

frame of reference (O,x,y) — meshed with 9234 triangles and run both in serial

and in parallel. For the parallel run, the domain is decomposed in four sub-domains

by cutting halfway along the x and y directions. The settings of the droplet transfer

for both the serial and parallel runs are given in Table 8.1.
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Table 8.1: Settings of the droplet transfer algorithm for the static test case

Liquid threshold: ϕLmin = 0.01

Droplet threshold: ϕDmin = 0.5

Liquid core size (cells): NC = 1000

Maximum diameter (m): Dmax = 0.2

Removal technique: Option 2

For the serial case, the level set field is initialised with the five following blobs

(from top to bottom in Figure 8.6):

• A small, circular blob with a liquid volume fraction ϕB = 1. This blob is the

only one that qualifies as a droplet.

• A thin ligament with a liquid volume fraction ϕB = 0.6.

• A very large circular blob with a liquid fraction ϕB = 1. Because of its size,

this liquid structure is recognised as the core of the liquid jet by the algorithm.

• A large circular blob with a diameter larger Dmax.

• A small circular blob with a low liquid volume fraction: ϕB = 0.4.

The initial field described above allows us to illustrate all the tests performed

by the selection algorithm except the direction and the cyclic boundary tests. As

expected, the algorithm only removes the small circular blob with ϕB = 1, located

in the top of the domain.

As the five blobs of the serial case sit on the processor boundaries, four blobs are

added in the level set field of the parallel case. These blobs are each placed well

inside a different sub-domain. These additional liquid structures are copies of the
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initial blobs: the droplet, the thin ligament, the large circular blob and the blob

with ϕB = 0.4 (see Figure 8.6).

As expected, the droplet located on the processor boundary fails the cyclic bound-

ary test and only the droplet well inside its sub-domain is removed from the level

set field.

Serial case Parallel case

Initial Final Initial Final

Figure 8.6: Illustration of the droplet transfer on the static test case — On the left:

serial case; on the right: parallel case (sub-domain boundaries drawn in white)

Rayleigh-Taylor instability

This two-phase flow problem is performed on the same triangular mesh as the static

case presented above. The physical parameters for the Rayleigh-Taylor instability

are given in Section 4.2.2 and the settings for the droplet transfer are given in

Table 8.2 below. As the Rayleigh-Taylor instability case only produces droplets

flowing towards the main liquid blob, the direction criterion is toggled off in this

simulation.
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Table 8.2: Settings of the droplet transfer algorithm for the Rayleigh-Taylor insta-

bility case

Liquid threshold: ϕLmin = 0.1

Droplet threshold: ϕDmin = 0.5

Liquid core size (cells): NC = 1000

Maximum diameter (∆x): Dmax = 20

Removal technique: Option 1

The level set fields produced by the computation at time t = 1.2s — ϕ before and

after the droplet transfer and “Drops” — are given in Figure 8.7. As illustrated, the

algorithm only removes from ϕ the liquid structures qualifying as droplets.

8.3 Outline of the parallel implementation

A significant amount of effort has been put in to make the whole modelling capability

parallelisable. Indeed, while the code comes with a 0-halo parallelisation method,

the correct operation of the high-order WENO scheme (see Chapter 6) requires a

n-halo approach.

0-halo parallelisation of OpenFOAM

The 0-halo approach implemented in OpenFOAM consists in dividing the global

domain D in non-overlapping sub-domains Di (see Figure 8.8). The transfer of in-

formation from one sub-domain to the other is therefore performed through the sub-

domain boundaries only. It indicates that the numerical schemes used to discretise

the governing equations become at best second-order accurate at the inter-processor

boundaries.
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ϕ before ϕ after “Drops”

Figure 8.7: Illustration of the droplet transfer on the Rayleigh-Taylor instability

case — On the left: level field before droplet removal; in the middle: level set field

after droplet removal; on the right: “Drops” field

Although this methodology is appropriate for the solution of the incompressible

Navier-Stokes equations discretised with second-order schemes, the 0-halo parallel

transport of the level set, using a high-order scheme, leads to non-physical behaviour

of the interface at the inter-processor boundaries.

n-halo parallel transport of the level set

The n-halo parallelisation of the RCLS alone was first performed by simply pro-

ducing a n-halo decomposition of the domain (see Figure 8.9) and updating in each

extended sub-domain Dhi, the halo cells according to the solution on the neigh-

bouring sub-domains Dhj. The pre-processing variables are then produced for the

extended sub-domains such that the WENO scheme performs with the sought high-

order accuracy on the non-extended part of Dhi.

The halos are produced by gathering layers of cells around the non-extended sub-
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Figure 8.8: Decomposition of the domain using a 0-halo approach [104] — On the

left the global domain; on the right the 0-halo sub-domains

domain Di. The number of layers Nl is a function of the order of the scheme and

is calculated such that the solution in the first layer of halo cells L1, is high-order

accurate. This ensures that the flux exchanged between Di and L1 is high-order

accurate, such that the solution is properly calculated in all the cells of the non-

extended part of Dhi.

However, the modelling capability involves not only the transport of the level set

but also the solution of the pressure-velocity coupling. As the incompressible Navier-

Stokes equations are discretised semi-implicitly (see Section 8.1.3), the resulting

system of algebraic equations (see Section 8.1.2) is solved by linear solvers. These

linear solvers are implemented in OpenFOAM for a 0-halo parallelisation and can

only run on a domain decomposed into non-overlapping domains.

n-halo parallel simulation of two-phase flows

An extension of the above n-halo methodology has been produced to transport

the level set with high-order accuracy and solve, in the same computation, the in-
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Figure 8.9: Decomposition of the domain using a n-halo approach — On the left the

global domain (0-halo inter-processor boundaries in black; extent of a n-halo sub-

domain in grey); on the right the 0-halo sub-domains Di (black line), the extended

sub-domains Dhi (blue line) and the halos (grey region)

compressible Navier-Stokes equations with the linear solvers implemented in Open-

FOAM.

Because of these linear solvers, the calculation has to run on a domain decomposed

with a 0-halo approach. In order to maintain the high-order accuracy of the level set

transport, the pre-processing variables are calculated on the extended sub-domains

and re-written for the 0-halo sub-domains. This re-writing process involves the

creation of Di-to-Dhi “maps” that relate the geometrical features of the 0-halo sub-

domains to their counterparts in the extended sub-domains Dhi. It also implies

generating new lists to store the mesh-dependent variables of the first layer of halo

cells L1. These variables are indeed required by the WENO scheme to perform

high-order calculations of the flux at the inter-processor boundaries.

At run time, the level set transport is performed on the 0-halo sub-domains.

However, as the re-written mesh-dependent variables refer to cells in the extended
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sub-domains, an intermediate “virtual field” ϕ̃ is used to perform the operations of

the WENO scheme. This field is of the size of the extended sub-domains Dhi and is

populated with the level set scalar. The halo cells in ϕ̃ are updated, through MPI

transfers, according to the level set field in the neighbouring 0-halo sub-domains.

The level set field ϕ is then calculated in the 0-halo sub-domain from the virtual

field ϕ̃.

As implemented in the code, the n-halo parallelisation involves the following

steps:

1. Decomposition of the global domain D into extended sub-domains Dhi.

2. Calculation of the mesh-dependent variables on the extended sub-domains.

At this step, both these pre-processing variables and some geometrical char-

acteristics of Dhi are written out to construct the Di-to-Dhi maps at a later

stage.

3. Decomposition of the global domain D into 0-halo sub-domains Di.

4. Construction of the Di-to-Dhi maps that relate the 0-halo sub-domains to the

extended sub-domains.

5. Re-writing of the pre-processing variables for Di using the Di-to-Dhi maps.

6. Parallel run of the computation using a virtual field ϕ̃ to transport the level

set field ϕ with high-order accuracy.

Droplet transfer in parallel

Just like the rest of the modelling capability, the transfer of droplets has been

implemented in parallel. The parallel run of the algorithm on several processors

involves two specific cases: droplets spanning on several sub-domains and the re-

initialisation of the level set field ϕ on all cores simultaneously if a transfer of droplet

has occurred somewhere in the domain.
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As mentioned in Section 8.2.4, droplets spanning on several processors are ignored

by the selection algorithm. Therefore, these drops remain in the level set formulation

until they are convected well inside a sub-domain. The test that handles this case

checks that none of the cells of the droplet considered are on a processor boundary.

This test is made computationally efficient by producing, at pre-processing, lists of

inter-processor boundary cells for each sub-domain.

Depending on the flow field simulated, droplets may be removed from the level set

field in some sub-domains and not in others. However, it is crucial to synchronise

the re-initialisation of the hyperbolic tangent profile on all the processors or the

parallel computation will crash. This problem is mitigated by the creation of a list

of booleans storing the state of each sub-domain. Whenever, a droplet is removed

from ϕ in given sub-domain, its state is set to 1 — signifying the need for re-

initialisation — and an all-to-all transfer of the sub-domain states is performed.

The re-initialisation then occurs on each sub-domain as long as there is at least one

state set to 1 in the list.

8.4 Performance of the method on basic two-phase

flow problems

The calculations presented in this sub-section are typical tests that assess the per-

formance of the multiphase modelling capability. In particular, we present here the

results obtained by our method on two test cases: the Rayleigh-Taylor instability

and the falling drop in a pool. Through these simulations we illustrate four features

of our method:

• Accuracy,

• Robustness,

• Ability to run on different types of mesh,
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• Performance in parallel.

8.4.1 Rayleigh-Taylor instability

The settings for the simulation of the Rayleigh-Taylor instability are given Sec-

tion 4.2.2. For this test case, the transport of the volume fraction ϕ was performed

with our novel modelling capability (RCLSFoam) using the linear high-order scheme

and setting the interface thickness parameter to ǫ = 0.5∆x. This highlights the ro-

bustness of our method which copes with a density ratio of 7.4 (see Table 4.6)

without resorting to a WENO treatment of the discontinuity.

Ability to capture the physics

The relative performance of RCLSFoam with respect to OpenFOAM’s multiphase

flow solver (interFoam) is presented in Figure 8.10. This figure shows the solution

obtained by the two codes on the same triangular mesh made of 9234 cells, for six

different times in [0; 1.5] seconds.

The comparison of the interface predicted by the two solvers for the first three

times (t = 0.7s, 0.8s, 0.9s) demonstrates the superior performance of RCLSFoam

on asymmetrical meshes. Indeed, while the solution predicted by our modelling

capability remains close to the reference solution (see Gerris’ prediction on 256×1024

mesh Figure 4.5), OpenFOAM’s predictions are unrealistically asymmetrical. This

is probably due to the lower order of the numerical schemes used by interFoam

(smaller stencils) to transport the volume fractions. It suggests that interFoam is

not appropriate on general unstructured grids.

The solution predicted by interFoam for the last three times (t = 1.25s, 1.4s,

1.45s) illustrates a fundamental flaw of this solver. As already mentioned in Sec-

tion 4.2.2, interFoam produces non-physical wiggles in the stem of the mushroom-

shaped structure formed by the penetration of the denser phase into the lighter

phase. Figure 8.10 shows the build-up of these non-physical interfacial oscillations
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until they break the mushroom-shaped structure (see results for t = 1.45s).

Through various tests, we have identified that these non-physical features were

due to the compression flux implemented by Weller to maintain the sharpness of

the interface. However, this compression flux cannot be simply removed from in-

terFoam or Weller’s modelling tool would fall apart. As our modelling capability

maintains the interface sharp through the solution of the re-initialisation equation

(see Chapter 7), the Rayleigh-Taylor instability is correctly simulated. The ability

of RCLSFoam to model the Rayleigh-Taylor instability is particularly relevant to

the simulation of the atomisation process as this instability plays a significant role

in the primary breakup (see Chapter 2).

Handling of hybrid meshes

RCLSFoam’s ability to perform accurately on different types of grid is demon-

strated by comparing the solutions obtained on a triangular and a hybrid (triangles-

rectangles) mesh of similar size. Figure 8.11 shows the two meshes considered for

this study: a triangular mesh of 9234 cells and a hybrid grid of 8580 elements. The

rectangles of the hybrid mesh are distributed all along the width, in the middle

portion of the domain — where the interface is initialised — and the rest of the

domain is made of triangular elements.

Figure 8.11 presents the volume fractions and interface predicted by RCLSFoam

on the two meshes for five different times in [0; 1] second. As expected the results

obtained are very similar and, thanks to the high-order scheme implemented, the

method copes very well with the change of mesh type in the hybrid grid.

Small differences for the solution at time t = 1s can be perceived between the two

computations: the interface obtained on the hybrid mesh is slightly more symmet-

rical. This is due to the initialisation of the volume fraction field: whereas the sine

interface is set on a perfectly symmetrical Cartesian mesh for the hybrid grid, it is

initialised on a non-symmetrical mesh for the triangular grid. As the initialisation of
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the interface is critical to the symmetry of the solution, the results obtained on the

hybrid mesh are more symmetrical. it is also worth noting that the progression of

the mushroom-shaped structure in the triangular part of the hybrid mesh does not

affect its symmetry. This also illustrates how one can take advantage of the ability

to run on hybrid meshes and further highlights the relevance of this capability.

Mass conservation

In Chapter 6 and 7, a theoretical justification was given to attest that our numer-

ical transport of the smeared out liquid volume fraction leads to an exact mass

conservation. All the numerical experiments that we have performed in serial have

confirmed this assertion. In particular, we reported in Figure 8.12 the total mass

error observed for the simulation of the Rayleigh-Taylor instability on a triangular

mesh. These results confirmed that the RCLS conserves mass to machine accuracy

in serial.

Performance in parallel

As already mentioned in Section 8.3, OpenFOAM adopts a 0-halo approach to par-

allelisation. However, our modelling capability transports the volume fractions with

a high-order numerical scheme, such that a 0-halo parallel run with RCLSFoam

leads to non-physical solutions in the vicinity of the inter-processor boundaries. To

mitigate this issue we have implemented a n-halo parallelisation in OpenFOAM.

Figure 8.12 compares the predictions of the 0-halo and n-halo parallel computa-

tions of the Rayleigh-Taylor instability with the corresponding serial run. All three

calculations have been performed on the same triangular mesh made of 9234 ele-

ments and the predicted interface is given for five different times in [0; 1] second.

In order to highlight any disturbance caused by the parallelisation, the domain is

decomposed in four sub-domains by cutting half-way along the horizontal and ver-

tical directions. The domain decomposition associated to each parallel approach is
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overlaying the solution at time t = 0.2s in Figure 8.12.

The 0-halo parallel run presents non-physical features in the vicinity of the inter-

processor boundaries: distorted interface and inclusion of light phase in the cap

of the mushroom-shaped structure (see interface at times t = 0.8s, 0.9s, 1s). As

expected, the n-halo parallel run is free from non-physical features and matches

almost exactly the interface predicted by the serial run.

Through various tests, we have identified that the discrepancy between the serial

and the n-halo parallel run comes from a fundamental flaw in the parallel handling

of the pressure-velocity coupling in OpenFOAM. Unfortunately, this flaw affects the

mass conservation properties of the method in parallel.

NB: The n-halo parallel run of the RCLS method alone matches its serial counter-

part to machine accuracy.

As both interFoam and RCLSFoam conserve mass to machine accuracy when

running in serial, the impact of OpenFOAM’s flaw can be measured in terms of

mass variation over a computation. In particular, we have measured the absolute

variation of mass over a run of the Rayleigh-Taylor instability between the times

t = 0s and t = 1.5s: |∆m1.5
0 | (see the right most column in Figure 8.12).

The calculation of |∆m1.5
0 | confirms that RCLSFoam conserves mass to machine

accuracy in serial. However, with a 0-halo parallelisation, the absolute mass vari-

ation over the whole computation is O (10−3). Thanks to the implementation of a

n-halo parallel approach, this mass variation is reduced to O (10−8). As a frame of

reference, the parallel simulation of the Rayleigh-Taylor instability with interFoam

leads to an absolute variation of mass of: |∆m1.5
0 | = 1.94 × 10−6. With a mass

error two orders of magnitude smaller than interFoam’s, once again, our modelling

capability outperforms Weller’s code.
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8.4.2 Falling drop in a pool

The settings for the simulation of the falling drop in a pool are given Section 4.2.2.

For this test case, the transport of the volume fraction ϕ was performed with RCLS-

Foam using the WENO scheme and setting the interface thickness parameter to

ǫ = 0.5∆x. This computation is notoriously challenging as it involves a density

ratio of 816 (20 times larger than the density ratio encountered in aero-engines, see

tables 4.7 and 4.9).

For this computation, the solution of the pressure-velocity coupling is performed

using a Crank-Nicholson (CN) temporal discretisation and the resulting systems of

algebraic equations are solved with the generalised geometric-algebraic multi-grid

solver (GAMG). Although this choice of numerics generally improves the accuracy

(CN) and the speed (GAMG) of the computation, it significantly reduces the sta-

bility margin of the numerical method. As a result, the successful simulation of

the falling drop with such numerics is an achievement in itself. Indeed, no stable

computation were obtained for this test case with interFoam using either of these

numerical methods. This further highlights the superior robustness of our modelling

capability.

Figure 8.13 presents the volume fractions and the interface predicted by RCLS-

Foam on a 128× 256 Cartesian mesh for five different times in [0; 0.55] millisecond.

It can be seen in the Figure 8.13, that the RCLSFoam copes remarkably well with

the very large density ratio and that the results match closely the solution provided

by Gerris on the same mesh (see Figure 4.8).

To conclude, in this section we have demonstrated that our modelling capability

captures the physics well on any kind of unstructured grid. We also showed that

RCLSFoam conserves mass to machine accuracy in serial and to very high accu-

racy in parallel. In addition, we have established that this multiphase modelling

245



Chapter 8. A mass-conservative method for efficient atomisation modelling in
parallel

tool is very robust. Finally, it follows from these numerical tests that RCLSFoam

outperforms interFoam in terms of accuracy, mass conservation and robustness.
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t = 0.7s t = 0.8s t = 0.9s t = 1.25s t = 1.4s t = 1.45s

interFoam

RCLSFoam

Figure 8.10: Interface predicted by RCLSFoam for the Rayleigh-Taylor instability

— Comparison RCLSFoam vs. interFoam
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t = 0.2s t = 0.7s t = 0.8s t = 0.9s t = 1s

Triangular

(9234 cells)

Hybrid

(8580 cells)

Figure 8.11: Volume fractions and interface (in black) predicted by RCLSFoam for

the Rayleigh-Taylor instability — Comparison hybrid vs. triangular mesh (meshes

overlaying the contours in white)
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t = 0.2s t = 0.7s t = 0.8s t = 0.9s t = 1s |∆m1.5
0 |

Serial 0

0-halo 4.58 × 10−3

n-halo 4.86 × 10−8

Figure 8.12: Interface predicted by RCLSFoam for the Rayleigh-Taylor instability

— Comparative performance of the 0-halo and n-halo parallel approaches
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t = 0s t = 0.15ms t = 0.2ms t = 0.35ms t = 0.55ms

Figure 8.13: Volume fractions and interface (in black) predicted by RCLSFoam for

the falling drop in a pool — Time t = 0s, 0.15ms, 0.2ms, 0.35ms, 0.55ms
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Simulation of liquid sheet breakup

The modelling capability as developed is applicable to both DNS and LES of atom-

isation. As our methodology relies on an implicit interface description method, the

breakup phenomenon is handled implicitly (no pinch off models) and its length scale

is of the order of the local grid size. As argued by Gorokhovski and Herrmann in [71],

although this makes the topology changes grid dependent, it does not significantly

affect the droplets larger than a few cell volumes.

To perform DNS, sufficient grid resolution has to be provided to capture the

Kolmogorov length scales in both phases, ηl and ηg, and the smallest liquid structure

produced ζ (typically drops at We = 10). As this is still infeasible in practice

for typical aero-engine conditions, it is necessary to resort to a “quasi-DNS/LES”

methodology [71].

In this chapter we present the sheet breakup of liquid fuel in co-flowing gas,

simulated using a quasi-DNS/LES methodology. The quasi-DNS/LES formulation

adopted for this calculation is described in Section 9.1, the settings of the computa-

tion are given in Section 9.2 and the results obtained with the modelling capability

(lesRCLSFoam) are presented in Section 9.3.
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9.1 Quasi-DNS/LES formulation

This numerical framework involves applying a single-phase LES formulation in both

phases and extending it to the region of the interface. Due to the lack of established

models, this approach neglects the sub-grid scale effects associated with the presence

of the interface.

9.1.1 Filtering

As mentioned in Chapter 3, LES only resolves the larger scales of the turbulence

while the effect of the smaller scales are modelled. Therefore, the flow variables (u, p)

are decomposed into filtered components (u, p) and residual components (u′, p′),

according to:

u = u + u′ (9.1)

p = p + p′ (9.2)

Filter definition

The separation of the resolved scales from the sub-grid scales is performed by filtering

the flow variables [123]. Introducing the filter function G∆, its associated filter width

∆ (proportional to the smallest length scale resolved) and the computational domain

Ω, this filtering operation is defined by the following convolution [180, 211]:

u (x, t) = G∆ ∗ u =

∫∫∫

Ω

G∆ (r,x)u (x − r, t) dr (9.3)

where the filter kernel satisfies the normalisation condition:

∫∫∫

Ω

G∆ (r,x) dr = 1 (9.4)

The filter function G∆ defined above satisfies the following properties [211]:
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1. Conservation of constants (equivalent to (9.4)). For a constant vector g this

property reads:

g = g (9.5)

2. Linearity. Introducing two vectorial space-time variables u and v, this condi-

tion reads:

u + v = u + v (9.6)

3. Commutation with differentiation. As G∆ is independent of time t (see (9.3)),

the filtering operation and the derivative with respect to time commute:

∂u

∂t
=
∂u

∂t
(9.7)

In the case of an homogeneous filter: G∆ (r,x) = G∆ (r), the filtering operation

and the derivative with respect to the position commute:

∂ui
∂xj

=
∂ui
∂xj

(9.8)

Although the decomposition of the flow variables into resolved and residual com-

ponents is analogous to a Reynolds decomposition, it is worth noting that the fil-

tered components (u, p) are random fields and that the filtered residual components
(
u′, p′

)
are not systematically null. Therefore, in general, a filter (even homoge-

neous) is not a “Reynolds operator” [211] and:

u 6= u (9.9)

u′ 6= 0 (9.10)

uu 6= uu (9.11)

Non-uniform filter width

A filter can only be considered homogeneous on a uniform grid. In the case of un-

structured grids, the filter width is a function of space ∆ = ∆ (x) and a commutation

error appears. By choosing carefully the filter kernel G∆, Vasilyev et al. showed that
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it is possible to control the order of this error on unstructured grids [82, 147, 265].

However, this approach involves explicit filtering which can be cumbersome and

computationally expensive [43].

After Villiers, we choose to minimise the commutation error by smoothing the

distribution of filter widths [43]. For each element Ei of the mesh, a “cell-derived”

filter width ∆Ei
can be calculated as a function of the cell volume |Ei|:

∆Ei
= 3
√
|Ei| (9.12)

Let us note ∆i the filter width of Ei. Instead of setting directly ∆i = ∆Ei
, the prin-

ciple of the smoothing method is to increase the filter width of the cells neighbouring

larger control volumes [43]. For this purpose, a fixed gradient for the smoothed dis-

tribution is defined — based on a coefficient C∆ — such that ∆i ≥ ∆Ei
. Introducing

the set of cells neighbouring Ei: Ni =
⋃
j Ej, the smoothing scheme reads:

∆i = max
j∈Ni

(
∆Ei

,
∆Ej

C∆

)
(9.13)

As recommended by Villiers, we have set the smoothing coefficient to:

C∆ = 1.1 (9.14)

In his numerical experiments, Villiers observed that the smoothing approach was

sufficient to obtain relatively good results at a fairly low cost.

9.1.2 Filtered Navier-Stokes equations

The convolution of (8.1) and (8.2) with an homogeneous kernel filter G∆ provides

the following filtered incompressible Navier-Stokes equations:

∇ · u = 0 (9.15)

∂ (ρu)

∂t
+ ∇ · (ρu ⊗ u) = −∇p+ ρg + σκ∇ϕ+ ∇ ·

(
2µD − ρT

)
(9.16)

where:
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• The filtered rate-of-strain tensor D reads:

D =
1

2

(
∇u + (∇u)T

)
(9.17)

• T is the residual-stress tensor:

T = u⊗ u− u⊗ u (9.18)

• Following the principle of the quasi-DNS/LES approach, the sub-grid scale

contributions of the capillary forces (fcap)SGS have been neglected:

(fcap)SGS = 0 = σκ∇ϕ− σκ∇ϕ (9.19)

σκ∇ϕ = σκ∇ϕ (9.20)

Leonard proposed the following decomposition of the residual-stress tensor:

T =
(
u ⊗ u − u ⊗ u

)
+
(
u ⊗ u′ + u′ ⊗ u

)
+
(
u′ ⊗ u′

)

= L + C + R (9.21)

where the Leonard-stress tensor L represents the “interactions among the large

scales”, the cross-stress tensor C reflects the “interactions between large and small

scales” and the SGS Reynolds-stress tensor R stands for “the interactions between

sub-grid scales” [211].

9.1.3 Residual kinetic energy

Filtering the kinetic energy field E = 1
2
u · u produces E:

E =
1

2
u · u (9.22)

Decomposing E into the kinetic energy of the filtered velocity field Ef and the

residual kinetic energy kr leads to [180]:

E = Ef + kr (9.23)
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where kr is expressed as:

kr =
1

2
u · u − 1

2
u · u (9.24)

Noting that kr = 1
2
tr (T ), the decomposition of the residual-stress tensor into an

isotropic part and a deviatoric part TD can be expressed as follows:

T =
2

3
krI + TD (9.25)

where I is the unit tensor.

9.1.4 Sub-grid scale modelling

For this computation, we have chosen to model the sub-grid scale stress tensor T
with the constant coefficient one-equation eddy-viscosity model (OEEVM) proposed

by Yoshizawa [281].

Eddy-viscosity assumption

The OEEVM is based on Boussinesq’s eddy-viscosity concept which postulates that

the mechanism governing the transfer of energy from the resolved scales to the

residual scales is analogous to the mechanism driving the molecular diffusion. With

this hypothesis, the deviatoric part of the residual-stress tensor TD is assumed locally

aligned with the deviatoric part of the filtered rate-of-strain tensor DD and the

normal stresses (considered isotropic) are calculated from the residual kinetic energy

kr [64]. Introducing the eddy-viscosity of the residual motions νr, Boussinesq’s

assumption leads to the following expression for the residual-stress tensor:

T =
2

3
krI − 2νrDD (9.26)

However, as the flow is considered incompressible, the filtered dilatation is null:

d = tr
(
D
)

= ∇ · u = 0 (9.27)

Such that:

D = DD +
1

3
dI = DD (9.28)
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It follows that SGS eddy-viscosity type models for incompressible flows express the

residual-stress tensor as the following function of kr and νr:

T (kr, νr) =
2

3
krI − 2νrD (9.29)

The algebraic eddy-viscosity model of Smagorinsky [234] calculates directly the

parameters kr and νr from the characteristic filtered rate of strain: D =
(
2D : D

)

by assuming that the rate of production of the residual kinetic energy is exactly

balanced by the rate of dissipation of kinetic energy. As this balance breaks down

near walls and in jets and wakes, Yoshizawa proposed a model equation for the

residual kinetic energy kr.

Transport equation for the residual kinetic energy

The exact transport equation for kr (TK) can be obtained by combining the mo-

mentum equation (ME) (given by (8.2)) and its filtered counterpart
(
ME

)
(given

by (9.16)) in the following way [41]:

(TK) : u · (ME) − u ·
(
ME

)

Neglecting the terms related to the capillary forces in (TK) leads to the following

equation for the residual kinetic energy [41]:

∂kr
∂t

+ ∇ · (ukr)
︸ ︷︷ ︸

Convection

= −∇ ·
(

1

2
(u · u)u − E u +

1

ρ
pu− 1

ρ
pu− u · T

)
+ ∇ · (ν∇kr)

︸ ︷︷ ︸
Diffusion

− ν
(
∇u : ∇u−∇u : ∇u

)
︸ ︷︷ ︸

Dissipation

−D : T︸ ︷︷ ︸
Production

(9.30)

Yoshizawa derives a model transport equation for the residual kinetic energy by

using the statistical results from the direct-interaction approximation [114–116]. As

this statistical approach assumes the distinct separation of the grid-scales mean

motions and the sub-grid scale fluctuating motions [280, 282], the Leonard-stress

tensor L and the cross-stress tensor C are neglected.
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Noting Dkr
the non-molecular diffusion term in (9.30) and εkr

the dissipation

term in (9.30), Yoshizawa’s statistical framework leads to the following models for

Dkr
and εkr

:

Dkr
= ∇ · (νr∇kr) (9.31)

εkr
=
Cǫk

3
2
r

∆
(9.32)

with the following expression for the eddy-viscosity of the residual motions:

νr = Cνk
1
2
r ∆ (9.33)

As a result, the model transport equation for the residual kinetic energy reads:

∂kr
∂t

+ ∇ · (ukr) = ∇ · ((νr + ν)∇kr) − εkr
−D : T (9.34)

The same model equation for the transport of kr was derived by Schumann using

dimensional analysis [220].

Yoshizawa recommends the model parameters Cν ≃ 0.05 and Cε ≃ 1. Building

upon the successful application of this SGS model to the simulation of diesel jet

atomisation by Villiers et al., we will use the following values for Cν and Cε [44]:

Cν = 0.07 (9.35)

Cε = 1.05 (9.36)

Performance of the OEEVM

As intended, this model performs better than the Smagorinsky model in regions of

the flow where the balance between production and dissipation breaks down: wakes,

jets and near-wall flows. And wherever the production-dissipation equilibrium is

valid the OEEVM revert to the Smagorinsky model [64].

However, as the eddy-viscosity concept assumes the isotropy of the normal resid-

ual stresses, the OEEVM requires a high mesh density in near-wall regions to capture
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the flow accurately [63]. Besides, as the eddy viscosity of the residual motions νr

is by definition always positive in Yoshizawa’s model (9.33), the OEEVM does not

account for the transfer of energy from the sub-grid scales to the resolved scales

(backscatter).

To summarise, Yoshizawa’s model performs relatively well on the types of flow

encountered in atomisation problems while remaining significantly cheaper than

more advanced SGS models [64].

9.1.5 Quasi-DNS/LES equations

The set of equations solved in this numerical framework is recapitulated below:

Transport of the liquid volume fraction

∂ϕ

∂t
+ ∇ · (ϕu) = 0

Filtered incompressible Navier-Stokes equations

∇ · u = 0

∂ (ρu)

∂t
+ ∇ · (ρu ⊗ u) = −∇p+ ρg + σκ∇ϕ + ∇ ·

(
2µD − ρT

)

with: D =
1

2

(
∇u + (∇u)T

)
, T =

2

3
krI − 2νrD, νr = Cνk

1
2
r ∆

Transport of the residual kinetic energy

∂kr
∂t

+ ∇ · (ukr) = ∇ · ((νr + ν)∇kr) − εkr
−D : T

with: εkr
=
Cǫk

3
2
r

∆





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9.2 Settings of the computation

Previous numerical studies of atomisation have highlighted the sensitivity of the

computation to boundary conditions (see Chapter 5). This section details the choices

made in this demonstration exercise. In particular, the mechanical and physical

boundary conditions are given in Section 9.2.1 and in Section 9.2.2 we present a

parametric study of the RCLS method which leads to the choice of settings for the

computation.

9.2.1 Domain and material properties

In Chapter 4, we reproduced the results obtained by Villiers et al. for the simulation

of Diesel jet atomisation [44]. We then extended this approach (similar physical

properties and domain dimensions) to the computation of liquid sheet breakup in

co-flow (see Section 4.3.2).

In order to demonstrate the modelling capability on a test case reproducing the

breakup mechanisms observed at aero-engine conditions, we have chosen to compute

the flat sheet breakup at We = 9300.

Computational domain

The computational domain generated for this simulation is a cuboid of 3 × 1 × 1

mm3, meshed with 2.36×106 cells. In order to demonstrate the capability on general

polyhedral meshes, the grid is made of 8.07 × 105 hexahedra, 1.5 × 106 tetrahedra

and 5.4 × 104 pyramids (see bottom picture in Figure 9.1).

The gas and fuel injection channels are modelled — they span over 1mm in

the longitudinal direction — and the thickness of the plates separating the injec-

tion channels is resolved (see top picture in Figure 9.1). Both of these features

have proven to be of significant importance in the numerical simulation of primary

breakup (see [65]). The geometrical details of the injection configuration can be

found in the “Flat sheet” column of Table 4.11.
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Domain and boundary conditions

Mesh along the centreplane (z = 0)

Figure 9.1: Computational domain for the simulation of atomisation — In the top

half: the mesh of the back plane (edges in blue) and the boundaries (walls in grey,

fuel inlet in blue and gas inlets in red) are pictured

The front and back planes — respectively defined by z = 0.5 and z = −0.5 (see

top picture in Figure 9.1) — are set as symmetric boundary condition. The plane at
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x = 0 is the inlet of the computational domain. In the central part of this plane —

between the two plates — the fuel (ϕ = 1) is injected at a speed of 2ms−1. Above

and below the fuel injection channel, the gas (ϕ = 0) enters the domain at a speed of

40ms−1. The rest of the boundaries are defined as inlet/outlet boundary conditions.

In order to take advantage of the ability to run on hybrid meshes, structured

hexahedral grids have been fitted around walls. Similarly, to improve the accuracy

of the atomisation modelling, the regions where the breakup is expected to occur

have been meshed with hexahedral cells. Because of the instability of the inlet/outlet

boundary conditions in OpenFOAM, these boundaries have also been meshed with

hexahedra. The rest of the domain is composed of tetrahedra and pyramids. The

pyramidal mesh consists of a single layer of cells performing the transition between

the hexahedral and the tetrahedal meshes.

In the resulting mesh, the smallest edge length is ∆xmin = 5µm and the average

characteristic length scale of the grid (as defined in (9.38)) is ∆x = 8.4µm.

Material properties

Although the material properties chosen for this study (see Table 4.9) differ slightly

from those of an aero-engine, the physical quantities remain similar. The non-

dimensional numbers related to this computation are given in Table 9.1 and the

smallest length scales associated with the flow field are reported in Table 9.2.

Considering that a given length scale η is resolved if η ≥ 2∆x, it can be seen

in Table 9.2 that only the Kolmogorov length scale in the liquid phase ηliq is prop-

erly resolved by the mesh. This justifies the use of a sub-grid scale model for the

turbulence in the gas phase.

Table 9.2 also suggests that the mesh is far from resolving the smallest liquid

structures produced. This further highlights the need to develop sub-grid scale

models for multiphase flows.
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Table 9.1: Non-dimensional numbers associated to the flow simulated

Reliq 67

Regas 18800

We 9300

Oh 7.55 × 10−2

Table 9.2: Smallest length scale of the flow field — Assuming a turbulence intensity

of 5% in the liquid and 10% in the gas

Liquid phase Kolmogorov scale, ηliq 81µm

Gas phase Kolmogorov scale, ηgas 1.4µm

Droplet diameter at We = 10, dWe=10 0.22µm

Minimum mesh size, ∆xmin 5µm

Average mesh size, ∆x 8.4µm
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9.2.2 Choice of RCLS settings

The RCLS method involves the following parameters:

• The order of the polynomial reconstruction of the high-order scheme: r.

• The type of high-order scheme: linear or WENO.

• The coefficient controlling the thickness of the interface ǫ.

• The periodicity of the re-initialisation.

Although our numerical scheme can formally reach arbitrarily high order in space,

in this demonstration of the modelling capability we limit ourselves to a third-order

polynomial reconstruction: r = 3.

This leads to a third-order accurate linear scheme for the transport of the liquid

volume fraction and in the case of a WENO reconstruction, the scheme is typi-

cally fourth-order accurate. In the interest of robustness and because atomisation

problems involve large density ratios, we choose to use the WENO scheme for this

calculation.

As mentioned in Section 7.2.4, the coefficient ǫ affects the stability of the method

and — through the interface thickness — controls the resolution of the interface

geometry. This coefficient is defined as a function of the mesh size (see (7.40)), such

that on general unstructured meshes, ǫ varies from cell to cell. However, for our

simulation, we will take ǫ uniform on the whole computational domain Ω:

ǫ = C∆x (9.37)

where C is a constant coefficient.

Introducing the number of internal faces of the mesh: NFIΩ and, for a given face

Fl noting the cell centres of the owner and neighbour cells respectively Ol and Nl,

∆x is given by:

∆x =
1

NFIΩ

NF IΩ∑

l=1

|−−→OlNl| (9.38)
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As demonstrated in Section 7.2.4, the method’s stability requires C ≥ 0.5 when ǫ is

defined as a function of the local mesh size ∆x.

Another parameter of conservative level set methods was introduced by Des-

jardins et al. in [47]: the periodicity of the re-initialisation. In numerical tests,

the authors noted that an optimum value could be found for this parameter. In

particular, they observed that re-initialising the level set profile less frequently (up

to a certain point) would lead to a better resolution of thin ligaments.

Scope of the parametric study

In this paragraph, a parametric study of the RCLS method is presented. The param-

eters considered are the CLS coefficient ǫ and the number of time steps Ns between

two re-initialisations of the hyperbolic tangent profile. The relative performance of

the method is assessed on the following test cases (defined in Section 4.2.1): Zale-

sak’s slotted disk (1282 Cartesian mesh) and the disk in a deformation field (2562

Cartesian mesh). Both of these test cases are performed on Cartesian grids, such

that the definitions of ǫ in (7.40) and in (9.37) are equivalent.

In this parametric study, we tested the RCLS with the following parameters:

• C = 0.5, 1.0 (see Figure 9.2).

• Ns = 1, 5, 10 and no re-initialisation (see Figure 9.3).

Figures 9.2 and 9.3 present the results obtained for:

• Zalesak’s slotted disk (middle column), referred to as “Zalesak” in the figures.

The contour plots of the scalar transported ϕ are given at t = 1s (after one

circular translation) and the predicted level sets ϕ = 0.05, 0.5, 0.95 are shown

in black. It is worth recalling that the level set ϕ = 0.5 represents the approx-

imate location of the phase boundary and that the inner-most (ϕ = 0.95) and

outer-most (ϕ = 0.05) contour lines gather 90% of the phase transition.
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• The disk in a deformation field (right column), referred to as “Spiral” in the

figures. The level set contours ϕ = 0.5 obtained at t = 3s are drawn in blue.

Choice of ǫ

As expected, when the interface is thickened the method’s ability to capture thin

ligaments worsens (see right column in Figure 9.2). However, increasing ǫ stabilises

the method (see Section 7.2.4) and smooths the level set contours (see middle column

in Figure 9.2).

Also, bearing in mind that the RCLS method is part of a bigger modelling capa-

bility, setting the coefficient C to larger values leads to diffused droplets. Although

the droplet transfer methodology is designed to cope with such situations, allowing

the drops to diffuse unreasonably would result in the over-prediction of coalescence

events. In addition, from a physical point of view it is generally desirable to limit

the spread of the phase transition as it is the locus of the capillary forces (CSF

formulation, see Chapter 3).

From the parametric study, it seems that better results are obtained with C = 0.5.

Although this value constitutes the limit of stability, the cells of the unstructured

computational domain have a low aspect ratio (see Section 9.2.1) and the robustness

of the method is maintained with ǫ = 0.5∆x for this mesh.

Choice of Ns

Increasing the periodicity of the re-initialisation step improves the ability of the

method to capture thin ligaments (see right column in Figure 9.3). This im-

provement is limited by a maximum value for Ns as the pure advection of ϕ (no-

reinitialisation: Ns −→ ∞) is clearly sub-optimal.

Although the largest periodicity tested (Ns = 10) provides the best results in

terms of ligament length, it leads to convoluted contours of the level set ϕ = 0.95

for Zalesak’s slotted disk. Once again, as the surface tension is applied in the region
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Zalesak Spiral

ǫ = 0.5∆x

ǫ = 1.0∆x

Figure 9.2: Effect of the coefficient ǫ on the performance of the RCLS — Results

for C = 0.5, 1.0 with Ns = 5

of the phase transition, it is desirable to limit the spread of the phase transition and

to maintain the regularity of the level set contours.

For this reason, we choose to re-initialise the hyperbolic tangent profile every five

time steps: Ns = 5. This periodicity gives results similar to the solution performed

with Ns = 1 at a much lower computational cost (∼ 25% faster for the translation

of the slotted disk).
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Zalesak Spiral

No re-initialisation

Ns = 1

Ns = 5

Ns = 10

Figure 9.3: Effect of the periodicity of re-initialisation on the performance of the

RCLS — Results for Ns = 1, 5, 10 and no re-initialisation with C = 0.5
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Summary

The parameters of the RCLS have been chosen to reach a better trade-off in terms of

performance of the RCLS, stability of the method and compliance with the physics

of the atomisation. A finer tuning of the method — with a non-uniform value of ǫ

in the computational domain — may be performed as a follow-on research project.

The chosen set of RCLS parameters is recapitulated in Table 9.3.

Table 9.3: RCLS parameters for the simulation of atomisation

Order of the polynomial reconstruction: r = 3

Numerical scheme: WENO

CLS coefficient: ǫ = 0.5∆x

Periodicity of the re-initialisation: Ns = 5
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9.3 Results and discussion

As the emphasis of this numerical study is placed on the mechanisms driving the

primary breakup, the computational domain is limited to the close vicinity of the

injection plane. Consequently, no droplet characteristics have been extracted from

this calculation.

9.3.1 Instabilities of the liquid sheet

The stability analysis performed for a liquid sheet in co-flow [12, 38] demonstrated

that the breakup involved undulations of the liquid sheet in sinuous and varicose

modes.

In order to illustrate the mechanisms of the sheet breakup, we have extracted

the interface contour in both a longitudinal plane Pl and a transverse plane Pt

of the computational domain (both passing through the centre of the domain, see

Figure 9.4). These interface contours are given in Figure 9.5 for Pl and in Figure 9.6

for Pt.

Although the interface contours in the longitudinal and transverse planes present

different shapes and set of modes, it is clear from Figure 9.5 and Figure 9.6 that

the liquid fragmentation is highly non-linear and that the undulations of the sheet

involve sinuous and varicose modes in both directions.

As predicted by the theory, our simulation shows — in both the longitudinal and

the transverse planes — the initial growth of a sinuous mode: the fundamental of

the sheet undulation. Harmonic waves then develop on top of the sinuous oscillation

mode of the two surfaces of the sheet. The first harmonic being of varicose type, the

growth of the harmonic waves leads to the thinning of the sheet, thus facilitating

the breakup of the sheet through aerodynamic tearing (see Figure 9.5).
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Figure 9.4: Planes of interface contour extraction — In red: the outline of Pl;

in green: the interface contour in Pl; in blue: the outline of Pt; in orange: the

interface contour in Pt
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t = 0.835ms t = 0.91ms

t = 0.935ms t = 1.08ms

Figure 9.5: Interface contour in the longitudinal plane — Time t =

0.835ms, 0.91ms, 0.935ms, 1.08ms
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t = 0.885ms t = 1.01ms

t = 1.295ms t = 1.31ms

Figure 9.6: Interface contour in the transverse plane — Time t =

0.885ms, 1.01ms, 1.295ms, 1.31ms
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9.3.2 Torn sheet breakup

Sheet breakup regimes

Fernandez et al. studied the breakup of a flat sheet of water (300µm thick, Uliq ∈
[1; 2] ms−1) sheared on either side by a stream of gas (Ugas ∈ [20; 70] ms−1, pgas ∈
[1; 6] bar). In their experimental analysis [56], the authors classify the regime of the

primary breakup according to the momentum flux ratio M (see (2.2)). In particular,

they identify three regimes of liquid sheet breakup:

Up to M = 0.5: The cellular breakup. This regime is characterised by the forma-

tion of cell-like structures in the liquid sheet through the build-up of longitu-

dinal and transverse undulations of similar wavelength. Such a combination

of undulations leads to the bursting of the membranes associated with the

cell-like structures and to the creation of spanwise ligaments.

From M = 0.5 to M = 5 The stretch streamwise ligament breakup. Similarly to

the cellular breakup, this regime involves the build-up of both longitudinal

and transverse undulations. However, for this regime the fragmentation of

the sheet occurs along the longitudinal direction such that the bursting of the

membranes is accompanied with the creation of streamwise ligaments.

Above M = 5: The torn sheet breakup. As for the previous breakup regime, the

torn sheet breakup produces droplets through the disintegration of membranes

and via the fragmentation of streamwise ligaments. However, the streamwise

ligaments formed have highly irregular shapes and disintegrate through aero-

dynamic tearing rather than Plateau-Rayleigh instability. This regime also

involve the tearing of the continuous region of the liquid sheet into large liquid

structures further fragmented by the aerodynamic forces.

In our simulation of the primary breakup, the momentum flux ratio is: M = 9.5.

According to the above classification, this value of M puts the calculation in the
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regime of torn sheet breakup. The flow features predicted by our simulation for this

breakup regime are reported in figures 9.7 to 9.11.

Interaction with vortices

The figures of this sub-section present the liquid phase together with an ad hoc

iso-surface of the Q-criterion [97] to illustrate the interaction of the turbulence with

the liquid sheet. The Q-criterion — defined as the second invariant of the velocity

gradient tensor — is widely used to visualise the coherent vortical structures in the

flow field [46, 48]. The scalar field Q is given by:

Q =
1

2

(
(tr (∇u))2 − tr (∇u · ∇u)

)
(9.39)

Due to the difference in velocity between the two phases, a shear layer appears

on the interface. As a result, a Kelvin-Helmoltz (KH) instability builds up and

— as can be seen in figures 9.7 to 9.11 — KH rollers form on either side of the

liquid sheet, following initially the shape of the phase interface. As these vortices

progress through the computational domain, they break up, thus increasing the

level of turbulence downstream of the liquid bulk. In particular, the figures presented

illustrate the breakup of vortices through their interaction with the liquid structures.

Evolution of the liquid sheet

The simulation of sheet breakup involves three main phases:

• The build-up of instabilities on the two interface surfaces (t < 0.935ms).

• The flapping of the sheet in the longitudinal and transverse directions (t ∈
[0.935; 1.25] ms).

• The tearing of the liquid sheet (t > 1.25ms).
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Build-up of instabilities This phase starts with the penetration of the liquid

in the computational domain and finishes with the first occurrence of the breakup

at t = 0.935ms. It involves the initial deformation of the interface in the injection

channel and the development of sinuous and varicose modes of undulation of the

liquid sheet (see Figure 9.7). As described in Section 9.3.1, the growth of surface

waves — in both the longitudinal and the transverse directions — leads to the

thinning of the liquid sheet, thus facilitating the first pinch-off event by aerodynamic

tearing.

Sheet flapping This phase involves the flapping of the sheet in both the longitu-

dinal and the transverse directions, similarly to a flag. For this stage, the simulation

predicts the disintegration of the membranes formed at the peaks and the troughs

of the undulations (see Figure 9.8). The membrane puncturing is accompanied by

the formation and the pinch-off of streamwise ligaments (see Figure 9.9). These flow

features suggest that the breakup regime is the stretch streamwise ligament breakup.

It constitutes a transition before the establishment of the torn sheet breakup.

Sheet tearing From t = 1.25ms, the computation predicts the tearing of the

sheet in the transverse and then the longitudinal directions (see Figure 9.10 and

Figure 9.11 respectively).

At t = 1.25ms, the liquid sheet presents a bag-like structure bent towards the top

of the domain. As the sheet significantly obstructs the gas stream, it is subjected to

relatively high aerodynamic forces and a tear is initiated. While the tear propagates

in the transverse direction — following the path of minimum sheet thickness — the

liquid structure being torn away undergoes a membrane-type breakup.

Then, at time t = 1.3ms, a bag-like structure is formed in the centre of the

sheet. This structure is punctured and the aerodynamic forces initiate a longitudinal

tear in the hole produced. As the tear propagates upstream in the liquid phase,

two streamwise ligaments are formed. These ligaments develop bag-like structures
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themselves and get subsequently torn away by the gas stream.

The flow field predicted by the numerical simulation in the “sheet tearing” phase,

matches closely the description of the torn sheet breakup given in [56]. This validates

qualitatively our simulation of the liquid sheet breakup.

Our computation of the liquid sheet breakup highlights the potential of the nu-

merical approach to study the mechanisms of the primary breakup. Indeed, the

simulation described the entire breakup process while the stability analysis could

only predict its onset and experiments could only capture the sheet tearing. In

addition, only the CFD can provide insight on the interaction of the vortices in the

gas phase with the liquid structures.

9.3.3 Breakup length

As a first step towards a quantitative validation of this numerical simulation of sheet

breakup, the average breakup length predicted by the computation is compared to

the value given by the correlation provided in [56].

In [56], Fernandez et al. relate the breakup length Lb to a non-dimensional

number. Recalling that h is the height of the fuel injection channel and noting Weh,

the Weber number based on h, this relation reads:

Lb
h

= f



 3

√
Uliq

Ugas

MWeh



 (9.40)

For the conditions of the calculation, the non-dimensional number is equal to

0.008, which leads to Lb

h
= 6 ± 2. In our numerical experiment, we observe an

average breakup length of Lb

h
= 5 which is well within the range predicted by the

correlation.

It is also worth noting that (9.40) is based on a restricted range of flow conditions

(water liquid sheet ; air pressure below 6bar), and that it accounts for a limited range
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of parameters (ignores Reliq). A correlation based on a more exhaustive experimental

test campaign may further confirm the prediction of our simulation.
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t = 0.72ms t = 0.81ms

t = 0.835ms t = 0.86ms

t = 0.91ms t = 0.935ms

Figure 9.7: Simulation of flat sheet breakup with lesRCLSFoam — Liquid phase (in

grey) and an ad hoc iso-surface of Q-criterion (in transparent red) for the build-up

of instabilities
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t = 1.09ms t = 1.1ms

t = 1.115ms t = 1.12ms

t = 1.145ms t = 1.155ms

Figure 9.8: Simulation of flat sheet breakup with lesRCLSFoam — Liquid phase (in

grey) and an ad hoc iso-surface of Q-criterion (in transparent red) for the flapping,

the membrane puncturing and the ligament formation
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t = 1.195ms t = 1.205ms

t = 1.215ms t = 1.225ms

t = 1.23ms t = 1.235ms

Figure 9.9: Simulation of flat sheet breakup with lesRCLSFoam — Liquid phase (in

grey) and an ad hoc iso-surface of Q-criterion (in transparent red) for the pinch-off

of a streamwise ligament
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t = 1.25ms t = 1.265ms

t = 1.27ms t = 1.28ms

t = 1.29ms t = 1.295ms

Figure 9.10: Simulation of flat sheet breakup with lesRCLSFoam — Liquid phase

(in grey) and an ad hoc iso-surface of Q-criterion (in transparent red) for the tearing

of the sheet in the transverse direction
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t = 1.3ms t = 1.315ms

t = 1.325ms t = 1.335ms

t = 1.355ms t = 1.37ms

Figure 9.11: Simulation of flat sheet breakup with lesRCLSFoam — Liquid phase

(in grey) and an ad hoc iso-surface of Q-criterion (in transparent red) for the tearing

of the sheet in the longitudinal direction
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Conclusion

The main accomplishment of this work consists in the generation of a modelling

capability for the parallel computation of the fuel injection in aero-engine combustion

chambers. To reach this goal, a modelling strategy has been produced based on the

existing methodologies in the field of multiphase CFD and the requirements of the

aeronautical industry. This set of guidelines lead to the creation of a novel WENO

scheme for general polyhedral meshes, the development of a robust conservative

level set method to transport the interface and the generation of an algorithm to

output droplet boundary conditions to combustion codes. In this chapter the main

achievements of this research project are summarised in Section 10.1 and some

follow-on research topics are suggested in Section 10.2.

10.1 Achievements

10.1.1 Modelling strategy to simulate fuel injection

A comprehensive literature review has been produced, reporting the current physical

description of the phenomenon and a broad overview of the numerical methods avail-

able to simulate multiphase flows. In particular, the existing numerical frameworks,

the various interface description methods and the means of handling the singulari-
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ties introduced by the interface are described in detail. Finally, the state-of-the-art

methods developed by scientists to simulate the atomisation process are presented

and the current trends in atomisation modelling are outlined.

Also, two open source multiphase codes have been identified: OpenFOAM and

Gerris. Their two-phase flow modelling capabilities have been thoroughly tested

against typical performance tests and both codes have been demonstrated on the

simulation of primary breakup. Although Gerris performed remarkably well, some

non-physical behaviours appeared when tested on more advanced configurations (see

Section 4.3.2), suggesting that the modelling tool is not yet mature. By virtue of

its design (DNS, not developer-friendly, ongoing development), Gerris is aimed at

academic research rather than component design. OpenFOAM’s two-phase flow

capability performed rather poorly on typical numerical tests (low-order schemes,

non-physical wiggles on the interface). However, this code appeared to be a good

platform to implement a multiphase CFD tool for the industry (unstructured ap-

proach, flexible framework).

Due to the lack of appropriate modelling capability we decided to develop a novel

numerical tool to simulate the atomisation process. We chose to use the OpenFOAM

“C++ toolbox” as the code vehicle for this CFD solver.

Based on the literature review and considering the requirements of the aeronau-

tical industry, a modelling strategy has been identified to simulate the fuel injection

in real engine combustion chambers. In particular, this methodology suggested the

development of:

• A numerical tool performing on unstructured meshes.

• An efficient interface description technique that conserves mass while predict-

ing accurately the location of the interface.

• An algorithm to output droplet boundary conditions for combustion codes.

The conservative level set method of Olsson et al. [163, 164] has been identified as
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the interface description technique that provides the best trade-off between accuracy

and computational cost. In order to extend this method to problems involving large

density ratios, we chose to transport the level set scalar using WENO schemes.

As no WENO schemes existed for general unstructured meshes, we developed a

methodology — implemented in parallel — for the construction of a high-order

WENO schemes on general polyhedral unstructured meshes.

10.1.2 Novel WENO scheme for unstructured meshes

Our method improves and extends the approach of Dumbser and Käser [49] —

generated for tetrahedral meshes — to polyhedral meshes through a more general

derivation of the reconstruction operator and the inter-cell fluxes. In addition, we

have handled efficiently the notorious complexity of high-order schemes on 3D mixed-

element grids by generating novel algorithms.

Principally, these algorithms include the tetrahedralisation of the mesh, which

allows generality of the approach while remaining efficient and affordable, together

with a novel approach to stencil generation and a faster interpolation of the solu-

tion. The general method for tetrahedralisation of the mesh is presented for convex

polyhedral cells with convex polygonal faces. Also, we have ensured that as much

as possible of the computational work is done in pre-processing steps, in order to

reduce the work done at run time.

Finally, the derivation of the resulting inter-cell fluxes is given in the case of

convex polyhedral cells for linear hyperbolic systems of equations. The application

of the method to the level set equation is also given, with an interpretation of the

Riemann problem in such frameworks. The performance of the scheme presented

has been demonstrated on typical two-dimensional and three-dimensional test cases

of the level set method. The results obtained with the WENO3 scheme without

re-distancing compare very well with existing methods that use WENO schemes of

order five together with re-distancing (see [37, 246]). Besides, the numerical conver-
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gence studies conducted on various types of mesh and the extension of the method

to the solution of a non-linear hyperbolic PDE have demonstrated the expected

performance of the scheme.

10.1.3 Mass-conservative interface description

The conservative level set (CLS) method of Olsson et al. [163, 164] was chosen as

starting point for our novel interface description technique because this technique:

• Conserves mass well at a lower cost than hybrid methods [71].

• Resolves the interface accurately as it is based on a level set formulation.

• Has been demonstrated on the atomisation of Diesel jet (simple configuration)

by Desjardins et al. [47].

However, the conservative level set method needed to be improved in terms of

stability and accuracy. Besides as the CLS was developed for Cartesian grids, the

method had to be extended to unstructured grids.

The extension to general polyhedral meshes and the improvement in terms of

stability were obtained by solving the advection equation and the re-initialisation

equations of the CLS method with the WENO scheme presented in Chapter 6. In

particular, this numerical scheme significantly improved the stability of the method

in the presence of very large density ratios as demonstrated by the simulation of

the falling droplet (see Section 8.4.2). For this calculation, our modelling capability

remained stable regardless of the numerics employed to solve the pressure-velocity

coupling whereas OpenFOAM’s original solver crashed when tested with advanced

numerical methods (Crank-Nicholson time scheme, GAMG solver).

The improvement of the accuracy of the CLS method originated from two sources:

the high-order accurate numerical scheme mentioned above and the addition of a

flux-limiter algorithm to the transport of the level set scalar. This additional step

insures that the solution remains bounded.
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Whereas the conservative level set methods of Olsson et al. and Desjardins et

al. treat the scalar field as a level set, we choose to consider it as a smeared out

liquid volume fraction. The addition of the flux limiter, specific to VOF methods,

extends the CLS further towards a volume of fluid method and guarantees that the

liquid volume fraction remains physical everywhere in the computational domain

(0 ≤ ϕ ≤ 1).

In addition, taking advantage of the polynomial reconstruction performed by the

WENO scheme, we have created a novel method to produce a high-order accurate

calculation of the gradient of the level set field. This gradient is required for the

calculation of the curvature and the surface tension forces.

The resulting method named robust conservative level set (see Chapter 7) con-

serves mass to machine accuracy (see Section 8.4.1) and outperforms the ACLS

method of Desjardins et al. (see Section 7.5). Besides, numerical testing of the RCLS

has demonstrated its ability to capture the physics accurately (see Section 8.4).

10.1.4 Modelling capability for the simulation of atomisa-

tion

In order to be readily applicable to the simulation of atomisation, the novel interface

description technique needed to be embedded in a bigger framework:

• Allowing for the solution of the pressure and velocity fields.

• Outputting droplet characteristics for the simulation of the reacting flow in

the whole combustion chamber.

• Parallelised to make the most of the available computational power.

As the main focus of the work has been placed on the transport of the liquid

volume fraction, the modelling capability has adopted OpenFOAM’s methodology

for the solution of the incompressible Navier-Stokes equations and its coupling with

the transport of the liquid volume fraction (see Section 8.1).
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The algorithm that outputs the droplets boundary conditions is made of a set of

routines that selects the droplets in the level set field, calculates their characteris-

tics and writes them out into data files. This method has been implemented and

demonstrated in parallel (see Section 8.2).

A significant amount of effort has been placed on the development of a n-halo

parallelisation of the modelling capability (see Section 8.3). Indeed, OpenFOAM

comes with a 0-halo approach that is only sufficient in the case of low-order numerics

and a methodology has been coded to allow for the high-order scheme produced to

operate at the expected order of accuracy in a parallelised computational domain.

10.1.5 Demonstration of the numerical tool on the primary

breakup

The modelling capability has been demonstrated on the simulation of the primary

breakup of a liquid sheet in a co-flowing stream of gas. The calculation was per-

formed using a quasi-DNS/LES methodology [71] (see Section 9.1) and the problem

was set with material properties and boundary conditions relevant to the injection

of fuel in an aero-engine combustor (see Section 9.2).

The computation has demonstrated the ability of the modelling tool to capture

the physics accurately (see Section 9.3) and further illustrates the potential of the

numerical approach. The numerical results have been validated qualitatively against

theoretical predictions (stability analysis) [12, 38] and experimental data [56]. In

particular, the modes of undulations of the liquid sheet were correctly captured by

the code and the expected breakup regime was observed in the simulation results.

Finally, the computation reproduced faithfully the breakup length predicted by

a correlation based on experimental data [56]. This constitutes a first step towards

a quantitative validation.
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10.2 Follow-on research topics

10.2.1 Application to aeronautical fuel-injectors

The validation of the modelling tool against experimental data is the next logical

step. This validation exercise should be performed on two kinds of geometries:

• Idealised experimental set-ups.

• Real engine configurations.

Even on simplified geometries tested in a well controlled and monitored envi-

ronment, the primary breakup remains very difficult to predict quantitatively. The

first step towards the validation of the numerical capability should therefore focus

on reproducing flat liquid-sheet disintegration experiments [56, 135, 140, 141].

As the work of Fernandez et al. [56] is particularly relevant to the aeronautical

application and provides both qualitative (breakup regimes) and quantitative (global

oscillation frequencies, transverse wavelengths and breakup lengths) results, these

experimental data should be compared against CFD results. The tuning of the

interface description method should be performed in parallel to this task.

Once validated on idealised configurations, the method should be calibrated

against experimental data obtained for real fuel-injector geometries.

For both idealised and realistic geometries, the validation against droplet size

distributions and droplet velocity distributions would provide the most useful as-

sessment of the performance of the numerical tool.

10.2.2 Improvement of the interface description technique

Although promising, the interface description technique — as described in this thesis

— may be improved by the implementation of additional numerical techniques. In

particular, we suggest the following developments for our method:
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• Implementation of a non-uniform CLS coefficient ǫ for non-Cartesian compu-

tational domains. Special care would have to be taken for the extension to

parallel computations in order to maintain the mass conservation.

• Development of a ghost fluid method for unstructured grids. Such treatment

of the singularities in the flow field is likely to improve the accuracy of the

numerical method. However, this approach — followed by Desjardins et al.

on Cartesian grids [46, 47] — may lead to an unstable CFD solver [2].

• Implementation of the arbitrary high-order schemes using derivatives (ADER)

of Toro et al. [110, 221, 222, 252, 253, 256–258]. This approach — based on

the concept of arbitrary high-order generalised Riemann solvers — reaches

high-order accuracy in both time and space in a single step. Adding the

ADER method to the numerical tool is expected to improve the time accuracy

while reducing the computational cost as the WENO reconstruction would

only be performed once per time step (instead of 3 times per time step with

the Runge-Kutta scheme currently implemented).

• Correction of the parallel implementation of OpenFOAM’s solvers for algebraic

equations. Due to the 0-halo approach of the code, the solvers coded (GAMG

and PCG) lead to a small mass error in parallel (see Section 8.4). Correcting

this problem of OpenFOAM would result in computations of two-phase flows

that conserve mass to machine accuracy in parallel.

• Implementation of a Lagrange droplet tracking scheme (with secondary breakup

modelling) to simulate the whole atomisation process with a single CFD solver.

10.2.3 Extension of the modelling capability

As coded, the method is applicable to incompressible flows with no phase change.

Although such framework is generally adopted by scientists to study the primary
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breakup in combustion chambers, the numerical tool could be extended to embed

more physics. In particular, we suggest extending the modelling capability to:

• Compressible flows. In such instance, the velocity field would no longer be

solenoidal (∇u 6= 0).

• Vaporisation modelling. This physical process is generally handled by adding

a term in the level set equation [247].

In such instances, it is preferable to consider the level set equation as a Hamilton-

Jacobi equation. Therefore, the numerical scheme presented in Chapter 6 should

be extended to the solution of Hamilton-Jacobi equations. A significant amount

of work has already been produced for the solution of Hamilton-Jacobi equations

with WENO schemes [5, 11, 14, 94, 106, 171, 285]. Combining the work of Hu

and Shu [94] with the methodology employed in Section 7.3 to produce a high-order

calculation of the gradient would be a good starting point for this project.

10.2.4 Development of sub-grid scale models

As mentioned in chapters 3 and 5, the accurate modelling of the atomisation process

with a LES framework requires the development of sub-grid scale models. These

models should concern:

• The sub-grid contributions of the interface to the flow field. These have been

categorised by Labourasse et al. in [118]. As the turbulence is believed to play

a strong role on the onset of the breakup [54, 146], the creation of SGS models

for the turbulence-interface interaction should be a priority.

• The sub-grid contributions of the smallest liquid structures to the flow field.

This research project could start from the SGS models used in the Euler/Euler

LES approach [67, 200].
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10.2.5 Super-critical fuel injection

As the current trends in the design of combustion chambers lead to the ever in-

creasing pressure of the gas, the fuel injection is more and more likely to occur at

super-critical conditions. Under these conditions, the surface tension tends to zero

and the fluids become miscible.

The numerical simulation of this type of injection is becoming a priority for aero-

engine manufacturers as it is crucial to the prediction of combustors performance at

high power settings. As it involves very specific issues, this problem cannot simply

be considered as an extension of the multiphase flow case and thus requires its own

research programme.
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thesis, Université de Grenoble, 2003.

[92] J. Hoyt and J. Taylor. Turbulence structure in a water jet discharging in air.

Physics of Fluids, 20:S253–S257, 1977.

[93] J. Hoyt and J. Taylor. Waves on waterjets. Journal of Fluid Mechanics,

83:119–127, 1977.

[94] C. Hu and C.-W. Shu. A discontinuous Galerkin finite element method for

Hamilton-Jacobi equations. SIAM Journal on Scientific Computing, 21:666–

690, 1999.

[95] C. Hu and C.-W. Shu. Weighted essentially non-oscillatory schemes on trian-

gular meshes. Journal of Computational Physics, 150:97–127, 1999.

[96] K. Huh and D. Gosman. A phenomenological model of Diesel spray atomiza-

tion. Proceedings of International Conference on Multiphase Flow, Tsukuba,

Japan, 1991.

[97] J. Hunt, A. Wray, and P. Moin. Eddies, streams and convergence zones in

turbulent flows. Technical Report CTR-S88, Center for Turbulence Research,

1988.

[98] E. Ibrahim. Spatial instability of a viscous liquid sheet. Technical Report

94-0562, American Institute of Aeronautics and Astronautics, 1994.

[99] R. Issa. Solution of the implicitly discretised fluid flow equations by Operator-

Splitting. Journal of Computational Physics, 62:40–65, 1985.

[100] D. Jacqmin. An energy approach to the continuum surface tension method.

Technical Report 96-0858, American Institute of Aeronautics and Astronau-

tics, 1996.

304



Bibliography

[101] D. Jacqmin. Calculation of two-phase Navier-Stokes flows using phase-field

modeling. Journal of Computational Physics, 155:96, 1999.

[102] D. Jacqmin. Contact-line dynamics of a diffuse fluid interface. Journal of

Fluid Mechanics, 402:57–88, 2000.

[103] H. Jasak. Error analysis and estimation for the Finite Volume Method with

application to fluid flows. PhD thesis, Imperial College of Science, Technology

& Medicine, 1996.

[104] H. Jasak. Parallelisation and scalability in OpenFOAM. International Work-

shop on Scalable Engineering Software National Science Foundation, June

2010.

[105] S. Jazayeri and X. Li. Non-linear instability of plane liquid sheets. Journal of

Fluid Mechanics, 406:281–308, 2000.

[106] G.-S. Jiang and D. Peng. Weighted ENO schemes for Hamilton–Jacobi equa-

tions. SIAM Journal on Scientific Computing, 21:2126–2143, 2000.

[107] G.-S. Jiang and C.-W. Shu. Efficient implementation of weighted ENO

schemes. Journal of Computational Physics, 126:202, 1996.

[108] J. Kane. Boundary-Element Analysis. NJ: Prentice Hall, 1994.

[109] M. Kang, R. Fedkiw, and X.-D. Liu. A boundary condition capturing method

for multiphase incompressible flow. Journal of Scientific Computing, 15:323–

360, 2000.
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