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Abstract 
Understanding and Exploiting Viral Protein US28 During Human Cytomegalovirus Latency 

Elizabeth Grace Elder 

Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus which infects 50-100% of humans 

worldwide. HCMV causes a lifelong subclinical infection in immunocompetent individuals, but is a serious 

cause of mortality and morbidity in the immunocompromised and in neonates. Like other herpesviruses, 

HCMV establishes latency in specific cell types following primary infection, and reactivates periodically 

during the lifetime of the host. One important site of HCMV latency is early myeloid lineage cells, 

including hematopoietic progenitor cells and monocytes, in which the critical viral lytic promoter, the 

major immediate early promoter (MIEP), is repressed. This is mediated by a combination of host and 

viral factors, including the viral G-protein coupled receptor US28.   

Here, I explore mechanisms by which US28 optimises host cells for latent carriage.  Using an unbiased 

proteomic screen, I have assessed changes in total host proteins induced by US28 and find that 

interferon-inducible genes are downregulated by US28. I validate that MHC Class II and two PYHIN 

proteins, MNDA and IFI16, are downregulated during experimental latency in primary human CD14+ 

monocytes.  By overexpressing IFI16, I show that IFI16 can activate the viral major immediate early 

promoter and immediate early gene expression during latency via NF-κB, a function which explains why 

downregulation of IFI16 during latency is advantageous for the virus. I also show that MNDA is a 

potential restriction factor for HCMV latency. Since PYHIN proteins are sensors of double stranded DNA, I 

also investigate whether US28 interferes with the sensing of dsDNA. 

I also examine the antiviral potential of two US28-targeting reagents during HCMV latency. Lowering 

latent viral loads in solid organ or hematopoietic stem cell transplant donors and recipients is likely to 

lead to lower incidence of HCMV-disease in transplant patients. The first reagent, a US28-specific 

nanobody, inhibits US28 function and partially reverses latency. This leads to lytic gene expression, and 

subsequent recognition and killing of latently infected cells by naturally existing T cells from seropositive 

individuals. The second, a US28-specific immunotoxin, has previously been shown to directly kill latently 

infected cells.  I show that new derivatives of this immunotoxin are more efficacious and can kill latently 

infected cells after a short incubation, paving the way for their use in ex vivo normothermic perfusion of 

solid organs from seropositive individuals prior to transplantation.  

 



3 
 

Acknowledgements 
My supervisor John Sinclair has been an immense source of scientific and personal support during my 

PhD. He has provided wonderful mentorship and training, and has, at times, been a parent to me.  To 

begin to honour his contribution, and a vital skill he taught me during my PhD, on the next page I have 

set a cryptic crossword.  

I’d like to thank my fellow PhD students for their invaluable contribution to my time in Cambridge. I was 

welcomed to the lab by (the now Dr) Ben Krishna who was responsible for both the foundations of this 

project, teaching me a great many lab techniques, and for an increase in my usage of profanity. 

Marianne Perera has been a brilliant companion for conference travel, consolation over failed 

experiments, and toilet humour. I’d like to thank (now Dr) George Sedikides, the fastest lymphoprep 

layerer on the planet, for his help and his playfulness during the first two and a half years here. Dr 

Eleanor Lim helped with T cell work and both she and Martin Potts have shared my enjoyment for a good 

practical joke over the last three years. 

I gratefully acknowledge those in working in the shared Sinclair and Wills group lab spaces. Special 

thanks go to Dr Mark Wills, Linda Teague, Roy Whiston, Paula Rayner, Dr Emma Poole, and Dr Ian Groves 

for advice and assistance, and opportunities to contribute to other projects. Esme Fowkes was an 

undergraduate Part II student who I was given the opportunity to supervise during my PhD, and I’m 

grateful for her conscientiousness and her contribution to some of the work presented here. 

I’d like to gratefully acknowledge collaborators outside the Sinclair/Wills labs for various parts of this 

project, including Paul Lehner, James Williamson, and staff at the NIHR cell phenotyping hub, members 

of the Lever lab (all Cambridge University), Timo de Groof and Martine Smit (Vrije Universitet), Thomas 

Kledal (Synklino ApS), Mette Rosenkilde (University of Copenhagen), and Christine O’Connor (Cleveland 

Clinic).  

Thank you to Christopher Fox for putting up with me at my most stressed, and providing some tip top 

pipetting advice. I’m also extremely grateful to him, and to my mum, Rachel, who proof-read parts of 

this thesis. Finally, thank you to all those who donated blood for experiments, and the organisations that 

have provided financial support, including the Wellcome Trust who funded me. 

Liz Elder 

December 2019 



4 
 

PhD Cryptic, set by Blondie 
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1. See 27 

4, 25, 2. John has scrambled coral protein, I’ll 
produce more herpesvirus DNA. (6, 4, 11) 

7. El diablo oddly contains a 12 (5) 

9.  See 10 

12. Party with country is a gift (8) 

14, 15. Pet’s a type of viral life cycle, secret; 
eats point queen and is sold for scrap metal (9, 
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16. See 22 

17. See 27 

18. See 11 

19. See 28 

20. See 5 

22. Taverners magnetise a dodgy expenses 
claim (9, 10) 

26, 8. Rating for film is messily tearing up LA tango 
(8, 8) 

27, 1, 17. Chromatin expert? Oh no, chlorine is 
spilled on dirty floor making 28, 19 (6, 10, 10) 

29. Provided good person with a home for 28, 19 
(1,1,5) 

DOWN 

2. See 4 

3. See 24 

5, 20 across, 13. Eulogy is dreadful, take 
handkerchieves out, stay half wailing. (3, 7, 4, 4, 4, 1, 
5) 

6.  This 12 is not odd if Frau riots? (5) 

8. See 26  

10, 9, 23. Christmas 12 is firm round eastern state 
that is sad, listener calls (9, 4, 8) 

11, 18. Rue noisiest turmoil after top returns for 28, 
19. (8, 6) 

13. See 5 

15. See 14. 

20. Physician unwell for military training regime (5) 

21. Eliot holds son or daughter and dries tears (7) 

23. See 10 

24. Travel motto for lean years: stay inside, no 
chocolate logs, and instigate rationing at first (3, 8) 

25. See 4 

28, 19. Western blotting is an example of dog 
labour? (3, 4)
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1. Introduction 

1.1.  Natural history of human cytomegalovirus 

1.1.1. Herpesviruses 

The herpesvirales are an order of large, double-stranded DNA viruses which infect vertebrate and 

invertebrate species (https://talk.ictvonline.org/taxonomy/) [1]. The herpesviridae family, which infect 

reptiles, birds, and mammals, are subdivided into three subfamilies: alpha-, beta-, and gamma-

herpesviruses. There are nine herpesviruses known to infect humans (Table 1-1). The most recent of 

these to be discovered was the gamma herpesvirus HHV-8, Kaposi sarcoma associated herpesvirus 

(KSHV), in 1994 [2], while the betaherpesvirus human cytomegalovirus (HCMV, HHV-5) was isolated in 

the 1950s [3]. 

During primary infection, herpesviruses typically replicate (lytic infection) in a wide array of tissues and 

cell types [4]. Herpesviruses also establish a latent infection in specific cell types within the host (Table 

1-1). During latent infection, the viral genome is maintained in the absence of the production of new 

infectious virions. However, under certain conditions, the virus can reactivate from latency to produce 

new infectious viral particles. In the next section I will explain how latency and reactivation underpins 

lifelong carriage of herpesviruses, including human cytomegalovirus. 

  

https://talk.ictvonline.org/taxonomy/


15 
 

Table 1-1 Human herpesviruses 

Subfamily Virus Formal 
name 

Cellular site(s) of latency 

Alphaherpesvirinae Herpes simplex virus type 1 
(HSV-1) 

HHV-1 Sensory neurons (trigeminal 
ganglia) [5] 

Herpes simplex virus type 2 
(HSV-2) 

HHV-2 Sensory neurons (trigeminal 
ganglia) [5] 

Varicella-Zoster virus (VZV) HHV-3 Neurons  (predominantly 
dorsal root ganglia) [6] 

Betaherpesvirinae Human cytomegalovirus (HCMV) HHV-5 Hematopoietic progenitors 
and early myeloid lineage cells 
[7] 

Human herpesvirus-6A (HHV-6A); 
Roseolovirus 

HHV-6A 
 

Likely hematopoetic lineage 
[8,9] 

Human herpesvirus-6B (HHV-6B); 
Roseolovirus 

HHV-6B Likely myeloid lineage [8,9] 

Human herpesvirus-7 (HHV-7); 
Roseolovirus 

HHV-7 Unknown, likely hematopoietic 
lineage [8] 

Gammaherpesvirinae Epstein-Barr virus 
(EBV) 

HHV-4 B lymphocytes [10] 

Kaposi sarcoma associated 
herpesvirus (KSHV) 

HHV-8 B lymphocytes [11] 

 

1.1.2. HCMV infection in healthy individuals 

HCMV is a ubiquitous pathogen which infects 45-99% of individuals worldwide [12]. HCMV 

seroprevalence is correlated with socioeconomic status and, in the UK, approximately 50% of adults 

contain anti-CMV IgG in their serum [12,13]. Primary infection of healthy children and adults with HCMV 

is often asymptomatic but can result in mild flu-like symptoms [14] and HCMV shedding is routinely 

detectable in bodily fluids including saliva, urine, breast milk, semen, and vaginal fluid [15–17]. Broad 

and robust immune responses are generated during primary infection with HCMV, incorporating both 

cellular and humoral immunity [18]. In particular, strong T cell responses against a variety of viral 

epitopes are made which  enable control of virus replication and, after resolution of infection, extremely 

high frequencies of CMV-specific T cells are routinely detected in HCMV-seropositive individuals [18].  

Despite this effective control of lytic replication, healthy individuals never clear HCMV, and individuals 

can also be re-infected with additional strains of HCMV during their lifetime [19]. In healthy virus 

carriers, circulating HCMV-specific effector T cells predominantly recognise viral epitopes  that are 

expressed during lytic infection, but not during latent infection [20]. This general inability of effector T 
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cells in HCMV seropositive carriers to recognise latently infected cells helps the virus to remain 

undetected by the immune system during latency, which is routinely established in CD34+ hematopoietic 

progenitor cells and early myeloid lineage cells such as CD14+ monocytes [20]. 

Reactivation of HCMV from latency, discussed in much greater detail later, occurs sporadically 

throughout the lifetime of healthy individuals as myeloid progenitor cells which carry latent genomes 

differentiate into mature dendritic cells and macrophages [21,22]. Reactivation events in healthy carriers 

are also well controlled by existing immune responses and, therefore, asymptomatic but likely result in 

reseeding of the latent viral reservoir [20]. This model of latency and continual reactivation supports the 

view that HCMV can cause a lifelong subclinical infection in healthy individuals and helps explain the 

maintenance of high levels of HCMV-specific T cells in normal healthy carriers.  

1.1.3. Congenital HCMV infection 

Transfer of HCMV from mother to foetus during pregnancy is a leading cause of HCMV-associated 

disease. Congenital HCMV (cCMV) infection occurs in an estimated 0.8% of live births in the UK [23]. 

While many cCMV infections are asymptomatic at birth, approximately 15% will go on to develop long 

term developmental problems, including sensorineural hearing loss, vestibular dysfunction, and mental 

retardation [23]. Indeed, cCMV is the leading non-genetic cause of hearing loss. 

Transfer of HCMV from mother to foetus can occur in three ways: (1) primary infection of a seronegative 

mother; (2) secondary infection of a seropositive mother; and (3) reactivation of an existing HCMV 

infection in a seropositive mother [23,24]. In an individual mother, the risk of transmission to the foetus 

and clinical disease is highest if she undergoes primary HCMV infection [24,25]. However, since the 

majority of world populations have high HCMV seropositivity, the majority of cCMV cases are attributed 

to non-primary infection [26]. 

1.1.4. HCMV in the transplant setting 

Both allogeneic hematopoietic stem cell transplant (HSCT) and solid organ transplant (SOT) patients are 

at serious risk of HCMV-associated disease. Both types of transplant procedures require 

immunosuppression to avoid organ rejection or graft-versus-host disease. Coupled with inflammation 

associated with surgery, and allogeneic reactions, transplant patients often develop viremia and 

disseminated HCMV infection, which can, in some cases, be fatal [14,27–30]. The risk of symptomatic 

CMV disease depends on the type of transplant, and the serostatus of the donor (D) and recipient (R) 

[27].  Seropositive HSCT patients are at highest risk of disease if the donor is seronegative (D-R+) and 
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intermediate risk if both recipient and donor are seropositive (D+R+); seronegative recipients are at low 

risk from a seropositive donor (D+R-), and, clearly, the lowest risk if both recipient and donor are 

seronegative. In SOT patients, seropositive recipients are at low risk if the donor is seronegative (D-R+), 

and intermediate if the donor is seropositive (D+R+). Seronegative recipients are at high risk from a 

seropositive donor (D+R-).  

Managing HCMV in the transplant setting varies from centre to centre; antiviral drugs (See §1.1.6) are 

used in prophylactic regimens in some cases and only after detecting HCMV DNA in the blood in others 

[28,30]. Unfortunately, these antivirals are not well-tolerated in all patients, often causing marrow 

suppression and renal impairment, and the development of resistance mutations is commonplace 

[28,30]. Ensuring successful engraftment via immunosuppression, whilst preventing HCMV disease by 

allowing immune function, is a delicate balancing act for transplant physicians. 

1.1.5. Other HCMV pathologies 

HCMV is linked with other pathologies in both healthy and immunocompromised hosts. Human 

immunodeficiency virus (HIV)-acquired immunodeficiency syndrome (AIDS) patients are at risk of HCMV 

disease, most commonly CMV retinitis [31], while intensive care patients, such as those with sepsis, 

frequently experience disease linked to HCMV reactivation [32]. Meanwhile, older HCMV seropositive 

individuals have higher all-cause mortality, atherosclerosis and arterial hypertension in the absence of 

symptomatic infection [33–35]. Finally, HCMV has been linked with various cancers, most notably breast 

cancer and glioblastoma [36–40]. This link remains controversial, since HCMV does not readily transform 

cells, and whole genomes are not detected in cancers, but results showing improvement in patient 

survival upon treatment with HCMV antivirals mean that the link merits further investigation [39,41].  

1.1.6. HCMV treatment and prevention 

There is no licensed HCMV vaccine, though several candidates are under development [14,24,42–44]; an 

incomplete understanding of the correlates of protection against HCMV in a given clinical setting (e.g. 

pregnancy, SOT) likely limits progress towards an effective vaccine. Efforts towards preventing cCMV by 

educating pregnant women about risks and hygiene measures are under investigation [45,46]. 

Ganciclovir (GCV), and its orally-available derivative valganciclovir, are the first-line treatments for HCMV 

disease, and are also used as prophylaxis in SOT patients [44].  GCV, a guanosine analogue, is 

phosphorylated by the viral kinase UL97 to become a monophosphorylated species, and then 

subsequently phosphorylated by cellular kinases to become a nucleotide analogue and competitive 
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inhibitor for viral DNA polymerase catalytic subunit UL54 [47]. While largely efficacious in the transplant 

setting, resistance to GCV does occur via mutations in UL97 and UL54 [44], and it can cause neutropenia 

and thrombocytopenia leading to susceptibility to bacterial and fungal infections [30,44]. GCV can also 

inhibit myeloid reconstitution following HSCT [44]. GCV can reduce some cCMV-associated pathologies, 

but it is by no means fully efficacious, and works best for infants diagnosed within the first 30 days after 

birth [20].  Second-line therapies include cidofovir, acyclovir, and foscarnet also all target the viral DNA 

polymerase subunit UL54. These are also are susceptible to resistance mutations and also associated 

with toxicity [44]. Letermovir has recently been approved for prophylactic treatment of HSCT patients, 

and targets the viral terminase complex, inhibiting capsid assembly [44,48,49]; unfortunately, antiviral 

resistance can also develop for this compound during the course of treatment [49]. No licensed therapy 

targets latently infected cells, and thus current antiviral regimens will always leave latent reservoirs 

intact [44]. 

1.1.7. Species specificity of cytomegaloviruses 

There are many mammalian cytomegaloviruses described, including, but not limited to, murine, rat, 

guinea pig, bovine, equine, canine, swine, rhesus macaque, and chimpanzee [50]. Each cytomegalovirus 

is specific to its host; that is, murine cytomegalovirus (MCMV) does not productively infect human cells 

or, indeed, human beings, and HCMV does not productively infect mouse cells or mice [51]. This 

important feature means what when using a model organism, the cytomegalovirus used is that which 

naturally infects that organism.  

Many animal cytomegaloviruses are used to dissect aspects of CMV biology; particularly in vivo 

phenomena, which cannot be studied in humans for ethical reasons. These models, which include 

murine, rat, guinea pig, and rhesus macaque, are described extensively elsewhere [50,52–57]. Like all 

animal models for human diseases, there are advantages and disadvantages to each. In general, many 

HCMV genes have clear homologues in animal CMVs, but there has been extensive gene duplication and 

diversion, as well as gains and losses of function for individual genes during the course of evolution.  

MCMV is perhaps the most commonly used animal model for cytomegalovirus infection, and has been 

incredibly useful to CMV researchers. Two differences, highly pertinent to this project, exist: the major 

immediate early promoter (see §1.2.3 and 1.3.4) has a different arrangement of transcription factor 

binding sites, and hence may be regulated differently, and the cellular site of MCMV latency remains 

controversial [58–61]. For these reasons, studies of MCMV latency and reactivation must be interpreted 

with some caution by those interested in HCMV latency and reactivation.  
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1.2. Lytic infection of human cytomegalovirus 

1.2.1. HCMV virions and genome structure 

Lytic viral infections follow a basic pattern: virus particles enter cells, viral genes are expressed, the viral 

genome is replicated, new viral particles are assembled, and these particles egress from cells. HCMV is 

an enveloped virus of approximately 200 nm in diameter [62,63]. The tegument layer, containing many 

soluble proteins, lies in the space between the envelope and the capsid. The capsid, which has 

icosahedral symmetry, contains one copy of the HCMV genome in a linear form [63]. 

The HCMV genome is a non-segmented double stranded DNA (dsDNA) molecule of approximately 230 

kb, making it the largest genome of any human viral pathogen [63]. While it is linear within virions, it 

circularises within cells and is rapidly chromatinised in host nuclei [64,65]. The genome is organised into 

a short and a long arm, each flanked by inverted repeat sequences [63]. The portion of the genome on 

which a given HCMV gene resides determines the name of the gene, and so, for example, genes in the 

unique long arm are denoted UL(XX), or US(XX) for those resident in the unique short region where XX 

designates the number of the open reading frame (ORF) within that region.  There are over 200 ORFs 

encoded by HCMV, located on both the positive and negative DNA strands, with many genes overlapping 

[63]. As well as viral proteins, the genome encodes for multiple microRNAs and long non-coding RNAs; 

the functions of many HCMV genes have yet to be fully elucidated [66–68].  

1.2.2. Tropism, entry, and tegument proteins 

HCMV productively infects a wide range of cell types, including fibroblasts, epithelial cells, endothelial 

cells, smooth muscle cells, astrocytes, dendritic cells, and macrophages [69]. HCMV can enter cells via 

several different mechanisms, including direct fusion with the outer membrane, endocytosis, and 

pinocytosis [69–74], depending on the specific cell type involved. HCMV particles interact with heparan 

sulfate proteoglycans, but the co-receptors for HCMV entry are subjects of ongoing study, and likely vary 

by cell type and entry mechanism; co-receptors identified include integrins, PDGFRα, and neuropilin2 

[70,73].  

One very important determinism of cell tropism is the glycoprotein composition of the virion envelope. 

The glycoproteins can form a trimeric complex (gH/gL/gO) or a pentameric complex 

(gH/gL/UL128/UL130/UL131). Virions with pentameric complexes can enter endothelial cells and 

fibroblasts, whereas virions containing only trimeric complexes can only enter fibroblasts [73]. This is 

important since serial passage of laboratory viruses in fibroblasts leads to deletion of a genomic region 
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called ULb’, which contains the UL128/UL130/UL131 components of the pentamer, leading to a loss of 

tropism for endothelial cells [75,76].  

At least some of the incoming proteins and RNAs associated with HCMV particles are known to be 

functional before their de novo transcription during infection [77]. Lots of these are the tegument 

proteins, which have roles including immune evasion, capsid trafficking to the nucleus, and activation of 

viral gene expression [77–79]. In particular, incoming tegument protein pp71 (encoded by UL82) induces 

the degradation of components of promyelocytic leukemia (PML) bodies which repress viral gene 

transcription in the nuclei of permissive cells [77] – this is discussed in greater depth in §1.3.4. 

1.2.3. Lytic gene expression: a regulated cascade 

Herpesvirus gene transcription is temporally regulated. Classically, there are three major kinetic classes 

of viral genes: immediate early, early, and late,[80], but additional, intermediate classes of genes have 

been described, such as ‘leaky-late’ [81,82]. Nevertheless, temporal regulation is critical to the biology of 

HCMV replication. 

Immediate early (IE) genes are the first to be transcribed. They transactivate early gene transcription, 

modulate cell cycle, and counteract a variety of host defence responses [83,84]. The Major Immediate 

Early (MIE) gene products IE1 and IE2 (also known as IE72 and IE86) are expressed from the Major 

Immediate Early Promoter/Enhancer region (henceforth referred to as the MIEP).  This region, shown in 

Figure 1-1, consists of core, enhancer, unique, and modulator sequences upstream of the transcription 

start site [83,85,86], as well as regulatory sequences in the first intron that can also act as a promoter for 

alternative IE transcripts [87–89]. Since HCMV DNA is rapidly chromatinised upon entry into the nucleus, 

the MIEP is subject to regulation by chromatin structure [85,86,90–92]. 

Once the MIEP is activated, and IE gene products are expressed, early gene expression is transactivated. 

As a generalisation, early gene products encode the viral DNA replication machinery, a step necessary for 

late gene expression. Late genes encode for structural components of the virion, such as the envelope 

glycoproteins and tegument proteins.  

HCMV genes of all kinetic classes, as well as tegument proteins, have immune evasion functions. This 

spans the disruption of sensing mechanisms, the antagonism of interferon responses and innate 

immunity, cell death pathways, antigen presentation, cytokine and chemokine responses, and T-, B-, and 

NK-cell immunity [93–97]. Despite this, healthy individuals control HCMV replication and carry HCMV 
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asymptomatically for the duration of their lifetimes; it is viral latency that underpins persistence. In this 

next section, I will explain where and how latent viral infections are established and maintained in hosts. 

 

 

Figure 1-1 Organisation of the Major Immediate Early locus, based on [83,86]. The MIEP consists of modulator, 
unique, enhancer, and core regions which are bound by the indicated activatory or repressive transcription factors. 
NF1, nuclear factor 1; CREB/ATF, cAMP response element binding protein/activatory transcription factor; NF-κB, 
nuclear factor-kappa B; AP1, activator protein 1; C/EBP, CCAAT-enhancer-binding protein; SP1, Sp1 Transcription 
Factor; SRF, serum response factor; PPARγ, peroxisome proliferator activated receptor gamma; MRF, modulator 
recognition factor 1, HUGO name ARID5A; ERF, Ets-repressor factor; YY1, ying yang 1; MDBP, methylated DNA 
binding proteins; Gfi-1, growth factor independent 1 transcriptional repressor.  The approximate positions of the 
TATA-box and cis-repression sequence (crs) is indicated; the crs is bound by IE2 protein at late times of infection to 
repress transcription of MIE gene products. The canonical transcription start site (TSS) is indicated at +1bp. Exons 
(yellow) and introns (green) are numbered. The intronic promoters iP1 and iP2 also contribute to full-length IE1 and 
IE2 proteins; the position of the initiator AUG codon is indicated. IE1 is comprised of coding regions from exons 2, 
3, and 4; IE2 is comprised of coding regions from exons 2, 3, and 5; these, and other MIE proteins, are generated by 
alternative splicing from this locus. 
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1.3. HCMV latency and reactivation 

1.3.1. Natural sites of HCMV latency and reactivation 

By definition, latent carriage of HCMV requires the maintenance of the viral genome in the absence of 

the production of infectious virus particles; however, under certain conditions, virus is able to reactivate 

and produce new virus particles [98]. This ability to reactivate sets latency apart from so-called ‘abortive 

infection’, and cellular differentiation is intimately linked with both latency and reactivation [98]. 

One important natural site of HCMV latency is in cells of the early myeloid lineage. CD34+ hematopoietic 

progenitors (HPCs) and their derivatives, including granulocyte-macrophage progenitors and CD14+ 

monocytes, are latently infected in seropositive individuals [99–102]. Reactivation of HCMV has been 

observed directly ex vivo in differentiated myeloid cells [21,22] and in vitro upon differentiation of CD34+ 

progenitor cells and CD14+ monocytes into mature dendritic cells or macrophages [103,104]. While 

differentiation-independent virus reactivation has been recently reported in an immortal myeloid cell 

line [105], the mechanism of reactivation from latency has only been extensively described during 

myeloid cell differentiation (described in the next three sections).  

Some groups have suggested that endothelial cells might also be sites of HCMV latency [27,106]. 

However, to date, no group has been able to take these cell types from a seropositive donor, show that 

they are latently infected, and then show that they can reactivate virus; however, this does not preclude 

that these cell types may contribute to long-term persistence of HCMV. 

1.3.2. HCMV latency and reactivation experimental models 

The most relevant experimental models of HCMV latency and reactivation are infections of primary early 

myeloid lineage cells from healthy donors. CD34+ HPCs are typically resident in the bone marrow and, 

because they are stem cells, these are thought to represent the long term site of latency in humans 

[107]. For ex vivo work, HPCs can be derived directly from bone marrow, after cytokine-mediated 

mobilisation from bone marrow into blood, as well as from umbilical cord blood. These can be cultured 

in a simple, serum- and cytokine- free medium, or can be expanded using cytokines/serum, and can also 

be co-cultured with supporting stromal cells. Reactivation is induced using further cytokines that induce 

differentiation [108–110]. Thus, while CD34+ HPCs are a highly relevant model for HCMV latency and 

reactivation, there are several challenges associated with their use: they are difficult to obtain in large 

numbers, they are a heterogeneous population within any single experiment, and additional 

experimental sources of heterogeneity mean that repeating observations is not always straightforward.  
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Similarly, granulocyte-macrophage progenitor cells are also an experimental model of latency and 

reactivation [101], with the source material being fetal liver from aborted foetuses. The source material 

is therefore limited and subject to heterogeneity. CD14+ monocytes can be obtained via venepuncture 

and thus are a much more readily available cell type compared with CD34+ HPCs [111,112]. Some groups 

work with monocytes in a serum- and cytokine-free media, and the work presented here uses this 

system, which aims to avoid differentiation. Others culture monocytes in serum and/or cytokines to 

more closely mimic circulating monocytes in vivo [113,114] 

In addition to practical and ethical considerations, a major disadvantage of primary cell models is that 

they cannot readily be genetically modified. Therefore, several cell lines have been used for the study of 

HCMV latency and reactivation. A great deal of early work was performed in human embryonal NTera2 

carcinoma cells [115,116], while Kasumi-3 cells are a CD34+ myeloblastic cell line [117], and THP-1 cells 

are a myelomonocytic leukemia cell line [118,119]. Each supports a form of latency and reactivation, but 

none recapitulates all aspects of latency and reactivation known to occur in primary cells [120], with a 

major difficulty being the dilution of viral genome as cells divide during the course of latent infection. 

Recently, an inducible pluripotent stem cell (iPSC) line has been identified which supports latency and 

reactivation [121], and can combine the ability to track latency through all stages of myeloid 

differentiation with an ability to genetically modify cells. Finally, a humanised NOD-scid IL2Rγc null 

(huNSG) mouse model of HCMV latency and reactivation might allow interrogation of viral processes 

that are only observable in vivo [122], but results from this mouse model need to be interpreted 

carefully since the mouse cells of non-hematopoietic origin do not get productively infected. 

1.3.3. Viral gene expression during latency and reactivation 

Viral latency was once believed to be equivalent to viral quiescence, involving little or no viral 

transcription or modulation of host cell gene expression and function. However, HCMV latency is now 

well established to mediate multiple changes in host processes such as antigen presentation, cytokine 

production, apoptosis, differentiation, and motility [112,113,123–128], and these can be related to the 

expression of viral gene products during latency. 

Viral gene expression during experimental and natural latency is a subject of ongoing study. Prior to 

recent advances in transcriptomics, only a handful of viral transcripts were known to be expressed 

during latency, including the protein coding genes UL138, UL144, US28, UL111a, and LUNA, as well as 

some long non-coding RNAs and micro RNAs [20,129,130]. These analyses were based on microarrays or 
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targeted RT-PCR studies [124,131–133], but unbiased methods, including single-cell RNAseq, has 

identified that latency-associated gene expression is more broad and complex than previously conceived, 

though the absolute levels of transcripts are much lower during HCMV latency than during lytic infection 

[134–136]. However, besides the lack of production of infectious virions, a key hallmark of latency is still 

accepted to be the suppression of immediate early (IE) gene expression in latently infected cells, both ex 

vivo and in in vitro models [101–103,131,137,138].  

Conversely, the initiating step in reactivation is transcription of IE1/IE72 and IE2/IE86 transcripts to begin 

the lytic transcription programme [7,103,104]. As described in §1.2.3, these transcripts can originate 

from the canonical transcription start site (Figure 1-1), and the intronic promoters iP1 and iP2. One 

group has recently suggested that iP1 and iP2 are the major sources of IE1 and IE2 during reactivation, 

and proposed a ‘promoter-switching’ paradigm [89]. They drew these conclusions after measuring levels 

of the three promoter-derived transcripts during the phorbol ester-induced differentiation of THP-1 cells 

as well as knocking out iP1 and iP2 and seeing reduced reactivation in CD34+ HPCs. However, 

unpublished work from our own laboratory, and that of collaborators (C. O’Connor, personal 

communication) has failed to recapitulate the strong bias towards iP1 and iP2 driven transcripts during 

reactivation in both primary monocytes and THP-1 or Kasumi-3 cells. However, in these unpublished 

studies, while the canonical transcripts predominate, iP2 was more prevalent when using reactivation 

stimuli that promote macrophage differentiation, rather than dendritic cell differentiation. Mutagenesis 

in the intronic region as carried out in the studies defining iP1 and iP2, must, I believe, be interpreted 

with caution, since regulatory elements in that region may act upstream as well as downstream; for 

example, a CTCF site (a well-established chromatin insulator) is present in the first intron of the major IE 

region [88]. 

Following recent insights into the apparent broad range of viral transcription during HCMV latency, it is 

now incumbent upon groups to identify latency-associated functions for transcripts detected in latently 

infected cells, for example by knocking out these genes in the context of a latent infection. Such 

approaches have identified important roles for latency-associated expression of UL111a, which is 

involved in immune evasion [123,139], LUNA, which disperses  promyelocytic leukemia (PML) bodies and 

is essential for reactivation [109,140], and the microRNA miR-UL112-1, which represses IE1 translation 

[141]. Many viral genes, as I will outline below, play important roles in controlling viral gene expression 

during latency. 
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1.3.4. Control of viral gene expression during latency and reactivation 

HCMV latency and reactivation is intimately linked with myeloid differentiation (§1.3.1) and, consistent 

with this, some latency-associated viral gene promoters contain elements that are differentially 

regulated during myeloid differentiation. For example, the promoters of LUNA and UL144 (in some viral 

isolates) contain GATA2 responsive elements, and GATA2 is expressed in myeloid cells allowing 

expression of these genes during latency [129,130,142].  

Perhaps the most important determinant of latency and reactivation is control of IE gene expression. As 

described in §1.2.3, IE gene expression is regulated by chromatin structure at the MIEP. Analyses of 

chromatin structure at the major immediate early promoter reveals that latency correlates  with a 

repressive chromatin structure around the MIEP, including the presence of the heterochromatin marker 

HP1 [103,104,143], as well as the histone modifications histone-H3-lysine-27-trimethylation (H3K27me3) 

and histone-H3-lysine-9-trimethylation (H3K9me3) [136,144] (see also Figure 1-2). Histone deacetylase 

(HDAC) activity is also important for maintaining a repressed chromatin state as treatment of latently 

infected monocytes with HDAC inhibitors leads to transient activation of IE gene expression [145].  

The differentiation of CD34+ progenitor cells, which can carry latent HCMV in vivo, into mature dendritic 

cells results in the removal of repressive H3K27me3 and H3K9me3 marks and associated HP1 from the 

MIEP [103,104,136,144]. Additionally, phosphorylation of histone H3-serine-10 (H3S10P) at the MIEP has 

been shown to precede the removal of repressive marks during the differentiation of experimentally 

infected monocytes into immature dendritic cells [146]. Acetylation of histone H4 has also been 

demonstrated during reactivation from latency in maturing dendritic cells [103,104]. As such, an open 

chromatin structure around the MIEP permits the initiation of IE transcription which is necessary for 

reactivation. 

Clearly, a repressive chromatin structure around the MIEP must be established during latency in myeloid 

progenitors and then modified during reactivation to permit efficient IE gene expression in differentiated 

dendritic cells and macrophages (Figure 1-2). We know that this process relies upon both cellular and 

viral factors; these can function by direct binding to the MIEP or by indirect mechanisms and have either 

activatory or repressive functions. A long-standing hypothesis states that it is the balance of these 

activatory or repressive factors that then controls whether or not the MIEP drives IE gene transcription, 

and that cellular differentiation must alter this balance [147–149].  
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Some host cell transcription factors bind directly to the overlapping 18, 19, and 21 bp repeats within the 

MIEP as well as other motifs in more upstream sequences (direct acting factors)[86]. This includes the 

repressive factors YY1 and ERF, and the activatory factors NF-κB and CREB. In undifferentiated, non-

permissive cells, the repressive factors YY1 [116] and ERF [150,151] bind to the 21 bp repeats. ERF is 

thought to recruit HDAC1 to the MIEP, thus providing a link between transcription factors binding to 

specific DNA sequence motifs and epigenetic modification. Interestingly, absolute levels of YY1  

decreased during differentiation of the non-permissive NT2 cell line [116]. 

KAP1 was more recently identified as a chromatin organiser that can mediate repression during latency  

in CD34+ HPCs [144]. While not strictly a DNA-binding protein, KAP1 was found to constitutively associate 

with HCMV DNA in CD34+ progenitor cells, and KAP1 deposition across the viral genome correlated with 

the presence of the KAP1 effector SETDB1, as well as HP1 and H3K9me3 marks at the MIEP. When KAP1 

was depleted, these marks were lost and the virus entered lytic replication in the absence of cellular 

differentiation. Furthermore, KAP1 activity was shown to be repressed during lytic infection by mTOR-

mediated phosphorylation, thus providing a potential mechanism for exiting latency. 

Other host factors which do not, themselves, bind to viral DNA are thought to control the presence or 

activation of other direct-acting factors. As discussed, mTOR-mediated phosphorylation of KAP1 

abrogates the repressive activity of KAP1, implying that mTOR is important for regulating latency. Other 

host kinases are also important. Linking reactivation with cellular differentiation, interleukin-6 (IL-6)/ 

lipopolysaccharide (LPS)-stimulated activation of ERK-MAPK pathways was shown to be crucial for 

inducing MIEP activity in maturing dendritic cells [146,152]. In this study, CREB was phosphorylated by 

the downstream kinase MSK, which is required for its activation at the MIEP. The absence of this MSK 

signalling cascade during latency in myeloid progenitors may therefore prevent CREB activity and help 

MIEP suppression.  

The role of viral factors during latency is becoming more appreciated [129]. These include viral factors 

that may enter myeloid cells as components of the virion. For example, the viral long non-coding RNA 

4.9, has been reported to bind the MIEP and recruit the repressor complex PRC2 to the MIEP [136]. The 

viral transactivator pp71,which activates the MIEP, is excluded from the nucleus of  undifferentiated 

myeloid cells and, since pp71 has been shown to be important for antagonising the suppressive functions 

of PML bodies on the MIEP during lytic infection, exclusion of pp71 may help an initial PML-mediated 

repression of the MIEP upon infection [153]. However, other reports in different systems note that 

knockdown of PML components had no effect on the establishment of latency [154,155] and, 
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furthermore, a recent study found that the viral factor LUNA actually disperses PML bodies during latent 

infection in CD34+ cells [109]. 

Transcribed viral genes also contribute to latency and reactivation. For example, the latency-associated 

gene product UL138 manipulates cellular signalling pathways from the ER, probably in concert and in 

opposition with other members of the ULb’ region [156]. UL138 has been reported to repress MIEP 

activity, in part by blocking histone lysine-demethylase activity during latency [157]  and also likely via 

manipulation of EGFR signalling [157,158]. Meanwhile, other viral factors promote reactivation from 

latency, including LUNA and UL7 [109,128,140]. 

The virally-encoded G-protein coupled receptor US28 is expressed during lytic and latent infections, as 

well as coming in with the virion [159] and has recently gained prominence as an essential protein for 

latency. In §1.4, I will describe how US28 is able to alter cell signalling in a differentiation dependent 

manner, and thus promote latency in myeloid progenitor cells. 
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Figure 1-2 Regulation of HCMV latency and reactivation during myeloid differentiation, taken from 

[160]. HCMV infects CD34+ progenitor cells and establishes latency (top left). The HCMV genome is 

maintained in the nucleus as an episome (blue circle) and is chromatinised. The MIEP (represented 

bottom left) is prevented from driving IE gene expression by a repressive chromatin state. Histones 

(purple) are trimethylated at H3K9 and H3K27. The repressive factor HP1 associates with the MIEP, as do 

ERF and YY1, and KAP1 acts to suppress the MIEP from distal binding sites. Latency-associated viral 

factors (listed) contribute to MIEP suppression, and the activatory factor pp71 is excluded from the 

nucleus.  During differentiation-induced reactivation in mature dendritic cells or macrophages (top 

right), transcription of IE genes is activated leading to full lytic replication and release of infectious 

virions. As a result of differentiation, the chromatin structure around the MIEP is more open (bottom 

right), and activatory histone marks including histone acetylation (Ac) and H3-serine-10-phosphorylation 

(S10P) are present. Activated CREB and NF-κB become associated with the MIEP, as do histone acetyl 

transferases (HATs). Several viral factors are reported to be important for reactivation in myeloid cells, 

including LUNA, UL7, and certain members of the ULb’ family.  
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1.4. Viral protein US28 is essential for HCMV latency 

1.4.1. US28 structure, expression, and function during lytic infection 

HCMV encodes four G protein coupled receptors (GPCRs), namely US27, US28, UL33, and UL78 

[161,162]. One of these, US28, is a seven transmembrane domain protein coupled to host trimeric G 

proteins via an aspartate-arginine-tyrosine (DRY) amino acid motif [163] (Figure 1-3) . US28 is a 

chemokine receptor homologue, binding CC and CX3C chemokines via a variety of binding mechanisms 

involving the N terminus; residue Y16 in particular is known to be important for binding CCL5 and CX3CL1 

[164]. However, ligand binding is not required for all signalling activity of US28 and US28 can signal 

constitutively [163,165–168]. The C terminal region also has multiple serine residues that can be 

phosphorylated and is an important regulatory region that binds beta-arrestins [166,169]. 

Expressed in both lytic and latent HCMV infections [67,159,163,170–173], US28 protein (pUS28) is 

incorporated into infectious virions [159] and, during lytic infection, pUS28 is localised to endocytic 

vesicles and is constitutively recycled to/from the cell surface [174]. Pharmacological studies indicate 

that at least some proportion of US28 is localised to the cell surface during latent infection [172]. 

During lytic infection, the functions of US28 depend on the specific cell type infected [163,166] (Table 

1-2). Part of this ‘functional selectivity’ of US28 owes to the ability of US28 to interact with host G 

proteins which vary in a context and cell type-dependent manner [163,166], and which also interact with 

a swathe of different CC and CX3C chemokines [165], but, as described above, not all US28-functions are 

dependent on ligands. US28 can, in a cell-type dependent manner, induce calcium influx, cell adhesion, 

angiogenic signalling, and cell migration and, during lytic infection, activate pathways including MAPK, 

NF-κB, and STAT3 (references in Table 1-2).  US28 is also likely to function as a chemokine sink during 

lytic infection, to aid in immune evasion [175].  Furthermore, US28 is a positive regulator of transcription 

from the MIEP in cells permissive for lytic infection, a process dependent on p38 MAP kinase activation 

and NF-κB activation [176]. Despite these functions, US28 is not essential for lytic infection in vitro 

[159,177], but does enhance cell-to-cell spread in epithelial cells [178]. Possible in vivo functions of US28 

are not informed by e.g. MCMV, in part because MCMV encodes only one GPCR, M33, which could 

therefore be homologous to any of the four HCMV GPCRs. However, US28 may be important for 

dendritic cell trafficking in vivo [179], and contribute to glioblastoma growth [36,40,180–182].  
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Figure 1-3 Serpentine diagram of US28, highlighting functional domains, motifs, and amino acids. Plot was 
generated using Protter with automatic settings to assign topology [183]. 
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Table 1-2 Selected functions of US28, adapted from [163]. US28 activates the pathways, unless otherwise stated. 

Signalling pathway/ 
cellular function 

Cell type Ligand/domain dependency References 

Intracellular calcium 
release 

Fibroblasts 
Arterial smooth muscle cells 

CCL5, CXCL3 [169,184] 

Endothelial cells CCL7, CCL5 [185] 

Adhesion to 
endothelial cells 

THP-1 cells 
 

DRY motif [126,186] 

Cellular migration Smooth muscle cells 
Macrophages 

CC chemokines (positive 
regulator) 
CX3CL1 (negative regulator) 

[187,188] 

MAPK Embryonic kidney 
Differentiated myeloid cells 
 

DRY motif (positive regulator) [176,189] 

Endothelial cells 
Neural progenitor cells 
 

CCL5 (positive regulator) [190] 

Undifferentiated myeloid 
cells 

DRY motif (negative 
regulator)  

[189] 

NF-κB Fibroblasts 
Glioblastoma cell line 
Epithelial cells 

Ligand independent (positive 
regulator) 

[176,181,191] 

Undifferentiated myeloid 
cells 

DRY motif (negative 
regulator) 

[189] 

STAT3 Endothelial cells CCL5 [190] 

Glioblastoma cell line Ligand independent [191] 

Undifferentiated myeloid 
cells 

unknown [173] 

VEGF secretion Glioblastoma cell line 
Fibroblasts 

Ligand independent [40,181,192] 

 

 

1.4.2. US28 is essential for HCMV latency 

Three research groups, including my own laboratory, have independently found that US28 gene deletion 

viruses (ΔUS28) fail to establish latency in early myeloid lineage cells [159,173,189]. Cord blood-derived 

and bone marrow-derived CD34+ progenitor cells [159,173,193], Kasumi-3 cells [159,193], CD14+ 

monocytes [189], and THP-1 cells [189,193] all show this phenotype and, in each setting, the lack of US28 

leads to the failure to repress the MIEP, thus driving IE expression and the full lytic replication cycle with 

the eventual release of infectious viral particles. Removing US28 from the virus uncouples 
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permissiveness for lytic infection from cellular differentiation, since monocytes infected with ΔUS28 

HCMV abnormally undergo lytic infection, though they do not show differentiation-specific cell surface 

markers [189].  US28 is expressed and translated de novo as well as entering the cell with the virion [159] 

and both incoming US28 and de novo expressed US28 are important for the establishment and ongoing 

maintenance of latency in myeloid progenitor cells [193].  

Use of characterised mutants of US28 has elucidated some US28-mediated functions that are important 

for latency. As described in §1.4.1, the Y16F mutant removes some ligand binding activity [164] and the 

R129A mutant abrogates coupling of G-proteins to the DRY box motif of US28 [181,184,194] . Expression 

of wild-type US28 (US28-WT) in trans rescues latency-establishment in THP-1 cells with the ΔUS28 virus 

[189]. Similarly, expression of US28-Y16F in trans could also complement the US28 deletion virus 

suggesting that certain modes of ligand binding may not be necessary for the latency-associated function 

of US28 [189]. However, deletion of the entire ligand binding domain of US28 in the virus  causes lytic 

infection in myeloid cells [193], which is perhaps explained by work demonstrating the multiple modes 

by which US28 can bind a wide array of ligands [165]. It is clear, however, that infection with virus 

carrying US28-R129A or infection of THP-1 cells expressing US28-R129A with ΔUS28 virus fails to lead to 

latency establishment, providing clear evidence that US28-signalling via G proteins is essential for latency 

[189,193]. The way that US28 signalling manipulates the host environment to support latency is 

therefore of great interest and under intense study, and will be described in the next section. 

However, one group has produced findings that seemingly contradict these studies [195]. They 

constructed a virus with two stop codons close to the 5’ end of the US28 ORF, as well viruses with the 

US28-R129A and US28-Y16F mutations, and a destabilising domain attached to US28 (ddFKBP) which 

causes protein degradation unless in the presence of a molecule called Shield-1. However, neither the 

growth characteristics of these viruses nor US28 protein expression were validated by the authors. They 

infected fetal liver-derived CD34+ progenitor cells to examine the maintenance of HCMV latency and 

subsequent reactivation by transfer to fibroblasts or genome copy number. The authors concluded that 

the US28-stop virus can establish latency but fail to reactivate in long-term culture (over 14 d.p.i.), but 

did not show earlier time points; previous analyses have demonstrated that infection of myeloid cells 

with ΔUS28 viruses leads to lytic gene expression and infectious virus production within 7 days [159,189], 

providing one potential explanation for the discrepancy. Quite strangely, in that same study, the US28-

stop virus reactivated following stimulus, however, the lack of error bars throughout the study does not 

allow one to be certain about the precision of their analysis. Furthermore, the authors found that the 
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US28-Y16F virus failed to establish latency, with high levels of immediate virus production.  It is unclear 

how this observation could fit with any model of US28 function during latency and reactivation, and the 

lack of controls for protein production, virus growth kinetics, or time course of how latent infection 

progresses does not lead one to feel confident in their results. As an explanation for the discrepancy 

between their study and previously published studies [159,173,189], the authors suggest that (i) there 

are differences between the cells used and (ii) that while their study uses stop mutants, the previous 

work used whole ORF deletions, and “US28 is encoded on a polycistronic transcript that also includes 

US27 and US29 which could affect the expression of US27 and US29”.  While US28 is certainly encoded 

on a polycistronic transcript encoding US27, as well as a monocistronic transcript [66,67], I could find no 

evidence that US29 is encoded by such a transcript, and the authors do not provide a citation. 

Furthermore, unpublished data from the O’Connor laboratory suggests that US28 ORF deletions do not 

affect US27/US29 expression and that, in their system, a US28-stop virus also fails to establish latency (C. 

O’Connor, personal communication, manuscript in preparation). On the basis of the strength of the 

evidence provided by the four different laboratories, it seems most likely that US28 is essential for the 

both establishment and maintenance of latency. 

1.4.3. US28 manipulation of cell signalling during latency  

One argument in favour of an essential role of US28 in latency establishment and maintenance is the 

body of mechanistic data linking US28 signalling in myeloid cells with the suppression of lytic gene 

expression.  

Analyses of the activation states of cellular kinases during latent infection, or in myeloid cells 

overexpressing US28 in isolation have revealed several signalling pathways that are important for latency 

(summarised in Figure 1-4). Infection of CD34+ progenitor cells with WT virus, but not ΔUS28 HCMV, 

drives activation of the STAT3-iNOS pathway, and the resultant nitric oxide production was shown to 

suppress the MIEP [173]. Furthermore, these authors showed that presence of US28 in the context of 

latent infection may reprogramme infected cells to become immunosuppressive monocytes akin to 

myeloid-derived suppressor cells, rather than conventional monocytes or, indeed, parts of other myeloid 

or lymphoid lineages. 

Additionally, US28 has been found to attenuate several cellular signalling pathways, such as ERK, MSK, 

NF-κB, and STAT5 [189] when expressed in isolation in undifferentiated myeloid cells. It is interesting to 

note that ERK signalling is crucial for CREB phosphorylation at the MIEP and subsequent deposition of 

the activatory mark H3S10P on the MIEP upon differentiation-induced reactivation [146]. Consistent 
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with this, and the ability of US28 to attenuate ERK signalling, infection of monocytes with ΔUS28 HCMV 

(which no longer suppresses the MIEP) is also associated with activated CREB and phosphorylated H3S10 

on the MIEP. Furthermore, pharmacological inhibition of ERK in combination with NF-κB could prevent 

lytic replication of ΔUS28 HCMV in monocytes and, conversely, treatment of monocytes with small 

molecule inhibitors of US28 also results in a lytic infection rather than latency [189]. 

Attenuation of these cellular signalling pathways by US28 is reversed when US28-expressing cells are 

differentiated into macrophage-like cells using phorbol esters such as phorbol 12-myristate 13-acetate 

(PMA) [189]. The implication, then, is that US28 helps to maintain latency via the attenuation of MIEP-

activatory cascades but does not block signalling from these pathways during reactivation, and may even 

support their function during cellular differentiation. Indeed, in reporter systems, US28 represses the 

MIEP in undifferentiated THP-1 monocytes, but activates the MIEP in PMA-differentiated THP-1 derived 

macrophages [189]. 

Recent work has also shown that US28 decreases c-fos levels during latency. Binding to the AP-1 site 

within the MIEP by fos/jun dimers activates the MIEP and so, in decreasing c-fos, US28 enacts MIEP 

suppression via an additional mechanism. As such, treatment of myeloid cells with a c-fos inhibitor 

reduced lytic gene expression when infecting with ΔUS28 HCMV [193]. 

The functions of US28 during latency extend beyond MIEP suppression. US28 has been linked to 

hematopoietic reprogramming during latency, to ensure latently infected CD34+ HPCs differentiate into 

myeloid lineage cells [173,195]. Given the wide array of signalling pathways modulated by US28, there 

are likely further functions of US28 that are important for the establishment and maintenance of HCMV 

latency. In Chapter 3, I will present the results of a proteomic screen that aims to address the additional 

functions of US28 in myeloid cells. 
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Figure 1-4 US28 controls several signalling pathways to suppress the MIEP in early myeloid lineage cells, taken 

from [160]. US28 is present at the cell surface, and probably other membranes, of latently infected cells. Here, it 

attenuates several signalling pathways and transcription factors, including NF-κB, c-fos, and ERK1/2. NF-κB can no 

longer enter the nucleus (dashed line), nor bind and activate the MIEP. c-fos typically forms a dimer with c-jun to 

form the AP1 complex; US28 causes loss of c-fos, the AP1 complex does not form and thus cannot activate the 

MIEP. Attenuation of ERK1/2 causes loss of ERK1/2 phosphorylation (P) and subsequent activation of MSK and, 

therefore, MSK does not phosphorylate and activate CREB. Inactive CREB cannot activate the MIEP. US28 is also 

reported to activate the STAT3-iNOS signalling axis, leading to nitric oxide (NO) production. NO suppresses the 

MIEP in myeloid cells by unknown mechanisms. By these, and probably other pathways, US28 helps establish and 

maintain a repressive chromatin structure at the MIEP, and a lack of IE gene expression.  
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1.5. Pattern recognition and nucleic acid sensing during HCMV infection 

1.5.1. Lytic infection 

HCMV is a large double stranded DNA virus that replicates its genome in the nucleus. However, viral 

nucleic acids are substrates for pattern recognition receptors (PRR) in the cytosol as well as in the 

nucleus [196]. PRR induction leads to activation of both IRF3 and NF-κB transcription factors, leading to 

Type I interferon induction and production of pro-inflammatory cytokines. Early activation of PRRs, via 

HCMV envelope glycoproteins and HCMV DNA, is likely pro-viral and depends on Toll-like receptors (TLR) 

2 and TLR9, cGAS, STING, and IFI16 [196–198]. Cytosolic HCMV DNA likely results from early uncoating of 

viral capsids [199], while intact viral capsids deliver HCMV DNA to the nucleus. In certain contexts, cGAS 

and IFI16 can be either nuclear or cytosolic proteins [199–205], explaining how both are reported to 

contribute to innate sensing of HCMV DNA [78,94,209,196–199,203,206–208]. 

During lytic infection, HCMV interferes with pattern recognition receptor signalling, and the downstream 

effects of interferon, suggesting that some portions of this innate immune signalling must be evaded, 

modulated, or co-opted to ensure efficient viral replication. There are numerous viral factors known to 

play a role in this evasion [78,79,94,198,203,208,210,211]; a summary of these is presented in Figure 1-5.  

As well as innate sensing, HCMV must overcome intrinsic immunity that suppresses HCMV gene 

transcription. This centres around the heterochromatinization of incoming HCMV DNA and association 

with PML nuclear bodies, and is evaded by tegument proteins and immediate early genes during lytic 

infection [65,86,90,153,155,212–215]. Interestingly, PML nuclear bodies have more recently been 

proposed as signalling platforms that contribute to induction of innate immunity, making evasion of 

these structures beneficial to the virus on multiple levels [216,217] After the onset of viral transcription, 

viral dsRNA is a substrate for innate sensing and effectors such as RIG-I and PKR; this is also evaded by 

HCMV gene products [196,218–221].  Overall, HCMV lytic infection is associated with the generation of 

large quantities of pathogen-associated molecular patterns (PAMPs) that are, or can be, sensed by 

components of host intrinsic and innate immunity. These are actively evaded or manipulated by HCMV 

to enable efficient viral replication. 
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Figure 1-5 HCMV evasion of pattern recognition receptors and interferon induction, adapted from [198]. HCMV 
glycoproteins can be detected by TLR2, leading to activation of IRF3 and NF-κB pathways and Type I interferon 
induction. Premature uncoating of viral capsids leads to HCMV DNA availability in the cytosol; this may be sensed 
by cGAS leading to STING activation, which also activates IRF3 and NF-κB pathways, leading to Type I interferon 
induction. HCMV DNA in the nucleus is a substrate for IFI16-mediated sensing, leading to interferon induction via 
cGAS and/or STING. Viral antagonists of these processes are shown in blue. Other DNA sensors, such as DNA-
PK/DAI/LRRFIP1/AIM2 have been proposed, but no viral antagonist identified. 

1.5.2. Latent infection 

In contrast to lytic infection, latency is associated with far less viral gene transcription, and little-to-no 

genome replication. It is therefore questionable whether viral PAMPs are detectable during HCMV latent 

infection [198]. No study, to date, has analysed whether viral DNA/RNA is sensed during entry of virus 

into cellular sites of HCMV latency, or whether it is sensed during the ongoing maintenance of latency. 
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PML bodies are dispersed during HCMV latency by the latency-associate gene product LUNA [109], which 

one could argue is one example of suppression of intrinsic immunity during latency. However, many of 

the evasins described in Figure 1-5 are not expressed during latency, and, importantly, the tegument 

protein pp65, which disrupts IFI16 functions [203,208,215,222], does not reach the nucleus of CD34+ 

HPCs [223]. Furthermore, while many studies have analysed DNA sensing in differentiated THP-1 cells, 

which are permissive for HCMV lytic infection [197,199,206,209,224], none have looked at 

undifferentiated THP-1 cells (a model for HCMV latency). Therefore, what intrinsic anti-viral functions 

are active in undifferentiated myeloid cells, and what, if any, viral nucleic acid sensing occurs during 

HCMV latency and how this is abated by the latent virus is yet to be investigated. 
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1.6. The PYHIN proteins are DNA sensors and transcriptional regulators 

1.6.1. The PYHIN family of proteins: a brief overview 

Located in the 1q23 locus of the human genome, the PYHIN family of proteins have relatively recently 

come to light as innate immune sensors or mediators of host defences. PYHIN proteins, unique to 

eutherian and marsupial mammals [225], contain a Pyrin domain (a member of the death domain 

superfamily) which can oligomerise, and at least one of three HIN-200 domain subtypes, which can bind 

DNA. The five members of the human PYHIN family are annotated in Figure 1-6. These are myeloid cell 

nuclear differentiation antigen (MNDA), interferon-inducible protein X (IFIX; formally denoted as 

PYHIN1), pyrin domain-only protein 3 (POP3), gamma interferon-inducible protein 16 (IFI16), and absent 

in melanoma 2 (AIM2). There is large diversity of the PYHIN family between species both in sequence 

and number of families, which makes the use of animal models to study the function of these proteins 

challenging [225]. For example, mice have at least 13 PYHIN proteins, and only gene Aim2 has true 

orthology with its human counterpart, AIM2 [225]. POP3 lacks a HIN-200 domain and likely regulates 

inflammasome structures of the other PYHIN proteins [226]; this function, and other PYHIN protein 

functions will be described in more detail in the next sections.  

 

Figure 1-6 Domain architecture of the PYHIN proteins. Pyrin domains (PYD) are annotated based on a review by 
Connolly and Bowie [227], and nuclear localisation sequences (NLS) and HIN domains are labelled based on UniProt 
annotations. The PYHIN proteins are shown in order corresponding to the arrangement of the genes along 
chromosome 1. Where multiple isoforms exist (IFI16 has 4, IFIX has 6), the longest is shown. 
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1.6.2. AIM2 

AIM2 was first reported as an interferon-inducible gene with a role in cancer biology [228,229]. Later, it 

was found to respond to cytosolic DNA in mice and human cells [230–233]. AIM2 can respond to 

microbial DNA as well as cytosolic host DNA, and these responses are comprehensively reviewed 

elsewhere [234] 

AIM2 was found to play such a role in 2009[7–10] in the cytosol of mice and human cells. AIM2, and its 

responses to bacterial, viral, and other pathogenic DNA is comprehensively reviewed elsewhere 

[234,235]. The key function of AIM2 is the activation of inflammasome responses in response to cytosolic 

DNA. AIM2 is believed to exist in an auto-inhibitory state whereby the HIN domain blocks sites in the 

Pyrin domain required for signalling. Upon binding DNA in the cytosol in a sequence independent 

manner via the HIN domain, the Pyrin domain can now mediate an interaction with ASC (apoptosis-

associated speck-like protein containing a CARD). ASC now binds caspase-1, which cleaves the pro-

inflammatory cytokines IL-1β and IL-18, and Gasdermin D, which initiates pyroptosis. AIM2 (Aim2 in 

mice) has been shown to be activated by murine cytomegalovirus (MCMV), and Aim2 deficient mice had 

higher viral titres at 36 hours post infection [236]. Furthermore,  AIM2 is activated by HCMV infection, 

which may be antagonised by pp65; the subsequent production of IL-1β is antagonised by IE2 protein 

[237–239]. AIM2 also has antiviral effects against human papillomavirus (HPV) [240] and hepatitis B virus 

(HBV) [241], and HSV-1 encodes an antagonist of AIM2 [242].  

1.6.3. IFIX 

IFIX, or PYHIN1, has recently been identified by one group as a nuclear antiviral factor and sensor for 

HSV-1 [243]. In their study, Diner et al. defined an interactome for all four of the HIN domain-containing 

PYHIN proteins in HEK293 cells. They noted that IFIX was able to interact with PML body components. As 

described in §1.5.1, PML bodies are critical components of intrinsic immunity, inducing chromatinization 

and repression of viral gene expression. Knockdown of IFIX increased HSV-1 titres in infected fibroblasts, 

suggesting that IFIX is a restriction factor for HSV-1. IFIX could bind DNA in a sequence independent 

manner, responded to transfected DNA by inducing the expression of interferon-beta (IFNβ), and 

chromatin immunoprecipitation (ChIP) analyses found HSV-1 DNA is associated with IFIX. A follow-up 

study found that IFIX is antagonised by an early HSV-1 gene product, a hallmark of an antiviral factor, and 

that IFIX could repress HSV-1 gene transcription [244]. However, no additional antiviral roles have been 

reported. 



41 
 

1.6.4. IFI16 

IFI16 was first identified as a transcript constitutively expressed in T- and B- lymphocytes but interferon-

γ-inducible in myeloid U937 and HL60 cells [245]. Quite a number of roles have been described for IFI16, 

for example in cellular senescence [246,247], the DNA damage response [224,248,249], pro-

inflammatory pathways [250–253], and in innate defence against viruses (reviewed in [227,254,255]). 

IFI16 has both transcriptional and signalling functions that contribute to the restrictive role of IFI16 for 

numerous viral pathogens; I will describe the most pertinent of these below.  

IFI16 was first identified as a sensor of transfected DNA in the cytosol where, via an interaction with 

STING, it induces IFNβ [256]. Since then, IFI16 has been shown to respond to transfected DNA insults to 

induce Type I interferon responses or silence transcription from transfected plasmids [206,257,258]. 

IFI16 has also been identified as a restriction factor for the DNA viruses HSV-1 [201,204,215,259–262], 

HSV-2 [263], HCMV [208,215,264], KSHV [204,265–268], EBV [265], and HPV [269]. IFI16 can also 

respond to or restrict transcription of DNA intermediates during HIV [270–272], Human T-lymphotropic 

virus type 1 (HTLV-1) [273], HBV infections [274] and, perhaps counter intuitively, IFI16 is also a reported 

restriction factor for the RNA viruses Zika virus, Chikungunya virus, and Sendai virus [258,275]. 

As alluded to earlier, IFI16 is reported to contribute to innate sensing of herpesviral DNA in both the 

cytosol [199,206,270] and the nucleus [215,261,265,269,276]. This likely involves cooperative 

aggregation of IFI16, via Pyrin domains [215,277], to generate either an AIM2-like inflammasome 

[265,267,276] or a structure capable of activating cGAS or STING [201,209,261] and subsequent 

induction of IL-1β or Type I interferon, respectively. How IFI16 can discriminate between self- and non-

self DNA in the nucleus has been of great interest; in one model, IFI16 binds DNA via its HIN domains in a 

sequence-independent but length-dependent manner, and the minimum length is longer than the 

distance between nucleosomes and transcription bubbles [256,277–279]. The clustering of IFI16 occurs 

as IFI16 tracks along DNA duplexes in a 1D manner and contacts other scanning IFI16 molecules [279]; 

nuclear IFI16 puncta are observable during the first 15 minutes of HSV-1 infection [259,280]. However, 

other structures are proposed to be substrates for IFI16 recognition [281,282] and, at low multiplicity of 

infection (MOI), IFI16 can only lead to innate signalling once HSV-1 viral transcription and replication is 

initiated, suggesting that more complex DNA structures are sensed by IFI16 [262].   

IFI16 also restricts viral infections by modulating viral transcription. In the vast majority of cases, IFI16 

represses lytic gene transcription, and this can be via interaction with PML body components 

[259,283,284], the sequestration of Sp1 transcription factor [264,271], and promoting repressive histone 
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marks [268,274,283]. In fact, transcriptional repression by IFI16 makes the presence of IFI16 essential for 

the maintenance of EBV latency [285], and IFI16 must be degraded for efficient KSHV reactivation from 

latency [267]. It is worth noting that there is only weak evidence that IFI16 directly binds to DNA to exert 

transcription repression. 

The transcriptional role of IFI16 during HCMV infection is slightly more complex.  During HCMV infection 

of fibroblasts, IFI16 is co-opted by the viral tegument protein UL83 (pp65) [79,208]. This binding serves 

multiple roles: firstly, the IFI16/UL83 complex may bind and does activate the MIEP during the first 6 

hours of infection [79,264]. The binding of UL83 blocks oligomerisation of IFI16 Pyrin domains, thus 

preventing innate immune signalling and cytokine induction [215] but, likely, also prevents the 

repression of HCMV early gene expression (UL54, UL44) [208,264,286]. Thus, at low multiplicities of 

infection, IFI16 is both required for efficient HCMV lytic infection (for IE gene expression) but is then 

restrictive to HCMV replication. Since the MIEP must be transcriptionally repressed for efficient latency 

establishment, it might be predicted that the regulation of IFI16 expression by HCMV is important for 

latency. 

1.6.5. MNDA 

MNDA was the first human PYHIN protein to be identified; it is interferon-α-inducible, and its expression 

is specific to cells of the myeloid lineage [287–290]. No antiviral functions associated with MNDA are 

published, though in at least two settings viral gene products have been found able to interact with 

MNDA. Firstly, the KSHV Latency-associated nuclear antigen (LANA) was identified as an MNDA 

interactor by a yeast-2-hybrid screen and by immunoprecipitation when both genes are transfected into 

293T cells [291]. Secondly, again in an overexpression analysis in 293T cells, UL83 can bind and disrupt 

aggregation of the Pyrin domain of MNDA [215]. Of note, unpublished data presented at a conference 

from the Bowie lab has suggested that MNDA can contribute to Type I interferon induction (Andrew 

Bowie, personal communication), which is consistent with the ability of MNDA to bind DNA [292] .  

MNDA is relatively uncharacterised compared to AIM2 or IFI16. MNDA bears hallmarks of an important 

transcriptional regulator for myeloid differentiation [293–297]; for example, ectopic expression of MNDA 

in conjunction with three other transcription factors induced reprogramming of fibroblasts that drove 

changes in morphology, and increases in phagocytosis, chemotaxis, and cytokine production consistent 

with monocyte-like behaviour [294].  In support of transcriptional activity, MNDA can stimulate the 

binding of the transcription factor YY1 to its target DNA sequences [298], which is intriguing since YY1 is 

a known repressor of the MIEP [116]. 
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Reduced levels of MNDA transcripts have been associated with myelodysplastic syndrome [299–301], a 

syndrome thought to involve aberrant myeloid cell apoptosis [302]. As such, two reports have sought to 

define the behaviour of MNDA during apoptosis. In the myeloid cell line HL-60, MNDA is exported to the 

cytoplasm upon stimulation with hydrogen peroxide, a crude stimulus designed to induce apoptosis, 

[303] thus showing that MNDA has dynamic behaviour in response to cell stresses. In the same study, 

the authors found that exogeneous MNDA expression in K652 cells increased protection for TRAIL-

induced apoptosis [303]. The second study monitored the behaviour of MNDA in ex vivo neutrophils 

from healthy patients and septic patients, a condition that involves the failure of neutrophils to undergo 

apoptosis [304]. Ex vivo neutrophils from healthy patients underwent apoptosis within 24 hours, and this 

was characterised by cytoplasmic redistribution of MNDA and cleavage of MNDA to distinct ~27 and ~35 

kDa products. Levels of MNDA cleavage correlated with Annexin-V positivity, a well-established early 

marker of apoptosis. In neutrophils from septic patients, these events did not occur. Knockdown of 

MNDA in HL-60 cells protected these cell lines from UV light-induced apoptosis, as characterised by 

Annexin-V positivity, mitochondrial membrane potential, and caspase-3 activity. Interestingly, MNDA 

interacted with Mcl-1 (a critical myeloid pro-survival protein) in the cytoplasm and promoted the 

degradation of Mcl-1 in response to apoptotic stimuli. This interaction is extremely pertinent to HCMV 

latency, since Mcl-1 is known to be upregulated as a result of the binding/internalisation of virus into 

monocytes and to promote the survival of latently infected CD34+ cells and monocytes [112,114,305]. 

The upregulation/stabilisation of Mcl-1 has thus far been shown to be dependent on ERK and PI3K 

signalling, and critical to allow long-term survival of what are typically short-lived circulating monocytes.   

It is, therefore, an interesting question as to how MNDA might be regulated by, and regulate responses 

to, HCMV latent infection.  
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1.7. Nanobodies as immunotherapeutic agents 

1.7.1. Camelid antibody domains as therapeutic agents 

Typical IgG molecules from mammals, including humans and mice, are dimers of dimers containing a 

heavy and a light chain. In turn, the heavy chain contains 3 constant domains and one variable domain, 

while the light chain contains one constant domain and one variable domain (Figure 1-7). Together, the 

variable domains of the heavy and light chains compose the complementarity determining region, i.e. 

the antigen binding portion of the antibody [306]. 

 

Figure 1-7 A comparison of the domain architectures of human IgG (A), camelid heavy-chain only 
immunoglobulin (B), VHH domains/nanobodies (C), and a bivalent nanobody (D). (A) Human IgG contains heavy 
(green) and light (blue) chains that contain constant domains (CH and CL) and variable domains (VH and VL). 
Together, CH2 and CH3 form the Fc portion of the molecule, and 2x (CH1, CL, VH, and VL) form the Fab fragment. (B) 
Camelid heavy-chain only immunoglobulin molecules are dimers of constant (CH2 and CH3) and variable (VHH) 
polypeptides. (C) VHH domain antibodies are known as nanobodies, can contain only a VHH domain. (D) 
Nanobodies may be multimerised by chemical or genetic mechanisms. This bivalent nanobody represents the 
bivalent US28 nanobody VUN100b, discussed later; the C terminus of one nanobody is connected to the N terminus 
of the next by an encoded polypeptide linker. 

In contrast, camelid species (camels, llamas, alpacas) naturally produce heavy chain-only antibodies as 

part of their array of immunoglobulin molecules [307]. The variable domain of these heavy chains (VHH) 

therefore confers the antigen specificity of the molecule (Figure 1-7). Camelids can be immunised in 

manners similar to the immunisation of mice and rabbits in order to generate antibodies to an antigen of 

interest, and the resulting VHH domain coding sequences can be cloned from immunised animals and 

used to generate libraries from which high-affinity VHH genes can be isolated [307,308]. These single-

domain antibodies, henceforth termed nanobodies (Nbs), are much smaller than monoclonal antibodies 



45 
 

(15 kDa when unmodified), have higher solubility in water, are expressed from only one coding 

sequence, and can more easily access active sites or ligand binding regions of target proteins [307]. 

Nanobodies have potential applications as experimental, imaging, diagnostic, and therapeutic tools 

[309–311]. There is one currently licensed nanobody for therapeutic use, Caplacizumab, for the 

treatment of acquired thrombotic thrombocytopenic purpura (aTTP). Patients with aTTP suffer from 

inappropriate and life-threatening blood clotting due to an abundance of unprocessed von Willebrand 

factor (VWF) strings [312,313]. This is typically due to an autoimmune antibody response to the enzyme 

which cleaves VWF. Caplacizumab is a bivalent humanized anti-VWF nanobody that prevents VWF 

binding to platelets and reduces the length of acute TTP episodes [314]. 

Other nanobodies have been investigated for the treatment of acute viral infections, including 

respiratory syncytial virus (RSV) and rotavirus [307,315], though a Phase IIb clinical trial of the RSV 

nanobody therapeutic was stopped in 2018 due to a lack of efficacy ( 

https://clinicaltrials.gov/ct2/show/NCT03418571). In addition, nanobodies targeting human G protein 

coupled receptors have been investigated for therapeutic potential [316–318] , as well as nanobodies 

targeting HCMV US28 [182,308], which I will discuss in the next section. 

1.7.2. Anti-US28 nanobodies modulate US28 activity 

HCMV nucleic acids and US28 protein can be detected in tumour samples from glioblastoma patients 

[36,190]. US28 is thought to be oncomodulatory in glioblastoma, and constitutive signalling from US28 

was recently shown to accelerate glioblastoma growth in an experimental setting [40,181,182]. On this 

basis, Martine Smit’s group (Vreije Universitet, Amsterdam) developed an anti-US28 nanobody (US28-

Nb) [182]. The monovalent nanobody could displace the ligands CCL5 and CX3CL1 from binding US28 in 

competition assays, with a Kd (US28 binding) of approximately 340 nM. Binding was enhanced 

approximately 100-fold by the linking of two US28-Nb molecules together to form a bivalent nanobody. 

Interestingly, this bivalent format was then also able to block US28 constitutive signalling as measured by 

US28’s known ability to activate NF-κB in reporter assays in some cell models, while the monovalent 

format was not able to do this. The bivalent US28-Nb could then block the acceleration of glioblastoma 

spheroid growth in an experimental setting [182].  

The group then developed a higher-affinity monovalent US28-targetting nanobody termed VUN100 

[308]. VUN100 was developed with the aim of conjugating a photosensitiser to the nanobody such that it 

could be used in photodynamic therapy for the treatment of glioblastoma. Briefly, the nanobody-

https://clinicaltrials.gov/ct2/show/NCT03418571
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photosensitiser conjugate binds US28 on the surface of glioblastoma cells, and when illuminated by the 

correct wavelength of light, the photosensitiser is activated and produces reactive oxygen species 

leading the death of the bound cell [308]. 

Subsequently, the group developed a bivalent form of VUN100, termed VUN100b, which I will describe 

in more detail in Results. In a collaboration between our two laboratories, and in particular Timo de 

Groof and myself, we investigated the effect of these nanobodies on HCMV latency, since US28 is 

expressed on the cell surface of latently infected cells [172]. In Chapter 7, I will describe how anti-US28 

nanobodies induce IE gene expression during latency and how this leads to recognition and killing by 

cytotoxic T cells. Therefore, I will provide some background to this potentially therapeutic concept, often 

termed ‘shock and kill’, in the next section. 

1.7.3. Shock and kill for reducing latent viral loads 

Latent reservoirs of viral pathogens are significant barriers to eradication of these viruses from their 

hosts [20,319,320]. During latency, human herpesviruses and retroviruses maintain their viral genomes 

in the absence of infectious virus particle production, often with little-to-no viral gene expression [321].  

As such, latent infections are refractory to treatment with typical antivirals that target replication of the 

virus [320]. Furthermore, the relatively low levels of viral gene expression during latency reduces the 

levels of viral antigens that would otherwise be readily detectable by host immune cells e.g. cytotoxic T 

lymphocytes (CTLs) [20]. 

The shock and kill strategy aims to reverse latency and drive lytic viral gene expression (shock) leading to 

recognition and elimination by naturally present immune responses (kill), and has been extensively 

explored by HIV-1 biologists and clinicians [319,320]. HIV-1 latency, like herpesvirus latency, is 

dependent on repressive chromatin structures around its key viral promoter [86,321–323]. Approaches 

to target the epigenetic machinery, such as with inhibitors of histone deacetylases (HDACi) and histone 

methyl transferases have been trialled [319,320]. Some have shown promising results in cell line models, 

and have induced detectable HIV-1 replication in patients, but none has led to a reduction in the latent 

viral reservoir [319,320]. This is presumed to be a result of an inability to target deep tissue latent virus 

reservoirs, failure to induce killing, because of drug interference with CTL function, and subversion of 

apoptotic pathways by the reactivated virus [319,324,325].  

More recently, herpesvirologists have begun to explore latency reversal and shock and kill 

[20,320,326,327]. Work from my own laboratory has shown that HDACi induce transient activation of 
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lytic IE gene expression in latently infected monocytes, resulting in CTL-mediated killing of infected cells 

[145]. Ongoing work by colleagues aims to use additional epigenetic machinery-targeting small 

molecules to improve shock and kill, and preliminary data suggests that seropositive individuals who are 

already taking these drugs for other conditions have lower latent viral loads. As described in §1.1.2, up to 

5% of a seropositive individual’s CD8+ T cells are capable of recognising lytic IE antigen [74], which might 

aid in the efficiency of the ‘kill’ part of shock and kill. 

However, host-targeting antivirals have off-target effects, and it may be preferable to use a specific 

virus-targeting molecule to induce shock and kill. In §1.4.2, I presented the evidence for US28 being 

essential for HCMV latency due to the ability of US28 to suppress the MIEP. In Chapter 7, I will show how 

US28-targeting nanobodies inhibit US28 function in myeloid cells and induce IE gene expression, leading 

to T cell recognition and killing. 
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1.8. US28-targeting immunotoxins for killing of HCMV-infected cells 

1.8.1. Immunotoxins as anti-cancer and anti-microbial agents 

Ligand-toxin fusion proteins, or immunotoxins, have shown promise for targeting cancer and infectious 

diseases [328,329]. The principle of an immunotoxin is that a toxin is conjugated to a molecule that binds 

and is internalised by a receptor on target cells. The toxin is then cleaved within cells and, if enough 

immunotoxin has been internalised, the target cell is killed. The ligand can be based upon the native 

ligand for a given receptor, or be a receptor-targeting antibody. Cancerous cells and pathogen-infected 

cells frequently have upregulation of cell-surface receptors, or the presence of unique receptors, making 

these diseases targets for immunotoxin-based treatments. Some have been licensed as therapies, such 

as trastuzumab emtansine (T-DM1), a conjugate which targets HER2-positive breast cancers [330,331]. 

Some examples of immunotoxins in development or clinical use are given in Table 1-3.  

Table 1-3 Immunotoxins: examples and modes of action 

Disease Ligand Toxin 

HER2-positive breast 

cancer [331] 

Anti-HER2 monoclonal antibody 

(trastuzumab) 

DM1/Mertansine, inhibitor of 

microtubule formation 

Hairy cell leukemia [332] Anti-CD22 monoclonal antibody Pseudomonas aeruginosa Exotoxin A, 

translation inhibitor 

Latent HIV-1 [333] Anti-CD30 monoclonal antibody  Monomethyl auristatin E, inhibitor of 

microtubule formation 

Acute myeloid leukemia 

[332] 

Granulocyte-macrophage 

colony stimulating factor (GM-

CSF) 

Diphtheria toxin 

HCMV [334] CX3CL1 (fractalkine), bound by 

HCMV US28 

Pseudomonas aeruginosa Exotoxin A, 

translation inhibitor 

 

1.8.2. F49A-FTP, a US28-targeting immunotoxin 

US28 binds the chemokine CX3CL1/fractalkine with higher affinity than the host native receptor, CX3CR1 

[334,335].  US28 is also expressed during both lytic and latent infection (§1.4) and, therefore, represents 

a target in patients with active CMV disease and those who harbour latent virus. Spiess and colleagues 
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[334] designed an immunotoxin to take advantage of these properties. The immunotoxin ligand 

consisted of the soluble domain of CX3CL1 (after removal of its mucin stalk domain) containing an F49A 

mutation, decided upon following rational mutagenesis. The toxin was the cytotoxic domain of 

Pseudomonas aeruginosa Exotoxin A, which is cleaved from CX3CL1 by the host protease furin following 

internalisation. The immunotoxin, termed F49A-FTP, had a 182-fold greater affinity for US28 than for 

CX3CR1. It also killed lytically infected cells and showed antiviral activity in an infected humanised 

mouse, with greater potency than the established CMV antiviral ganciclovir.  

In a collaboration with members of my own laboratory, F49A-FTP was then shown able to specifically kill 

latently infected cells and block reactivation at a concentration of 5x10-8 M following a 72 hour 

incubation [172]. This was true for experimentally latent monocytes, CD34+ cells, and naturally latent 

monocytes from seropositive donors. The results suggested that F49A-FTP could be used to target the 

latent viral reservoir. Perhaps not unexpectedly, resistance mutants did arise  during serial passage of 

virus in lytic infection [334,336] and, in all but one case, this involved a premature stop codon resulting 

in a truncated pUS28. This truncated pUS28, though expressed, was present at lower levels at the cell 

surface and was less able to bind and initiate responses to chemokines; it was therefore postulated that 

this viral mutant might lack in vivo fitness. 

Other than antiviral resistance, there are additional potential problems with an F49A-FTP strategy for 

treatment of HCMV. Immunotoxins tend to be immunogenic because they contain ‘foreign’ antigens 

[337]. Anti-drug antibodies are induced and neutralise any efficacy during long term treatment of a 

patient. However, the possibility of treating an HCMV positive graft ex vivo prior to transplantation could 

negate such problems. One such system which would lend itself to such an approach is the ex vivo 

normothermic perfusion system for solid organs [338,339]. Ex vivo normothermic perfusion (EVNP) is a 

novel technique that can recondition an organ and restore function in sub-optimal organs prior to 

transplantation. During this procedure, a solid organ can be perfused with buffers that could contain a 

drug, such as the F49A-FTP. Indeed, in collaboration with our laboratory, transplant physicians at the 

University Health Network (Toronto, Canada) are attempting to reduce the latent load in cadaveric lung 

prior to transplant. To optimise such an intervention, the immunotoxin needs to be able to kill infected 

cells following less than 6 hours of incubation (a typical maximum length of normothermic perfusion). 

Furthermore, since their original study, the designers of the immunotoxin had been experimenting with 

variations in the FTP construct [340], and a company (Synklino ApS) had been established to perform 

preclinical testing of newer FTP constructs.  In Chapter 8, I will address whether these new FTP 
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constructs can kill latently infected cells with greater efficacy and in a shorter window, to permit more 

efficient killing of latent reservoirs during their normothermic perfusion. 
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2. Materials and Methods 

2.1. Cells 

All cells were maintained at 37 °C in a 5% CO2 atmosphere. THP-1 cells (ECACC 88081201) were cultured 

in RPMI-1640 media (Sigma) supplemented with 10% heat-inactivated fetal bovine serum (FBS; PAN 

Biotech), 100 U/mL penicillin and 100 µg/mL streptomycin (Sigma), and 0.05 mM 2-mercaptoethanol 

(Gibco). Kasumi-3 cells (ATCC® CRL-2725) were cultured in RPMI-1640 media (Sigma) supplemented with 

20% heat-inactivated fetal bovine serum (PAN Biotech), 100 U/mL penicillin and 100 µg/mL streptomycin 

(Sigma). During infections, THP-1 and Kasumi-3 cells were cultured in a low-serum (1%) version of this 

media for a minimum of 24 hours prior to inoculation, and maintained in this low-serum media 

throughout the infection. MIEP-eGFP reporter THP-1 cells [118] were a gift from M Van Loock, Johnson & 

Johnson. RPE-1 cells (ATCC® CRL-4000™) and Human foreskin fibroblasts (Hff1; ATCC® SCRC-1041™) were 

maintained in DMEM (Sigma) supplemented with 10% heat-inactivated FBS and 100 U/mL penicillin and 

100 µg/mL streptomycin. 293T cells (ECACC 12022001) were maintained in DMEM (Sigma) 

supplemented with 10% heat-inactivated FBS but without penicillin or streptomycin. Hff-TERT and Hff-

TERT US28-V5 cells were a gift from L. Nobre, University of Cambridge. These were also maintained in 

DMEM 10% FBS plus penicillin/streptomycin. Phorbol 12-myristate 13-acetate (PMA, Sigma) was used to 

induce myeloid cell differentiation at a concentration of 20 ng/mL in primary monocytes, and 100 ng/mL 

in THP-1 cells. 

Primary CD14+ monocytes were isolated from apheresis cones (NHS Blood & Transplant Service) or from 

peripheral blood taken from healthy volunteers as previously described [111]. Briefly, CD14+ monocytes 

were isolated from total peripheral blood mononuclear cells (PBMC) by magnetic-activated cell sorting 

(MACS) using CD14+ microbeads (Miltenyi Biotech). The monocytes were plated on tissue culture dishes 

(Corning) or slides (Ibidi), or kept in suspension in X-Vivo 15 media (Lonza) supplemented with 2 mM L-

glutamine. Mature dendritic cells were generated by treating CD14+ monocytes with granulocyte-

macrophage colony-stimulating factor (GM-CSF, Miltenyi, 1000U/mL) and interleukin-4 (IL-4, Miltenyi, 

1000U/mL) for 5 or 6 days before addition of lipopolysaccharide (LPS, Invivogen, 50 ng/mL) for 2 further 

days. CD4+ and CD8+ T cells were isolated by MACS from monocyte-depleted PBMC using CD4 and CD8 

microbeads (Miltenyi Biotec).  These primary cells were cultured in X-vivo 15 (Lonza) supplemented with 

2 mM L-glutamine (Gibco) at 37°C in 5% CO2. Phorbol myristate acetate (PMA, Sigma-Aldrich) was used 

as described in figure legends at 20 ng/mL. 
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Primary human CD34+ hematopoietic progenitor cells, isolated from adult bone marrow, were purchased 

from STEMCELL Technologies and cultured in X-Vivo 15 media (Lonza). 

2.2. Inhibitors 

The c-fos inhibitor T5524 was purchased from Cayman Chemical, solubilised in dimethyl sulfoxide 

(DMSO) and used at 10 μM. The Janus kinase inhibitor Ruxolitinib was purchased from Cell Guidance 

Systems, solubilised in DMSO and used at 5 μM. The IKKα inhibitor/NF-κB pathway inhibitor BAY11-7082 

was purchased from Santa Cruz, solubilised in DMSO, and used at a concentration of 5 μM. 

2.3. Generation of lentiviruses and retroviruses 

The lentiviral vectors encoding US28 from the VHL/E strain of HCMV have been described previously 

[189]; US28 is expressed in these vectors from the Spleen Focus-Forming Virus (SFFV) promoter. The 

lentiviral vectors pHRSIN UbEm and pHRsin SV40blast were a kind gift from D. van den Boomen, 

University of Cambridge, and were based upon a previously published lentiviral system [341,342]. Briefly, 

expression of the gene of interest is also driven by the SFFV promoter, and the selectable markers 

Emerald and blasticidin resistance are driven by the Ubiquitin promoter (UbEm) and the SV40 promoter 

(SV40blast), respectively. The sequence encoding US28 from the VHL/E strain of HCMV was cloned into 

pHRSIN UbEm using the EcoR1 and Spe1 sites. The sequence encoding IFI16 was cloned into pHRsin 

SV40blast using the BamHI and NotI sites. The coding sequence of MNDA was cloned from a TrueClone® 

cDNA clone (Origene) into pHRsin SV40blast using XhoI and NotI sites. Correct plasmid sequences were 

verified by Sanger Sequencing (Department of Biochemistry, University of Cambridge). Primer sequences 

are given in Table 2-1.  

The retroviral vector pBABE eGFP US28-3XFLAG was a gift from C. O’Connor (Cleveland Clinic, USA). The 

Q5 site directed mutagenesis kit (New England Biotech) was used to generate the US28-R129A mutant of 

this vector, which was verified by Sanger Sequencing (Department of Biochemistry, University of 

Cambridge). Expression of US28 in these vectors is driven by the HIV-1 long terminal repeat and partial 

gag. 

Generation of VSV-G pseudotyped lentiviral particles was conducted generally in line with the Broad 

Institute Protocols. Five hundred thousand 293T cells were transfected with 1250 ng of lentiviral 

expression vector, 625 ng of lentiviral packaging vector psPAX and 625 ng of envelope vector pMD.2G 

(both gifts from S. Karniely, Weizmann Institute, Israel) using transfection reagent FuGene6 (Promega) 

according to the manufacturer’s instructions. For generation of VSV-G pseudotyped retrovirus particles, 
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1250 ng of the murine leukemia virus retroviral packaging vector KB4 [343] (a gift from H. Groom, 

University of Cambridge) was transfected along with 625 ng pMD.2G and 1250 ng retroviral expression 

vector.  

2.4. Lentiviral and retroviral transduction 

Supernatants from transfected 293T cells were harvested at 36 and 60 hours post transfection, filtered 

through a 0.45 µm syringe filter, and used to transduce THP-1 cells in the presence of 2 μg/mL 

polybrene. When necessary, lentiviral titres were determined by in-house p24 enzyme-linked 

immunosorbent assay (ELISA) by Isobel Jarvis (Department of Medicine, University of Cambridge).  For 

transduction with puromycin-resistance vectors, puromycin (2 μg/mL, Sigma) was added to media and 

refreshed every 2-5 days until all control non-transduced THP-1 cells were dead. Similarly, where 

blasticidin-resistance vectors were used, blasticidin (10 μg/mL, Invivogen) was added to media. Emerald 

positive cells were isolated by fluorescence associated cell sorting (FACS) using a BD FACSAriaIII 

instrument. 

2.5. Preparation and transfection of DNA into THP-1 cells 

All DNA transfections used a mock-transfected control, which contained equivalent levels of the 

transfection reagent, Fugene6 (Promega). Poly dA:dT was purchased from Invivogen and transfected at a 

final concentration of 1 μg/mL. pUC19 (Addgene #50005) [344] was digested with BglI and purified by 

phenol/chloroform/isoamyl alcohol extraction [345]. THP-1 cells (2 x 105) were transfected with 1 or 2 μg 

of the digested plasmid using transfection reagent FuGene6 (Promega) for 24 hours prior to RNA 

extraction. The plasmid pmaxGFP was a component of the Amaxa Nucleofection Kit R (Lonza) and drives 

GFP expression from a modified 780bp HCMV MIEP. EF1alpha GFP was a gift from P. Upton (Department 

of Medicine, University of Cambridge). These, and pHRsin UbEm (described above), were transfected 

into THP-1 cells (750 ng / 2 x 105 cells) using transfection reagent FuGene6 (Promega) and GFP 

expression was analysed by flow cytometry using a BD Accuri Instrument 24 hours after transfection.  

2.6. Human cytomegaloviruses 

Infection of monocytes and THP-1 cells were carried out at a multiplicity of infection (MOI) of 3 as 

determined by titration on RPE-1 cells. When required, latently infected, mCherry positive THP-1 cells 

were sorted using a BD FACSAriaIII instrument. Hff1 and RPE-1 cells were infected at indicated MOIs as 

determined by titration on Hff1 and RPE-1 cells, respectively. 
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TB40/E BAC4 strains, recombinant viruses derived from bacterial artificial chromosomes (BAC), were 

propagated in RPE-1 cells by seeding 50% confluent T175 flasks with virus at an MOI of 0.1. Spread of 

virus was monitored for 2-6 weeks following inoculation by fluorescence microscopy, and infected 

monolayers were subcultured twice during this period. When cells were 95-100% infected (on the basis 

fluorescent tag detection), supernatants were harvested on three occasions spaced over 7 days and 

stored at -80°C. In the final harvest, the monolayer was scraped and also stored at -80°C. After thawing 

the virus-containing media, cell debris was pelleted by centrifugation at 1500 x g for 20 minutes at RT. 

Then, the clarified supernatant was concentrated by high speed centrifugation at 14500 x g for 2 hours 

at 18°C. Virus-containing pellets were then resuspended in X-vivo-15 media in aliquots at -80°C.  

TB40/EmCherry-US28-3XFLAG and TB40/EmCherry-US28Δ have been described previously [159].  

TB40/Egfp [346] and TB40/E BAC4 SV40 mCherry IE2-2A-GFP[121] were kind gifts from E.A. Murphy, 

SUNY Upstate Medical University. TB40/E BAC4 IE2-eYFP has been described previously [347,348]. 

TB40/E BAC4 GATA2mCherry has been described previously[349]. TB40/E with deleted NF-κB sites in the 

MIEP at positions −94, −157, −262 and −413, and the revertant virus, were a kind gift from Jeffery Meier 

and Ming Li (University of Iowa, United States), and have been described previously[146]. 

UV-inactivation of virus was performed by placing a 100 μL aliquot of virus in one well of a 24-well plate 

and placing this within 10cm of a UV germicidal (254 nm) lamp for 15 minutes, which routinely results in 

no detectable IE gene expression upon infection of Hff1 cells. 

2.7. Immunofluorescence staining and image analysis 

Cells were fixed with 2% paraformaldehyde for 15 minutes and permeablised with 0.1% Triton-X100 for 

10 minutes at RT. Blocking and antibody incubations were performed in phosphate buffered saline (PBS) 

with 1% bovine serum albumin and 5% normal goat serum. Primary antibodies used: anti-IFI16 (Santa 

Cruz sc-8023, 1:100), anti-FLAG (Sigma F1804, 1:1000), anti-MNDA (Cell Signaling Technology 3329, 

1:100), anti-IE (Argene 11-003, 1:1000 or directly conjugated to FITC, 1:100), anti-GFP (directly 

conjugated to FITC, Abcam ab6662, 1:200), anti-mCherry (Abcam ab167453, 1:500), anti-HLA DR 

(conjugated to Brilliant Violet 421, Biolegend Clone L423 or Abcam ab92511 1:100), anti-NF-κB (Abcam 

ab16502, 1:500). Secondary antibodies used: goat anti-mouse Alexa 488 (Thermo Fisher A11001, goat 

anti-mouse Alexa 594 (Thermo Fisher, A11005), chicken anti-rabbit Alexa 488 (Thermo Fisher A21441) 

goat anti-rat Alexa 488 (Abcam ab150157), donkey anti-rat Alexa 594 (Thermo Fisher, A21209). Cells 

were imaged with a widefield Nikon TE200 microscope and images were processed using ImageJ. For 

contingency analyses of IFI16 expression during experimental latency, cells were assigned as ‘IFI16 
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positive/negative’, and ‘infected/uninfected’ and then counted. These results were then analysed using 

Fisher’s Exact statistical test for significance. For analysis of signal intensity, nuclear stained images were 

used to create a mask from which intensity values of the corresponding IFI16/MNDA stained image were 

derived using the Analyze Particles feature of ImageJ. Cells were assigned as infected or uninfected 

based on signal from the GFP/mCherry stain. The average signal intensity of uninfected cells was used to 

normalise the signal intensity in order to compare different fields of view. 

For nanobody binding experiments, THP-1 cells were pelleted and resuspended in 4% paraformaldehyde 

(Sigma-Aldrich) and seeded in a 96 well U-bottom plate. Cells were fixed for 10 minutes at room 

temperature. After fixation, cells were permeabilized with 0.5% NP-40 (Sigma-Aldrich) for 30 minutes at 

room temperature. Nanobodies were incubated for 1 h at RT and detected using Mouse-anti-Myc 

antibody (1:1000, 9B11 clone, Cell Signaling Technology). US28 was visualized with the rabbit-anti-US28 

antibody (1:1000, Covance). Subsequently, cells were washed and incubated with Goat-anti-Rabbit Alexa 

Fluor 546 (1:1000 in 1% (v/v) FBS /PBS, Thermo Fisher Scientific) and Goat-anti-Mouse Alexa Fluor 488 

(1:1000 in 1% (v/v) FBS/PBS, Thermo Fisher Scientific). 

2.8. Western blotting 

Except for US28, virion, and ERK blots, cells were lysed directly in Laemmli Buffer and separated by 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Following transfer to 

nitrocellulose, the membrane was blocked in 5% milk in tris buffered saline (TBS) with 0.1% Tween-20. 

Primary antibodies used: anti-IFI16 (Santa Cruz sc-8023, 1:500), anti-MNDA (Cell Signaling Technology 

3329, 1:250), anti-STAT1 (Cell Signaling Technology 14994, 1:1000), anti-phosphoSTAT1 Tyr701 (Cell 

Signaling Technology 9167, 1:1000, anti-beta actin (Abcam ab6276, 1:5000), (GAPDH, Abcam ab8245, 

1:5000). Secondary antibodies used: anti-mouse-horse radish peroxidase (HRP) conjugate, (Santa Cruz 

sc-2005 or Thermo Fisher 31430), anti-rabbit HRP (Santa Cruz sc-2004), anti-rat HRP (Cell Signaling 

Technology 7077). These membranes were developed using electrochemiluminescence (standard or 

prime) reagents from GE Healthcare. 

For US28 blots of THP-1 cells, cells were pelleted, washed once in ice cold PBS, then lysed in lysis buffer 

(25 mM Tris HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% NP40, 5% glycerol, plus protease inhibitors) for 

30 minutes, vortexing every 10 minutes. After the addition of non-reducing Laemmli buffer, samples 

were heated at 42°C for 10 minutes and then separated by SDS-PAGE. Polyvinylidene difluoride (PVDF) 

membranes were used for transfer, and blocked membranes were incubated with the rabbit anti-US28 

antibody [191] (a gift from M. Smit, Vrije University) at 1:1000 dilution. To quantify western blots, the 
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Analyze Gels feature of Image J was used to plot the band intensities. These membranes were developed 

using electrochemiluminescence (standard or prime) reagents from GE Healthcare. 

For US28-V5 blots of Hff-TERT cells and virions, Hff-TERT cells were pelleted, washed once in ice cold 

PBS, then lysed in radioimmunoprecipitation assay buffer (25 mM Tris pH 7.5, 150 mM NaCl, 0.5% 

sodium deoxycholate, 1% Triton X-100, and 1% NP-40 with protease inhibitor cocktail) on ice for 30 

minutes. Cell debris was removed by centrifugation at 13,000 x g.  HCMV virions were pelleted by high 

speed centrifugation at 14500 x g for 2 hours at 18°C. Virus-containing pellets were then resuspended in 

solubilisation buffer (10 mM Tris-Cl, pH 8.0, 400 mM NaCl, and 10 mM EDTA) on ice for 1 hour, vortexing 

every 15 minutes. After the addition of non-reducing Laemmli buffer, cell and virion samples were 

heated at 42°C for 10 minutes and then separated by SDS-PAGE. PVDF membranes were used for 

transfer, and blocked membranes were incubated with anti-V5 (Thermo Fisher R960-25, 1:1000), anti 

pp65 (Santa Cruz sc56976 1:1000), and anti-beta actin (Abcam ab6276, 1:5000). These membranes were 

developed using electrochemiluminescence (standard or prime) reagents from GE Healthcare. 

For analysis of ERK phosphorylation following nanobody treatment, mock transduced or US28-expressing 

THP-1 cells were seeded in a 6 wells plate and incubated with 100 nM nanobodies. After 48 h, cells were 

lysed in native lysis buffer (25 mM Tris HCL pH7.4, 150 mM NaCl, 1 mM EDTA, 1% NP-40, 5% Glycerol, 1 

mM NaF, 1 mM NaVO3, cOmpleteTM protease inhibitor cocktail) for 10 minutes on ice. Cell debris was 

removed by centrifugation at 13,000 x g. Lysates were then separated on a 10% SDS-PAGE gel under 

reducing conditions and transferred to 0.45 μm PVDF blotting membrane (GE healthcare). Total ERK1/2 

and phospho-ERK1/2 were detected using p44/42 MAPK antibody (1:1000 in 5% bovine serum albumin 

(BSA)/TBS-T, #9102, Cell Signaling Technology) and phospho-p44/42 MAPK (Thr202/Tyr204) (1:1000 in 

5% BSA/TBS-T, #9101, Cell Signaling Technology). Actin was detected using anti-actin antibody (1:2000 in 

5% BSA/TBS-T, Clone AC-74, Sigma-Aldrich). Antibodies were detected using Goat anti-Rabbit IgG-HRP 

conjugate (1:10000, #1706515, Bio-Rad) or Goat anti-Mouse IgG-HRP conjugate (1:10000, #1706516, 

Bio-Rad). Blots were developed using Western Lightning Plus-ECL (Perkin-Elmer, Waltham, MA, USA) and 

visualized with ChemidocTM (Bio-Rad). 

2.9. Flow cytometry  

Transduced THP-1 cells and MIEP-reporter THP-1 cells were analysed on a BD Accuri C6 Instrument. Live 

cells were gated using forward and side scatter. Paraformaldehyde-fixed cells were stained using anti-

HLA-DR Allophycocyanin (APC) conjugate (Biolegend, Clone L243, 1:50).  
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T cell/PBMC preparations were analysed for purity using anti-human CD3 antibody conjugated to 

fluorescein-isothiocyanate (FITC) (BD Biosciences), anti-human CD4 antibody conjugated to 

phycoerythrin (PE) and anti-human CD8 antibody conjugated to Peridinin-Chlorophyll protein/Cyanine 

5.5 (PerCP/Cy5.5) (both from BioLegend). Antibodies were incubated with samples for 30 minutes and 

fixed with 2% paraformaldehyde before analysis by flow cytometry on the BD Accuri C6 Instrument. 

Latently infected CD14+ monocytes were fixed with 1% paraformaldehyde and stained using anti-HLA-DR 

Pacific blue conjugate (Biolegend, Clone L243, 1:50) and anti-HLA-A,B,C, PE-Cyanine 7 (Cy7) conjugate 

(Biolegend, Clone W6/32, 1:50), before analysis on the Nxt Attune Instrument (Thermo Fisher). 

2.10. Cytokine detection by ELISA 

Commericial ELISA kits were used to detect interleukin 1-beta (IL-1β) (Thermo Fischer), interferon beta 

(IFNβ) (Elabscience), and interferon alpha (IFNα) (PBL Assay Sciences). These were used according to the 

manufacturer’s instructions and absorbance a 490 nm was read using an iMarkTM Microplate Absorbance 

Reader (BioRad).  

2.11. RNA and DNA extraction, reverse transcription, and quantitative PCR 

RNA was extracted and purified using Direct-Zol RNA MiniPrep kit (Zymo Research) according to the 

manufacturer’s instructions. A total of 5 ng of purified RNA was used in one-step RT-qPCR reactions, 

performed using QuantiTect SYBR® Green RT-PCR Kit reagents (Qiagen) on a StepOne Real-Time PCR 

instrument (Applied Biosystems). For two-step RT-qPCR analysis, reverse transcription was performed 

using the Qiagen QuantiTect Reverse Transcription kit, and then cDNA was used in qPCR analysis using 

New England Biotech LUNA SYBR Green qPCR reagents. TATA-box binding protein (TBP) or 

Glyceraldehyde phosphate dehydrogenase (GAPDH) were used as reference genes and relative gene 

expression was analysed using ΔCt or ΔΔCt values. Primer sequences are given in Table 2-1. 

To extract DNA from HCMV infected cells, cells were pelleted and washed in citrate wash buffer (40mM 

sodium citrate, 10mM KCl, 135mM NaCl pH 3.0) for one minute before washing in PBS. Cells were then 

resuspended at 5 x 106 /mL in Buffer A (100 mM KCl, 10 mM Tris-HCl pH 8.3, 2.5 mM MgCl2) followed by 

the addition of an equal volume of Buffer B (10 mM Tris-HCl pH 8.3, .5 mM MgCl2 , 1 % Tween-20, 1% 

NP-40, 0.4 mg/mL Proteinase K) and then incubated at 60°C for 1 hour followed by 95°C for 10 minutes. 

HCMV DNA abundance was then analysed using New England Biotech LUNA SYBR Green qPCR reagents 

using the GAPDH promoter region as a reference sequence, and the UL44 promoter region as the HCMV 



58 
 

genomic target. Relative HCMV DNA levels were then analysed using ΔCt or ΔΔCt values. Primer 

sequences are given in Table 2-1. 

Table 2-1 List of primers used in this project. Application (Appn) is denoted by 'Q' for (RT)-qPCR, 'C' for cloning, ‘M’ 

for site directed mutagenesis. Targets in the promoter region are denoted by ‘prom’.  All primer sequences are 5’-

3’. 

Target Appn Forward Reverse 

IE72/ 
IE1 

Q GTCCTGACAGAACTCGTCAAA TAAAGGCGCCAGTGAATTTTTCTTC 

UL44 Q TACAACAGCGTGTCGTGCTCCG GGCGTAAAAAACATGCGTATCAAC 

UL138 Q ACGACGAAGACGATGAACCC CCCGATGAGATCTTGGTCCG 

UL32 Q GGTTTCTGGCTCGTGGATGTCG CACACAACACCGTCGTCCGATTAC 

US11 Q TACTCCGAAACATCGGGCAG CGCGGGTAGTATGCCTGAAT 

GAPDH Q TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG 

US28 Q AATCGTTGCGGTGTCTCAGT TGGTACGGCAGCCAAAAGAT 

TBP Q CGGCTGTTTAACTTCGCTTC CACACGCCAAGAAACAGTGA 

IFNB Q AAACTCATGAGCAGTCTGCA AGGAGATCTTCAGTTTCGGAGG 

CXCL10 Q TTCAAGGAGTACCTCTCTCTAG CTGGATTCAGACATCTCTTCTC 

MNDA Q GGAAGAAGCATCCATTAAGG GTTTGTCTAGACAGGCAAC 

IFI16 Q CTGCACCCTCCACAAG GTTTGTCTAGACAGGCAAC 

HLA-
DRA 

Q TGTAAGGCACATGGAGGTGA TAGGGCTGGAAAATGCTGA 

BETA2.7 Q ATCACGATGGATCGTTGCGA CACTCTCCTGTCACGACACC 

AIM2 Q CAGGAGGAGAAGGAGAAAGTTG GTGCAGCACGTTGCTTTG 

IFIX Q GAGACTGGAACCAAAAGGC CGCGATTATTGGGTCTTC 

NFKBIA Q ACATCAGCACCCAAGGACACC CCGCACCTCCACTCCATCC 

UL44 
prom 

Q AACCTGAGCGTGTTTGTG CGTGCAAGTCTCGACTAAG 

GAPDH 
prom 

Q CGGCTACTAGCGGTTTTACG AAGAAGATGCGGCTGACTGT 

US28 C GCACGAATTCCATATGACGCCGACGACGA
C 

CTGCACTAGTTTACGGTATAATTTGTGAG
AC 

IFI16 C GATTGCGGCCGCATGGGAAAAAAATACA
AGAACATTGTTC 

GATCGGATCCTTAGAAGAAAAAGTCTGGT
GAAGTTTC 

MNDA C GATCCTCGAGATGGTGAATGAATACAAG GATCCAATTGTCAATTAACATTCATTTGG 

US28-
R129A 

M TGCACTCGATGCCTACTACGCTATTG ATCTCCGTGATAAAACACAAAC 
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2.12. Proteomic analysis 

These procedures were performed prior to the beginning of this project but an abridged version of these 

methods is included to aid interpretation of the analyses presented later.  

Cells were harvested lysed in 2% SDS/50 mM Triethylamminium bicarbonate and 50 μg of each sample 

was digested with trypsin using a modified Filtered Aided Sample Preparation protocol. Samples were 

further purified by acid precipitation and two-phase partitioning, and dried under vacuum. Samples were 

then labelled with tandem mass tag reagents and pooled prior to high pH reverse-phase fractionation. 

High pH fractions were pooled orthogonally into 24 samples for analysis by Liquid chromatography–mass 

spectrometry on an Orbitrap Fusion, using synchronous precursor selection mode to isolate reporter ions. 

Data were analysed using the MASCOT search node within Proteome Discoverer.  

2.13. Gene ontology analysis 

The gene ontology (GO)-term enrichment database search feature of geneontology.org was used to 

compare a given subset of genes identified in the proteomic analysis with either all human genes or all 

proteins identified in the proteomic analysis. Biological process GO-terms were analysed for enrichment 

using the FDR correction within the enrichment analysis tool. 

2.14. Interferome analysis 

The gene IDs of the top 40-downregulated proteins identified in the proteomic analysis (§3.1), or those 

of the 40 proteins which showed zero fold change, or the whole list of identified proteins, were entered 

in the Interferome database search function and noted if they were positively inducible by either Type I 

or Type II interferon using a cut-off of 2-fold induction.  

2.15. Nanobody production 

Nanobody gene fragments were recloned in frame with a myc-His6 tag in the pET28a production vector. 

The bivalent format VUN100b was constructed by addition of a 30GS-linker in frame with the two 

VUN100 nanobody fragments. Nanobodies were produced as described previously [350]. Purity of the 

nanobodies was verified by SDS-PAGE. 

2.16. Nanobody binding ELISA 

Nanobody binding was performed as described previously [308].  Briefly, US28-expressing membrane 

extracts were coated in a 96 well MicroWell™ MaxiSorp™ flat bottom plate (Sigma-Aldrich) overnight at 
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4 °C. Wells were then washed and blocked with 2% (w/v) skimmed milk (Sigma-Aldrich) in PBS. Different 

concentrations of nanobodies were incubated. Nanobodies were detected with mouse-anti-Myc 

antibody (1:1000, clone 9B11, Cell Signaling Technology) and Goat anti-Mouse IgG-HRP conjugate 

(1:1000, #1706516, Bio-Rad). Optical density was measured at 490 nm with a PowerWave plate reader 

(BioTek).  

2.17. Nuclear Factor of Activated T-cells reporter gene assay 

HEK293T cells were transfected with 50 ng pcDEF3-HA-US28 VHL/E, 2.5 μg Nuclear Factor of Activated T-

cells (NFAT)-reporter gene vector ( Stratagene) and 2.5 μg empty pcDEF3 DNA as described previously 

[308]. Six hours post-transfection, cells were lifted using Trypsin-EDTA 0.05% (Gibco) and 50000 cells 

were seeded per well in a Poly-L-lysine (Sigma-Aldrich)-treated white bottom 96-well assay plate. 

Nanobodies were added at a final concentration of 100 nM. After 24 h, medium was removed and 25 μL 

Luciferase reagent (0.83 mM D-Luciferine, 0.83 mM ATP, 0.78 μM Na2HPO4, 18.7 mM MgCl2, 38.9 mM 

Tris-HCl (pH 7.8), 2.6 μM DTT, 0.03% Triton X-100 and 0.39% Glycerol) was incubated for 30 min at 37°C. 

Luminescence (1 s per well) was measured using a Clariostar plate reader (BMG Labtech, Ortenberg, 

Germany).  

2.18.  Detection of IE gene expression in nanobody-treated monocytes 

CD14+ monocytes were isolated as described above and seeded into a 96 well or 12-well plates. The next 

day, medium was removed and cells were infected with TB40/E IE2-eYFP. Two hours post infection, 

medium was aspirated and replaced with medium containing nanobodies at a final concentration of 100 

nM. Nanobody-containing medium was refreshed every 2-3 days. IE-expression was detected by means 

of IE2-YFP tag or immunostaining of IE as described above. This was either counted manually or imaged 

by the ArrayScan XTI instrument (Thermo Fischer) and data processed using the Target Activation 

experimental tool. 

2.19.  PBMC and T cell co-culture and virus reactivation 

Following PBMC isolation from healthy donor peripheral blood, CD14+ monocytes were isolated, plated 

on 96 well plates, and treated with nanobodies as described above. The remaining PBMC were frozen in 

liquid nitrogen until one day prior to co-culture. At this time, the PBMC were thawed and rested 

overnight. CD4+ and CD8+ T cell fractions were isolated as described in §2.1 above and pooled, and these, 

or the remaining PBMC were added to the monocyte cultures at an effector:target cell ratio of 5:1. After 
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two days, the T cells/depleted PBMC were washed away using PBS + 2 mM EDTA, and the medium on 

the monocytes was replenished with X-vivo 15 + L-glutamine containing IL-4 and GM-CSF at 1,000 U/ml 

in order to stimulate differentiation to immature dendritic cells. After 5 days, this medium was aspirated 

and replaced with X-vivo 15 + L-glutamine supplemented with 50 ng/mL LPS for 2 days to induce 

maturation of dendritic cells.  

2.20.  Immunotoxin treatments 

Immunotoxins were sent by Synklino ApS on dry ice, thawed on wet ice, and aliquoted and flash frozen 

in liquid nitrogen until use. Immunotoxin dilutions were made in immunotoxin assay buffer (1 mM acetic 

acid, 0.5% w/v BSA) and if not used immediately, these were stored at -20°C for up to 14 days and could 

be thawed once more before discarding. For analysis of cell viability, the CellTiter 96® AQueous One 

Solution Cell Proliferation Assay (Promega), commonly known as the MTS assay (MTS = 3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt), was 

used according to the manufacturer’s instructions. Specifically, cells were treated with immunotoxins, or 

blasticidin (100 μg/mL, Invivogen) in 96 well plates for variable time periods in 100 μL culture volume. To 

assess viability, 20 μL of assay reagent was added to culture and the plate incubated for between 1 and 4 

hours. The reaction was stopped by the addition of 25 μL of 10% SDS, and the absorbance at 490 nm was 

measured using an iMarkTM Microplate Absorbance Reader (BioRad).  

2.21.  Statistical analysis 

Statistical analysis, including hypothesis testing (t test, analysis of variance (ANOVA), corrections for 

multiple comparisons, non-parametric tests), regression analysis, and ‘curve-fitting’ was performed using 

GraphPad Prism 8.0 software. Specific statistical tests are described in figure legends. 
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3. US28 downregulates interferon-responsive genes in myeloid cells 

3.1.  Analysis of the US28-associated proteome 

3.1.1. Introduction 

The virally encoded G protein coupled receptor US28 is likely essential for the establishment and 

maintenance of HCMV latency in myeloid cells [159,173,189,193]. Furthermore, US28 coupling to G 

proteins is required for HCMV latency; loss of G protein coupling via the signalling mutation R129A 

results in lytic infection of myeloid cells [193]. Similarly, while expression of US28-WT in trans 

complements for US28-deletion viruses, expression of US28-R129A or an empty vector control leads to 

lytic infection with US28-deletion viruses [189].  

While previous work has looked at the global effects of US28 expression in myeloid cells on the 

phosphorylation status of important signalling pathways by phosphoarray [189], or examined 

transcription by microarray [173,193], these methods are inherently biased as the cellular targets are 

pre-selected. Therefore, an unbiased proteomic screen was undertaken in our laboratory by Benjamin 

Krishna in collaboration with James Williamson and Paul Lehner (all University of Cambridge). This screen 

compared the host proteomes THP-1 cells which express an empty vector, US28-WT, or US28-R129A. 

Employing a tandem-mass-tag labelling approach, the screen identified 7458 host proteins present in all 

cell lines. The full results are presented in the appendix and summarised in Figure 3-1, Table 3-1, and 

Table 3-2. 

The power of this screen was that it allowed identification of changes in host proteins enacted by US28 

in a signalling-dependent and -independent manner. Changes in host protein abundance common 

between US28-WT and US28-R129A when compared to empty vector represent signalling independent 

changes, and these included CD44 and CD82 proteins, which were each downregulated by both sets of 

US28-expressing cells.  

While I do not rule out that signalling independent changes in myeloid cells driven by US28 may be 

important for HCMV latency, G-protein dependent signalling is absolutely required for latency, and 

therefore we were particularly interested in the direct comparison of host protein abundances in THP-1 

cells expressing US28-WT and US28-R129A. This comparison revealed 42 host proteins whose expression 

was two-fold or more increased or decreased by US28-WT, and my subsequent analyses focussed on 

these signalling-dependent changes. 
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Figure 3-1 US28 proteomic analysis reveals US28 signalling-dependent and independent changes in myeloid cell 
environment. A, B, C) Empty vector, US28-WT, and US28-R129A THP-1 cells were subject to total cell proteomic 
analysis using a tandem-mass-tag labelling approach as described in Materials and Methods. Each dot represents 
one human protein and is shown in grey if its abundance changes by a factor of less than 2, in red if between 2- and 
4-fold, and in purple if greater than 4-fold. The exception is components of the HLA-DR complex which are 
represented by pink triangles. A) Shows a comparison of US28-WT and US28-R129A, B) compares US28-WT and 
empty vector, and C) compares US28-R129A and empty vector. In each case, the relative abundance of human 
proteins MNDA and IFI16 is marked with an arrow. 
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Table 3-1 Proteins upregulated by US28-WT compared with US28-R129A. The Uniprot accession numbers, HUGO 
Gene IDs, number of Unique Peptides quantified, and log2(fold change abundance) between cell lines is presented 
for the top 40-most upregulated proteins (US28-WT vs US28-R129A) after filtering for q value of <0.01. The 
proteins are presented from most upregulated to least upregulated (US28-WT vs US28-R129A) 

Accession # 
Unique 
Peptides 

Gene ID US28-WT/EV US28-R129A/EV US28-R129A/US28-WT 

P13928 6 ANXA8 1.286881148 -0.739372092 -2.023269779 

O94851 1 MICAL2 0.101650076 -1.680382066 -1.780908942 

Q12965 11 MYO1E 0.325386415 -1.20756107 -1.531156057 

Q8WWN9 1 IPCEF1 1.051720116 -0.401634795 -1.454031631 

P15144 27 ANPEP 0.742437445 -0.623709617 -1.365871442 

P20701 17 ITGAL 0.645240513 -0.510457064 -1.15521265 

Q11206 2 ST3GAL4 1.232660757 0.123003954 -1.10780329 

O00151 15 PDLIM1 0.980390956 -0.125006361 -1.104697379 

Q6YHK3 20 CD109 0.645240513 -0.432454552 -1.077041036 

P04083 20 ANXA1 1.752748591 0.768925336 -0.98279071 

Q9NP71 1 MLXIPL 0.388465097 -0.577766999 -0.965784285 

Q96PC3 3 AP1S3 0.092207438 -0.833927324 -0.924125133 

Q9HBU1 2 BARX1 0.207892852 -0.717856771 -0.924125133 

Q9NUU6 13 FAM105A 0.297484916 -0.60823228 -0.905088353 

O00421 1 CCRL2 0.070389328 -0.805912948 -0.875671865 

Q8TF42 14 UBASH3B 1.204140717 0.368489001 -0.836501268 

Q13642 5 FHL1 1.286289758 0.468843943 -0.81857936 

Q9BRF8 11 CPPED1 -0.023269779 -0.805912948 -0.783389931 

P08133 47 ANXA6 -0.087733372 -0.803392956 -0.717856771 

Q8IU85 3 CAMK1D 0.232660757 -0.483984853 -0.715485867 

P11169 5 SLC2A3 0.396159489 -0.320125852 -0.715485867 

Q658P3 6 STEAP3 -0.045431429 -0.734563104 -0.689659879 

P30405 9 PPIF 0.618238656 -0.067938829 -0.687334826 

Q8IX19 4 C19orf59; 
MCEMP1 

0.286881148 -0.386468347 -0.673462652 

Q9BX10 13 GTPBP2 0.353887836 -0.312939312 -0.666576266 

Q7L266 2 ASRGL1 -0.744197163 -1.384583703 -0.639354798 

P09525 23 ANXA4 -0.407363571 -1.043943348 -0.637109357 

P20020 15 ATP2B1 0.34596403 -0.286304185 -0.632628934 

O00458 7 IFRD1 0.318461465 -0.305788392 -0.623709617 

Q04726 5 TLE3 0.138814469 -0.477944251 -0.61705613 

Q96PY5 3 FMNL2 0.195347598 -0.413115187 -0.610433188 

Q13683 4 ITGA7 0.100304906 -0.490050854 -0.590744853 

P50281 7 MMP14 0.291603558 -0.295128036 -0.586405918 
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Q9BPW9 5 DHRS9 0.093560176 -0.490050854 -0.584241333 

Q13480 2 GAB1 0.606915942 0.024319679 -0.582079992 

Q96TA1 9 FAM129B -0.416962376 -0.988504361 -0.57132159 

Q9NQ86 4 TRIM36 0.137503524 -0.434402824 -0.57132159 

Q8IWB7 14 WDFY1 0.03562391 -0.526992432 -0.560642822 

Q9P2M4 1 TBC1D14 0.658097205 0.097610797 -0.560642822 

Q6PI78 1 TMEM65 0.187767747 -0.371459681 -0.55851652 

 

 

Table 3-2 Proteins downregulated by US28-WT compared with US28-R129A. The Uniprot accession numbers, 
HUGO Gene IDs, number of Unique Peptides quantified, and log2(fold change abundance) between cell lines is 
presented for the top 40-most downregulated proteins (US28-WT vs US28-R129A) after filtering for q value of 
<0.01. The proteins are presented from most downregulated to least downregulated (US28-WT vs US28-R129A) 

Accession # 
Unique 
Peptides 

Gene ID US28-WT/EV US28-R129A/EV US28-R129A/US28-WT 

Q03135 2 CAV1 -1.50635 1.803227 3.311212 

P22090 5 RPS4Y1 -0.69432 2.329985 3.025206 

P13591 4 NCAM1 -0.26708 2.421156 2.688852 

P41218 9 MNDA -2.68966 -0.35476 2.331992 

Q9Y2J8 7 PADI2 -0.71076 1.395611 2.107688 

Q16719 4 KYNU -0.08314 1.840765 1.92372 

P20292 2 ALOX5AP -1.96578 -0.15521 1.807355 

Q92506 1 HSD17B8 -0.03357 1.750178 1.784504 

Q9Y243 1 AKT3 -1.01742 0.679874 1.697774 

P25815 2 S100P 0.506907 2.121347 1.614945 

O15523 2 DDX3Y -0.13765 1.470407 1.608336 

P32929 6 CTH -0.35476 1.218471 1.573375 

O75155 8 CAND2 -0.22263 1.325386 1.54745 

O15394 8 NCAM2 -1.82623 -0.2969 1.53057 

Q6ZMU5 11 TRIM72 0.58111 2.082362 1.500802 

Q9NRW1 1 RAB6B -0.71786 0.747602 1.465713 

P50225 5 SULT1A1 0.16092 1.446786 1.286881 

Q16666 4 IFI16 -1.45008 -0.20923 1.24245 

Q96T66 4 NMNAT3 -0.92687 0.312665 1.239398 

P29728 17 OAS2 -2.152 -0.93236 1.223423 

Q9Y4D7 2 PLXND1 -1.16488 0.051024 1.217851 

P05091 19 ALDH2 -2.27928 -1.09234 1.187134 

P01911 4 HLA-DRB1 -2.27928 -1.1078 1.172488 

Q9BRX8 4 FAM213A -0.6416 0.526069 1.168642 

P31327 9 CPS1 1.151209 2.30188 1.15056 
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Q96BZ4 7 PLD4 -1.02621 0.092207 1.119688 

Q6P5R6 2 RPL22L1 0.326537 1.422771 1.096262 

P01903 6 HLA-DRA -2.30045 -1.20423 1.094912 

P12277 8 CKB 0.342555 1.415759 1.073135 

Q9UMS6 20 SYNPO2 0.049631 1.111031 1.060739 

Q01628 1 IFITM3 -1.25498 -0.21591 1.039138 

B0I1T2 28 MYO1G -0.57132 0.448901 1.020058 

P04229 3 HLA-DRB1 -2.1016 -1.1016 1 

P52895 3 AKR1C2 0.561693 1.560715 0.999278 

Q30154 3 HLA-DRB5 -2.06492 -1.1047 0.961994 

P10153 1 RNASE2 -0.66658 0.290424 0.9568 

P37268 15 FDFT1 -0.32193 0.598365 0.921436 

P29966 6 MARCKS 0.096262 1.010064 0.913033 

P15104 10 GLUL -0.32013 0.587845 0.908429 

P48163 16 ME1 -1.52699 -0.63039 0.896078 

 

 

3.1.2. GO-term enrichment analysis 

Gene ontology (GO) terms are key phrases annotated to genes and proteins in public databases that 

describe associated biological processes, molecular functions, and cellular components. GO-term 

enrichment analysis is a way to analyse larger datasets such as transcriptomes and proteomes and ask 

whether any particular biological pathways or functions are common features in genes that are 

differentially regulated in one’s dataset. To do this, I used the GO-term enrichment tool available at 

geneontology.org [351–353], analysing biological process terms, and input the top 40 upregulated 

proteins (fold changes), or the top 40 downregulated proteins (fold changes) after applying a filtering 

criterion of q value <0.01. As a comparator, I used both the automatically generated list of human genes, 

and a list of all 7458 proteins identified in the screen.  Statistical significance was associated with a False 

Discovery Rate (FDR)-corrected p value of <0.05. There were no significantly enriched terms for the 

upregulated proteins (not graphed). I found between five and nine GO-terms enriched for the 

downregulated proteins, including several terms relating to antiviral defence such as interferon-gamma 

signalling pathway and MHC Class II assembly (Figure 3-2). This was intriguing as US28 has not previously 

been associated with modulation of interferon responses nor MHC Class II (which is itself interferon-

gamma inducible [354]), though it can bind human chemokines and act as a ‘chemokine sink’ during 

productive infection [166].  
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Figure 3-2 GO-term enrichment analysis of genes downregulated by US28-WT. Gene IDs from  were input into the 
GO-term enrichment database search feature of geneontology.org and compared with either all human genes 
(upper panel) or all proteins identified in the proteomic screen (lower panel). Biological process GO-terms enriched 
in each comparison with a FDR-corrected value of <0.05 are graphed. 

3.1.3. Interferome analysis 

Following GO-term analysis, I wanted to use a specialist tool, Interferome, (v2.01, www.interferome.org) 

[355] to analyse the downregulated proteins in my dataset. Interferome uses existing microarray and 

transcriptomic datasets for genes induced or downregulated by treating cells with Type I, Type II, or Type 

III interferon. I input the 40-most significantly downregulated genes, or the 40 genes which showed zero 

change in abundance, or the entire dataset into the tool, filtering for human genes and those which are 

induced at least 2.0-fold. Two-thirds (27/40) of the most downregulated proteins we identified are Type I 

or Type II interferon-inducible (Figure 3-3).  In contrast, of the 40 proteins which showed no changes 

(fold change = 0) in abundance between US28-WT and US28-R129A, 12/40 (30%) were included in the 

Interferome database, and 34% of all proteins in the proteome were included in the Interferome 

http://www.interferome.org/
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database. Fisher’s Exact contingency analysis supports that downregulated proteins are significantly 

more likely to be interferon-inducible (Figure 3-3). One of the downregulated proteins was annotated as 

Type III interferon-inducible, but it is worth noting that there are far fewer datasets for Type III 

interferon included in the Interferome database. Overall, global analyses of the US28-proteomic dataset 

reveal that US28 likely reduces the basal levels of Type I and Type II interferon-inducible genes in a 

signalling-dependent manner.  
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Figure 3-3 US28 downregulates Type I and Type II interferon-inducible proteins. The gene IDs of the top 40-
downregulated proteins identified in the screen (Table 3-2), or those of the 40 proteins which showed zero fold 
change, or the whole list of identified proteins, were entered in the Interferome database search function and 
noted if they were positively inducible by either Type I or Type II interferon. A) The proportions of each of these 
datasets which were positively interferon inducible was calculated and graphed (raw numbers of proteins in white). 
Contingency analysis of these groups (Fisher’s Exact) was performed comparing each group in turn. **: p<0.01; 
****: p<0.0001; ns: not significant. B) Interferome-based annotation of Type I and Type II interferon-inducible 
proteins downregulated by US28, as well as those in the group of 40 which were not recorded as interferon-
inducible (‘Neither’). 
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3.1.4. US28 expression reduces STAT1 phosphorylation 

To follow up the global effect on Type I and Type II interferon-inducible proteins, I decided to assess 

STAT1 abundance and phosphorylation status, since STAT1 mediates both Type I and Type II signalling 

pathways. I predicted that relative phosphorylated STAT1 levels (Tyr701 phosphorylation) would be 

lower in the US28-WT cells compared with US28-R129A and empty vector cells. By Western blot, I found 

that US28-WT decreases the absolute levels of total STAT1 and phosphorylated STAT1 compared with 

both empty vector cells, and US28-R129A cells. Furthermore, and as expected, after correcting for total 

levels of STAT1, I found that the relative levels of phosphorylated STAT1 were decreased in US28-WT 

compared with empty vector and US28-R129A cells (Figure 3-4). Unexpectedly, US28-R129A cells had 

higher levels of STAT1 and phosphorylated STAT1 compared with empty vector cells. This apparent 

induction of STAT1 and STAT1 activation by US28-R129A is unexplained and not predicted by the 

proteomic data. Nevertheless, US28-WT overexpression decreases STAT1 levels and phosphorylation, 

providing an obvious mechanism for the downregulation of Type I and Type II interferon-inducible genes 

during the steady state.  
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Figure 3-4 US28-WT decreases STAT1 and phosphorylated STAT1. A) Western blot of lysates from EV, 

US28-WT, and US28-R129A THP-1 cells for phospho-STAT1 (Tyr701), total STAT1, and beta-actin. B and C) 

Quantification of STAT1 and phospho-STAT1 band intensity from two Western blots from two 

independent samples of transduced THP-1 cells. B) shows bands normalised to actin, and C) shows 

phospho-STAT1 levels relative to total STAT1. 
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3.2. Validation of selected proteins from the US28-associated proteome 

3.2.1. MNDA and IFI16 are downregulated by US28-WT 

Several interferon-inducible proteins showing decreased expression were of interest as potentially 

important targets for US28 during HCMV latency. These included PYHIN-family proteins MNDA (9 unique 

peptides; 5.0-fold downregulated compared to US28-R129A) and IFI16 (4 unique peptides; 2.4-fold 

downregulated compared to US28-R129A). These two related proteins piqued my interest because, as 

detailed in the introduction, IFI16 is a restriction factor for viral replication, and MNDA is a myeloid-

specific PYHIN protein with a putative role in myeloid cell apoptosis. I began by confirming US28-WT-

mediated downregulation of these proteins in independently-transduced US28-expressing THP-1 cells. I 

used the same lentiviral constructs as were used in the proteomic screen and in Krishna et al [189] to 

transduce THP-1 cells. A map of the construct, which drives US28 expression from the SFFV promoter, is 

given in Figure 3-5.  After generating these fresh US28-expressing cell lines, I checked expression levels of 

US28-WT or US28-R129A by RT-qPCR and Western Blot (Figure 3-5) to confirm near-equivalent protein 

expression.  The multiple species of US28 detected by Western blot is consistent with previously 

published western blot detection of US28 [186,193], and likely in part reflects differential levels of 

glycosylation on the predicted N-glycosylation site in the US28 N-terminal domain (Predicted in UniProt 

entry P69332). While the overall average levels of US28 protein expression was near-equivalent in the 

different US28-expressing cell lines, it is possible that there were differences in the relative levels of the 

individual US28 species. This could have potential consequences for localisation and subsequent function 

of US28, particularly if any differences are due to glycosylation differences. It would be beneficial to 

check this by deglycosylation of proteins within cell lysates, and confocal microscopy of immunostained 

US28-expressing cells with relevant organelle markers.  
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Figure 3-5 Generation of independently-transduced US28-expressing cell lines. A) The lentiviral vector into which 
the sequence encoding US28-WT or US28-R129A had previously been cloned. LTR: long terminal repeat; Ψ: the psi 
lentiviral packaging element; RRE: rev response element; pSSFV: the spleen focus-forming virus promoter; MCS: 
multiple cloning site; WPRE: Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element; pSV40: the SV40 
promoter; PuroR: the puromycin resistance gene; LTR/ΔU3: long terminal repeat deleted for the 3’ unique region. 
B) RT-qPCR analysis of US28 expression in transduced cell lines. +RT reactions included reverse transcriptase. -RT 
reactions did not include reverse transcriptase and control for genomic DNA contamination. C) Cells from B were 
lysed and subject to western blot for US28, and actin as a loading control. D) Quantification of three western blots 
for US28 expression. Intensities of all US28-specific bands shown in (C) were summed to generate these data. 

I then used RT-qPCR confirmed that IFI16 and MNDA are both downregulated in US28-WT-expressing 

cells compared to those expressing the signalling mutant R129A (Figure 3-6). Subsequently, I confirmed 

this US28-WT mediated downregulation of IFI16 and MNDA at the protein level by western blot 

(representative blots and quantification of four independent experiments are shown in Figure 3-7). 

Unexpectedly, and similarly to the observations with STAT1, US28-R129A seemed to induce IFI16 and 

MNDA above empty vector cell lines. This was not predicted by the US28 proteomic data, where the 

relative abundance of US28-R129A:empty vector was 0.865 for IFI16 and 0.765 for MNDA, a slight drop 

compared with empty vector control.  
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Figure 3-6 Steady state levels of MNDA and IFI16 mRNA in US28-expressing cells. Relative levels of IFI16 and 
MNDA mRNA were assessed by RT-qPCR in US28-expressing THP-1 cells. Levels of IFI16, and MNDA, were 
normalised to TBP and then to Empty Vector using the ΔΔCt method. 

Despite the unexpected result for US28-R129A cells, it still stands that US28-WT expressing THP-1 cells 

downregulate IFI16 and MNDA compared with cells expressing a mutant US28 at similar levels but which 

is deficient for latency establishment. This US28-mediated downregulation of IFI16 and MNDA appears 

to be occurring at the level of steady state RNA, leading to a lack of protein expression of these two 

PYHINs. 
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Figure 3-7 US28-WT downregulates MNDA and IFI16. Lysates from US28-expressing THP-1 cells and controls were 
separated by SDS-PAGE and analysed for MNDA (A) and IFI16 (B) levels by Western blotting. C) Four independent 
Western blot analyses were subject to band intensity analysis using the ‘Analyse Gels’ feature of ImageJ and the 
relative levels of MNDA and IFI16 calculated compared to empty vector cells. US28-R129A had 5.4X and 7.3X higher 
levels of MNDA and IFI16, respectively, compared to US28-WT cells. 

3.2.2. Downregulation of steady-state levels of HLA-DR by US28 

The apparent downregulation of MHC Class II components HLA-DRA, HLA-DRB1-15, HLA-DRB1-1, and 

HLA-DRB5, was also an interesting observation as this has clear and documented implications for CD4+ T 

cell recognition [139]. Interestingly, the proteomic data predicts that both US28-WT and US28-R129A 

expressing THP-1 cells downregulate these MHC Class II components compared with empty vector 

control cells, but that US28-WT more extensively downregulates these proteins. To validate these 

observations, I first examined HLA-DRA RNA expression by RT-qPCR; HLA-DRA was chosen as it aids 

primer selection because it is not as polymorphic as the HLA-DRB genes. These data suggest that, for at 

least HLA-DRA, US28-WT expressing cells have similar levels of transcript to empty vector cells, but US28-

R129A cells have more HLA-DRA transcript (Figure 3-8). Again, this is not predicted by the proteomic 

data, but is in accordance with my observations of STAT1, MNDA, and IFI16.  
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I next decided to look at cell-surface expression of HLA-DR protein by flow cytometry, since that is 

ultimately the place where HLA-DR will likely be functional. Here, the results were in good accordance 

with the proteomic dataset (Figure 3-8) and showed that US28-WT cells have approximately half as much 

cell-surface HLA-DR compared with US28-R129A cells, and these in turn have 85% less HLA-DR than 

empty vector cells. 

I then decided to examine whether the inhibition of cell surface expression of HLA-DR by US28 could be 

overcome by addition of interferon-gamma (IFNγ), which is a known potent inducer of HLA-DR 

expression at the level of transcription. In a single experiment, I found that a 24 hour treatment with 1 

ng/mL of IFNγ increased cell-surface expression of HLA-DR on US28-WT and R129A cells to similar levels, 

potentially suggesting that US28-WT does not prevent the cell from responding to IFNγ despite lower 

levels of STAT1. However, a titration of IFNγ with a number of repeats is required to draw strong 

conclusions.   

Taking these results together, I propose that there are at least two mechanisms by which US28-WT is 

able to target cell-surface HLA-DR. One of these mechanisms is signalling dependent, as evidenced by 

the lower levels of HLA-DRA transcript and cell-surface HLA-DR on US28-WT cells compared with US28-

R129A cells. The second mechanism is G protein signalling-independent, as evidenced by the lower levels 

of cell-surface HLA-DR of US28-R129A cells compared with empty vector cells. This could be mediated via 

ligand-inducible signalling and/or a beta-arrestin dependent pathway which can act on G protein down-

stream targets independently of G protein signalling [356,357]. 
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Figure 3-8 US28-WT downregulates cell surface HLA-DR. A) RT-qPCR of HLA-DRA in US28-expressing THP-1 cells. 
Levels of HLA-DRA were normalised to TBP and then to Empty Vector using the ΔΔCt method. B) Flow cytometry 
analysis of cell-surface HLA-DR expression in the steady state (media only) or in the presence of IFNγ. 

 

3.3. Mechanism of US28-mediated downregulation 

An obvious next question is how US28 downregulates IFI16, MNDA, and HLA-DR. Global analysis of the 

proteome and subsequent analysis of STAT1 phosphorylation suggests that attenuation of the interferon 

response pathway, including STAT1, is involved (§3.1). However, c-fos, a component of the activator 

protein-1 complex, is also capable of activating IFI16 and HLA-DR transcription [358–360], and is 

attenuated by US28-WT in myeloid cells [193]. The best way to determine which signalling pathways 

US28 uses/attenuates to downregulate these genes would be to use pharmacological activators of the 

pathways to try to restore host gene expression; however, no such activator exists as far as I am aware. 

As an alternative, I used inhibitors of these pathways: Ruxolitinib is a pan-Janus kinase inhibitor, 

upstream of STAT signalling, and T-5224 blocks c-fos binding to DNA. Both inhibitors had to be solubilised 

in DMSO, which becomes a confounding factor because DMSO itself likely activates the AP-1 pathways 

[361,362] and activates transcription of p204 (often thought of as the IFI16 homologue) in mice [363]. 

Due to the respective solubilities of the inhibitors, the final concentration of DMSO in T-5224- treated 

samples was 0.5%, and the final concentration of DMSO in Ruxolitinib-treated samples was 0.03%. 

Despite this potential confounding factor, I proceeded with these treatments. I validated that Ruxolitinib 

blocked STAT1 phosphorylation (Figure 3-9 A). I then looked at expression of IFI16 and HLA-DR (Figure 

3-9 B, D, E) and found that Ruxolitinib partially reduced IFI16 expression in all three cell lines, but 
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downregulated HLA-DR only in the US28-R129A cell line.  IFI16/HLA-DR expression in empty vector or 

US28-R129A expressing cells could not be ‘normalised’ to levels found in US28-WT by Ruxolitinib. 

Therefore, phosphorylated STAT1 likely plays a role, but cannot be the entire mechanism by which IFI16 

and HLA-DR are attenuated in US28-WT cells. In the case of T-5224, inhibition of c-fos partially reduced 

IFI16 and HLA-DR expression in US28-R129A cells, and almost reduced expression of these genes to 

US28-WT levels in the empty vector cells (Figure 3-9 C,D,E). While the interpretation of these 

observations is not straightforward, I believe these data indicate that c-fos is also playing a role in the 

US28-mediated downregulation of IFI16 and HLA-DR. Quite unexpectedly, T-5224 induced HLA-DR and 

IFI16 expression in US28-WT cells. I think this could be due to a basal level of c-fos being required for the 

expression of a host gene that is need by US28-WT to attenuate the numerous cellular signalling 

pathways; one candidate gene for this is the AP-1 inducible phosphatase DUSP1 [364] which will require 

further investigation. 
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Figure 3-9 Effect of Janus kinase and c-fos inhibition on IFI16 and HLA-DR expression. A) Empty vector, US28-WT, 
and US28-R129A THP-1 cells were treated with 10 μM ruxolitinib or DMSO as a control for 48 hours. Lysates from 
these cells were then subject to western blot for phospho-STAT1 (Tyr701), STAT1, and actin as a control. B) As (A) 
but instead membrane was probed for IFI16 and actin. C) Empty vector, US28-WT, and US28-R129A THP-1 cells 
were treated with 5μM T-5224 or DMSO as a control for 48 hours. Lysates from these cells were then subject to 
western blot for IFI16 and actin. D and E) Cells were treated as A) and C) and then subject to cell surface HLA-DR 
analysis by flow cytometry. Similar-coloured DMSO controls indicate corresponding concentrations of DMSO to 
inhibitors. D) Shows the mean fluorescence intensity and E) the median fluorescence intensity. I treated the cells 
with the inhibitors, and a colleague, Eleanor Lim, performed the cell-surface staining for HLA-DR and flow 
cytometry. I analysed the data generated. 
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3.4.  Downregulation of IFI16, MNDA, and HLA-DR during latency 

3.4.1. Introduction 

IFI16, MNDA, and HLA-DR were all downregulated in THP-1 cells expressing US28-WT compared with 

US28-R129A, the signalling mutant that is deficient for latency establishment. The next logical step was 

to determine whether these three selected proteins were also downregulated during HCMV latency, 

itself.  

To analyse whether HCMV latent infection downregulates IFI16, MNDA, and HLA-DR, I needed to use 

fluorescently labelled viruses because (i) our model never results in more than 20% infected cells, with 

an average closer to 5%, and (ii) expression of viral proteins during latency is not readily detectable by 

immunofluorescence (though I will show later that US28 expression is detectable when a C-terminal tag 

is incorporated into the ORF). I use immunofluorescence or flow cytometry to detect infection 

throughout this section, and analyse genes of interest in comparison with fluorescent marker negative 

bystander cells, which have previously been shown to be uninfected on the basis of viral gene expression 

and differentiation-induced reactivation [349]. 

3.4.2. Initial observations with TB40/E IE2-2A-eGFP SV40mCherry virus 

I analysed CD14+ monocytes infected with TB40/E SV40 mCherry/IE2-2A-GFP. This virus drives 

constitutive mCherry expression in both latently and lytically infected cells via the SV40 promoter, but 

GFP expression is restricted to lytically infected cells as a result of IE2 expression, which is linked to GFP 

by the self-cleaving peptide 2A. Therefore, I was able to distinguish IE2-positive (lytic) from IE2-negative 

cells (one hallmark of latency) amongst infected, mCherry positive cells. At four days post infection 

(d.p.i.), I fixed and immunostained the monocytes for our cellular proteins of interest in mCherry 

positive, IE2-2A-GFP negative cells (Figure 3-10). As a control, I also differentiated monocytes with 

phorbol 12-myristate 12-acetate (PMA), which drives IE2-2A-GFP expression through differentiation-

dependent reactivation [365]. I found that IFI16, MNDA, and HLA-DR were all downregulated in latently 

infected, mCherry positive but IE2-negative, CD14+ monocytes.  
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Figure 3-10 HCMV latent infection is associated with downregulation of IFI16, MNDA, and HLA-DR. Primary CD14+ 

monocytes were isolated from peripheral blood or apheresis cones as described in Materials and Methods. The 
monocytes were latently infected with TB40/E SV40-mCherry IE2-2A-GFP and stained by immunofluorescence for 
IFI16, MNDA, or HLA-DR as indicated at four d.p.i and imaged by widefield fluorescence microscopy. Top left image:  
Uninfected monocytes. Second from the left: Monocytes were treated +PMA (to permit lytic infection). mCherry 
(red) serves as a marker for infection and GFP (green) denotes expression from the IE2-2A-GFP cassette. Remaining 
panels: Monocytes were cultured in the absence of PMA. The absence of green fluorescence results from 
suppressed expression of the IE2-2A-GFP cassette and scored as IE negative.  The magnification is indicated (40X or 
20X). White arrows indicate corresponding cells in the upper and lower panels. 

3.4.3. Time course of downregulation with TB40/E SV40eGFP  

I then sought to look at expression of these proteins at earlier time points. US28 is a virion-associated 

protein [159], and incoming US28 is reported to have rapid effects on host cells [193]. I speculated that 

the downregulation of IFI16, MNDA, and HLA-DR might occur early during the establishment of latency, 

perhaps mediated by incoming functional US28. For these experiments, I used TB40/Egfp which marks 

infected cells with GFP expression via the SV40 promoter and confirmed the establishment of latency in 

this system by coculture of monocytes with fibroblasts either with or without PMA-induced reactivation 

(Figure 3-11 A, B). In this latency system, I found a stark and specific loss of IFI16 in infected monocytes 

from 24 hours post infection (h.p.i.) (Figure 3-11 C), a phenotype maintained at 48 and 72 h.p.i as 

measured by immunofluorescence. I quantified these observations in several fields of view for each of 

these three time points, and performed contingency analyses (Fisher’s Exact), which confirmed specific 

loss of IFI16 in latently infected cells (Figure 3-11 D). Loss of IFI16 was observed in ex vivo infected 

monocytes at these time points in a total of four separate donors with TB40/Egfp virus.  

I found a partial downregulation of MNDA by 72 h.p.i (Figure 3-11 E, F), with a very small downregulation 

at 48 h.p.i and no effect at 24 h.p.i, suggesting that modulation of MNDA is delayed compared with 

fellow PYHIN family member, IFI16. 
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For analysis of HLA-DR, I worked with monocytes infected in suspension and analysed cell surface 

expression by flow cytometry, working together with two PhD students in Mark Wills’s laboratory, 

namely George Sedikides and Eleanor Lim. Together, we observed that HLA-DR, but not corresponding 

MHC Class I HLA-A,B,C, were downregulated at 72 h.p.i specifically in GFP positive, latently infected 

monocytes (Figure 3-11 G, H).Therefore, IFI16, MNDA, and HLA-DR are indeed downregulated at early 

times during the establishment of latency in monocytes, with IFI16 showing downregulation within 24 

hours of infection.  
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Figure 3-11 Time course of US28-target gene downregulation. A) Validation of experimental latency using 
TB40/Egfp virus. CD14+ Monocytes were infected and allowed to establish latency for 4 days (left panel, 10X 
magnification). Citrate wash buffer was used to remove externally bound virions. These latently infected cells were 
cultured -/+PMA for 3 days, and at 7 d.p.i, Hff-1 cells were added to the culture to demonstrate production of 
infectious virions. Transfer of virus to Hff-1 was monitored by fluorescence microscopy up to 13 d.p.i., B) Infected 
Hff-1 foci form (A) were counted and summed across the experiment (three wells of CD14+ monocytes per 
condition, graphed). C) CD14+ monocytes infected with TB40/Egfp stained by immunofluorescence for IFI16 at 24, 
48, and 72 h.p.i. and imaged as before using 60X magnification. D) Quantification of IFI16 positive and negative 
monocytes in the uninfected and infected populations from two donors per time point. Raw numbers of cells are 
indicated in white text. Fisher’s exact test indicates a statistically significant difference between uninfected and 
infected populations for each time point (P<0.0001). E) CD14+ monocytes infected with TB40/Egfp were stained by 
immunofluorescence for MNDA at the indicated times and imaged as before using 60X magnification. F) 
Quantification of the signal intensity from infected monocytes at the indicated time points (n=9,7,10, respectively). 
MNDA signal intensity in each nucleus was normalised to the average of uninfected monocytes from each field of 
view. A t-test with Welch’s correction was used to determine statistical significance. ns, not significant, *P<0.05, 
**P<0.01. G) CD14+ monocytes infected with TB40/Egfp (+/- UV inactivation) were analysed for HLA-ABC and HLA-
DR expression at three d.p.i. by flow cytometry. The gating strategy for identifying infected cells (GFP+) is shown. H) 
Histogram showing HLA-ABC and HLA-DR staining in HCMV-uninfected GFP-negative (grey) monocytes, and latently 
infected GFP positive (green) monocytes. 

 

3.4.4. IFI16 is downregulated in a US28-dependent manner, but only in 

undifferentiated myeloid cells 

Having confirmed that IFI16 is downregulated very early during latent infection of monocytes, I then 

sought to establish whether this effect is dependent on US28. I predicted this would be the case because 

of the results of our US28 proteomic screen and the established functionality of incoming virion-

associated US28 [193]. I infected monocytes with either the US28-WT TB40/EmCherry-US28-3XFLAG 

HCMV (US38-3XF), or the corresponding US28 deletion virus TB40/EmCherry-US28Δ (ΔUS28). These 

viruses establish latent and lytic infections, respectively, in CD34+ progenitor cells, Kasumi-3 cells, and 

THP-1 cells [159,193], and I confirmed these phenotypes are also maintained in primary CD14+ 

monocytes by supernatant transfer to permissive fibroblasts (Figure 3-12 A). I was also able to detect 

US28 protein during the establishment of latency in monocytes by immunostaining for the FLAG epitope 

tag on the C terminus of US28 (Figure 3-12 B). This staining is the first time in our laboratory that we 

have been able to clearly observe intracellular expression of US28 using immunofluorescence during 

latency. The pattern of staining is could be an indication of ER or Golgi localisation, in addition to cell 

surface expression, and is in accordance with expression patterns of US28-3XFLAG via retroviral 

transduction in THP-1 cells (Figure 3-13) and US28 expression during lytic infection [366]. However, 

without using confocal microscopy and organelle markers, it is not possible to be certain of the 

subcellular localisation of US28.     
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To determine if US28 specifically downregulates IFI16 in the context of infection, I compared the 

expression of this cellular protein in monocytes infected with US28-3XF or ΔUS28. Consistent withFigure 

3-11, I found that monocytes infected with the US28-3xF virus showed downregulation of IFI16 at 24 and 

48 h.p.i., while monocytes infected with ΔUS28 displayed robust IFI16 expression at 24 h.p.i. (Figure 3-12 

C, D) and only partial downregulation at 48 h.p.i (Figure 3-12 C, E). These data demonstrate that the early 

downregulation of IFI16 in CD14+ monocytes is dependent on US28.  

It would have been interesting to see whether the downregulation of MNDA and HLA-DR is also 

dependent on US28, but the delayed kinetics/partial phenotype associated with MNDA downregulation, 

and the requirement for large number of cells to perform quantitative assessment of HLA-DR expression 

on latently infected monocytes, precluded these studies.  

Work from the laboratory has previously showed that US28 modulates cellular signalling pathways in 

undifferentiated, but not differentiated THP-1 cells [189]. I was therefore curious as to whether the 

effects on IFI16 expression were dependent on cellular differentiation status. This is significant because 

differentiated THP-1 cells and mature dendritic cells are permissive for HCMV lytic infection. To analyse 

whether these effects are differentiation-dependent, I transduced THP-1 cells with a lentiviral vector that 

co-expresses US28 and the fluorescent protein Emerald (US28-UbEm), or co-expresses eGFP and Emerald 

(empty UbEm), as a control. For each population, the Emerald-positive THP-1 cells were isolated by FACS 

(Figure 3-12 F) and I validated US28 expression by RT-qPCR (Figure 3-12 G). I treated half of these cells 

with PMA in order to induce cellular differentiation. I found that undifferentiated US28-expressing THP-1 

cells downregulated IFI16, but PMA-differentiated cells did not downregulate IFI16 (Figure 3-12 H), 

suggesting latency-associated expression of US28 attenuates IFI16 expression.   

I also analysed the effect of cellular differentiation on IFI16 expression following infection in mature 

dendritic cells derived by treating ex vivo CD14+ monocytes with GM-CSF/IL-4/LPS. Again, I found that 

undifferentiated infected CD14+ monocytes downregulate IFI16 in a US28-dependent manner at 48 h.p.i, 

while infected mature dendritic cells do not downregulate IFI16 with WT or ΔUS28 HCMV (Figure 3-12 I). 

Taken together, these results indicate that US28 rapidly downregulates IFI16 during latent infection of 

monocytes, but not during lytic infection of mature dendritic cells. 
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Figure 3-12 IFI16 is rapidly downregulated in a US28-dependent manner during latent infection. CD14+ 
monocytes were infected with either US28 WT TB40/EmCherry-US28-3XFLAG HCMV or the ΔUS28 equivalent. A) 
Validation of the latent and lytic phenotypes associated with US28-3xF and ΔUS28 monocyte infections, 
respectively. At 7 d.p.i., supernatant from infected CD14+ cells (upper panel) were transferred to Hff1 cells (middle 
brightfield and lower mCherry panels) and formation of plaques was monitored and imaged at 20X magnification. 
B) Detection of US28-3XFLAG during the establishment of latency in CD14+ monocytes. At 2 d.p.i. US28-3xF or 
ΔUS28-infected CD14+ monocytes were fixed and stained by immunofluorescence for US28-3XFLAG using an anti-
FLAG antibody and imaged at 40X magnification. C) US28-3xF and ΔUS28-infected monocytes were stained by 
immunofluorescence for IFI16 at the indicated times and imaged using 40X magnification. White arrows indicate 
corresponding cells. D and E) IFI16 signal intensity in each nucleus was normalised to the average of the uninfected 
cells in a field of view. The results of three fields of view were then averaged to derive the resulting average signal 
intensities for each subpopulation of monocytes at the indicated time points infected with US28-3xF or ΔUS28 
HCMV. Statistical significance was determined using one-way ANOVA. *** indicates P<0.001, ** indicates P<0.01, 
and * indicates P<0.05. F) The sequence encoding US28 was cloned into the lentiviral plasmid pUbEm (US28-
UbEm), and this or empty UbEm plasmid was used to transduce THP-1 cells, which were subsequently cell-sorted 
for Emerald expression.  G) US28 expression was validated in the cells from (F) by RT-qPCR. US28 RNA was 
normalised to cellular TBP and presented as 2-ΔCt. H) US28 expressing and empty vector THP-1 cells were either 
left untreated or treated with PMA for 48 hours before cell lysates were harvested. These lysates were then subject 
to western blotting for IFI16 and beta-actin as a loading control, with molecular weight markers annotated. I) At 48 
h.p.i, either undifferentiated CD14+ monocytes, or monocytes pre-differentiated for 7 days with GM-CSF/IL-4/LPS, 
were fixed and stained for IFI16 and imaged as before at 40X magnification. White arrows indicate corresponding 
infected cells. 

 

Figure 3-13 US28 immunostaining in transduced THP-1 cells. Retroviral plasmids encoding US28-WT (from TB40/E) 
or R129A, each with a C-terminal 3XFLAG tag, and an eGFP marker, were used to transduce THP-1 cells. They were 
then subject to immunofluorescence staining for the 3XFLAG tag. 
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Figure 3-14 Fibroblasts which overexpress US28 do not downregulate IFI16. Hff1 cells were transduced with the 
US28-UbEm lentiviral vector as in Figure 3-12 and then fixed and stained for IFI16 expression. White arrows 
indicate transduced cells. 

Additionally, I used the US28-UbEm to transduce fibroblasts (Hff1) cells, and left these as a mixed 

population. Indirect immunofluorescence of transduced Hff1 cells shows no difference in IFI16 

expression with or without US28 expression (Figure 3-14).  

I also analysed IFI16 expression in fibroblasts (Hff1) and epithelial cells (RPE-1), which both undergo lytic 

infection. Previous work suggests that IFI16 expression is not modulated by lytic infection of fibroblasts 

[79,208,367]. In contrast, when I infected both fibroblasts and epithelial cells with the TB40/E 

SV40mCherry strain of HCMV at a MOI of 0.5, I found that IFI16 was downregulated in the majority of 

infected cells at both 24 and 48 hours post infection (Figure 3-15). This was also true for the 

corresponding ΔUS28 virus, indicating that downregulation of IFI16 is not dependent on US28 in these 

cell lines. Supporting this, I found the same downregulation using the Titan strains of HCMV, both WT 

and ΔUS28 (Figure 3-16), when infecting fibroblasts with an MOI <1. 

Clearly, there is some discrepancy between my data and those previously published. Biollati et al [208] 

found increased expression of IFI16 over a time course of infection of fibroblasts (MOI of 1) by western 

blotting; however, in such analyses using whole cell lysates, increases in IFI16 expression in bystander 

cells would have masked any downregulation in infected cells, which is pertinent because I saw clear 

upregulation of IFI16 in uninfected bystander fibroblasts compared with uninfected wells (Figure 3-15 A). 

Additionally, although Cristea et al [79] did not conclude that infection of fibroblasts resulted in a 

decrease in IFI16 expression, close examination of the immunofluorescence data in that paper does 

appear to show a decrease in IFI16 expression. More recently, Nightingale et al [367] have presented a 

comprehensive proteome of fibroblasts at 24, 48, and 72 h.p.i. using an MOI of 5 to 10 in which they did 

not detect any changes in IFI16 expression. The reason for the discrepancy between that study and my 
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data are unclear but it is possible that it results from differences in MOIs, or that there are strain 

dependent differences (in particular a difference between effects of TB40/E and Titan, used in my 

analysis, and Merlin, used in their study) in IFI16 regulation during lytic infection. 

The downregulation of IFI16 I observe during lytic infection of fibroblasts and epithelial cells, as well as 

during ΔUS28 infection of monocytes, perhaps merits further investigation: which viral gene product is 

responsible, and what functional outcome does this have for viral infection? Since IFI16 can repress 

transcription of the early genes UL44 and UL54 [264], downregulation of IFI16 during lytic infection could 

be pro-viral. However, since my research question was focussed on latent infections, I did not pursue 

these lines of investigation further. 
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Figure 3-15 Lytic infection of fibroblasts and epithelial cells leads to downregulation of IFI16 independently of 
US28. Hff1 (A) and RPE-1 (B) cells were infected with TB40/e mCherry with US28-3XFLAG or ΔUS28 at MOIs of 0.5. 
At the indicated times, cells were fixed and stained for IFI16 expression. White arrows indicate the position of 
infected cells. 
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Figure 3-16 Lytic infection of fibroblasts with the Titan strain of HCMV leads to downregulation of IFI16 
independently of US28. (A) Hff1 cells were infected with the Titan strain of HCMV at MOI 0.5. Cells were fixed and 
stained for IE and IFI16 at 24 h.p.i. White arrows indicate the position of infected cells which do downregulate 
IFI16; yellow arrows indicate the position of infected cells which do not downregulate IFI16. (B) Quantification and 
subsequent Fisher’s Exact test of IFI16 positive and negative cells in the infected and uninfected populations in (A). 
Raw numbers of cells are given in white. 

 

3.4.5. Long-term downregulation of IFI16 and MNDA 

I next assessed whether downregulation of IFI16 and MNDA occurs during long term maintenance of 

latency; long term downregulation of HLA-DR is already known to be important for latent carriage of 

HCMV [139]. I infected monocytes with HCMV that drives mCherry from GATA2 promoter, and maintains 

this marker for far longer during latency than SV40 promoter-driven tags[349];  this virus is denoted as 

virus TB40/E GATA2mCherry.  At 10 and 14 d.p.i., IFI16 remained absent and MNDA remained partially 

downregulated in infected cells (Figure 3-17 A). I also differentiated latently infected monocytes to 
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mature dendritic cells to induce reactivation of latent virus, and stained for IFI16 expression, and found 

that IFI16 was also downregulated in this instance. This is not what happened when I infected mature 

dendritic cells (essentially a lytic infection of a now permissive cell type, Figure 3-12). This might reflect 

differences between reactivation and primary infection, but since both observations are snapshots of 

long and complex processes, it would be wrong to conclude too much without further investigation.  

 I also analysed latently infected primary CD34+ hematopoietic progenitor cells (HPCs), a site of long-term 

in vivo latent carriage, as well as the Kasumi-3 cell line, an experimental model for HCMV latency [117]. 

Consistent with my observations in monocytes, and RNAseq experiments in cord blood derived CD34+ 

cells [108], IFI16 levels were low or absent in almost all infected cells imaged at 4 and 10 d.p.i (Figure 

3-17 B, C). Thus, it seems likely that downregulation of IFI16 is a conserved process in cellular sites of 

HCMV latency. 
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Figure 3-17 IFI16 and MNDA downregulation during long term latency. (A) Monocytes were latently infected with 
TB40/E GATA2 mCherry HCMV. Cells were fixed and stained for MNDA and IFI16 at the indicated times. For 
reactivated dendritic cells (DC), latently infected monocytes were differentiated with GM-CSF/IL-4 at 2 d.p.i. and 
then matured with LPS 5 days later. Cells were fixed and stained for IFI16 3 days after maturation. (B) Primary 
CD34+ HPCs and Kasumi-3 cells were latently infected with HCMV and fixed and stained for IFI16 at the indicated 
time points. (C) The number of infected and uninfected cells with low and high levels of IFI16 were tallied across a 
minimum of three fields of view per time point. The mean proportion of cells with low IFI16 is then graphed along 
with the results of a Fisher’s Exact test of the sum of cells counted. ** p<0.01; *** p<0.001; **** p<0.0001. 
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3.4.6. Latently infected THP-1 cells show loss of IFI16 and MNDA mRNA 

I was also interested in whether the latency-associated downregulation of IFI16, MNDA, and HLA-DR was 

occurring at the level of mRNA. The analysis of US28-expressing cells suggests that IFI16 and MNDA 

mRNA levels are downregulated by US28, but that HLA-DR downregulation is more complex. I initially 

tried to perform these analyses on FACS-sorted primary monocytes, but too few cells were infected. 

Consequently, I performed the experiment using THP-1 cells infected with the TB40/E GATA2mCherry 

virus. At 24 h.p.i, I extracted RNA from the mCherry negative and the mCherry positive population, that 

had been cell-sorted by staff at the NIHR cell phenotyping hub (Figure 3-18 A), and analysed US28, IFI16, 

MNDA, and HLA-DRA RNA levels by RT-qPCR. I also included the additional PYHIN genes IFIX and AIM2, 

which were not detected by the US28-proteomic screen (Figure 3-18 B). All four PYHIN transcripts were 

clearly downregulated in the infected mCherry positive population compared with the bystander 

mCherry negative population and this is consistent with immunofluorescence data from latently infected 

monocytes and RNA data from US28-expressing THP-1 cells. HLA-DRA mRNA levels were slightly 

increased in the infected cell population, which is in line with Figure 3-8 A, where US28-WT expressing 

cells have a very similar level of HLA-DRA transcript compared with empty vector control cells. While I 

did not verify that cell-surface HLA-DR is downregulated in the THP-1 model of latency, these data 

suggest that latency-associated targeting of HLA-DR might rely on either transcriptional regulation of the 

other HLA-DR components, or post-transcriptional regulation of HLA-DR expression. 
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Figure 3-18 Latently infected THP-1 cells have lower levels of PYHIN mRNAs but not HLA-DRA. (A) THP-1 cells 
were latently infected with TB40/E GATA2mCherry for 24 hours before fluorescence associated cell sorting. 
Uninfected THP-1 cells were used to define the mCherry negative and mCherry positive populations. (B) RNA was 
isolated from the populations sorted in (A) and analysed by RT-qPCR for the indicated genes. All are displayed as 
relative gene expression with respect to TBP housekeeping control (2ΔCt); HLA-DRA is plotted on a linear scale, the 
others on a log scale; n.d., not detected. 
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3.4.7. The role of incoming pUS28 in IFI16 downregulation 

So far, I have shown that HCMV downregulates IFI16 during latency in a US28 dependent manner. IFI16 

levels remain low during the long term maintenance of latency in CD34+ HPCs and CD14+ monocytes. 

Downregulation of IFI16 is initiated within 24 hours of latent infection of monocytes, and this likely 

results from downregulation of IFI16 mRNA levels.  

Interestingly, incoming, virion associated, US28 protein (pUS28) has recently been shown to be 

functional [193] and able to help support suppression of IE gene expression. Therefore, I hypothesised 

that incoming pUS28 may play a role in the very quickly observed downregulation of IFI16 I had noted.  

To address this, I grew a US28 gene deletion virus in a cell line that expresses US28, with the aim of 

generating infectious virions that contained pUS28 but not the US28 gene. I based my approach on the 

publication that showed incoming pUS28 was functional [193]. I grew the TB40/E mCherry US28Δ virus in 

TERT-immortalised Hff1 cells that had been transduced with a US28-V5 lentiviral vector. These cells were 

a gift from Luis Nobre (University of Cambridge). Once I had purified virions, I solubilised these in a high-

salt buffer (see Materials and Methods) and subjected them to SDS-PAGE followed by Western blotting. I 

used pp65 as a marker of virions, and actin as a marker of cells, and blotted for these first, before 

stripping and reprobing the membrane for US28-V5 (Figure 3-19). The stripping process was unsuccessful 

however, and US28-V5 (mouse detection antibody) signal is partially masked by pp65 and actin (also 

mouse detection antibodies). However, if these images are overlayed, it becomes clear that virions 

contained pUS28 when grown in the US28-V5 cell line. This virion preparation will be referred to as 

US28comp. 

I then infected CD14+ monocytes with TB40/E mCherry US28-3XF (which encodes for US28), TB40/E 

mCherry US28Δ, and the US28comp virus. At 24 h.p.i., I fixed and stained for IFI16 (Figure 3-20), since I 

knew from previous experiments that IFI16 is downregulated by WT but not US28Δ viruses. Furthermore, 

US28 protein is likely degraded within 48 hours [193], so I needed to pick a window which maximised any 

observable effects on IFI16. IFI16 expression was clearly downregulated by TB40/E mCherry US28-3XF, 

but remained present in TB40/E mCherry US28Δ infected cells, as expected. Cells infected with 

US28comp showed an intermediate phenotype.  This suggests that incoming pUS28 may, indeed, 

contribute to IFI16 downregulation, but is likely insufficient for full IFI16 downregulation. This 

investigation merits repeating, and further validation of the virion composition, and changes in viral gene 

expression would aid the interpretation of this type of analysis.  
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Figure 3-19 Incorporation of V5-tagged US28 into virions. Left hand panels: lysates from TERT immortalised Hff1 
cells (Hff TERT), or Hff-TERT cells transduced with US28-V5 expression vector, or the latter cell line infected with 
TB40/EmCherry US28Δ, were subjected to western blot firstly for actin (upper panel), then stripped unsuccessfully 
and reprobed for V5 tag (lower panel). Hff V5 cell lines appear to have signal with the V5 antibody that is lower 
than the actin band, and not present in non-transduced Hff TERT cells. Right hand panels: concentrated virions 
were subjected to western blot firstly for pp65 (upper panel), then stripped unsuccessfully and reprobed for V5 tag 
(lower panel). US28 comp refers to TB40/EmCherry US28Δ grown in Hff V5 cell lines, and this track appears to have 
additional signal with the V5 antibody both above and below the pp65 bands, and which is not present in 
TB40/EmCherry US28Δ virions grown in non-transduced cells. 
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Figure 3-20 Incoming US28 may help to drive IFI16 downregulation. A) CD14+ monocytes were infected with either 
TB40/EmCherry-US28-3XFLAG HCMV (WT), the ΔUS28 equivalent, or US28comp. At 24 h.p.i., cells were fixed and 
stained by immunofluorescence for IFI16 and imaged at 40X magnification. B) Distribution of IFI16 intensities 
derived from a minimum of four fields of view (as per (A)). IFI16 intensities were measured using the Measure 
Particles feature of ImageJ. Each cell was assigned as bystander or CMV+ by mCherry intensity. Then, IFI16 
intensities for each cell was normalised to the mean intensity of bystander cells for each field of view. The 
distribution of relative IFI16 levels are represented by the violin plot, with heavy dotted line representing the 
median value. 
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3.5.  Discussion 

The viral GPCR US28 is expressed during both lytic and latent infection of HCMV. While US28 is 

dispensable for lytic replication in vitro [177,178], it is essential for the establishment and maintenance 

of HCMV latency in early myeloid lineage cells [159,173,189,193]. This is attributable, in part, to the 

ability of US28 to suppress the major immediate early promoter; a US28 function specific for 

undifferentiated myeloid cells [160,173,189,193].  

Prior to the beginning of my project, others in my laboratory had hypothesised that this ability of US28 

to so profoundly regulate viral IE gene expression in undifferentiated myeloid cells was likely via US28-

mediated modulation of host protein abundance and, therefore, they wanted to determine whether 

such US28-driven changes could be important for the establishment or maintenance of HCMV latency. 

Previous work has used targeted arrays to assess US28-mediated effects on myeloid cells [173,189,193] 

but, here, my colleagues performed an unbiased proteomic screen to understand how US28 reprograms 

host cells in order to support latent infection. This screen compared host protein abundance in control 

THP-1 cells or THP-1 cells which express either US28-WT or the US28 signalling mutant, US28-R129A. As 

such, I was then able to assess the signalling-dependent and signalling-independent effects of US28. I 

then chose to focus on signalling-dependent changes because G protein coupling via the residue R129A 

is essential for experimental latency [189,193]. However, I predict that some of the signalling-

independent changes driven by US28 could also be important for HCMV latency, since these changes 

included alterations in several cell-surface molecules such as co-stimulatory molecule CD82, adhesion 

molecule CD44, and in receptor tyrosine kinase FLT3. The latter two cellular factors are implicated in 

myeloid cell differentiation, which is intimately linked with HCMV latency and reactivation [107,160,368–

370].  As such, modulating these cell-surface molecules could help to control interactions with immune 

effectors and cellular differentiation-linked reactivation. 

By analysing changes in host protein abundance between US28-WT and US28-R129A expressing THP-1 

cells, I found a number of significant changes in the host proteome which likely result specifically from 

US28 signalling. Interestingly, I found US28-WT downregulated a large number of interferon-inducible 

proteins, including canonical interferon-stimulated genes (ISGs) like OAS2 and IFITM3, as well as MNDA, 

IFI16, and several HLA-DR components. I found that levels of both total STAT1 and phosphorylated STAT1 

were reduced in US28-WT expressing cells, providing a potential mechanism for this effect, but analysis 

conducted using a c-fos inhibitor indicated that c-fos likely also plays a role. Modulation of interferon 

signalling has not previously been reported for US28, but in the context of the latently infected 
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monocyte, a general block in downstream interferon signalling may be important for maintaining the 

polarisation of the monocyte [371,372], or perhaps to avoid the anti-viral activities of ISGs.  I believe 

these questions merit further interrogation. 

I chose to focus on the two PYHIN proteins and the set of HLA-DR components which are downregulated 

by US28. I confirmed downregulation of IFI16, MNDA, and HLA-DR in THP-1 cells which overexpress US28 

and recapitulated these effects in experimental latency in primary CD14+ monocytes. HLA-DR was 

previously reported to be downregulated during experimental latency in granulocyte-macrophage 

progenitor cells, which prevents CD4+ T cell recognition and activation [125,139,373]. Whilst this down-

regulation of MHC Class II involved the expression of the latency-associated gene UL111A [139], my data 

argue that viral US28 could also contribute to this phenotype. I will discuss the functional effects of 

MNDA and IFI16 downregulation in later chapters.  

My results clearly characterised a rapid downregulation of IFI16 during the establishment of latency in 

monocytes, which occurred within the first 24 h of infection and was also maintained during long term 

latency in monocytes and CD34+ HPCs. This effect was clearly US28-dependent as ΔUS28 virus failed to 

display immediate IFI16 down-regulation. However, we did observe a partial downregulation of IFI16 in 

ΔUS28-infected monocytes at later time points of infection. I think it likely that this involves an 

unidentified lytic-phase viral gene product, which may be required for overcoming the known IFI16-

mediated restriction of HCMV lytic infection [208,215,264,286] and occurs as a result of ΔUS28 virus 

initiating a lytic infection in undifferentiated monocytes.  

My observation that the US28-dependent downregulation of IFI16 occurred rapidly (within 24h of 

infection) may, in part, be attributable to incoming US28, which has been shown by others to be  

functional [193]. IFI16 protein has a short half-life of approximately 150 minutes in fibroblasts [374] and 

therefore, incoming US28 protein may rapidly target IFI16 transcription in latently infected monocytes, 

as it does in both US28-expressing THP-1 cells and latently infected THP-1 cells, resulting in loss of IFI16 

within 24 hours of infection; this is then maintained by subsequent latency-associated de novo US28 

expression. By generating virions that contained pUS28 but not US28 coding sequence, I generated 

evidence that pUS28 contributes, but is not sufficient, for IFI16 downregulation at 24 h.p.i.; since US28 

mRNA is detectable within 24 hours of latent infection (Figure 3-18), it is feasible that de novo synthesis 

of pUS28 ‘finishes the job’ of downregulating IFI16. 
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4. IFI16 can activate IE gene expression during latency and needs to be 

targeted for latency-associated IE suppression 

4.1. Introduction 

In Chapter 3, I demonstrated that HCMV latency induces IFI16 downregulation in a US28 dependent 

manner. An obvious question is how this might be beneficial to the virus during latency. In §1.6.4, I 

outlined the evidence for IFI16 being a sensor of double stranded DNA, other mechanisms of viral 

restriction, and modulation of human and viral gene expression. While I will discuss DNA sensing in 

Chapter 6, here I focus on applying known IFI16-mediated modulation of HCMV gene expression during 

lytic infection to what might be happening during HCMV latency. 

In fibroblasts, IFI16 can activate MIEP activity while restricting the transcription of UL54, and perhaps 

UL44; this is possibly dependent on the tegument protein pp65/UL83 [79,208,264].  Since IE gene 

expression must be suppressed in order to establish latency, I hypothesised that downregulation of IFI16 

would be important for repressing the MIEP. 

Here, I demonstrate the merit in that hypothesis by overexpressing IFI16, and showing that this drives IE 

gene expression in myeloid cells via NF-κB activation. 

4.2. Overexpression of IFI16 

I cloned the sequence encoding IFI16 (isoform IFI16-B, NM_001206567.1, nucleotides 291–2482) into the 

lentiviral expression vector pHRsin SV40 Blast, which drives transgene expression from the SV40 

promoter. I generated control empty vector and IFI16 overexpressing THP-1 cell lines via lentiviral 

transduction twice to generate two independent sets of cell lines, and verified overexpression of IFI16 by 

western blot and by immunofluorescence (Figure 4-1). The IF staining also demonstrated that I had a 

heterogeneous population of IFI16-transduced cells.  
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Figure 4-1 Overexpression of IFI16 in THP-1 cells. (A) Western blots of IFI16 expression from two independent 
transductions of THP-1 cells with IFI16 overexpression vectors, empty vectors (EV), or MNDA overexpression vector 
(M, described in Chapter 5). Actin is used as a loading control. (B) Immunofluorescence staining of IFI16 expression 
of cell lines generated in A, left hand panel, M not included.  

4.3. IFI16 overexpression drives IE gene expression 

I then infected control empty vector and IFI16 overexpressing THP-1 cells with HCMV strain TB40/E IE2-

eYFP [348]. This results in expression of IE2 (also known as IE86, UL122) as an IE2 yellow fluorescent 

protein fusion. Typically, undifferentiated THP-1 cells infected with HCMV express only low amounts of IE 

[119,141]. I found that IFI16 overexpression significantly increased IE2 expression in THP-1 cells over a 

number of paired experiments (Figure 4-2). These experiments were analysed as pairs, to account for a 

number of factors. Firstly, passage of THP-1 cells over time decreases overall infectability of the cell lines: 

experiments were all performed on passage-matched cells, but over several months and different 

batches of cells which had been stored in liquid nitrogen. I also made two independently transduced sets 
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of cell lines. The matching also controls for differences between batches of IE2-eYFP virus such as 

particle-to-plaque forming unit (p.f.u.) ratio. 

 

Figure 4-2 IFI16 overexpression drives IE gene expression. Empty vector or IFI16-overexpressing cells were 
infected with TB40/E IE2-eYFP virus, and IE2-eYFP positive nuclei were imaged (A) and counted by fluorescence 
microscopy (B). Results from five paired experiments are shown, which were analysed by paired two-tailed 
Student’s t-test. 

 

4.4. IFI16 activates the MIEP independently of other viral factors 

To understand whether IFI16 mediated induction of IE gene expression was an effect on the MIEP, and 

whether other virion components were required for this activity, I used an MIEP-eGFP reporter cell line 

[118]. These are THP-1 cells in which an integrated 1151 bp region of the MIEP drives the expression of 

eGFP [118]. In these undifferentiated THP-1 cells, the MIEP is epigenetically repressed unless stimulated 

(for example by differentiation) [118]. I treated these MIEP-eGFP THP-1 cells with control lentiviruses or 

lentiviruses which drive the overexpression of IFI16, ensuring equivalent lentivirus infection of reporter 

cells by correcting for p24 concentration. The p24 ELISA was performed by Isobel Jarvis, University of 

Cambridge, and gave the following values: empty vector lentivirus, 411 ng/mL; IFI16 lentivirus, 67.0 

ng/mL.  Transduced cultures were maintained for two weeks, after which I validated IFI16 expression by 
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immunofluorescence and then analysed eGFP expression by flow cytometry (Figure 4-3 A, B). I found 

that the IFI16-overexpressing cells had increased eGFP expression compared with controls, suggesting 

that IFI16 overexpressed in isolation and in the absence of additional HCMV components, drives MIEP 

activity. Furthermore, culturing THP-1 MIEP-eGFP reporter cells with supernatants from the empty 

vector or IFI16-overexpressing cell lines in Figure 4-1 resulted in no significant MIEP activity, suggesting 

that the effect is mediated intracellularly, and not by a secreted factor (Figure 4-3 B). 

 

Figure 4-3 IFI16 drives MIEP activity. (A) EV and IFI16 lentivirus concentration was determined by p24 ELISA and 15 
ng p24 equivalents of each lentivirus was used to transduce MIEP-eGFP THP-1 cells. Cells were maintained for two 
weeks in culture, and IFI16 overexpression was validated by immunofluorescence. B) Left hand comparison: cells 
described in (A) were assessed for eGFP fluorescence by flow cytometry. Right hand comparison: non-transduced 
MIEP-eGFP expressing cells were incubated with supernatants from cells described in Figure 4-1 for two days. eGFP 
expression was quantified by flow cytometry.  A statistical comparison of the median fluorescence intensity was 
performed using two-tailed Mann-Whitney test; ns, not significant and * P<0.05. 

 

4.5. IFI16 drives IE gene expression via NF-κB at the MIEP 

IFI16 activates NF-κB signalling in a number of contexts [224,250], and our previous work indicates that 

US28-mediated attenuation of NF-κB signalling is important for the establishment of latency [189]. 

Therefore, I hypothesised that IFI16 activates the MIEP via NF-κB. By using the NF-κB pathway inhibitor, 

BAY11-7082, we were able to ameliorate the effect of IFI16 overexpression on IE , suggesting that NF-κB 

plays an important role in this pathway (Figure 4-4 A, C). I also infected IFI16-overeexpressing cells with a 

recombinant HCMV that lacks NF-κB sites within the MIEP [146] to check whether activation of the MIEP 
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by IFI16 requires the well-established NF-κB binding sites present within the  MIEP. In this analysis, IFI16 

overexpression failed to induce IE gene expression in the NF-κB site deletion virus, unlike IFI16 cells 

infected with the revertant strain (Figure 4-4 B,C).  Taken together, these data are consistent with the 

view that IFI16 activates IE gene expression in early myeloid lineage cells through NF-κB binding to the 

MIEP.  

 To begin to unpick how NF-κB is activated by IFI16, I analysed nuclear NF-κB localisation in IFI16 

overexpressing cells (Figure 4-5), since localisation of NF-κB is a principle way by which its activity is 

regulated [375]. Undifferentiated THP-1 cells have only a small cytoplasmic volume, making 

quantification challenging, but I appeared to see greater nuclear NF-κB in cells which overexpress IFI16. 

This is consistent with previously published observations in epithelial cells [250]. In that study, Caposio et 

al [250] demonstrated that IFI16 activates NF-κB via the attenuation of IκBα expression. IκBα, known 

formally as NFKBIA, inhibits NF-κB by binding and preventing  NF-κB translocation to the nucleus [375]. 

Caposio et al [250] suggest that IFI16 overexpression sequesters Sp1 transcription factors, thus 

preventing binding of Sp1 to the IκBα promoter. To see if this was occurring in my system, I analysed 

NFKBIA/ IκBα gene expression by RT-qPCR in empty vector and IFI16 overexpressing cell lines, as well as 

in US28 expressing THP-1 cells described in Chapter 3. I found that, contrary to what one might have 

predicted from the Caposio et al [250] study, IFI16 overexpression increased IκBα RNA expression. 

Furthermore, US28-WT expressing cell lines, which have reduced nuclear NF-κB, also have reduced IκBα 

RNA levels. This suggests that the Sp1 mechanism is not at play in my system. Indeed, IκBα is induced by 

NF-κB as part of a negative feedback loop [376], and so my results are consistent with IFI16 increasing 

NF-κB activity, and US28-WT decreasing NF-κB activity. IFI16 can also contribute to NF-κB activity by 

etoposide-induced DNA damage sensing pathway, via ATM and STING [224]; whether a DNA/DNA 

damage sensing pathway explains IFI16-mediated activation of NF-κB merits further investigation. 
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Figure 4-4 IFI16 activates IE gene expression via NF-κB. (A) Empty vector or IFI16-overexpressing cells were 
infected with TB40/E IE2-eYFP virus in the presence of the IKKα inhibitor BAY11-7082 which inhibits the NF-κB 
pathway, or DMSO as a control.  IE2-eYFP positive nuclei were imaged and counted by fluorescence microscopy at 
48 hours post infection. (B) Empty vector or IFI16-overexpressing cells were infected with a revertant WT-like 
TB40/E at MOI 3, TB40/E with NF-κB binding sites deleted from the MIEP (ΔNF-κB) at MOI 3 or MOI 15. At 48 h.p.i., 
cells were fixed and stained for IE and the number of IE positive nuclei were counted. Graph shows the results of 
three experiments and statistical analysis by 2-way ANOVA using Sidak’s multiple comparison test. ** P<0.01, ns, P 
> 0.05. C) Empty vector or IFI16-overexpressing cells were infected as per A) and B) at MOI 3, but cells were instead 
analysed for IE72 expression by RT-qPCR. PCR products were then run on a 2% (upper panel, IE72) or 1.2% (lower 
panel, GAPDH) agarose gel. UI refers to uninfected cells, DMSO is the solvent control, BAY refers to BAY11-7082, 
Rev refers to the revertant TB40/E and ΔNF-κB to the NF-κB binding site mutant virus.  The positive control (+ve 
ctrl) was HCMV-infected PMA-differentiated monocytes. Molecular weight markers (M) are annotated. 
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Figure 4-5 IFI16 overexpression increases nuclear NF-κB. (A) Empty vector or IFI16-overexpressing cells were fixed 

and stained for NF-κB, with Hoechst as a nuclear stain, at 40X magnification to assess levels of nuclear NF-κB. (B) 
IκBα, gene name NFKBIA, RNA level was assessed by RT-qPCR in the indicated cell lines, and normalised to GAPDH 
levels. EV-blast is the control for IFI16 transduced cell lines, and EV-puro is the control for US28-WT and -R129A cell 
lines. 

 

4.6. Discussion 

Here I found that preventing IFI16 expression has a clear benefit to the establishment of HCMV latency. 

This contrasts with previous analyses of latency in other viral systems, where IFI16 expression is 

necessary to repress lytic viral transcription [271,285]. In my model, IFI16 overexpression activated MIEP 

activity in the absence of additional viral proteins, and, furthermore, IFI16 overexpression increased IE 
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positive nuclei in latently infected THP-1 cells. IFI16 activates the MIEP during lytic infection [79,264], 

though in these cases an additional viral gene product, UL83, is thought to be required. My results 

suggest that UL83 is not required for IFI16-mediated activation of the MIEP in undifferentiated myeloid 

cells, and suggest that IFI16 activates NF-κB to achieve this, as use of either an NF-κB pathway inhibitor 

or deletion of NF-κB binding sites from the MIEP prevented IFI16-mediated IE expression. I believe this 

provides one mechanism by which US28 blocks NF-κB activity early during latency, a phenomenon 

previously shown to be important for the establishment of latency in myeloid cells [189].  
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5. MNDA is a potential restriction factor for HCMV latency 

5.1.  Introduction 

In Chapter 3 I demonstrated that HCMV latency induces partial MNDA downregulation, and that, in 

THP-1 cells, US28 expression alone is sufficient for MNDA downregulation. Very little is known about the 

function of MNDA, and thus it was not obvious why MNDA might be a target for downregulation during 

HCMV latency.  In the Introduction, I outlined what is known about MNDA: it is a PYHIN protein, it can 

bind DNA [292]; it may enhance YY1 binding to DNA [298]; it has a potential role in myeloid cell death 

[303,304]; it displays the properties of a master transcriptional regulator of the myeloid lineage [293–

297]. Here, I overexpress MNDA in THP-1 cells and find that these cells show lower levels of latent 

infection based on a reduction in the numbers of cells expressing fluorescent reporters in recombinant 

HCMV strains routinely used to detect latently infected myeloid cells. Some of the follow up studies, 

including the use of independently generated sets of MNDA-overexpressing cell lines, were performed 

by an undergraduate Part II student, Esme Fowkes, under my supervision and will be attributed to her 

where applicable. These analyses show that this effect is unlikely to be explained by a failure of virus to 

enter cells. The data suggest that MNDA could be a restriction factor for HCMV latency, but further 

analysis is required, including the mechanism of restriction.  

5.2. Overexpression of MNDA 

I cloned the sequence encoding MNDA (NM_002432) into the lentiviral expression vector pHRsin SV40 

Blast, which drives transgene expression from the SV40 promoter. I generated control empty vector and 

MNDA overexpressing THP-1 cell lines via lentiviral transduction on multiple occasions, to generate three 

independent sets of cell lines during the course of this project. I, or Esme Fowkes in the case of the 

second and third transduction, verified overexpression of MNDA by western blot and by 

immunofluorescence (Figure 5-1). The IF staining also demonstrated that I had a heterogenous 

population of MNDA-transduced cells.  
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Figure 5-1 Overexpression of MNDA.  (A) Western blot of MNDA expression from the first transduction of THP-1 
cells with MNDA overexpression vectors, empty vectors (EV), or IFI16 overexpression vector (described in Chapter 
4). Actin is used as a loading control. (B) Immunofluorescence staining of IFI16 expression of cell lines generated in 
A, IFI16 not included. C) Western blot of MNDA expression from the three independent transductions (1, 2, 3). D) 
As (B), but for the second set of transduced cell lines (2). C and D were experiments performed by Esme Fowkes 
under my supervision. 
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5.3. MNDA-overexpressing cells fail to drive fluorescent reporter 

expression following latent infection 

To begin to understand why MNDA is targeted during HCMV latency, I infected empty vector or MNDA-

overexpressing cells with TB40/E viruses that, in our models of HCMV latent infection, express 

fluorescent proteins. These contain SV40 GFP or GATA2 mCherry expression cassettes, and I introduced 

these in Chapter 3. I found, using the cell obtained in the first transduction, a clear and significant 

reduction in the numbers of cells which become infected, and measured by GFP or mCherry fluorescence 

by microscopy (Figure 5-2 A, B).  I was then able, in conjunction with Esme Fowkes, to reproduce the 

observations with the GATA2mCherry virus in the independently-transduced cell lines (Figure 5-2 C, D). 

Because the reduction in apparent levels of HCMV latent infection occurred using two different reporter 

proteins, expressed from different promoters, I believe it unlikely that this is a simple effect of MNDA 

non-specifically affecting reporter gene expression outside the context of a viral genome. However, it 

would be prudent to rule that out by performing reporter assays on transfected plasmids, for example 

with a GATA2-luciferase construct.  
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Figure 5-2 MNDA-mediated restriction of virus-associated fluorescent reporter expression. A) Empty vector (EV) 
or MNDA-overexpressing cells from transduction 1 were infected with TB40/E SV40 GFP. At 3 d.p.i., cells were 
counterstained for Hoechst and imaged. B) Quantification of GFP positive cells from (A) and those from a similar 
experiment except using TB40/E GATA2mCherry virus. C) EV and MNDA cells from tranductions 2 and 3 (T2, T3) 
were infected with TB40/E GATA2mCherry virus. The next day, cells were imaged. D) Quantification of mCherry 
positive cells from (C). C and D were experiments performed by Esme Fowkes. Statistical analysis by two-way 
ANOVA and Sidak’s multiple comparison test, **, P<0.01; ****, P<0.0001. 

5.4. MNDA-overexpressing cells do take up viral genome following latent 

infection 

The observations outlined in Figure 5-2 suggested that MNDA may act as a restriction factor for HCMV 

latency. There are many potential mechanisms by which this could be occurring, which I will discuss in 

§5.5. One mechanism I was able to begin to explore was whether MNDA overexpression leads to a 
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failure to take up and maintain viral genome. In a straightforward analysis, DNA from infected cells from 

the latter two independent transductions was harvested at 24 h.p.i. and analysed for relative HCMV DNA 

content (Figure 5-3).  These data were accrued from the same experiments as shown in Figure 5-2 C/D, 

where, for transductions 2 and 3, there was a 10-to-20-fold difference between the proportions of 

mCherry positive cells. When analysing relative HCMV content, there was a decrease in HCMV DNA in 

both MNDA-overexpressing cell lines, compared with control empty vector cells.  However, empty vector 

cells had only 1-to-2-fold increases in HCMV DNA, which seems unlikely to be sufficient to explain the 10-

to-20-fold difference seen in fluorescence reporter. To further understand the differences in DNA levels, 

I would perform an extension of this analysis and analyse the relative HCMV DNA content at 3 h.p.i., 24 

h.p.i., 48 h.p.i, 72 h.p.i, and 6 d.p.i., to distinguish between an entry phenomena and genome 

maintenance phenomena, both of which would clearly impact latent carriage and latency-associated 

gene expression.  

 

Figure 5-3 Relative HCMV DNA levels in infected control and MNDA-overexpressing cells. EV and MNDA cells from 
transductions 2 and 3 were infected with TB40/E GATA2mCherry virus. The next day, after imaging, cells were 
washed in a low pH citrate buffer to remove any cell-surface bound but uninternalized HCMV particles. Total DNA 
was then harvested and subject to qPCR for HCMV DNA using the UL44 promoter region as the HCMV target and 
GAPDH promoter region as host genomic DNA control. Results are expressed as 2^ΔCt(GAPDH promoter-UL44 
promoter). This analysis was performed by Esme Fowkes under my supervision. 
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5.5. Discussion 

Very little is known about the function of the myeloid specific PYHIN protein MNDA, but it is partially 

downregulated during HCMV latency. In this Chapter, I began to address why it may be targeted during 

latency by overexpressing MNDA in THP-1 cells. I found that MNDA-overexpressing cells show lower 

levels of latent infection based on a reduction in the numbers of cells expressing fluorescent reporters in 

recombinant HCMV strains routinely used to detect latently infected myeloid cells, suggesting a form of 

antiviral restriction mediated by MNDA. Though viral genome levels were decreased in MNDA-

overexpressing cells, I reasoned that this was insufficient to explain the difference in fluorescent reporter 

expression. While the analysis of genome uptake and carriage requires additional analysis, I am 

interested in analysing potential additional mechanisms of antiviral restriction. 

The most important of these would be to analyse expression (both RNA, and protein if possible) of viral 

latency-associated transcripts such as US28, UL138, LUNA, and beta2.7. LUNA is particularly of interest 

because its promoter activity is driven by GATA2 sites during latency [142], which would provide a good 

comparison for mCherry expression in the GATA2mCherry virus. As described previously, IFI16 

transcriptionally represses many different viral genes/promoters (for example HCMV UL54, HIV lytic 

transcription [264,271]). It is therefore feasible that the related protein MNDA could be performing a 

similar role.  

If I were to find that MNDA enacts antiviral restriction by repression of HCMV latent transcription, there 

would be many potential lines of further investigation. I would wish to see if MNDA restricts 

transcription of all foreign DNA, for example by transfection of GFP expression plasmids. I would also 

look at other viruses, including herpesviruses such as HSV-1, other DNA viruses, retroviruses, and 

possibly RNA viruses. I would also investigate whether MNDA restricts transcription during HCMV lytic 

infection, by differentiating the cells prior to infection. It might be informative to transduce cells that do 

not typically express MNDA, for example fibroblasts, to see if MNDA is able to act as a restriction factor 

in these cell types. 

Overall, my data appear to show a potentially very interesting and, as yet, undescribed function of 

MNDA as an antiviral restriction factor. However, there are multiple confounding issues which need to 

be addressed (such as whether this effect is a result of MNDA action specifically on SV40/GATA2 

promoters) and, of course, detailed additional studies will eventually need to be carried out to identify 

the mechanism of any such restriction. 
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6. US28-mediated interference with DNA sensing 

6.1. Introduction 

I have already shown that US28 downregulates interferon-inducible genes when expressed in isolation, 

including IFI16, and that one US28-mediated effect on IFI16 appears to result in inhibition of IFI16-

mediated activation of the viral MIEP. However, IFI16 is also involved in the double stranded DNA 

sensing pathway (see §1.6.4). An attractive hypothesis would, therefore, be that the expression of US28 

also interferes with the ability of myeloid cells to sense double stranded DNA and induce a Type I 

interferon response. Furthermore, as US28 is expressed during latent infection, US28 could be required 

to evade sensing of the viral genome or viral transcription intermediates during the establishment or 

maintenance of HCMV latency.  

Here, I explore whether US28 is capable of interfering with DNA sensing in myeloid cells, and the 

potential contributions of IFI16 and MNDA to such a phenomenon. Some experiments described were 

performed by Esme Fowkes, an undergraduate Part II student under my supervision, and these will be 

clearly detailed. 

6.2. Undifferentiated THP-1 cells make far smaller responses to DNA 

stimuli compared with PMA-differentiated THP-1 cells 

I wanted to take a reductionist approach and analyse the effect of US28 expression on responses to 

transfected DNA, a well-established insult for the induction of the interferon response, in 

undifferentiated THP-1 cells overexpressing US28. However, the vast majority of publications that 

examine interferon or pro-inflammatory responses in THP-1 cells differentiate their cells with PMA prior 

to analysis [206,224,256,377]. This was not an option for my studies, because, as previously reported 

[189], and shown again in Chapter 3, US28 alters cellular signalling and transcription in a differentiation 

dependent manner; in particular, US28 does not downregulate IFI16 in differentiated myeloid cells.  

Consequently, I compared the response of undifferentiated and PMA-differentiated THP-1 cells to 

transfected DNA. I decided to use pUC19 plasmid that had been digested with the restriction enzyme 

BglI in order to create ‘DNA ends’ which are established to be good substrates for DNA sensing in some 

settings [378,379] (Figure 6-1 A). I first analysed IL-1β production by ELISA, as IL-1β is reported to be 

generated by IFI16-induced sensing in some settings [380,381]. As shown in Figure 6-1 B, PMA-

differentiated THP-1 cells make detectable IL-1β responses to LPS (a positive control), mock transfection, 

and transfection of digested pUC19. The response to mock transfection likely results from a cell-type 
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dependent pro-inflammatory response to the liposome-based transfection reagent [382], and the 

magnitude of the response to transfected DNA is increased with respect to mock. However, 

undifferentiated THP-1 cells did not produce quantifiable levels of IL-1β under either mock or DNA 

transfection conditions. 

 

Figure 6-1 PMA pre-treatment of THP-1 cells leads to greater responses to transfected DNA. A) The 2698 bp 
plasmid pUC19 was digested with the restriction enzyme EcoRI to generate a single-cut, linear fragment, or with 
BglI to generate a 1118 bp and a 1580 bp fragment. Uncut plasmid, and molecular markers (M), were also 
separated on a 1 % agarose gel. Plasmid digestion and separation was performed by Esme Fowkes under my 
supervision. B) THP-1 cells were differentiated with PMA or left undifferentiated (-PMA) for 48 hours prior to 
stimulation with indicated reagents. Two independent undifferentiated samples were assessed. Mock transfection 
contained Fugene6, the liposome-based transfection reagent. 2 μg/mL of BglI-digested pUC19 was used for DNA 
transfections and 100 ng/mL LPS was used for LPS stimulation. After 24 hours, the cell culture supernatants were 
assayed for IL-1β by ELISA. LoQ indicates the lower limit of quantification for the ELISA. Single biological replicates 
were analysed by ELISA in duplicate. C) As B, except RNA from the stimulated cells was analysed for interferon beta 
(IFNB) expression. The graph shows single biological replicates analysed in triplicate by RT-qPCR. D) As B, except 
RNA from the stimulated cells was analysed for CXCL10 expression. The graph shows a single biological replicate 
analysed in triplicate by RT-qPCR for the +PMA condition, and two biological replicates for the -PMA condition. 
However, only one sample from the -PMA/mock condition had detectable levels of CXCL10 by RT-qPCR; this is 
indicated by ‘#’. 



117 
 

I also analysed IFNβ and CXCL10 RNA levels in a similar experiment. IFNβ is a Type I interferon and has 

been shown many times to be produced in response to transfected DNA and viral infections, and this 

involves IFI16 [256]. CXCL10 is often used as a ‘surrogate’ for Type I interferon because its expression can 

be activated by NF-κB and IRF3, just like Type I interferons [383]. These analyses showed similar results 

to those for IL-1β; PMA-differentiated cells made measurable, substantial responses to transfected DNA 

(Figure 6-1 C,D), but undifferentiated THP-1 cells made much smaller responses.  This meant that 

detecting differences in responses between undifferentiated THP-1 cells overexpressing genes of interest 

would be difficult. 

6.3. US28-WT expression in myeloid cells may interfere with DNA sensing 

Despite identifying potential difficulties assessing interferon responses in undifferentiated THP-1 cells, I 

pursued this line of investigation in undifferentiated THP-1 cells which express US28-WT or US28-R129A, 

or empty vector control THP-1 cells (described in Chapter 3). I transfected US28-WT and US28-R129A 

cells with uncut pUC19, or the dsDNA analogue poly dA:dT, and analysed IFNβ mRNA levels the following 

day (Figure 6-2 A). I found a clear trend suggesting that US28-WT cells have attenuated responses to 

both plasmid and poly dA:dT, which is consistent with these cells expressing lower levels of the DNA 

sensor IFI16; however, the magnitude of the response is generally very low even in US28-R129A cells. I 

also found an attenuation of CXCL10 gene expression after transfecting BglI-digested pUC19 into US28-

WT THP-1 cells compared with US28-R129A or empty vector cell lines (Figure 6-2 B), though it was 

difficult to be sure that US28-R129A cells responded to the stimulus over and above the CXCL10 levels 

found in mock transfected cells. I also found what appeared to be a weakened response to the same 

DNA stimulus when analysing IL-1β production, but a lack of replicates and the existence of only a weak 

trend make these results inconclusive. Finally, I also tried to analyse both IFNα and IFNβ protein 

production by ELISA following stimulus with digested or undigested plasmid, but the ELISA failed to 

detect any IFNα or IFNβ protein in the cell culture supernatants (data not shown). Overall, these 

experiments do not lead me to draw strong conclusions about whether US28 expression interferes with 

DNA sensing, but I believe the trend shown in Figure 6-2 A hints at such an effect and merits further 

repetition and optimisation of the transfection conditions. For example, it may be that these genetically 

modified THP-1 cells were of too high a passage number to make responses, and early passage 

transduced cells are required to see an effect. 
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Figure 6-2 US28-WT expressing THP-1 cells make attenuated cytokine responses to transfected DNA. A) US28-WT 
or US28-R129A –expressing THP-1 cells (2x105) were mock transfected, or transfected with 1 μg of uncut pUC19, or 
1 μg of the dsDNA analogue poly dA:dT. After overnight incubation, RNA was extracted and analysed for levels of 
IFNB mRNA, using GAPDH as a housekeeping gene. Results represent the average of two biological replicates 
analysed in technical triplicate and are displayed as 2-ΔΔCt with respect to mock transfected cells. B) Empty vector, 
US28-WT or US28-R129A –expressing THP-1 cells (2x105) were mock transfected, or transfected with 2 μg of 
digested pUC19. After 24 hours, RNA was extracted and analysed for levels of CXCL10 mRNA, using GAPDH as a 
housekeeping gene. Results represent the average of two biological replicates analysed in technical triplicate and 
are displayed as 2ΔCt with respect to GAPDH. Where one or both of those biological replicates did not contain 
detectable CXCL10 mRNA, the bar is marked with a # or ##, respectively. C) As B, except cell culture supernatants 
were subject to ELISA for IL-1β.  Results represent the average of one (empty vector) or two (US28-WT) biological 
replicates analysed in technical duplicate. LoQ indicates the lower limit of quantification for the ELISA. 

One prediction from these data, and data presented in Chapter 3, might be that latently infected primary 

CD14+ monocytes make lower interferon responses following infection in comparison with monocytes 

infected with ΔUS28 HCMV. To that end, I compared the secretion of IFNα, IFNβ, and IL-1β (Figure 6-3) 

following infection by ELISA. In the first analysis, I found that IFNβ is produced by monocytes and is 

measurable by ELISA (Figure 6-3 A). Addition of poly dA:dT to the media (no transfection reagents) was 
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sufficient to drive IFNβ secretion. Infection with Titan WT also appeared to induce IFNβ secretion, over 

and above uninfected and UV-inactivated virus-treated monocytes. A higher level of IFNβ was detected in 

monocytes infected with Titan ΔUS28, which is consistent with the hypothesis. However, analysis of the 

viral inoculum itself showed that all three viral conditions (UV-inactivated, Titan WT, Titan ΔUS28) 

contained high levels of IFNβ. Though the inoculum is removed after 2 hours of infection, and the cells 

washed with PBS, it is not possible to rule out the contribution of contaminating IFNβ in the viral inocula. 

Furthermore, the particle:p.f.u. ratio is not known for each virus isolate, and it is feasible that a higher 

induction of IFNβ in Titan ΔUS28-infected monocytes could be due to an increase in the proportion of non-

infectious particles in the inoculum.  

The same potential confounders are present when interpreting the analysis of IFNα and IL-1β in the 

supernatants of monocytes infected with TB40/EmCherry US28-3XFLAG (‘WT’) or TB40/EmCherry ΔUS28 

(Figure 6-3 B,C). Indeed, one donor had higher IFNα secretion after 24 hours infection with WT virus than 

with ΔUS28 HCMV. Two further independent donors had similar IFNα secretion after 48 hours infection 

with both viruses. Monocytes from the third donor were differentiated to dendritic cells and the infections 

repeated; here no induction of IFNα was detected. This might be because dendritic cells secrete different 

profiles/subtypes of Type I interferons to monocytes [384,385]. Because the infection and washing 

protocol was identical for differentiated and undifferentiated monocytes, it does suggest that the 

induction of IFNα was likely due to detection of virus particles or other danger associated molecular 

patterns (DAMPs), and it was not due to contaminating IFNα in the viral inoculum, though I can not entirely 

rule this out. The particle:p.f.u. ratio was also not known for these TB40/E viruses. The results of an analysis 

of IL-1β production were consistent with the hypothesis that latent infection is in some way anti-

inflammatory, but given the confounders described in this section it is not possible to draw strong 

conclusions from this experiment.  

To truly understand whether there is a difference in interferon/inflammatory responses between latent 

infection with WT HCMV, and infection in the absence of US28, I would need to work with highly purified 

infectious virions, with near-to-identical particle:p.f.u. ratio, and no contaminating cytokines or DAMP. I 

would also look at the relevant cytokines by RT-qPCR. 
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Figure 6-3 Infected monocyte interferon and IL-1beta responses. A) CD14+ monocytes were left uninfected (UI), 
treated with UV-inactivated Titan WT, infected with Titan WT or Titan ΔUS28, or treated with 1 μg/mL poly dA:dT. 
For UV or live virus treatments, these viruses were aspirated after two hours and the cells washed three times with 
PBS. After 24 hours, before the supernatants were harvested and assayed for IFNβ by ELISA (teal bars, 24 hours post 
infecton (i)/treatment (t)).  To measure incoming IFNβ, viral inocula were placed into empty wells and harvested after 
2 hours before assay for IFNβ by ELISA (grey bars, Inoculum). LoQ, lower limit of quantitation. B) Undifferentiated 
CD14+ monocytes were left uninfected (UI) or infected with TB40/E mCherry US28-3xFLAG (WT), or TB40/EmCherry 
ΔUS28. Alternatively, CD14+ monocytes were differentiated to mature dendritic cells (DC) with GM-CSF/IL-4/LPS as 
described in Materials and Methods prior to infection. At the indicated time post infection, supernatants were 
harvested and assayed for IFNα by ELISA. LoQ, lower limit of quantitation. C) As B, but supernatants from 
undifferentiated monocytes were harvested after 48 hours of infection and assayed for IL-1β by ELISA. LoQ, lower 
limit of quantitation. 
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6.4. IFI16 and MNDA super-expression drive Type I interferon responses to 

DNA in undifferentiated THP-1 cells 

While I could not draw strong conclusions about whether US28 interferes with DNA sensing, I was still 

interested in whether IFI16 and MNDA were part of the DNA sensing machinery in undifferentiated 

myeloid cells. I took THP-1 cells overexpressing IFI16 and MNDA, or empty vector controls (described in 

Chapter 4 and Chapter 5, IFI16 transduction 2 and MNDA transduction 1) and transfected these with 

BglI-digested pUC19, as described in §6.2. I then analysed IFNβ and CXCL10 by RT-qPCR, and IL-1β by 

ELISA (Figure 6-4). As described in §6.2, empty vector control THP-1 cells made little-to-no response to 

the transfected DNA. However, in a single experiment, overexpression of IFI16 and MNDA substantially 

increased the IFNβ and CXCL10 response to transfected DNA, though, interestingly, not IL-1β responses. 

From this, I conclude that IFI16 contributes to interferon responses to transfected DNA in 

undifferentiated myeloid cells, as it does in differentiated myeloid cells, and other cell types such as 

keratinocytes [201,206,224,256]. Excitingly, MNDA also contributed to interferon responses to 

transfected DNA, which has not been previously published. MNDA overexpressing cells had higher levels 

of IFNβ and CXCL10 in both mock and DNA transfected conditions, and I can rule out that MNDA 

overexpression simply increased IFI16 expression by the western blot presented in Figure 4-1 in Chapter 

4. The same effect on IL-1β did not occur, indicating that an inflammasome type response is unlikely to 

be a function of IFI16 and MNDA in undifferentiated myeloid cells. If these results can be repeated, it 

would be the first step to identifying MNDA as a myeloid-specific component of the DNA sensing 

machinery. 
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Figure 6-4 IFI16 and MNDA overexpression drives interferon but not IL-1beta responses to transfected DNA. A) 
Empty vector (EV), IF16-overexpressing, and MNDA overexpressing THP-1 cells (2x105) were mock transfected or 
transfected with 2 μg of digested pUC19. After 24 hours, RNA was extracted and analysed for levels of IFNβ mRNA, 
using GAPDH as a housekeeping gene. Results represent the mean of one biological replicate analysed in technical 
triplicate, displayed as 2ΔCt with respect to GAPDH B) As A), except RNA was analysed for levels of CXCL10 mRNA, 
using GAPDH as a housekeeping gene. Results represent the average of two biological replicates analysed in 
technical triplicate and are displayed as 2ΔCt with respect to GAPDH. Where one of those biological replicates did 
not contain detectable CXCL10 mRNA, the bar is marked with a ‘#’. C) As B, except cell culture supernatants were 
subject to ELISA for IL-1β.  Results represent the average of two biological replicates analysed in technical duplicate. 
LoQ indicates the lower limit of quantification for the ELISA. Results for PMA differentiated THP-1 cells (from Figure 
6-1) are plotted on this graph to indicate that the ELISA was able to detect IL-1β in cell culture supernatants. 

 

6.5. Discussion 

In this Chapter, I have investigated whether US28 may be preventing DNA/other nucleic acid sensing in 

the context of latent infection of undifferentiated myeloid cells, and whether this is linked to the US28-

mediated downregulation of IFI16 and/or MNDA.  I analysed the ability of US28 to interdict in DNA 
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sensing in a reductionist system (THP-1 cells transfected with DNA or DNA analogues), and in the context 

of latently infected monocytes.  

I was greatly hindered in this investigation by a general failure of undifferentiated THP-1 cells to make 

robust and substantial interferon/inflammatory cytokine responses to transfected DNA, and the 

presence of confounding factors during virus infections. Furthermore, I did not assess whether interferon 

treatment has any impact on the efficiency of latency establishment and downstream reactivation. This 

analysis would be greatly needed to correctly interpret any US28-mediated effects seen. These 

important experiments could not be performed due to time limitations. 

While differentiated THP-1 cells were competent for generating interferon responses to transfected 

DNA, I could not use differentiated THP-1 cells for my analyses because US28 expression has a very 

different phenotype in differentiated myeloid cells [189], and does not downregulate IFI16 in this 

context (Chapter 3). I found some indications and trends that suggested that US28 may interdict in DNA 

sensing when expressed in isolation in myeloid cells; it is possible that further extensive optimisation of 

the system would lead to the kind of reproducible data necessary to draw robust conclusions. My overall 

view of the data generated during infections of monocytes is that it is impossible to interpret without 

knowing the particle:p.f.u. ratio and having highly purified virion preparations.  

Perhaps the most interesting pieces of data generated here were results suggesting that MNDA could be 

acting as a DNA sensor, like the other three PYHIN proteins. MNDA overexpression clearly resulted in 

increased interferon responses to transfected DNA. A more detailed, mechanistic understanding of the 

role of MNDA in such a response is now required. To gain such an understanding, I would generate 

MNDA knock-out THP-1 cells, or iPSCs, by CRISPR-Cas9, to determine whether MNDA is necessary for 

interferon responses, or just enhances these responses. I would transduce cells that do not normally 

express MNDA (e.g. fibroblasts, 293T, keratinocytes) with MNDA-overexpression constructs to determine 

if MNDA can also contribute to DNA sensing there. I would determine whether MNDA binds DNA as part 

of the mechanism by ChIP, and/or whether it interacts with canonical components of DNA sensing 

pathways (e.g. STING, cGAS). I would also determine if MNDA functions independently of STING, cGAS, 

etc, by repeating the analysis presented in Figure 6-4 in STING/cGAS knockout cells. Finally, I would like 

to determine whether MNDA interactions with DNA sensing pathways are independent of, or linked to, 

the restriction on HCMV latency as presented in Chapter 5. 
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7. Selective shock and kill using anti-US28 nanobodies 

7.1.  Introduction 

Single-domain camelid antibodies, termed nanobodies (Nb) are promising molecules for experimental, 

diagnostic, and therapeutic tools [307,309,310]. Collaborators at the Vrije Universtiteit, The Netherlands, 

have developed several US28-targeting nanobodies than can interfere with aspects of US28 ligand 

binding and signalling [182,308,318]. I worked closely with Timo de Groof, a PhD student from Martine 

Smit’s group at Vrije Universiteit, to analyse the effect of two US28-targetting nanobodies on latently 

infected cells. The first, VUN100, has previously been characterised [308], and inhibits US28 ligand 

binding. The second is a bivalent form of VUN100, termed VUN100b. Our collaboration aimed to address 

whether either of these nanobodies could interfere with US28 functions that are important for the 

maintenance of latency. In particular, if either nanobody were to block MIEP suppression, we would 

predict IE gene expression during HCMV latency – a phenomenon we have previously shown to make 

latently infected monocytes vulnerable to T cell killing [145].  

Here, I will present the characterisation of VUN100b, the effect of VUN100 and VUN100b on latently 

infected monocytes, and the subsequent impact on T cell killing and reactivation. Timo de Groof 

performed the binding studies, immunostaining, and analysis of the effect on US28 signalling in cell lines. 

I performed the majority of the studies on latently infected monocytes, with Timo de Groof performing 

some of these during a month-long visit to our laboratory. Eleanor Lim, a PhD student in Mark Wills’s 

laboratory here at the Department of Medicine, performed T cell isolations and assisted with assays 

involving T cell killing. 

7.2. US28 nanobodies induce immediate early gene expression 

7.2.1. Bivalent nanobody VUN100b binds US28 and inhibits US28-mediated 

signalling 

The existing US28-specific nanobody VUN100 is an antagonist of US28 – it inhibits ligand binding to US28 

and ligand-dependent US28 activity [308]. By generating a bivalent format of VUN100, termed VUN100b, 

it was hoped that a higher affinity molecule displaying inverse agonist properties would be generated; in 

several cases, bivalent nanobodies that target chemokine receptors are already known to be inverse 

agonists [309,311]. In the case of a US28 inverse agonist, the molecule would block US28 signalling 

independently of ligand presence. VUN100b is composed of: N-VUN100-30GS-VUN100-C, where N and C 
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are the N and C termini, VUN100 is the monovalent Nb in the N-C orientation in both arms, and 30GS is a 

30 amino acid glycine-serine linker. 

Characterisation of VUN100b binding by ELISA found that it had a 5-to-10 fold higher affinity for US28 

than VUN100, as defined by the concentration that gave 50% binding (Figure 7-1 A). While VUN100 can 

bind US28, and has previously been shown to inhibit ligand binding [308], we found that VUN100 was 

not able to impact constitutive US28 signalling in a reporter assay; however, VUN100b could block the 

ability of US28 to activate a Nuclear Factor of Activated T-cells (NFAT)-luciferase reporter by 50% (Figure 

7-1 B). This indicated that VUN100b had additional activity against US28 compared with VUN100, 

consistent with the bivalent format being an inverse agonist. To test the specificity of VUN100 and 

VUN100b binding to US28, THP-1 cells expressing US28-WT (see Chapter 3) were incubated with these 

nanobodies, or an irrelevant nanobody, and immunostained for US28 expression and the Myc epitope 

tag used for nanobody production and purification. This showed that only US28 expressing cells were co-

stained with nanobody (Figure 7-1 C). Finally, an analysis of the effect of these nanobodies (at saturating 

concentrations) on US28 signalling in myeloid cells showed that US28 expression attenuates ERK1/2 

phosphorylation in THP-1 cells, a phenomenon that is important for MIEP suppression and the 

establishment of latency [189]. In contrast, neither irrelevant Nb nor VUN100 treatment could block 

ERK1/2 dephosphorylation in the presence of US28, but that VUN100b treatment increased ERK1/2 

phosphorylation (Figure 7-1 D), demonstrating that VUN100b can block US28 signalling in 

undifferentiated myeloid cells.  
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Figure 7-1 Characterisation of VUN100b and comparison with VUN100. A) VUN100 and VUN100b binding to 
membrane extracts from US28-expressing HEK293T cells was analysed by ELISA.  B) HEK293T cells expressing US28 
and containing a Nuclear Factor of Activated T-cells (NFAT)-luciferase reporter were untreated (untr) or treated 
with an irrelevant nanobody (Irr Nb), VUN100 or VUN100b for 24 h prior to luminescence measurement. C) 
Immunofluorescence microscopy of nanobody binding to US28-expressing THP-1 cells. US28 was detected using a 
polyclonal rabbit-anti-US28 antibody (US28, red). Bound nanobody was detected using the Myc-tag present on the 
nanobodies and an anti-Myc antibody (Nb, green). D) lysates of THP-1 empty vector transduced cells (Mock) or 
US28-expressing THP-1 cells were probed for phospho-ERK1/2 levels by western blot. Cells were untreated (untr) or 
treated with an irrelevant nanobody (Irr Nb), VUN100 or VUN100b at 100 nM for 48 h prior to harvest of the lysate. 
Levels of phosphorylated ERK1/2 relative to total ERK1/2 protein levels were determined and normalized to actin 
protein levels. Subsequently, relative phosphorylated protein levels were normalized to untreated THP-1 mock cell 
lysates. Representative figure is shown while data is plotted as mean ± S.D. and is obtained from three or four 
independent experiments. Statistical analyses were performed using unpaired two-tailed t-test. *, p < 0.05; ***, p < 
0.001. These analyses were performed by Timo de Groof and panels C and D use US28-expressing THP-1 cells, 
described in Chapter 3, which I provided. 
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7.2.2. VUN100b induces IE gene expression in latently infected monocytes 

Given that US28 signalling is essential for latency in monocytes, and that VUN100b inhibits US28 

signalling in monocytic THP-1 cells, I reasoned that VUN100b would likely inhibit some US28 activity 

during latency in CD14+ monocytes, leading to derepression of the MIEP and activation of IE gene 

expression.  The monovalent VUN100 inhibits ligand binding activity, which, based on previously 

published data, we predicted would have a lesser effect on US28-mediated suppression of the MIEP 

[189,193]. 

I used the IE2-eYFP reporter virus to monitor IE2 gene expression during experimental latency. As 

described in Chapter 4, IE2 expression is generally repressed in latently infected monocytic cells but can 

be reactivated using differentiation or other stimuli (such as IFI16 overexpression). I was able to monitor 

IE2 gene expression in living cells, but I was also able to fix and stain for total IE at 2 or 6 d.p.i.. This latter 

protocol then enabled automated analysis of the number of IE positive cells and was useful when there 

were very large numbers of IE positive cells in each well. This type of analysis was performed for five 

independent donors, and showed that both VUN100 and VUN100b increased IE gene expression in 

latently infected monocytes (Figure 7-2, Figure 7-3). VUN100b consistently caused a 2-to-10-fold 

increase in IE gene expression, but VUN100 significantly increased IE gene expression in some, but not 

all, donors (Figure 7-3). 
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Figure 7-2 VUN100 and VUN100b increase IE gene expression in latently infected monocytes. Primary CD14+ 

monocytes were latently infected with TB40/E IE2-eYFP for 2 hours prior to incubation with the indicated 
nanobodies, left untreated, or treated with PMA to induce differentiation. Nanobodies were replenished every 2 or 
3 days A) At 2 d.p.i., latently infected monocytes from Donor 2 were fixed and stained for total IE protein. B) 
Proportions of IE positive cells in A were analysed by Cellomics ArrayScan plate reader. Statistical analysis 
performed by one-way ANOVA followed by Tukey’s multiple comparison test. **, P<0.01.  C) At 6 d.p.i., latently 
infected monocytes from Donor 4 were imaged. Merged Brightfield and YFP channel images are shown. D) IE2-eYFP 
positive cells from C were counted. 
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Figure 7-3 VUN100b consistently upregulates IE gene expression in latently infected monocytes. Primary CD14+ 

monocytes were latently infected with TB40/E IE2-eYFP for 2 hours prior to incubation with the indicated 
nanobodies, or left untreated, or treated with PMA to induce differentiation. Nanobodies were replenished every 2 
or 3 days. At 6 d.p.i., latently infected monocytes were imaged and IE2-eYFP positive cells from were counted. The 
mean number of IE positive nuclei in each well is shown, statistical analysis performed by one-way ANOVA followed 
by Tukey’s multiple comparison test. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; ns, P>0.05. 

I wished to confirm the specificity of VUN100b for US28 during latency by performing a similar analysis 

on cells latently infected with either WT, or ΔUS28 HCMV. I was unable to perform a direct comparison 

of matched strains, but I did perform a small-scale comparison of monocytes from Donor 3 infected with 

TB40/E IE2-eYFP with those infected with Titan ΔUS28. As predicted, while VUN100b increased the 

number of IE expressing monocytes latently infected with IE2-eYFP, VUN100b failed to have any effect 

on IE expression in monocytes infected with Titan ΔUS28 (Figure 7-4). This is important because it 

indicates that VUN100b does not drive a general increase in permissiveness for lytic infection in 

monocytes. However, this should be repeated with matched virus strains, and quantified. 



130 
 

 

Figure 7-4 VUN100b is only capable of activating IE gene expression in monocytes in the presence of US28. 
Primary CD14+ monocytes (donor 3) were latently infected with TB40/E IE2-eYFP or Titan ΔUS28 for 2 hours prior to 
incubation with the indicated nanobodies. Nanobodies were replenished every 2 or 3 days. At 6 d.p.i., infected 
monocytes were fixed and stained for total IE, and imaged using the ArrayScan XTI instrument. 

7.2.3. VUN100b does not drive full virus reactivation 

Published data have shown that treatment of latently infected monocytes with the US28 inhibitor 

VUF2274 leads to full viral reactivation [189]. In our previous shock and kill strategies, reactivation of 

expression of lytic HCMV antigens in latently infected monocytes led to T cell recognition and killing 

[145]. However, in any such strategy, full virus reactivation would be unfavourable because of the 

potential for an acute infection and the likelihood  of expression of viral immune evasion genes known to 

be expressed at early and late times of lytic infection [20,386]. Therefore, I wished to ensure that 

VUN100 and VUN100b do not drive full virus reactivation. I analysed viral gene expression by RT-qPCR 

and production of infectious virus via coculture with indicator fibroblasts in the absence or presence of 

nanobodies.  As shown in Figure 7-5 A, substantial production of infectious virus occurred when latently 

infected monocytes are differentiated with PMA to induce full virus reactivation. These levels were not 

produced when latently infected monocytes were treated with VUN100 or VUN100b, despite the similar 

levels of IE2 expressed in latently infected monocytes from that same donor treated with VUN100b or 

PMA (Figure 7-2 D).  These results are supported by the analysis of expression of a panel of viral genes 

(Figure 7-5 B). While IE1/IE72 gene expression was increased by VUN100b, the expression of UL32, a 
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true-late gene encoding tegument protein pp150, was undetected in latently infected monocytes treated 

with nanobodies. In contrast, monocytes differentiated with PMA or infected with HCMV ΔUS28, which 

causes lytic infection, do express UL32. 

The expression of the early gene and viral DNA polymerase complex component UL44 was increased by 

VUN100b, but not to the same extent as PMA differentiation or ΔUS28 infection. The same pattern was 

present with the immune evasion gene US11. US11 participates in virally-induced MHC Class I 

downregulation during lytic infection [386–390]. Since we were interested in US28-specific nanobodies 

as reagents for shock and kill interventions, we wished to avoid major induction of T-cell immune evasins 

like US11. Pleasingly, these results indicated that there was only a small upregulation of US11 after 

reactivation of viral gene expression in latently infected monocytes after nanobody treatment.  
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Figure 7-5 VUN100 and VUN100b treatment does not lead to full lytic replication in monocytes. Primary CD14+ 

monocytes were latently infected with TB40/E IE2-eYFP for 2 hours prior to incubation with the indicated 
nanobodies, or left untreated, or treated with PMA to induce differentiation and virus reactivation. Nanobodies 
were replenished every 2 or 3 days. Alternatively, primary CD14+ monocytes were infected with Titan ΔUS28.  A) 
Monocytes from donor 4 were cocultured with indicator fibroblasts. After 7 days, IE2 positive plaques were 
counted. B) At 6 d.p.i., total RNA from monocytes from donor 3 were isolated and subjected to RT-qPCR for the 
indicated viral transcripts. Expression was normalised to GAPDH and is presented as 2ΔCt. Where transcript was not 
detected, ‘n.d.’ replaces a bar. statistical analysis performed by one-way ANOVA followed by Tukey’s multiple 
comparison test. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; ns, P>0.05. 
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7.3. US28-specific nanobody treatment of latent monocytes directs their T 

cell killing 

Following my promising results using nanobodies to activate IE gene expression in latently infected cells, 

I assessed whether this ability of nanobodies to activate IE expression in latently infected monocytes also 

allowed their T-cell recognition and killing and also whether this led to a reduction in differentiation-

induced reactivation of HCMV from them.  I isolated PBMC from a seropositive individual and separated 

the CD14+ monocytes from these PBMC. I then latently infected monocytes with the IE2-eYFP reporter 

virus and treated with either irrelevant nanobody or VUN100b. The IE2-eYFP reporter would allow 

tracking of IE2-positive monocytes during latency and reactivation in living cells. One major caveat to the 

use of this virus is that it is a BAC-derived strain of HCMV and is deleted in the US2-US6 region, which 

encode several proteins that downregulate MHC Class I and II molecules or otherwise interfere with 

antigen presentation [386,391]. However, as described above, this virus does encode US11, which is 

sufficient to downregulate some MHC Class I molecules [388–390]. 

After 6 days’ treatment of latently infected monocytes with nanobodies, PBMC were separated into a 

CD4+/CD8+ population (T cells) and the remaining, CD4+/CD8+ depleted, PBMC (Figure 7-6, Figure 7-7). I 

included CD4+ T cells because there are HCMV-specific CD4+ CTLs in healthy donors [392,393]. IE positive 

cells were counted, and then the latently infected monocytes were cocultured with T cells or depleted 

PBMC at an effector:target ratio of 5:1 in the presence of nanobody (Figure 7-7 A). The count just prior 

to coculture indicated that VUN100b increase IE gene expression and this difference was consistent in 

the replicate wells (Figure 7-7 B, C).  

 IE positive cells were then counted at 18 and 40 hours after addition of PBMC/T cells. In all cases, there 

was a drop in the number of monocytes expressing IE protein which, formally, might have been due to 

increasing suppression of the MIEP as latency was being established. However, VUN100b/depleted 

PBMC treated wells continued to have higher numbers of IE positive cells than irrelevant nanobody 

treated controls, while VUN100b/T cell treated wells had low levels of IE positive cells, suggesting that IE 

positive cells were being killed in the presence of VUN100b and T cells (Figure 7-7 B, D). 

At 48 hours post addition, the PBMC/T cells were also removed and the monocytes differentiated to 

immature DCs using GM-CSF/IL-4 in the absence of nanobodies. This differentiation to immature DCs is 

known not to reactivate IE gene expression [152] and, consistent with this, all four conditions (irrelevant 

antibody +/- T cells, VUN 100b +/- T cells) generated very low levels of IE positive cells. After 5 days’ 
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incubation with GM-CSF/IL-4, differentiating cells were matured with LPS stimulation, which induces full 

virus reactivation [152]. Two days later, reactivating IE positive cells were counted (Figure 7-7 B, E). In 

the presence of depleted PBMC, both VUN100b and irrelevant nanobody-treated cells saw IE 

reactivation. Irrelevant nanobody-treated cells also saw IE reactivation if they had been cocultured with 

T cells, though admittedly at slightly lower levels than PBMC-depleted cells; this might be because the T 

cells in this condition kill any monocytes that spontaneously express IE. However, VUN100b/T cell 

treated cells showed almost no reactivation, demonstrating that VUN100b directs T cell killing of 

experimentally latent monocytes which is reflected in a lack of subsequent levels of reactivation. 

 

Figure 7-6 T cell separations from PBMC. CD4+ and CD8+ cells were separated from the previously monocyte-
depleted PBMC (Pre-separation) by MACS. Purity of the CD4/CD8 depleted PBMC and CD4+ and CD8+ fractions was 
assessed by flow cytometry. These procedures were performed by Eleanor Lim. 
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Figure 7-7 VUN100b directs T cell killing of latently infected monocytes. A) Schematic of the experimental design. I 
isolated monocytes, latently infected these cells, and treated with nanobody/cytokines, and performed all 
counting. Eleanor Lim isolated T cells, added these to monocytes, and washed the cells away at the appropriate 
time. B) Time course of IE positive cells following co-culture with autologous T cells or depleted PBMC in the 
presence of irrelevant or VUN100b nanobodies. C) IE2 positive cells in latently infected monocytes at 6 d.p.i.in the 
presence of indicated nanobodies. These data represent the wells that subsequently had either T cells or depleted 
PBMC added. D) IE2 positive cells 2 days post co-culture with the indicated nanobodies and cells. E) IE2 positive 
cells in reactivated, mature dendritic cells, after T-cell/PBMC and nanobody removal. 
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7.4. Discussion 

The HCMV latent reservoir is a significant barrier to eradication of the virus from hosts [20,320]. 

Reactivation of latently infected cells can lead to disease or mortality in immunosuppressed transplant 

patients and immunocompromised individuals, but despite this, no current antiviral agents target this 

latent viral reservoir [14,28,394]. Our laboratory continues to examine the shock and kill strategy for 

targeting latent viral reservoirs using molecules that target epigenetic modifiers, like HDACi [145], to 

induce transient activation of IE gene expression, an antigen recognised by up to 5% of a seropositive 

individual’s CD8+ T cells [395].  However, a virus-specific strategy may be preferable in terms of avoiding 

off-target effects within patients.   

US28 is essential for HCMV latency in monocytes [189], and likely in CD34+ HPCs [159,173,193], at least 

in part because US28 suppresses the MIEP in undifferentiated myeloid cells. Therefore, targeting the 

function of US28 during latency disrupts latency establishment, as shown using the small molecule 

inhibitor VUF2272 [189]. However, this leads to full virus reactivation, which could harm patients, and 

will also lead to the expression of virally-encoded immune evasion genes.  In this chapter, I collaborated 

with a group from Vrije Universiteit to examine the effects of a US28-targeting nanobody that partially 

inhibits US28 signalling.  

The previously described US28-targeting nanobody VUN100 was used to develop a new bivalent format 

VUN100b [308]. The new nanobody had a higher affinity for US28 than VUN100 and was able to inhibit 

US28 signalling in myeloid cells, while both VUN100 and VUN100b specifically bound US28 expressed in 

isolation in THP-1 cells. How the bivalent nanobody has the additional signalling blockade function is 

unknown, but is consistent with other bivalent nanobodies that target cell surface GPCRs [317,318,396].   

When used at saturating concentrations, both VUN100 and VUN100b could induce IE gene expression in 

latently infected monocytes. It would be interesting to analyse the dose dependency of this effect from a 

mechanistic perspective, as well as with a view to treatment. VUN100 blocks ligand binding, and the 

ligand binding activity of US28 has been shown to be required for the establishment in some, but not all, 

experimental latency systems [189,193,195]. Our results suggest that some mode of ligand binding by 

US28 is important for efficient latency establishment. However, the magnitude of the dependency 

appeared to show donor-to-donor variability, raising questions about the role of US28 ligand binding 

during HCMV latency in vivo.  
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VUN100b, a partial inverse agonist of US28, consistently upregulated IE gene expression without 

substantial induction of expression of viral immune evasins, nor full virus reactivation. This is a major 

advantage for a shock and kill strategy, which requires detection by T cells [320].  Furthermore, these 

findings suggest that there is a threshold of inhibition of US28 signalling to induce full virus reactivation. 

This potential ‘sweet spot’ of IE reactivation induced by VUN100b could then lead to recognition and 

killing by T cells from seropositive individuals and makes VUN100b a candidate for shock and kill therapy 

of living donors and transplant recipients prior to immunosuppression and transplant. However, 

additional experiments will need to be performed in ex vivo myeloid cells and PBMC to check the 

efficiency of this strategy. The T cell experiment presented in Figure 7-7 should be repeated with a 

different virus strain that has an intact US2-11 region and is therefore fully competent for viral 

interference for antigen presentation. The experiment can then be extended to analyse production of 

infectious virus after reactivation. The analysis then needs to be repeated on naturally latent myeloid 

cells from a seropositive donor, that is, not experimentally infected, to see that naturally latent virus may 

be partially reactivated and recognised following VUN100b treatment. These experiments are in 

progress.  

Finally, I believe that the nanobody could also be coupled to toxins, effector molecules, and affinity tags 

to facilitate manipulation of latency infected cells in clinical and experimental settings. The potential of a 

US28-binding molecule coupled to a toxin is described in Chapter 8. The effector molecule could be 

something that enhances T cell recognition, such as the anti-CD3 single-chain variable fragment 

conjugated to an anti-EGFR nanobody for use in cancer immunotherapy [397]. The most exciting 

potential use for those studying HCMV latency is a nanobody-affinity tag conjugate that would allow the 

enrichment of experimentally and naturally latent cells from populations that contain low numbers of 

bona fide latently infected cells; typically, this is less than 10% in experimental latency and less than 

0.01% of monocytes or HPCs from seropositive individuals [398]. We have now generated a VUN100-

biotin conjugate that awaits testing for enrichment of latently infected cells. 
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8. Improved US28-specific immunotoxins kill latently infected 

monocytes  

8.1.  Introduction 

The US28-specific immunotoxin F49A-FTP kills lytically and latently infected cells in culture following 48 

or 72 hours of incubation [172,334]. In conjunction with Synklino ApS, I wanted to test newer candidate 

US28-specific immunotoxins for (i) antiviral activity at low concentrations and (ii) efficacy following 

shorter incubation times. These modifications to improve F49A-FTP would be beneficial to any strategy 

for killing latently infected cells in solid organs using ex vivo normothermic perfusion (EVNP). While the 

exact modifications/mutations in F49A-FTP made by Synklino ApS is proprietary information, 

modifications were generated in the N-terminal region, containing the modified CX3CL1, and in the linker 

region between CX3CL1 and the endotoxin domains. SYN001 is the ‘original’ F49A-FTP compound; 

SYN002 has a modified linker; SYN004 has a modified N-terminal region; SYN005 has both the modified 

linker and the modified N-terminal region.  

Here, I show that SYN002 and SYN005 can kill US28-expressing THP-1 cells and latently infected 

monocytes with greater efficacy than SYN001 and are also efficacious after only a short incubation with 

cells. 

8.2. US28-specific immunotoxins kill US28-expressing THP-1 cells 

I began by comparing the ability of the original F49A-FTP and the three new immunotoxins to kill THP-1 

cells that overexpress US28 or control THP-1 cells (described in Chapter 3). I chose to analyse killing using 

the MTS assay (see Materials and Methods). Strictly speaking, this colorimetric assay measures cell 

viability, as the tetrazolium compound in the assay reagent is converted to a formazan compound by 

metabolically active cells that are producing NADH or NADPH. The absorbance of the formazan product 

in the cell culture medium is directly proportional to the number of living cells. In the initial experiment, I 

treated cells with a range of concentrations of each immunotoxin, and assayed cell viability after 48 

hours (Figure 8-1). This initial experiment indicated that, up to 10-8 M, none of the four immunotoxins 

killed THP-1 cells that do not express US28, but all four could kill US28-expressing THP-1 cells. 

Furthermore, SYN002 and SYN005 seemed to kill more US28-expressing THP-1 cells at lower 

concentrations. 
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Figure 8-1 US28-specific immunotoxins kill US28-expressing THP-1 cells but not control THP-1 cells. Empty vector 
control or US28-expressing THP-1 cells (described in Chapter 3) were treated with the indicated immunotoxins for 
48 hours before assaying for cell viability by MTS assay. Cell viability is presented as percentage of the assay value 
obtained for cells treated with the immunotoxin-solubilisation buffer only. Curve fitting was performed using 
GraphPad Prism 8, comparing the fits of a’ four-parameter log(concentration) vs response curve’ with a ‘horizontal 
line’; the curve which fitted better according to least squares regression analysis was then plotted. 

I then repeated this analysis but, in addition to incubating US28-expressing THP-1 cells with 

immunotoxins for 48 hours, I also removed immunotoxin at 3, 6, and 24 hours post treatment. I then 

assayed cell viability at 48 hours post initial incubation with immunotoxin. I also chose to use a slightly 

different range of concentrations to give more data points on the killing curves for more accurate 

modelling, and determination of 50% cellular cytotoxicity values (CC50). In this analysis, I found that short 

incubations of as little as 3 hours with the immunotoxins could still kill US28-expressing cells (Figure 8-2, 

Table 8-1). Increasing incubation times increases the efficacy of killing marginally (for example, CC50 for 

SYN005 was 0.115 nM at 3 hours, 0.063 nM at 6 hours, and 0.029 at 24 hours), but that 48 hours gave no 

additional benefit to 24 hours. This is consistent with the mechanism of action of this immunotoxin; once 

sufficient immunotoxin is internalised (perhaps only 1000 individual molecules), translation is arrested 

and apoptosis is irreversibly induced [337].  

Furthermore, this analysis confirmed the individual immunotoxins did not perform equally well.  Quite 

clearly, SYN002 and SYN005 can kill more US28-expressing THP-1 cells at lower concentrations than 

SYN001, the original immunotoxin; with a 24-hour incubation, the difference between CC50 values for 

SYN005 and SYN001 was approximately 10-fold.  In contrast, SYN004 appears less potent than SYN001. 

SYN005 was also between 2- and 5-fold more potent than SYN002 at 3 of the 4 incubation times tested; 
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on this basis, I decided to take forward SYN002 and SYN005 for further testing in latently infected 

monocytes. 

 

Figure 8-2 US28-specific immunotoxins kill US28-expressing cells after short incubation times. US28-expressing 
THP-1 cells were treated with the indicated immunotoxins for the indicated incubation times. 48 hours after initial 
incubation with immunotoxin, cell viability was assessed by MTS assay. Cell viability is presented as percentage of 
the assay value obtained for cells treated with the immunotoxin-solubilisation buffer only. Curve fitting was 
performed using GraphPad Prism 8, specifically the non-linear regression analysis using a’ four-parameter 
log(concentration) vs response’ model.  
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Table 8-1 CC50 and respective 95% confidence intervals (CI) for immunotoxins at given incubations times. All 
values in nM. Values were interpolated using GraphPad Prism 8, specifically the non-linear regression analysis using 
a’ four-parameter log(concentration) vs response’ model. 

Incubation 
time 

Parameter 
SYN001 SYN002 SYN004 SYN005 

3 hours CC50 0.619 0.211 2.09 0.115 

95% CI  0.476, 0.802 0.158, 0.281 1.25, 3.54 0.073, 0.186 

6 hours CC50 0.485 0.177 0.577 0.063 

95% CI  0.371, 0.635 0.139, 0.225 0.383, 0.854 0.043, 0.090 

24 hours CC50 0.237 0.106 0.684 0.029 

95% CI  0.167, 0.330 0.081, 0.139 0.514, 0.924 0.017, 0.046 

48 hours CC50 0.384 0.185 0.928 0.149 

95% CI  0.322, 0.455 0.127, 0.271 0.780, 1.11 0.126, 0.175 

 

8.3. US28-specific immunotoxins kill latently infected monocytes 

Before assessing efficacy of SYN002 and SYN005 on latently infected primary CD14+ monocytes, I needed 

to formally confirm that neither immunotoxin was toxic to uninfected monocytes, as is predicted by 

Figure 8-1. Once again, I used the MTS assay to determine cell viability after both a 4 hour and a 48 hour 

incubation with SYN002 and SYN005, with blasticidin as a positive control for cell killing. Four hours was 

chosen as a realistic incubation time for any potential normothermic perfusion of kidneys with the 

immunotoxins. I found no evidence of cytotoxicity up to 10-7M with either immunotoxin (Figure 8-3) and 

could, therefore, move on to testing specific killing of latently infected cells by SYN002 and SYN005. 
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Figure 8-3 US28-specific immunotoxins do not kill uninfected primary monocytes at relevant concentrations 
Primary CD14+ monocytes were incubated with the indicated immunotoxins for 4 or 48 hours, or blasticidin at 10 X 
lethal concentration as a positive control. 48 hours after initial incubation, cell viability was determined by MTS 
assay. Cell viability is presented as percentage of the assay value obtained for cells treated with the immunotoxin-
solubilisation buffer only. Curve fitting was performed using GraphPad Prism 8, comparing the fits of a’ four-
parameter log(concentration) vs response curve’ with a ‘horizontal line’; the curve which fitted better according to 
least squares regression analysis was then plotted. 

 

I initially chose 1 nM as the concentration to test to kill latently infected cells as it represents a 

concentration able to kill 80-95% of US28-expressing THP-1 cells.  I latently infected primary CD14+ 

monocytes with TB40/E mCherry US28-3XF, or ΔUS28 as a control for the specificity of immunotoxin for 

US28. At 5 days post infection, I treated infected cells with immunotoxins SYN002 and SYN005, as well as 

SYN001 at 1 nM and SYN001 at 10 nM for comparison. After 4 hours, I changed the media on half the 

wells. At the end of 48 hours, I counted all infected cells as marked by mCherry fluorescence. As shown 

in Figure 8-4, all four immunotoxin treatments killed a proportion (50-70%) of latently infected cells, but 

not those infected with ΔUS28-HCMV. This reconfirms the specificity of the immunotoxins for US28. The 

absolute differences between treatments were small, but there was a trend to suggest that SYN002 and 

SYN005, with a 4 hour incubation and at a concentration of 1 nM, were better able to kill latently 

infected monocytes compared with SYN001.   
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Figure 8-4 SYN002 and SYN005 kill latently infected monocytes. Primary CD14+ monocytes were latently infected 
with the indicated viruses. At 5 d.p.i., cells were treated with the indicated immunotoxins. Four hours later, the 
media was changed to immunotoxin-free media (+) or left unchanged (-). Then, 48 hours after initial immunotoxin 
incubation, mCherry positive cells were counted. Note that a media change experiment with SYN001 at 10 nM was 
not performed. Statistical analysis was performed using 2-way ANOVA followed by Dunnett’s multiple comparison 
test between immunotoxin treatment and buffer only. *, P<0.05; **, P<0.01; ***, P<0.001; ns, not significant. 

 

The analysis represented in Figure 8-4 did not allow me to categorically determine whether SYN002 or 

SYN005 was more potent. I therefore compared the antiviral performance of these two immunotoxins 

against latently infected monocytes and productively infected fibroblasts across a further range of 

concentrations. As shown in Figure 8-5, there was still little difference between the performances of 

SYN002 and SYN005 against latent cells (Figure 8-5 A) or lytically infected cells (Figure 8-5 B-D) regardless 

of MOI, or whether IE2 protein or the late protein pp28 was analysed. Furthermore, SYN005 was toxic to 

fibroblasts at high concentrations if it was not removed from culture medium. In these analyses, SYN002 

and SYN005 had almost identical potencies; perhaps this is not surprising given that they both contain 

the same modifications in the linker region and only differ in the N-terminal region.  

The final analysis I performed addressed whether the killing of latently infected cells with SYN002 and 

SYN005 resulted in subsequent loss of reactivation of the latently infected cells in the population 

following their differentiation. To do this, I latently infected monocytes with TB40/E GATA2mCherry, 

which maintains red fluorescence for longer than mCherry driven by the SV40 promoter [349]. I used a 4 

or 48 hour treatment with immunotoxin, and counted remaining mCherry+ cells at 48 hours post 

treatment (Figure 8-6 A). I then differentiated the cells to immature dendritic cells using GM-CSF/IL-4 for 

6 days. At the end of this time (8 days post treatment), I counted red cells again (Figure 8-6 B), before 
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maturing the dendritic cells with LPS, which induces full virus reactivation [152]. Four days post LPS 

treatment, I fixed cells and dual-stained for mCherry and IE, and then counted double-positive cells 

(Figure 8-6 D). I also transferred supernatants from these cells to fibroblasts, to assess release of 

infectious virions (Figure 8-6 E). These analyses confirmed results from the previous donors, and 

additionally showed that the immunotoxin treatments lead to a loss of reactivation that matched the 

levels of lost latently infected cells. The 8-day time point (after differentiation of latently infected 

monocytes to immature dendritic cells) additionally suggested that SYN005 is more potent with a 48 

hour immunotoxin treatment, but not with a 4 hour treatment. A summary of the results from 3 donors 

is shown in Figure 8-6 C, demonstrating approximately 50% average loss of latently infected cells treated 

with immunotoxin for 4 hours. 
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Figure 8-5 SYN002 and SYN005 have similar antiviral activities against lytic and latent infections. A) CD14+ 

monocytes were latently infected with TB40/EmCherry US28-3XFLAG. At At 6 d.p.i., cells were treated with the 
indicated immunotoxins (n= 3 or n=6) for 4 hours before media removal. Then, 48 hours after treatment, mCherry+ 

cells were counted. Individual counts for each well are graphed. Buffer only controls are shared. Statistical analysis 
by 2-way ANOVA using Sidak’s multiple comparison test; ns, not significant/P>0.05. B) Hff1 cells were infected with 
TB40/E IE2-eYFP at MOI of 1. At 24 h.p.i., cells were treated with the indicated immunotoxins in triplicate, and then 
24 hours later the immunotoxin was removed. After a further 24 hours, IE2 positive cells in three fields of view 
were averaged for each well. Data points show mean of three wells ± SD. C, D) Hff1 cells were infected with TB40/E 
IE2-eYFP at MOI of 0.01. At 24 h.p.i., cells were treated with the indicated immunotoxins in triplicate. Four days 
after this, cells were fixed and counterstained for pp28. The total number of pp28 (C) or IE2 (D) positive cells in 
each well was counted. # indicates that Hff1 cells (infected and uninfected) were killed by SYN005 at 10-8 M. Data 
points show mean ± SD.  
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Figure 8-6 SYN002 and SYN005 kill latently infected monocytes and reduce reactivation. A, B) Primary CD14+ 
monocytes were latently infected with TB40/E GATA2mCherry. At 5 d.p.i., cells were treated with the indicated 
immunotoxins. At 4 or 48 hours post treatment, immunotoxin was removed.  Then, 48 hours after initial 
immunotoxin incubation, mCherry+ cells were counted (A) before differentiating cells with GM-CSF/IL-4 for 6 days; 
at this point (8 days post treatment), mCherry+ cells were counted again (B). C) Summary of killing experiments 
from three donors, normalised to buffer only killing counts 48 hours after immunotoxin incubation. D, E) 
Differentiating cells from B were stimulated with LPS to induce maturation of dendritic cells and full virus 
reactivation.  After 4 days of stimulation, supernatants were transferred to Hff1 cells and the mature DCs were 
fixed and stained for IE and mCherry; double positive cells were counted (D). Supernatants were incubated with 
Hff1 cells for 21 days and then mCherry+ plaques were counted. Statistical analysis was performed using 2-way 
ANOVA followed by Tukey’s multiple comparison test. **, P<0.01; ***, P<0.001; ****, P<0.0001; ns, not significant. 

 

8.4. Discussion 

A proportion of pUS28 is expressed on the outer membrane of infected cells during both lytic replication 

and latency [172,174] (Chapter 3, §3.4.4). This makes US28 a druggable target, and exploiting the 

chemokine-binding properties of US28 is one approach to remove latent viral reservoirs and lytically 

infected cells from patients or grafts. A previous US28-targetting immunotoxin, F49A-FTP, could kill 

lytically infected cells in vitro and in vivo, and experimentally and naturally latent myeloid cells following 

72 hour incubations [172,334].  

Here, I tested the ability of three derivations of F49A-FTP to kill US28-expressing cells over a shorter time 

frame and at lower concentrations, with the aim of finding candidate immunotoxins suitable for 

treatment of solid organ grafts using EVNP. SYN004 did not show any improvement over the original 

immunotoxin, but SYN002 and SYN005 were more potent, and functioned after short (< 6 hour) 

incubations with US28-expressing THP-1 cells. These results were supported by the specific killing of 

latently infected monocytes at 1 nM, and concomitant loss in reactivation following their differentiation: 

I found an approximate 50% drop in survival of latently infected cells and reactivation.  

However, in the published analysis of F49A-FTP-mediated killing of latently infected monocytes and 

CD34+ progenitor cells, a 72 hour incubation killed 50-70% of latent cells and reduced reactivation by 80-

100% [172].  There are several differences between my experiments and the previous published analysis: 

the concentration of immunotoxin, the incubation length, and the virus strains used. Figure 8-4 suggests 

that SYN002 and SYN005 at 1 nM are equally effective as SYN001 at 10 nM in my experimental set up, so 

this concentration difference is unlikely to explain why I did not see an 80-100% drop in reactivation with 

SYN002 and SYN005. Figure 8-6 suggests that increasing the FTP incubation time (from 4 hours to 48 

hours) did not increase killing substantially, making it less likely, but still possible, that a 72 hour 
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incubation has added benefit to latent cell killing. The previously published analysis also used both 

TB40/E SV40 GFP and Titan strains of HCMV; I have used TB40/E SV40 mCherry and TB40/E 

GATA2mCherry. I cannot rule out that there were differences in US28 expression or anti-apoptotic 

activity with the virus sets, which could explain the discrepancies between the datasets. It would be 

informative to immunostain for US28 expression in my analysis, to assess whether cells that are not 

killed by immunotoxin have typical levels of cell-surface US28, and to sequence viruses that replicate 

following reactivation to check for resistance mutations.  

To understand the difference between my results and those previously published, I believe it would be 

informative to compare killing of latently infected monocytes by SYN001, SYN002, and SYN005 at 1 nM, 

10 nM, and an intermediate concentration such as 5 nM using a short incubation time (4 hours) and the 

long incubation time (72 hours). It is also necessary to extend the experiments presented here and 

analyse killing naturally latent monocytes from seropositive individuals. This would hopefully also help to 

determine whether SYN002 or SYN005 is more potent, which I was unable to do in my experiments.  

Overall, there is promise for an improved immunotoxin to be used for targeting of latent reservoirs in 

solid organ grafts prior to transplantation via EVNP. A schematic of the EVNP system for kidneys is shown 

in Figure 8-7. In a collaboration with the Department of Surgery, here at the University of Cambridge, we 

plan to access paired kidneys from seropositive cadavers. These will be perfused with heated buffer to 

improve renal function but, at the same time, an immunotoxin will be added to the perfusate and 

delivered to the kidney. As we are also able to collect leukocytes that are flushed from the kidney, we 

will then reactivate these leukocytes ex vivo to analyse whether immunotoxin can kill naturally infected 

cells within the kidney to reduce viral loads and prevent subsequent reactivation. This, we hope, could 

lead to a novel strategy to reduce the incidence of CMV reactivation and disease from seropositive grafts 

in transplant recipients. 



149 
 

 

Figure 8-7 Ex vivo normothermic perfusion configuration, adapted from [399]. The donor organ is cannulated at 
the renal artery and vein, and ureter (for urine collection). Prior to oxygenation and heating, a venous reservoir 
containing buffers to improve organ viability can be supplemented with the US28-targeting immunotoxin (SYNx). 
This enters the kidney through the renal artery and exits through the renal vein where a leukocyte filter can collect 
leukocytes flushed from the kidney for analysis. 
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9. General Discussion 

I have presented results in this thesis that advance our understanding of the HCMV protein US28, and 

the potential for targeting US28 in a therapeutic intervention. I have also established roles for two host 

factors, namely IFI16 and MNDA, in HCMV latent infections.   

I analysed the results of a proteomic screen which compared THP-1 cells that express US28-WT, US28-

R129A, or empty vector control. This allowed both the analysis of signalling-dependent and signalling-

independent changes to host factors induced by US28. Because G protein-mediated signalling is critical 

to HCMV latency [189,193], I focussed my attention on the signalling-dependent changes. A large 

number of ISGs were downregulated by US28-WT. I validated that three of these proteins, namely IFI16, 

MNDA, and HLA-DR, were indeed downregulated by US28-WT expressed in isolation, and also 

downregulated during HCMV latency in primary monocytes; IFI16 was also downregulated in CD34+ 

HPCs. I believe this is indicative of the quality of the proteomic screen in detecting US28-mediated 

changes during HCMV latency and the results of the screen will hopefully be useful to other HCMV 

investigators, as well as my own laboratory. I did not investigate other ‘hits’ in the proteomic screen 

except for caveolin-1, but I was unable to develop robust methods for detecting caveolin gene 

expression by RT-qPCR or protein analysis during the course of the project. Future investigations into the 

screen may provide additional insights into the biology of HCMV latency; for example, caveolin-1, which 

is downregulated by US28-WT, could affect cellular trafficking, a phenomenon shown by other to be 

extensively manipulated by HCMV latency [400,401]. Other potentially interesting ‘hits’ were discussed 

in Chapter 3. 

I have considered, though not extensively investigated, the potential implications of a general 

downregulation of interferon-inducible genes during HCMV latency. Previous analysis in bulk populations 

of monocytes latently infected with HCMV has suggested that ISGs, are actually induced following latent 

infection [402]. I believe this can be linked back to the fact that in a population of infected monocytes, 

some are bona fide infected and carry viral genomes, and some are uninfected bystander monocytes, 

but all have still seen virus particles and any cytokines in the viral inoculum. The secretome of latently 

infected monocytes also has effects on bystander cells [127]. In my experimental system, bystander 

monocytes comprise the vast majority of monocytes in the population, and thus bulk analysis of latently 

infected monocyte populations is compromised by the presence of bystander cells. It was for this reason 

that I analysed latency-associated effects on specific genes by immunofluorescence or cell-sorting using 

fluorescence reporter viruses. I therefore propose that there is a downregulation in ISG expression in 
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bona fide latently infected monocytes, which could be important for the maintenance of the polarisation 

of the monocyte [371,372], since latently infected cells are proposed to have an immunosuppressive 

monocyte phenotype [173], or to avoid anti-viral activities of ISGs. Interestingly, a single-cell 

transcriptomic analysis of latently infected CD34+ HPCs also saw downregulation of ISGs including MNDA 

and IFI16 [108], and my own work also showed a decrease in IFI16 in latently infected CD34+ cells, 

suggesting that this phenomenon is conserved in different sites of HCMV latency. 

The downregulation of ISGs and, in particular, IFI16, begs the question of whether the production of 

interferon itself is avoided. In Chapter 6, I presented some evidence that US28 may be attenuating the 

response to DNA stimuli, and that both IFI16 and MNDA overexpression enhance Type I interferon 

responses to transfected DNA. I also found some weak evidence that in bulk populations of latently 

infected monocytes, Type I interferon is produced. What I was unable to determine is whether bona fide 

latently infected cells produce interferon, whether this is modulated by US28, and, indeed, whether this 

has a positive or negative effect on HCMV latency. To investigate these questions, I would perform 

intracellular cytokine staining for IFNα/IFNβ in cells latently infected with fluorescent reporter viruses, 

with or without US28. I would also treat latently infected monocytes with Type I interferon and measure 

the maintenance of viral genome, maintenance of latent phenotype by lack of IE expression and 

infectious virus production, and levels of reactivation following differentiation. It would also be 

informative to know whether any substrates for pathogen sensing are produced during latent infection. 

One way to perform this would to follow procedures described by Alandijany et al. [262]. In their study 

of the early events of HSV-1 infection, they labelled viral genomes within viral inocula with 5-Ethynyl-2'-

deoxyuridine (EdU). After infection, viral genome can be visualised using ‘click chemistry’, and any 

sensing machinery components associated with viral genomes can be identified by immunofluorescence 

staining. For IFI16 and MNDA in particular, an immunoprecipitation (IP) with viral genome would also be 

informative, however, I have doubts about the specificities of the antibodies available for these genes, 

and good antibody is crucial for such IP experiments. Epitope tagging IFI16 and MNDA may be 

appropriate, but it is difficult to genetically modify ex vivo hematopoietic lineage cells. Members of my 

laboratory have recently established an inducible pluripotent stem cell model for HCMV latency [121], 

which may make this sort of experiment feasible in the future. 

My analysis of IFI16 overexpression in THP-1 cells confirmed that IFI16 is part of the DNA sensing 

machinery, as has been proposed by many other studies (see Introduction). However, it also revealed 

that a separate activity of IFI16 is at play during HCMV latency; the ability of IFI16 to modulate viral gene 
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expression. While the majority of viral genes (herpesvirus family, HBV, HIV-1) are transcriptionally 

repressed in some manner by IFI16 [257,264,268,271,274], the HCMV MIEP is activated by IFI16 in 

fibroblasts [79,264]. During this project, I confirmed that IFI16 could activate the MIEP in 

undifferentiated THP-1 cells, and that this occurred independently of other viral gene products. I also 

identified that the activation of the MIEP was mediated by NF-κB binding at the MIEP, but not how IFI16 

activates NF-κB. I provided evidence that it was not via Sp1 sequestration from IκBα promoters, a 

mechanism previously proposed to occur in endothelial cells [250]. It would be interesting to determine 

whether MIEP activation and DNA sensing by IFI16 are linked by NF-κB activation, since a recent study 

found a mechanism by which IFI16, in concert with ATM, can activate STING and non-canonical NF-κB 

signalling in response to nuclear DNA damage [224]. 

In response to transfected DNA, cells in which I had overexpressed MNDA had the same phenotype as 

cells overexpressing IFI16 with respect to increased interferon production, suggesting that MNDA is also 

a component of DNA sensing machinery. To date, no report has been published which demonstrates this 

function of MNDA, though one lab has reported similar results at a conference (A. Bowie, personal 

communication). This phenomenon deserves greater investigation; what is the mechanism of sensing? 

Does MNDA interact directly with DNA to enact this response? What kind of nucleic acid substrates can 

invoke an MNDA-mediated Type I interferon response? Knocking down or knocking out MNDA would 

also help to determine the role of MNDA, but I would need a robust system to test interferon induction, 

since I had great difficulty getting robust interferon responses in undifferentiated THP-1 cells (until, of 

course, I overexpressed MNDA or IFI16 within them). I also identified MNDA as a potential restriction 

factor for HCMV latency. I discussed the additional experiments required for characterisation of this 

function of MNDA in Chapter 5, but it is interesting that, whilst MNDA and IFI16 overexpression both 

lead to increased interferon responses, MNDA leads to a failure to express viral reporter cassettes. In 

contrast, IFI16 increases IE gene expression. Understanding the differences between MNDA and IFI16 

function will be important in addressing the role of PYHIN proteins in HCMV latency, and during other 

viral infections. 

For many of my observations, I could rely upon evidence from infection of primary cells, which is a highly 

relevant model for studying HCMV latency. For many other observations, I relied up protein 

overexpression in the model cell line THP-1. I discussed the limitations of THP-1 cells as a model for 

HCMV latency in the introduction (§1.3.2), but protein overexpression also has its limitations as a way in 

which to investigate protein function. For example, overexpression of the membrane protein US28 in 
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isolation in THP-1 cells could lead to abnormal processing and localisation of pUS28 which could lead to 

abnormal protein function, and not reflect what occurs when expressed during latency.  Some 

mammalian expression systems give tuneable protein expression which could give more physiologically 

relevant results (e.g. [403]). However, I was able to validate several of the results seen with 

overexpression with US28 in the context of HCMV latent infection. For the analyses of MNDA and IFI16 

function, it would be helpful to adopt a complementary approach, such as gene knock-out by CRISPR-

Cas9 [404]  or knock-down by shRNA [405], to validate the phenotypes seen with overexpression, 

During the course of this project, I was also able to investigate two reagents that really illustrate that 

US28 is an ‘Achilles Heel’ for HCMV latency and persistence. A summary of the evidence (see 

Introduction) suggests that US28 is likely essential for HCMV persistence in vivo [159,173,189,193,195]. 

At least some proportion of US28 protein is expressed on the cell surface during latent and lytic 

infections [172,174] (Chapter 3), and can be targeted by nanobodies and immunotoxins to induce T cell-

mediated killing, and direct cytotoxicity, respectively. In using the nanobodies, I was also able to confirm 

that US28-signalling is important for latency in monocytes, and provide evidence that ligand binding by 

US28 also has a role in the maintenance of HCMV latency in monocytes. These molecules, or derivatives 

thereof, could have therapeutic potential for reducing latent viral loads in transplant donors, grafts, or 

recipients, which, it is hoped, would reduce adverse CMV disease in transplant patients. Since US28 is 

essential for HCMV latency, important for cell-cell spread in endothelial cells [178], and likely 

immunomodulatory [175], resistance mutations to nanobodies and immunotoxins may decrease viral 

fitness. As US28 represents an entirely separate viral target to ganciclovir, I believe combination therapy 

involving GCV and a US28-targetting molecule is worth pursuing as a strategy for reducing the burden of 

HCMV disease.  
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