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Spatial models where growth is limited to the population edge have been instrumental to under-
standing the population dynamics and the clone size distribution in growing cellular populations,
such as microbial colonies and avascular tumours. A complete characterization of the coalescence
process generated by spatial growth is still lacking, limiting our ability to apply classic population
genetics inference to spatially growing populations. Here, we start filling this gap by investigating
the statistical properties of the cell lineages generated by the two dimensional Eden model, leverag-
ing their physical analogy with directed polymers. Our analysis provides quantitative estimates for
population measurements that can easily be assessed via sequencing, such as the average number of
segregating sites and the clone size distribution of a subsample of the population. Our results not
only reveal remarkable features of the genealogies generated during growth, but also highlight new
properties that can be misinterpreted as signs of selection if non-spatial models are inappropriately
applied.

I. INTRODUCTION

Spatial range expansions [1, 2] are ubiquitous in na-
ture, from microbial biofilms [3, 4], developing tissues
[5] avascular tumors [6–9] to invading species and infec-
tious diseases [10, 11]. Many of these scenarios share the
feature of being resources-limited [12–19], so that popu-
lation growth occurs mainly as invasion of surrounding
virgin territory [20–26]. When dispersal is local, these
range expansions lead to a phenomenon called gene surf-
ing, whereby pioneering individuals at the edge of the
expansion have a higher chance to contribute to the next
generation [27, 28]. As a result, an individual’s location
can become a more important factor to reproductive suc-
cess than its growth rate [29–32].

It has recently been shown that gene surfing leaves a
characteristic signature in the mutational spectrum of the
population, identified by an excess of high frequency mu-
tations compared to the well-mixed expectation [4]. This
observation becomes crucial when analyzing population
sequencing results, as the same signature can be mistak-
enly interpreted as being a result of positive selection
and lead to a mis-identification of driver mutations (e.g.,
in cancer or drug resistance). Modeling the effects of
spatial structure on genealogies in growing populations,
and consequently on the diagnostic outputs of genome
sequencing, could point to protocols that discern the two
scenarios.

In prior efforts to link spatial growth with population
structure, connections to non-equilibrium statistical me-
chanics have proven fruitful. Spatial population growth
is a fundamentally out-of-equilibrium process driven by
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stochastic division and migration events at small scales
that leave collective signatures at the scale of the pop-
ulation as a whole. Models of spatial populations har-
bor nonequilibrium statistical phenomena such as fixa-
tion into absorbing states [33], dynamic phase transitions
and critical phenomena [34, 35], and manifestations of
directed percolation [36]. As a result, statistical proper-
ties of the population patterns generated by the range
expansion can be quantitatively linked to robust univer-
sal features of the corresponding nonequilibrium growth
models [37]. A prime example is the connection between
range expansions and the Kardar-Parisi-Zhang (KPZ)
model of interface growth [38], which established scaling
exponents for the shapes of clonal domains [20, 39, 40]
and lineages [41–43] in expanding microbial populations.
Such scaling rules provide a theoretical basis for predict-
ing or interpreting population genetics quantities that
can be measured using genome sequencing studies.

In the following, we systematically analyse the sta-
tistical properties of the genealogical tree generated by
the Eden model, a lattice model that has successfully
been used to investigate microbial colonies and tumour
growth [4, 6, 44, 45], to determine the effects of spatial
growth on three classic population genetics quantities: (i)
time to the most recent common ancestor, (ii) number of
segregating sites in a sample and (iii) clone size distri-
bution of a sample. We find that these quantities are
completely determined by the growth properties of the
populations, and that their key features can be captured
by a deterministic tree structure defined completely by
the exponents of the KPZ universality class. We finally
discuss how recent advances in lineage tracing [14, 17, 46–
50], as well as single cell sequencing can be combined
with our model to reveal the presence of surface-limited
growth and interpret the data accordingly.
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II. SIMULATING SPATIAL GROWTH: THE
EDEN MODEL

The Eden model, first introduced in the seminal paper
by Eden in 1961 [51], is widely used to mimic spatial
growth processes where replication is limited to the front
of the expansion, for example microbial colonies on rich
media. Starting from an initial set of cells, placed at
fixed points on a lattice, one cell with at least one empty
neighbour is randomly chosen and replicated into one of
the empty neighboring sites. This new cell can be seen as
the descendant of the initially chosen cell and the process
repeated to reach a final population size.

The growth process simulated by the model can be
tracked to generate a genealogical tree that identifies the
mother-daughter relationship of each individual (lattice
site). The statistical properties of the emerging lineages
have recently been investigated [43] and found to fall
within the KPZ universality class.

This underlying growth process and the resulting lin-
eages are sufficient to completely characterise the neutral
genetic diversity of the population, since neutral muta-
tions do not affect growth. The occurrence of neutral dis-
tinct mutations can be modeled as a Poisson stochastic
process occurring on top of the identified lineages (infinite
site model [52]). Using the statistical properties of the
lineages, we can then characterise the corresponding coa-
lescence process and estimate classic population genetics
quantities. In what follows, we consider two scenarios:
a linear front of constant width, which we compare to a
Wright-Fisher model of constant population size; and a
2D radial expansion, which mimics colony growth. De-
tails of the Eden model simulations are provided in Ap-
pendix A.

III. STATISTICAL PROPERTIES OF EDEN
MODEL IN A LINEAR GEOMETRY

We will start our analysis with a linear front scenario
(corridor) so that the front of the population exhibits a
constant width. In what follows, we will always sample
individuals from the very front of the population.

A. Number of segregating sites between two
individuals

Single-cell sequencing enables genomic comparison (ei-
ther whole-genome or targeted regions) among individ-
ual cells sampled from different locations in the popu-
lation. The number of differences between the two (or
more) genomes is a well-studied summary statistics in
population genetics called number of segregating sites, S,
whose distribution is known for well-mixed populations
and even for simple models of structured populations (is-
land model) [52].

In contrast to the well-mixed scenario, the spatial
structure of our model naturally raises the question of
how the number of segregating sites S depends on the rel-
ative location of the sampled individuals. Starting with
two individuals sampled at a distance d from each other,
then the probability P2(S|d) of observing S segregating
sites is

P2(S|d) = 2

∫
P1(S|T )P (T |d)dT, (1)

where P1(S|T ) is the conditional probability of observ-
ing S segregating sites given that the time to the most
recent common ancestor (MRCA) between the two in-
dividuals is T , P (T |d) is the conditional probability of
observing a time to the MRCA equal to T given that
the two individuals are sampled a distance d apart. The
factor 2 takes into account that mutations distinguish-
ing the two individuals can occur on either branch lead-
ing to the MRCA. If we make the standard assumption
that mutations follow a Poisson process, then P1(S|T ) =
exp(−µT )(µT )S/S!, where µ is the mutation rate per
replication and T is in units of replication events. In the
Eden model (see Appendix A), a replication event corre-
sponds to the colonization of a neighboring lattice site,
consequently both distances and times can be expressed
in units of lattice sites.

The distribution P (T |d) from linear simulations is
shown in fig. 1, with a power-law decay at large distances
following P (T |d) ∼ T−1.64. The exponent is connected to
one of the characteristic exponents describing the statis-
tics of directed polymers in random media (DPRM) [43].
As d increases, simulations deviate from the power-law
expectation at large times due to the finite size of the
simulations.

Because of the heavy tail of the distribution, the aver-
age time to the MRCA is often not of practical use, and

the typical time to the MRCA, T̂ , is better suited as a
metric of the characteristic behavior. This characteristic
time has a scaling determined by the DPRM wandering

exponent, T̂ ∼ d3/2 (fig. 1(b)) [43].
Since the probability function P (T |d) decays quickly

upon moving away from the characteristic value T̂ , a sim-
plified model of the tree structure can be built by replac-

ing the distribution with a δ-function peaked at T̂ . In
addition, for large µT , we can also approximate P1(S|T )
to a δ-function peaked at the mean value µT , so the dis-
tribution of segregating sites scales similarly to P (T |d),
rescaled by a factor 2µ. In particular, the most likely

number of segregating sites observed Ŝ ≈ 2µT̂ ∝ d3/2,
following the KPZ expectation (fig. 1). For comparison,
in a Wright-Fisher model of constant population size N ,
the typical time to the MRCA would be N , indepen-
dently on the physical distance between the two sampled
individuals [52]. If we equate the population size N to
approximately the width w of the corridor, this leads to a
critical distance d∗ = N2/3 < w, so that if individuals are
sampled at distance larger than this, they should show
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FIG. 1. Left, Probability distribution of time T to the most recent common ancestor for individuals sampled a distance d apart,

for simulations in a linear corridor. Right, dependence of the most probable value T̂ of the distribution on the separation d.

Inset shows the data on left, rescaled by the measured dependence of the peak of the distribution T̂ ∼ d3/2. The shown plots
were each generated by averaging over the results of 600.000 simulation runs.

more segregating sites than the well-mixed expectation,
and viceversa.

B. Number of segregating sites in a subsample

If we consider a connected subsample n < N at the
front of the population, the total number of segregating
sites is related to the total length of all the branches in
the genealogical tree Ttot(n). In the Wright-Fisher model
this leads to the well-know average result

Ttot =

i=n∑
i=2

iTi = 2N log(n− 1), (2)

for an haploid population, where Ti = N/
(
i
2

)
represents

the average time for the first coalescent event between
two lineages of the possible i [53]. Because after each co-
alescence event the number of lineages decreases by one,
the total length of the tree is just given by the sum of the
number of surviving lineages between subsequent coales-
cent events. Note that the time to the MRCA across
n individuals in a well-mixed population of size N is

TMRCA(n) =
∑i=n

i=2 Ti = 2N [1− 1/(n− 1)].
For the Eden model, the expression depends on the

relative position of the n individuals. If we assume that
they are positioned contiguously along the front, then
Ttot is the total length of the branches that lead to a
corridor of width n starting from the MRCA of the n
individuals (as in the inset of fig. 2). Then

Ttot =

∫ TMRCA(n)

1

l(t)dt, (3)

where l(t) is the number of lineages at time t measured
backwards from the subsample and TMRCA(n) is the time
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FIG. 2. Number of surviving lineages in the genealogy of n
individuals at the edge of the colony, traced backwards as a
function of the distance s from the edge of the colony. Inset
shows an example of a genealogy from an Eden model simu-
lation. The shown plot was generated by averaging over the
results of 120.000 simulation runs.

to the MRCA of the whole sample. Because of the spatial
constraints on the lineages, we have that TMRCA(n) ∝
n3/2, since the n individuals will be at most n lattice
cites apart (in reality there are more than n individuals
in a width n since the front is rough, but we use this as
first approximation).

The scaling of the typical time to the MRCA implies a
particular scaling for the number of lineages with reverse
time. We assume that all coalescence events happen ex-

actly at the typical time T̂ (d) ∼ d3/2 associated with
the separation d of two individuals on the front. Upon
advancing backwards in time from the front by an inter-
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val t, each contiguous segment of the boundary of size
∼ t2/3 will have coalesced to a single ancestor. As a re-
sult, the number of surviving lineages l(t) falls as t−2/3

with reverse time t, as long as the number of surviving
lineages is large. To test this relation, we measured the
number of lineages as a function of distance s ∝ t from
the edge of the colony in Eden simulations within a lin-
ear corridor (see Fig. 2). Although the true genealogies
display a more complex structure compared to our ide-
alized model, we find that the observed behaviour in l
is consistent with a power-law decay l ∼ s−2/3 ∼ t−2/3

until only a few lineages survive (l <∼ 1).

Since the number of lineages is l(t) ∼ n/t2/3, then

Ttot ∼ nT 1/3
MRCA(n) ∝ n3/2. (4)

A remarkable byproduct of this is that the total tree size
is proportional to the TMRCA(n) of the sample, unlike the
case for well-mixed populations, and it does not depend
on the total population size. This reflects the fact that
the dominant contribution to the tree is given by the
significantly longer oldest branches. Another interest-
ing feature arising from the comparison with the Wright-
Fisher model is that the total number of segregating sites
increases much more quickly with sample size for the spa-
tial model than for the well-mixed one.

C. Site frequency spectrum of subsamples

The statistical properties of the number of segregat-
ing sites in a sample n of the edge of the population
also determine the mutational spectrum, a commonly
used genomic metric of the population structure. In the
case of the Wright-Fisher infinite site model, the mu-
tational spectrum, i.e., the number of mutations m(j)
carried by j < N individuals, is given, on average, by
m(j) = 2µN/j [52].

The hierarchical length structure of the genealogical
tree generated by the Eden model generates a very dif-
ferent mutational spectrum, since mutations can accu-
mulate for a long time on long lineages before any later
branching event occurs. Importantly, to understand the
origin of this mutation spectrum, the topology of the tree
(which branches coalesce with each other) is crucial, as
identical l(t) can generate very different mutational spec-
tra. Furthermore, the measured spectrum will depend
strongly upon the spatial distribution of the population
samples—different sampling protocols might be sensitive
to different features of the genealogical structure.

If samples are taken uniformly across the entire popu-
lation, the site frequency spectrum is expected to follow a
trend m(j) ∝ j−7/5 [4]. However, in many situations the
outer edge of the population is more accessible for sam-
pling. An analogous theoretical argument can be made if
we restrict sampling to the edge of the population. Then,
mutations carried by at least j individuals have to occur
before the coalescence time TMRCA(j) or, in other words,
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FIG. 3. Site frequency spectrum, i.e. probability of a mu-
tation attaining a frequency x, for individuals sampled from
the edge of a population generated using Eden model simula-
tions in a corridor geometry. The shown plot was generated
by averaging over the results of 24.000 simulation runs.

somewhere on the subtree between the ancestor among
all N individuals and the ancestor of the subsampled j
individuals. We will call this portion of the total tree
T ∗(j). The topology of the tree then determines the ex-
pression for the site frequency spectrum.

For instance, if the tree is well-balanced so that coa-
lescence events happen almost at the same time between
pairs of lineages that are the same distance apart, then
the number of mutations m(j) carried by at least j indi-
viduals is proportional to

T ∗(j) = Ttot(N)− Ttot(j)
N

j
, (5)

as there would be N/j identical subtrees emerging from
the corresponding N/j lineages, each with j leaves on
average. This leads to

T ∗(j) ≈ N3/2 − j3/2N
j

= N3/2(1− x1/2), (6)

where x = j/N is the frequency of the mutation. This
expression leads to a clone size distribution Π′(x) (prob-
ability that a mutation is carried by a proportion x of
the population) to be proportional to x−1/2.

Eden model simulations show that, at least for small x
when finite size effects are limited, the scaling is Π′(x) ∝
x−2/3 (Fig. 3), clearly indicating that the tree, in this
case, is not balanced, and the tail of the TMRCA distribu-
tion plays a crucial role. Importantly, the resulting clone
size distribution is less steep than the well-mixed sce-
nario, which corresponds to a higher likelihood of finding
a mutations carried by a large proportion of the sample,
compared to a well-mixed population.
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IV. RADIAL EXPANSION

While linear expansions are useful to understand the
properties of the tree structure generated by the spatial
growth process, radial expansions are more relevant to
several real case scenarios (e.g., microbial colonies, avas-
cular tumors). In this case, the population expands ini-
tially very rapidly due to an inflation effect related to
curvature, which slows down as the radius grows [33].

From radial Eden model simulations, we find that the
number of lineages as a function of the distance s from
the edge of the colony follows the same s−2/3 power-law
as in the corridor case, with a sharp drop close to the
centre of the colony where the lineages spread star-like
due to the rapid inflation process (fig. 4).
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FIG. 4. Fraction of lineages which survive when the genealogy
of all individuals at the edge of the colony is traced inward, as
a function of the distance s from the edge of the colony. Solid
lines show data from radial Eden simulations grown to differ-
ent final radii R. Dashed line shows expected decay based on
lineage fluctuations in the KPZ class. Inset shows an example
of a genealogy for a radial Eden simulation. The shown plots
were each generated by averaging over the results of 48.000
simulation runs.

To account for the inflation process, we normalize the
number of lineages present at radius r by the circumfer-
ence of the colony at the same radius to obtain a lineage
density, and rescale the radius r by the final colony radius
R (fig. 5). We observe that consistently across colony
sizes, the lineage density undergoes a transition at ex-
actly a radius R/2, where R is the radius of the final
colony, so that the density of surviving lineages initially
decreases and then increases with r. This non-monotonic
behaviour reflects the tradeoff between the process of
inflation, which pushes lineages apart preventing them
from coalescing, and the stochastic wandering of the lin-
eages, which over time makes them coalesce.

The collapse of the lineage density on a master curve
independently of colony size suggests the presence of a
universal tree that can describe the behaviour of genealo-
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FIG. 5. Lineage density as a function of distance from the
colony center, rescaled by the final colony radius. The hori-
zontal axis is a logit scale which reveals the power-law diver-
gences in the lineage density as r/R→ 0 and r/R→ 1. Solid
lines are measured from Eden simulations at different final
sizes R; symbols are from the universal tree model with p = 4;
dashed line is a phenomenological master curve (Eq. (11) with
ε = 1). The shown plots were each generated by averaging
over the results of 48.000 simulation runs.

gies generated in these two-dimensional spatial growth
models. We propose it below.

A. Universal tree model

Our proposed model incorporates the statistics of lin-
eage fluctuations imposed by the KPZ universality class,
which the Eden model is known to belong to, as well as
the spatial constraints on coalescence arising from the ra-
dial structure of the expansion (Fig. 6). Building on our
results for the corridor case, we hypothesize that the lin-
eages of two cells which lie a spatial arc distance d apart
at a radius r � d from the center of the colony will most
likely coalesce at a certain distance h towards the center
of the colony, so that

h ∼ d3/2. (7)

We will now neglect rare stochastic events in the co-
alescence process of the colony’s lineages and devise a
deterministic model where coalescence is controlled only
by the typical coalescence height. The model is based
on a binary tree with its branches’ lengths following the
above relation 7. We will also assume that always exactly
two lineages coalesce into one and that all lineages in the
tree that are a distance d apart coalesce at the same time
(perfectly balanced tree, fig 6).

An important difference between the corridor and the
radial case is that in the radial case the MRCA of the
whole population is always clearly identifiable. The sym-
metry relation in lineage densities highlighted in fig. 5
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then allows to build our tree forward in time from the
centre of the colony as a branching process (rather than
backwards as we did for the corridor).

We start with an arbitrary number b of starting
branches, growing star-like towards the outside, splitting
at deterministic distances away from the center based on
the distance for which the branches have already been
running, according to eq. 7. Since we are in a radial
setting with an inflation term, the distances between the
lineages is dictated by both the angle between them, as
well as the current distance away from the center.

FIG. 6. Sketch of the deterministic tree model that captures
that average lineage properties during radial growth.

After each splitting step, the angles are halved, leading
to

αi =
αstart

2i
for i ∈ {0, 1, 2, . . . }, with αstart =

2π

b
. (8)

For the very first step (i = 0), where b branches start
from the center, the height to splitting h0 is calculated

as

h0 ∼ (α0h0)3/2

=⇒ h20 ∼ α3
0h

3
0

=⇒ h0 ∼
1

α3
0

,

(9)

where we used relation 7 together with the fact that in
the very first step, the distance until the next splitting
point is the same as the distance away from the center
used for calculating the arc length distance between the
lineages. For all following steps, the splitting heights are
given via the equation

hi ∼
(
αi

( i−1∑
j=0

hj + hi

))3/2

for i ∈ {1, 2, 3, . . . }. (10)

For all i > 1, equation 10 can be solved numerically.
One finds that the equation always gives two positive so-
lutions. As i increases, the next hi is always dependant
on the result of the previous heights h0, . . . , hi−1, requir-
ing some considerations on the choice of solution. We
find that choosing the bigger solution leads to increasing
values of hi until they diverge. Reciprocally, choosing the
smaller solution leads to decreasing hi that converge to-
wards 0. It is important to point out here that, while we
use the scaling in equation 7 to determine the location of
the branching events, the relationship is expected to hold
only when the distance between lineages is much smaller
than the radius of the branching event (d� r). For the
first few steps this assumption is likely to break. How-
ever, since lineages double at every step while the time
between steps grows at best as a power-law, the condition
becomes true relatively quickly in the expansion process
(i > 2).

The simulation results for lineage density suggest that
the distance between branching events becomes increas-
ingly longer in the first half of the colony growth (up
to R/2) after which it then becomes shorter and shorter
with each subsequent step. As a result, for our model,
we will choose the larger solution for the first p steps,
and subsequently always choose the smaller solution. In
the abstract model, the branching process can continue
indefinitely, creating ever-shorter branches spaced closer
and closer together as the tree grows outward. However,
the successive values of hi when i > p decline so rapidly
that the sum

∑∞
i=0 hi converges to a finite value which

corresponds to the radius R of the colony. Upon assem-
bling deterministic trees with different values of p, we
observe that

∑p
i=0 hi ≈

∑∞
i=p+1 hi ≈ R/2 independently

of the value of p. The geometry dictated by the solutions
to equation 10 ensures that the transition from choos-
ing the larger to the smaller solution always happens at
approximately half of the colony radius, which coincides
with the lineage density minimum in the Eden simula-
tions (fig. 5).

The universal tree model provides a deterministic pre-
diction for the lineage density. As Fig. 6 shows, the num-
ber of lineages doubles at discrete values of the distance
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from the central node. By recording these values and the
corresponding number of branches, we obtain a rescaled
lineage density (symbols in Fig 5) which reproduces the
curves measured from Eden simulations. The behavior as
x = r/R → 1 is dictated by the power law l(s) ∼ s−2/3

expected from the corridor geometry and confirmed in
Fig. 4: upon using the relation s = R(1 − x), we have
l(r)/(2πr) ∼ l(r)/(2πR) ∼ [R(1 − x)]−2/3. The univer-
sal tree recovers this scaling at large x, but also reveals
the behavior of the lineage density for r <∼ R/2, where
inflation and branching play opposite roles (inflation cre-
ates space for lineages and branching events quickly fill
it up). We find that the number of branches in the uni-
versal tree grows as l(r) ∼ r1/3, leading to a divergence
l(r)/(2πr) ∼ r−2/3 in the lineage density as r → 0. These
two asymptotic behaviors are well-captured by a phe-
nomenological master curve

l(r)

2πr
=

1

ε1/3R2/3
[x(1− x)]

−2/3
, (11)

where ε is a small-distance cutoff equal to the lattice spac-
ing in the Eden model simulations (see Appendix B for
details). Equation (11) (dashed line in Fig. 5) success-
fully reproduces the lineage densities measured in Eden
model simulations as well as the deterministic geometry
generated by the universal tree model.

B. MRCA position of contiguous subsamples

The proposed master curve for the lineage density,
Eq. (11), combines the effects of inflation and stochastic
coalescence in a succinct form which explicitly captures
the distinct tree structures for center distances below and
above the value r = R/2. As an application of our re-
sults to a quantity of relevance to typical biological mea-
surements, we now use this master curve to determine a
general relationship for the radial distance RMRCA of a
contiguous sample of size n taken at the outer boundary
of a colony that has reached a final radius R.

We measure distances and sample sizes in units of the
lattice spacing, and correspondingly set ε = 1 in Eq. (11).
If we assume a uniform angular distribution of lineages,
then the number of surviving lineages for a contiguous
sample of size n (covering an angle n/R) varies with dis-
tance r from the colony centre as

l(n, r) = l(r)
n

2πR
. (12)

Then the MRCA corresponds to the radius at which we
are left with only one lineage l(n,RMRCA) = 1, leading
to the following equation

x1/3(1− x)−2/3 = R2/3n−1, (13)

which can be solved exactly. Because 0 < x =
RMRCA/R < 1, the acceptable solution to this equation

is always unique and corresponds to

xMRCA =
1 + 2R2n−3 −

√
1 + 4R2n−3

2R2n−3
. (14)

For large n, RMRCA < R/2 and the scaling with sam-
ple size is such that RMRCA ∼ n−3. Conversely, if n is
small, the MRCA is close to the edge on average, and its
position follows the scaling 1−RMRCA/R ∼ n3/2, which
is analogous to the corridor case.

The transition between the two regimes corresponds
to when RMRCA ≈ R/2. Using the equation above, we
find that this corresponds to a critical angle (and criti-
cal sample size) αc = nc/R ≈ R−1/3. This scaling has
been previously identified as the threshold frequency be-
tween bubbles and sectors in neutral mutations in two
dimensional colonies [4].

C. Number of segregating sites

Analogously to the corridor case, the number of seg-
ragating sites S in a sample of size n is proportional to
the total tree size that leads to the n surviving leaves, so
that

Ttot(n) =

∫ R

RMRCA

l(n, r)dr (15)

∝ nR1/3

∫ 1

RMRCA/R

x1/3(1− x)−2/3dx (16)

= nR1/3

[
B
(

4

3
,

1

3

)
− B

(
xMRCA(n),

4

3
,

1

3

)]
(17)

where l(n, r) are the number of lineages as a function of
the distance from the center r that lead to the sample
and B indicates the corresponding beta function.

D. Site frequency spectrum

Our tree model assumes a perfectly balanced tree with
b initial branches that set the largest possible frequency
of a mutation in the front population (1/b). Similarly to
the argument for the corridor case, a mutation that is
carried by at least n individuals at the edge has to occur
somewhere in the tree before RMRCA(n). Then, the num-
ber of mutations m(n) carried by at least n individuals
at the edge is proportional to

T ∗(n) ∝
∫ RMRCA(n)

0

l(r)dr (18)

∝ R4/3B
(
xMRCA(n),

4

3
,

1

3

)
. (19)

Fig. 7 shows that the theoretical expectation of the
cumulative site frequency spectrum (1−Π(x), i.e., prob-
ability that at a mutation is carried by at least a frac-
tion x = n/(2πR) of the population), without any addi-
tional fitting parameter, agrees remarkably well with the
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simulation. We observe a slight deviation at the point
of inflection due to the discretized nature of the lattice
in the simulations (the edge is only approximately one
site thick). Interestingly, the agreement between theory
and simulations suggests that in the radial case the tree
is much more balanced then in the corridor case. The
power-law tail, corresponding to an exponent of −4, is
consistent with the site frequency spectrum of the full
colony as we expect the large frequency mutations at
the periphery to be stemming from sectors. The low
frequency component of the site frequency spectrum is,
in contrast, almost flat reflecting the fact that the later
portion of the tree contributes negligibly to the total tree
size.

10−3 10−2 10−1 100

Mutation frequency, x

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1-
Π

(x
)

Data
Model
3 sectors, 25◦ each
3 sectors, 50◦ each
6 sectors, 25◦ each

FIG. 7. Comparison in the cumulative site frequency spec-
trum from simulations sampling from the whole edge (solid
blue line), equally spaced subsamples of different size and
number (dash-dotted lines) and the theoretical expectation
from eq. 19 (black dashed line). No fitting parameters are
necessary. The shown subsampling plots were each generated
by averaging over the results of 18.000 simulation runs, while
the whole edge plot averaged over 48.000 runs.

In practice, often, only a subsample (or subsamples) of
the colony periphery may be sequenced, as for instance
in tumour biopsies [45, 54, 55]. Because of the spatial
correlation of the genealogies, these subsamples can ex-
hibit unusual signatures in the site frequency spectrum.
We have found above that if two individuals (or samples)
are picked farther than αc apart, their MRCA will very
quickly converge to the centre of the colony. This im-
plies the presence of long independent lineages that lead
to the different samples over which several mutations can
accumulate. Because these lineages do not branch for a
long time, they will lead to a large number of mutations
carried by a very specific frequency in the sample, show-
ing up as sudden drops in the cumulative site frequency
spectrum (fig. 7, dash-dotted lines). The position and
size of these drops depends on the geometry of the sam-
pling scheme.

If we have N samples of size n (each covering an angle

α = n/R), the RMRCA(n) of each sample is given by
equation 15. From this point to the edge, we expect, on
average, the N trees to be similar and thus no mutation
drop should be observed for frequencies below 1/N . The
topology of the tree for r < RMRCA(n) determines the
position and size of the drops we observe in simulations.
Since the number of leading lineages is N , in principle
we can expect to see drops at any frequencies i/N with
i ∈ {1..N − 1}, each corresponding to the length of tree
lineages shared by i of the N samples. The length of
such lineages depend on the separation between samples.
As the sample size n or the sample number N increases,
we expect the site frequency spectrum to converge to the
full edge.

V. DISCUSSION AND CONCLUSIONS

In this work we have analyzed the coalescence pro-
cess generated by two-dimensional spatial growth mod-
els to provide quantitative expectations for some typical
genetic observables that can easily be determined from
population sequencing, such as the number of segregating
sites and site frequency spectrum. Our analysis extends
previous work on the topic first, by introducing an in-
finite site model on top of the growth process and thus
going beyond the typical assumption of low mutation rate
and second, by considering practical situations in which
only a subset of the population is sampled. While here
we focus on the 2D Eden model as a specific example of
spatial growth that has been shown to well capture the
statistical properties of microbial colonies, our analysis
can be easily applied to three dimensional growth and to
other types of random-walk models outside the KPZ uni-
versality class. In particular, 3D Eden model simulations
have been shown to also display bubbles and sectors [4]
analogously to the 2D case. We thus expect that a non-
monotonic lineage density profile qualitatively similar to
the one showed in fig. 5, but characterised by different
exponents, could be found also in this case, which is rel-
evant to tumor growth.

Our results show, in agreement with previous
work [43], that the lineages generated by an Eden model
behave like directed polymers and can thus be modeled
as random curves with super-diffusive statistics (mean-
square transverse displacements grow faster than linearly
with lineage length). The coalescence process (backwards
in time) is then dictated by the annihilation of pairs of
lineages as they collide. This analogy allows us to find
a mathematical formulation for the average number of
lineages as a function of time that lead to a final popu-
lation at the edge of the expansion, which then can be
used to provide estimates for the time to the MRCA and
the number of segregating sites. Estimates for the site
frequency spectrum require knowledge of the tree topol-
ogy. Interestingly, here we find that the radial expansion
is consistent with a balanced topology. By contrast, a
linear front generates a site frequency spectrum inconsis-
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tent with a balanced topology, suggesting that rare long
branches which coalesce well past the typical coalescence
time play a crucial role.

While in this work we use the Eden model to de-
scribe the growth dynamics of two-dimensional popu-
lations building on previous studies [4, 20], this is by
no means the only possible choice. The Eden model
and the underlying KPZ universality class are relevant
when the expanding front increases its roughness as it
advances, due to a geometric feedback between local de-
viations from smoothness and the addition of new mate-
rial at the front [38]. In some populations, however, front
roughness might be suppressed and growth models that
maintain a locally flat front are more appropriate. Al-
ternative lattice models which maintain flat fronts, such
as the Domany-Kinzel model [35] or flat-front stepping
stone model [56] have been used to study clone dynam-
ics in range expansions where front roughening is absent.
The main difference compared with KPZ-type models is
that the transverse wandering of lineages follows diffu-
sive statistics (wandering exponent of 1/2) [43], and can
be described by a Langevin equation with multiplicative
noise [33, 35]. Our approach, with appropriately modified
exponents, could be used to construct simplified genealo-
gies for flat-front models of colony growth.

Recent studies have used both deep sequencing and
lineage tracing techniques to generate a vast amount
of data to disentagle tumour growth dynamics and se-
lection [17, 19, 45, 54, 55]. In many cases, sector-
like patterns are clearly observable suggesting that spa-
tial growth and competition at the edge of the expan-
sion play a crucial role. Because the cellular popula-
tion is not well-mixed, results obtained from local sam-
pling need to be carefully interpreted to infer the dy-
namics at play. For instance, the accumulation of muta-
tions at specific frequencies, which in a well-mixed sce-
nario would be interpreted a signature of selection, can
be a sole consequence of the geometry of the sampling
scheme, making evolutionary inference particularly chal-
lenging [45]. In this context, our analysis provides guide-
lines to design sampling schemes that can test whether
a neutral spatial model is sufficient to reproduce the ob-
served site frequency spectrum. Similarly, quantification
of clone density as a function of time [17] and spatial loca-
tion [19, 54, 55] and number of segregating sites [57] can
provide orthogonal measurements to reveal whether se-
lection or cell mobility is at play. Recent work has shown
that these quantities can be more informative then the
clone size distribution to identify selection in boundary-
growing tumors [57], and our work provides analytical
predictions for the neutral expectation, which can be
compared with the experimental data.
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Appendix A: Computational Methods

The computational data was obtained via simulations
based on the Eden model [51]. The growth process in
our simulations worked as follows: starting from a begin-
ning set of cells, placed at fixed points on a lattice, we
randomly select one cell, which still has at least one free,
neighbouring lattice site. We then randomly choose one
of these free neighbouring sites and place a new cell there.
This new cell can be seen as the descendant of the ini-
tially chosen cell. We then repeat the process of randomly
choosing a cell and placing a new cell at a neighbouring
site, until we reach the desired colony size. An example
of how an Eden growth process might look like, can be
seen in figure 8. By tracking the information about each

FIG. 8. Sketch of how a grid sequentially gets populated via
the Eden model. The black dots indicate all possible spots
where the new individual could be placed in the next step.
The white arrows always point from parent to child.

cell’s parent cell, we are able to trace back each cell’s lin-
eage and obtain the location of the MRCA of two specific
cells. The process for this is shown in figure 9.

Figure 8 shows how radial growth was initialized,
where we started our simulation from a single cell. In
contrast to this, the periodic corridor simulations start
with a certain number of cells lying next to each other
in a straight line. We then restrict the space that the
cells can inhabit to a corridor of a width equal to the
number of cells we start with, after which we start the
Eden growth process as described above. The corridor
boundaries are implemented to be periodical. In other
words, the corridor could also be thought of as the out-
side surface of a cylinder, wrapping around and connect-
ing to itself again. Therefore, a cell which is located at
the edge of the corridor can give birth to a new cell at
a free spot on the exact opposite side of the corridor. A
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FIG. 9. Sketch of how lineages can be traced back to the
MRCA. The lineages are traced back for two different cell
pairs, one at the top of the colony and one at the bottom,
indicated by the red dots. The lineages of the two cells in
each pair are traced back, indicated by the red colouring of
the lineage lines, until they intersect at the MRCA. The two
MRCAs are indicated by the large red squares.

visualization of this, as well as the growth process in a
corridor in general, can be seen in figure 10.

FIG. 10. Sketch of an Eden model growth process in a corri-
dor. From the upper left to the upper right picture the cor-
ridor gets populated, initially starting from a straight line of
individuals filling the whole width of the corridor. The lower
picture indicates how a cell at one edge of the corridor can
have a descendant at the opposite side, due to the periodic
boundary conditions of the corridor.

In order to successfully sample MRCA data from ran-
dom pairs of cells at the end of the corridor, all of these
cells should be descendant of one single ancestor. In con-
trast to the radial colony, this is not automatically the
cause though, since we start our corridor simulation with
a column of unrelated cells (whereas in the radial case we
start with only a single cell). Due to this, we have to let
the colony grow for a significant amount of time until
one lineage has pushed out all the others and the cells
at the end of the colony are all descendant of one sin-
gle cell from the very beginning of the corridor. The grid
size required to handle corridors with sufficient length for
this to happen, greatly exceed the computational mem-
ory limitations, even for small corridor widths. Due to
this, we implemented a special method for simulating the
corridor growth: In order to keep memory requirements

low, we should only keep cells in memory which are part
of the lineage of the cells at the very front, while delet-
ing all other cells from the memory. At the same time
we need to keep track of the spatial structure between
the cells at the front, which is necessary for letting new
cells grow using the Eden algorithm. To achieve this,
we start with a small grid of pointers of the same width
as our desired corridor, but a fixed length. Each of the
starting cells in our first column has a distinct marker,
which all of its descendants will also carry. When grow-
ing the grid, we do not save the cells’ information on the
grid, but rather on an arbitrary data structure (e.g. a
list) without any special spatial structure to it. The spa-
tial structure for growing our colony is obtained through
the small grid which points to the places in the mem-
ory where our cells’ information is kept (see figure 11).

In figure 12 we sketched each step of the process for

FIG. 11. Sketch of the way that information is handled when
growing large corridors. The square grid carries pointers to
the actual data, which is kept in a data structure (marked in
blue) without any spatial relationship between the individual
data cells. The grid keeps track of the information about the
spatial relationship between the individuals, while the other
data structure carries the actual information of the individu-
als, like the information about their ancestor and children.

a better understanding. We start with a full column
of cells, each with its own marker (see FIG.12.1). The
colony then grows until the first cells hits the right wall,
at which point we stop the growth process. We then
locate the most right column which is completely filled
(marked with a black frame in FIG.12.2) and check what
markers are still present in that column. All cells with
markers not present anymore can then be deleted from
the data structure on the right (these cells have been cir-
cled in FIG.12.2). After the unnecessary cells have been
deleted, we can shift the corridor back to only include
columns including and to the right of the column we just
investigated for the remaining markers (see FIG.12.3).
From here, the process is repeated again, growing, sam-
pling markers, deleting, until the sampled column only
has markers of one kind. At this point we can delete
the remaining other cells from our data structure. The
colony has now successfully grown to the point that its
front only includes cells which are descendant of one sin-
gle common ancestor (see FIG.12.4-7). At this point, we
can stop growing our colony and start with analyzing its
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FIG. 12. Sketch of the growth process for large corridors, with
the spatial data structure carrying the pointers on the left and
the data structure carrying the actual cell information on the
right.

MRCA information.

Appendix B: Lineage density from the universal tree
model

Our considerations of the stochastic coalescences with
statistics dictated by the KPZ wandering exponent (sec-
tion III, together with the incorporation of the inflation
effect in the universal tree model (section IV A), moti-
vated the following scaling form for the lineage density
of radial Eden clusters:

l(r)

2πr
= C[x(1− x)]−2/3, (B1)

where x = r/R and C is an as-yet undetermined pref-
actor. The power-law divergences as x → 0 and x → 1
in Eq. (B1) are imposed by the KPZ scaling, but other
considerations are needed to fix the value of C.

The value of the prefactor C is determined by noting
that the above scaling form is not valid out to x = 1,
but only up to some cutoff distance away from the outer
limit of the colony whose value is set by the microscopic
details of the growth process. Although the branching
process of the universal tree model can be carried out to
infinitely many steps, generating ever-finer leaves which
approach the outer limit, the true coalescence process
is limited by two microscopic length scales in any real
biological system or realistic simulation thereof. First,

genetic differences do not persist down to infinite reso-
lution but instead are restricted to some finite spacing.
In a microbial colony, for example, the smallest possible
spacing between distinct genetic samples is the size of an
individual cell; the lineages that are sampled are typically
spaced even farther apart. Second, the KPZ wandering
statistics arises within a coarse-grained description of the
interface between the colony and its environment, which
is only valid for roughness features that are larger than
some microscopic length scale. This roughness scale is
also of the order of a few cells for a microbial expansion.

To fix the value of the prefactor C, we impose these
length cutoffs at the outer boundary of the colony. We
denote the smallest spacing between distinct lineages by
the variable δ, and the smallest scale of roughness fea-
tures by the quantity ε. Therefore, the number of distinct
samples at the outer boundary is 2πR/δ. Our proposed
scaling form, Eq. (B1), is only valid out to distances
within ε of the outer boundary and we do not expect
any more mergers of lineages to occur between r = R− ε
and r = R. To match the proposed master curve to the
number of lineages at the outer boundary, we need

l(R−ε) = C
[(

1− ε

R

) ε

R

]−2/3
×2π(R−ε) =

2πR

δ
. (B2)

Our scaling arguments are only valid provided ε/R� 1.
Keeping only terms to leading order in ε/R in the above
equation, we find

2πRC
( ε
R

)−2/3
=

2πR

δ
(B3)

⇒ C =
ε2/3

R2/3δ
. (B4)

Equation (B4) specifies the prefactor by requiring the
proposed master curve to match the lineage density at
the edge of the colony. In the Eden simulations used in
our work, both length scales ε and δ are given by the
lattice spacing, hence we can set δ = ε which gives

C = (R2ε)−1/3

up to some O(1) constant which we assume to be one.
This value of the prefactor gives rise to the complete ex-
pression in Eq. (11). We find that the expression gives
a reasonable match to the rescaled lineage density mea-
surements from Eden simulations (compare dashed line
to solid lines in Fig. 5) without any fits being performed.
The agreement could be slightly improved by treating
the O(1) numerical constant as a free parameter whose
value is determined by fitting the proposed master curve
to the data. If we were to analyze genealogical tree data
from a biological population, we would not have micro-
scopic information about the quantities ε and δ. In that
case, it would be appropriate to use Eq. (B4) and fix the
combination ε2/3/δ as a fitting parameter.
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