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Sensitivity analysis has successfully located the most efficient regions in which to apply
passive control in many globally unstable flows. As is shown here and in previous studies,
the standard sensitivity analysis, which is linear (1st order) with respect to the actuation
amplitude, predicts that steady spanwise wavy alternating actuation/modification has
no effect on the stability of planar flows, because the eigenvalue change integrates to zero
in the spanwise direction. In experiments however, spanwise wavy modification has been
shown to stabilize the flow behind a cylinder quite efficiently.

In this paper, we generalize sensitivity analysis by examining the eigenvalue drift (in-
cluding stabilization/destabilization) up to 2nd order in the perturbation, and show how
the 2nd order eigenvalue changes can be computed numerically by overlapping the ad-
joint eigenfunction with the 1st order global eigenmode correction, shown here for the
first time. We confirm the prediction against a direct computation, showing that the
eigenvalue drift due to a spanwise wavy base flow modification is of 2nd order. Further
analysis reveals that the 2nd order change in the eigenvalue arises through a resonance
of the original (2D) eigenmode with other unperturbed eigenmodes that have the same
spanwise wavelength as the base flow modification. The eigenvalue drift due to each mode
interaction is inversely proportional to the distance between the eigenvalues of the modes
(which is similar to resonance), but also depends on mutual overlap of direct and adjoint
eigenfunctions (which is similar to pseudoresonance). By this argument, and by calcu-
lating the most sensitive regions identified by our analysis, we explain why an in-phase
actuation/modification is better than an out-of-phase actuation for control of wake flows
by spanwise wavy suction and blowing. We also explain why wavelengths several times
longer than the wake thickness are more efficient than short wavelengths.

Key words:

1. Introduction

Control of wake instability by spanwise alternating suction and blowing was stud-
ied with DNS by Kim & Choi (2005). (The alternating suction and blowing will be
called “suction” in the rest of the manuscript.) Through steady spanwise wavy suction,
they shifted the Hopf bifurcation point of the wake behind a cylinder from Re ≈ 45 to
Re = 140. This degree of stabilization cannot be achieved with any known 2D open-loop
control strategies. Only certain spanwise wavelengths of the actuation were successful at
suppressing the instability, however. These wavelengths were approximately 5− 6 cylin-
der diameters. Control at other wavelengths was less effective. The suction was applied
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Figure 1. (Color online) (a) Base flow: velocity magnitude and streamlines. The boundary of
the recirculation bubble is shown by a thick line. (b) Illustration of in-phase suction.

from two slots placed on the top and the bottom of the cylinder. The configuration in
which the suction through the upper slot was in-phase with that through the lower slot
(figure 1 b) was found to be much more effective than the anti-phase configuration.

In order to explain these effects, Hwang et al. (2013) examined the local absolute in-
stability of a fixed streamwise base flow profile (a wake profile), modified sinusoidally
in the spanwise direction. The absolute instability was suppressed by spanwise wavy
modifications at medium to long wavelengths, while short wavelengths had a strongly
destabilizing effect, the latter not observed in the DNS (Kim & Choi 2005). The suppres-
sion of absolute instability at medium to long wavelengths was proposed to be based on
the interaction of von Kármán street with vortex tilting.

Very recently, Del Guercio et al. (2014) examined the effect of streaks in suppressing
temporal and absolute instability of wakes. Streamwise streaks were chosen as they are
the streamwise uniform perturbations which experience most transient growth around a
parallel two-dimensional wake profile taken as a base flow. The optimal initial condition
to create the streaks was shown to be streamwise vortices, as in many shear flows. These
optimally amplified streaks were then applied as base flow modifications of the local
wake profile, and the temporal and absolute growth rates recalculated. Del Guercio et al.
(2014) found that the dependence of absolute growth rate on the streak amplitudes
was quadratic. Furthermore, they suggested that the spanwise-wavy modifications are
particularly effective as stabilisers because they experience strong transient growth in
wake flows. This means that high amplitude streaks can be created from low amplitude
vortices.

The aim of the present study is to revisit the effect of spanwise wavy steady actuation
on stability, using full global analysis of the spatially developing base flow. We explain
the findings using a novel generalized sensitivity analysis, which is applicable to spanwise
wavy modifications of the base flow and of the linear operator in general. We demonstrate
this method on the confined wake behind a flat plate (Fig. 1). Some of the theoretical
results are expected to be directly applicable to the cylinder wake configuration. However,
this is not our only aim. The framework presented and verified here permits analysis
of the effect of spanwise wavy flow perturbations in general (such as streaks), inflow
asymmetries in axisymmetric geometries, and control by spanwise wavy actuation.

The 2nd order terms have not been considered in modal stability studies so far (local or
global), to the knowledge of the authors. A similar perturbation approach was successfully
used in a non-modal study quantifying the effect of streamwise travelling waves on the
transient energy growth in a channel flow (Moarref & Jovanovic 2010; Lieu et al. 2010).
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2. Perturbation analysis

Let us consider a general eigensystem of the form:

Lq0 = σ0q0, (2.1)

where q0 is an eigenvector, and σ0 an eigenvalue. We will now perturb the governing op-
erator by another operator δL, so that the problem remains a linear eigenvalue problem.
Following a standard perturbation approach (e.g. Hinch (1991),Baumgärtel (1984)), the
problem can be expanded in powers of the perturbation amplitude ε:

(L+ εδL) {q0 + εq1 + ε2q2 +O(ε3)} =
(
σ0 + εσ1 + ε2σ2 +O(ε3)

)
{q0 + εq1 + ε2q2 +O(ε3)}

(2.2)
Here, σj is the jth order correction to the eigenvalue, and qj (j > 0) is the ith order
correction to the eigenmode. By grouping the terms at the same order in ε, and solving
this equation, we will obtain these corrections at different orders.

At the 0th order in ε, the original eigenvalue problem is recovered, satisfied by definition.
At the 1st order in ε, we obtain, after rearrangement:

(L − σ0I) {q1} = −δL{q0}+ σ1q0, (2.3)

where I is the identity operator. To solve Eq. (2.3), we will use the adjoint eigenmode
q+
0 , defined based on an inner product 〈, 〉 such that 〈q+

0 ,q0〉 = 1. The adjoint is found
by solving the eigenproblem for the adjoint operator: L+q+

0 = σ∗0q
+
0 (see e.g. Luchini &

Bottaro (2014) for details). The left hand side has no component in the direction of q0,
which can be seen by projecting it onto q0 by q+

0 :

〈q+
0 , (L − σ0I) {q1}〉 = 〈L+{q+

0 },q1〉 − 〈q+
0 , σ0q1〉 = 〈σ∗0q+

0 ,q1〉 − 〈q+
0 , σ0q1〉 = 0,

where ∗ denotes the complex conjugate. Hence, the right hand side also must be or-
thogonal to q+

0 (Fredholm alternative), giving 0 = 〈q+
0 ,−δL{q0}+ σ1q0〉, which can be

rearranged as:

σ1 = 〈q+
0 , δL{q0}〉. (2.4)

This 1st order eigenvalue drift is a linear function of the operator perturbation, contains
the direct and adjoint eigenmode, and will lead to the standard sensitivity expressions.

At the 2nd order in ε, we obtain from Eq. (2.2):

(L − σ0I) {q2} = −δL{q1}+ σ2q0 + σ1q1.

By the same argument as for the 1st order, both left and right sides are orthogonal to
q0, giving σ2 = 〈q+

0 , (δL − σ1I){q1}〉. This leads to:

σ2 = 〈q+
0 , δL{q1}〉. (2.5)

We observe that an arbitrary component of q0 can always be added to q1 (Hinch 1991),
and that Eq. (2.3) would still remain valid. Note that σ2 remains unaffected by the
choice of this component, since 〈q+

0 , δL{Cq0}〉 − σ1〈q+
0 , Cq0〉 = 0 for any constant C.

The choice of C only corresponds to a normalisation of the total perturbed eigenvector.
A convenient choice to guarantee uniqueness and remove the singularity of the left-hand
side in Eq. (2.3) is:

〈q+
0 ,q1〉 = C = 0. (2.6)

Note that the 2nd order eigenvalue drift has exactly the same expression as the 1st order
drift, but with the eigenmode q0 replaced with the 1st order eigenmode correction q1.
This means that all the sensitivity expressions derived in the literature can be used
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straight away to obtain 2nd order corrections, if q0 is replaced by q1. To do this, one of
course needs to solve for q1, which can be done numerically as described in section § 4.

2.1. Application to base flow modifications

The theory of second order perturbations up to now is not limited to a particular set of
equations. Hereafter, we will limit our consideration to perturbations around a steady
state (base flow) of the Navier–Stokes equations, leading to an operator perturbation
δL(δU). A full derivation of the first-order base flow sensitivity can be found in previous
works (e.g. Marquet et al. (2008)), and just a brief version is included here in order for
the manuscript to be self-contained. The total flow field is governed by the incompressible
Navier–Stokes and continuity equations,

∂utot

∂t
+ utot · ∇utot = −∇ptot +

1

Re
∇2utot (2.7)

∇ · utot = 0, (2.8)

(2.9)

where utot = (utot, vtot, wtot) is a velocity vector, with nondimensional streamwise (utot),
vertical (vtot) and spanwise (wtot) components, and ptot is the non-dimensional pressure.

In the following, let us denote by capital letters the planar two-dimensional base flow
U(x, y) = [U(x, y), V (x, y)], which is obtained by solving the steady two-dimensional
Navier–Stokes equations. Around this base flow we consider linear perturbations, denoted
by u = [u, v, w]. Around a planar base flow, a decomposition into bi-global eigenmodes
of the following form applies (Theofilis 2003):

u0(x, y, z, t) = [û0(x, y, z), v̂0(x, y, z), ŵ0(x, y, z)] exp (σ0t) (2.10)

= [ũ0(x, y), ṽ0(x, y), w̃0(x, y)] exp (iβ0z + σ0t),

p0(x, y, z, t) = p̂0(x, y, z) exp (σ0t) = p̃0(x, y) exp (iβ0z + σ0t), (2.11)

where u0 = (u0, v0, w0) is a velocity field of the eigenmode, p0 is its pressure, β0 its
spanwise wavenumber, and σ0 its complex temporal eigenfrequency. It should be stressed
for later that throughout this manuscript the subscriptˆrefers to the whole spatial part
of the eigenmode including the z-dependence, and˜is used for the two-dimensional part.
This distinction is important when taking gradients.

By introducing this ansatz into Navier–Stokes equations, and linearising them, we
obtain the bi-global generalized eigenvalue problem:

σ0û0 = −û0 · ∇Ub −Ub · ∇û0 −∇p̂0 +
1

Re
∇2û0

∇ · û0 = 0,

(2.12)

which we solve with homogeneous Dirichlet boundary conditions for the velocity at all
boundaries. The formalism presented for standard eigenvalue problems in the previous
section still applies, since it is known that the pressure can be eliminated and hence
the generalized eigenvalue problem can be recast into a standard eigenvalue problem.
However, the above generalized eigenvalue formulation is convenient to solve numerically.

In what follows, the mode (u0, p0) being perturbed will be called the original eigen-
mode, and its spanwise wavenumber will be denoted by β0. The spanwise wavenumber
of the base flow modification is βB . The inner product for two velocity vectors ûa and
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ûb is here defined as:

〈ûa, ûb〉 = lim
LZ→∞

L−1Z

∫ LZ/2

−LZ/2

∫
D(x,y)

û∗Ta ûb dxdydz

= lim
LZ→∞

L−1Z

∫ LZ/2

−LZ/2

∫
D(x,y)

(û∗aûb + v̂∗av̂b + ŵ∗aŵb) dxdydz, (2.13)

where D(x, y) is the 2D flow domain, and T denotes the transpose. The adjoint linearised
Navier–Stokes operator is defined using the generalized Lagrange identity based on this
inner product, with homogeneous boundary conditions for the perturbation, and the
adjoint system becomes:

σ+
0 û

+
0 = (∇Ub)

T · û+
0 −Ub · ∇û+

0 −∇p̂+0 −
1

Re
∇2û+

0

∇ · û+
0 = 0,

(2.14)

where it can be shown that σ+
0 = −σ∗0 , while T denotes a transpose of the 9-component

gradient matrix (in tensor notation: [∇UT
b ]ij = ∂Ub,j/∂xi). The adjoint eigenproblem

also has homogeneous Dirichlet boundary conditions.
By imposing a base flow perturbation δU onto Eq. (??) we obtain:

σ1 = 〈q+
0 , δL(δU)q0〉 = 〈û+

0 ,−û0 · ∇δUb − δUb · ∇û0〉

By integration by parts, and with the homogeneous boundary conditions, the 1st order
drift is found to be:

σ1 = 〈q+
0 , δL(δU)q0〉 = 〈−∇ûT∗

0 û+
0 +∇û+

0 û
∗
0, δU〉. (2.15)

Here, the expression −∇ûT∗
0 û+

0 +∇û+
0 û
∗
0 is precisely the (1st-order) sensitivity to base

flow modifications (Marquet et al. 2008).
The 2nd order eigenvalue change with respect to base flow modifications is correspond-

ingly:

σ2 = 〈q+
0 , δL(δU)q1〉 = 〈−∇ûT∗

1 û+
0 +∇û+

0 û
∗
1, δU〉 (2.16)

where û1 is the 1st order correction to the velocity eigenmode, which can be obtained
from:

−û1 · ∇Ub −Ub · ∇û1 −∇p̂+
1

Re
∇2û1 − σû1 = û0 · ∇δUb + δUb · ∇û0

∇ · u1 = 0. (2.17)

2.2. Wavy base flow modifications

The 1st order eigenvalue correction vanishes for spanwise wavy modifications of 2D base
flows, because the 1st order eigenvalue correction is linear with respect to the base flow
modification, and hence the total contribution from a z-alternating base flow modification
integrates to zero in the z-direction. To see this, we consider example base flow modifica-
tions of the form δU = δŨ(x, y) cos(βBz) = δŨ(x, y)[exp(iβBz) + exp(−iβBz)]/2. Using
Eq. (2.13) and (2.15) we obtain:

σ1 =

(
lim

LZ→∞
L−1Z

∫ LZ/2

−LZ/2

cos (βBz)dz

)∫
D(x,y)

(
−∇ûT

0 û
+∗
0 +∇û+∗

0 û0

)
· δÛ(x, y)dxdy = 0,

(2.18)
because the z-integral vanishes.
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The 2nd order correction σ2 remains finite, however, because the 1st order eigenmode
correction is of the form: u1 = û1+(x, y) exp(i(β + βB)z) + û1−(x, y) exp(i(β − βB)z).
The reason for this form is that Eq. (2.17) is linear, and the wavenumber is uniquely set
by the eigenmode and base flow modification through the right hand side terms. After
some algebra we obtain (please note the inclusion of spanwise gradients):

σ2 = 1/2

∫
D(x,y)

(
−∇ûT

1 û
+∗
0 +∇û+∗

0 û1

)
· δŨ(x, y)dxdy. (2.19)

3. Physical conclusions from the perturbation theory

One can conclude from § 2 that the 2nd order eigenvalue correction is proportional
to the 1st order eigenmode correction. Hence, qualitatively, base flow modifications that
induce a large eigenmode correction will induce a large 2nd order eigenvalue drift.

The eigenmode correction is given by (2.17). The left hand side operator is reminiscent
of a resolvent operator. As for a resolvent, there are two ways to obtain a large eigenmode
correction: (1) The base flow modification is such that û1 is close to an eigenmode of the
system (which is similar to modal resonance), or (2) the base flow modification invokes a
large non-modal response (which is similar to pseudoresonance). These properties become
obvious when expanding û1 in the basis of the original eigenmodes following (Hinch 1991):

u1 =
∑

N 6=0

[
σ0 − σ(N)

]−1 〈û+
(N), δLû0〉û(N) + Cû0, where N represents a mode index

in the original eigenmode basis, and C is an arbitrary constant. Observe that again
û(N) refers to the spatial part of the Navier–Stokes eigenmode number N , excluding its
time-varying part. It is easily verified that this solution satisfies (2.3), and leads to the
following 2nd order eigenvalue correction:

σ2 =
∑
N 6=0

[
σ0 − σ(N)

]−1 〈û+
(N), δLû0〉〈û+

0 , δLû(N)〉. (3.1)

Two restrictions need to be mentioned relating to this expansion. Firstly, the expansion

does not provide physical results in the limit ε
[
σ0 − σ(N)

](−1) ≈ O(1), being in fact
singular when σ(N) → σ0.

The singularity occurs because when σ(N) → σ0, then 〈û+
(N), δLû0〉〈û+

0 , δLû(N)〉〉 →
〈û+

0 , δLû0〉2, which is finite, whereas
[
σ0 − σ(N)

]−1 →∞, and therefore σ2 →∞. In fact,
it can be shown that if higher order corrections are formed, the sum of all eigenvalue

corrections will diverge when ε
[
σ0 − σ(N)

](−1)
' O(1). A similar situation occurs for

example when predicting orbits in a three-planet system (Kolmogorov 1954), yielding a
similar expansion with respect to distance. If the orbits of two planets are too close, the
perturbation approach becomes invalid and other approaches such as the KAM theory
need to be applied. In our case the restriction has the following meaning: the expansion
as well as the perturbation approach itself are valid as long as the perturbation amplitude

is not too large to satisfy ε
[
σ0 − σ(N)

](−1)
< O(1). If two eigenvalues are very close, the

perturbation approach is valid only for small perturbation amplitudes.
In the special case of spanwise wavy base flow modifications, this means that when βB

is very close to zero, the sensitivities become arbitrarily large; however, the expansion
itself is valid for smaller and smaller amplitudes, and hence conclusions derived from it of
less practical interest in that regime. The reason for the singularity lies in the structure of
the eigenmode spectrum for different β. When β is varied, the most unstable eigenvalue
is a smooth continuous function of β. Only eigenmodes with wavelength β = β0 ± βB
contribute to the sum (3.1). When βB → 0, then σ → σ0 for the most unstable mode
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with β = β0 ± βB . The following can be taken as a practical guideline: when the base
flow modification amplitude ε has been chosen, the theory can be applied for βB large
enough (spanwise wavelength small enough) so that:

|σ0 − σ(N)(βB)| > ε ∀N. (3.2)

For ε = 0.01 in § 5.3 of the manuscript, this translates to the following lower limit
for spanwise wavenumber: βB > 0.15, whereas for ε = 0.1, the upper limit would be
approximately βB > 0.4.

Secondly, the eigenvalue that is perturbed needs to belong to the discrete spectrum
for the chosen β0, and a rigorous treatment of the continuous branches in the above sum
would require a decomposition of them into a finite number of discrete “leaky modes”
(Pralits et al. 2007).

Despite the two restrictions, the above expansion gives significant insights into the
physics of general 2nd order perturbations, and wavy perturbations in particular as de-
tailed in § 5.2. Base flow perturbations invoke at the 2nd order a linear resonance between
different eigenmodes, similar to the linear frequency response. The eigenvalue drift in-
duced by another eigenmode depends on how close the eigenvalue is to the one being
perturbed (modal resonance), and mutual products between adjoint and direct eigen-
modes (non-modal effect / pseudoresonance). The two integrands could be large in two
different regions of space, and could be affected by two different physical mechanisms,
which creates possibilities for rich dynamics. In other words, a non-local base flow modifi-
cation is not a simple integral of many local base flow modifications. This property is not
a consequence of approximations but an inherent physical property of wavy actuation or
modification (due to their second order nature) .

4. Numerical solution

The numerical results discussed in the present study are carried out using two differ-
ent codes: the finite element software FreeFEM++ (see http://www.freefem.org) and the
Spectral Element Solver (SEM) Nek5000. Three different problems are addressed from
a numerical point of view: base flow computations (FreeFem++ and Nek5000), eigen-
mode computations (FreeFem++ and Nek5000), and the computation of the first order
eigenvector correction (FreeFem++).

In FreeFem++, the finite-element method is used to solve the base flow, eigenmode and
eigenmode correction equations in § 2. The spatial domain is discretized by a triangular
finite elements mesh using a Delaunay-Voronoi algorithm, leading to a mesh with 213620
triangles and 108486 vertices. We employ the pair P2 − P1, consisting of piece-wise
quadratic velocities and piece-wise linear pressure (Taylor-Hood elements), leading to
106 degrees of freedom. After derivation of the variational formulation of the governing
equations (§2), the associated sparse matrices are built by means of the FreeFem++
software.

In FreeFem++, the steady version of Eq. (2.7) is solved by the Newton-Raphson it-
erative procedure to compute the steady base flow for the stability analyses. Second,
the direct and adjoint eigenproblems (Eq. 2.12 and 2.14) are solved using the Implicitly
Restarted Arnoldi method implemented in the ARPACK library (Lehoucq et al. 1998).
Third, the numerical solution of the eigenvector correction q1 is performed, as detailed
in a separate section below. All the required matrix inversions are performed using the
sparse LU solver UMFPACK (Davis 2004). The iterative procedure is stopped when the
L2 norm of the residual (the latest correction of the Newton iterations) of the governing
equations is less than 10−7.
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Figure 2. (Color online) The L2-norm of the first three spatial coefficients δUn of the Fourier
transform of the base flow difference δU, at different suction wavelengths βB . This shows that
the n = 1 - component (∝ exp(iβBz)) dominates. The y-scale is logarithmic.

The code chosen for the computation of 3D (suction-modified) base flows and for the
TriGlobal linear stability analysis used for method verification purposes is Nek5000 (Fis-
cher 1997). TriGlobal stability means that the eigenmodes are computed directly from
the ansatz u(x, y, z, t) = û(x, y, z) exp(σt), without setting a spanwise wavenumber. For
these verification cases, since the aim is to compare stability characteristics, also the
unmodified 2D base flow is computed in Nek5000 and subsequently interpolated into
FreeFem++. The spatial discretisation for the TriGlobal stability problem (the verifi-
cation points in figures 3 and 8, and the eigenmode correction verification in figure 6
d–f) consists of 43200 spectral elements, with a gradually refined element distribution
in the streamwise direction around the downstream edge of the flat plate, and a finer
distribution near the walls in the vertical direction. The spanwise direction is discretised
by 12 uniformly distributed elements.

Nek5000 is chosen because it allows a highly accurate matrix-free solution of the
TriGlobal stability problems in the present work. As for the finite element method, the
incompressible Navier–Stokes equations are cast into a weak form and integrated over
the computational domain. A classical Galerkin approximation is used to spatial dis-
cretize the governing equations where each velocity field is related to polynomials two
degrees higher than the pressure (PN - PN−2 formulation). In this work, the polynomial
order p = 5 was chosen for 3D computations, and p = 8 for the 2D base flow. The space
associated with the velocity is spanned by N th-order Lagrange interpolants hNi , based
on a tensor-product grid formed by Gauss-Lobatto-Legendre nodes in each coordinate
direction.

The base flows are computed by time-stepping the nonlinear Navier–Stokes equations
on the same grid as for the stability problem, but using only the upper half of the flow
domain. At the centreline, we set a symmetry condition, which eliminates the (antisym-
metric) oscillatory modes, and the flow converges towards a steady state. The conver-
gence is considered to be reached when two successive velocity fields, separated by 10
non dimensional time units, have a maximum absolute difference of 10−6 .
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The full three-dimensional eigenpairs of the Linearized Navier–Stokes operator are
computed (as in Lashgari et al. 2013) using the linearized DNS time-stepper (avail-
able in NEK5000) coupled with the Implicit Restart Arnoldi Method implemented in
PARPACK (Maschhoff & Sorensen 1996). Finally, for the 3D cases, the base flows and
base flow modifications (see § 4.1) are extracted from Nek5000 and interpolated into
FreeFem++ as follows. To simplify the computational procedure, we assume the base
flow modification to be linear with respect to the suction amplitude, and hence have
the same wavenumber βB . If the base flow modification is nonlinear (as it might be for
high suction amplitudes), then the base flow modification might contain harmonics at
multiples of βB . Then, a rigorous treatment of these requires extracting the harmonics,
and computing eigenvector corrections for each harmonic separately. In figure 2, we have
extracted the L2-norms of the amplitudes of exp(inβBz), n = 0, 1, 2, at different βB . This
shows that the components for n 6= 1 are smaller by two orders of magnitude compared
to n = 1, and hence, it is a good approximation to assume that the base flow difference
is of the form δU(x, y) exp(iβBz). With this assumption, the base flow difference takes
the following form:

δU = F(x, y) cos(βBz) + G(x, y) sin(βBz), (4.1)

where F = δU(z = 0) and G = δU(z = π/[2βB ]).

Hence, we interpolate the Nek5000 base flow velocities at z = 0 and z = π/(2βB)
into FreeFem++ and use the above form for the base flow difference. The interpolation
proceeds as follows: First, all the p = 5 base flows are interpolated in Nek5000 to the
Gauss-Lobatto-Legendre points of order p = 8 (used for the 2D base flow). Second,
a triangulation is built in FreeFem++ around these points. Third, the base flows are
interpolated to the final finite element grid inside FreeFem++.

4.1. Second order perturbation

Since the solution of the 2nd order perturbation problem is new, it is worth mentioning
the different ways to solve it numerically. There are two ways to obtain σ2 for a known
operator perturbation (e.g base flow change). The first is to solve equation (2.17) directly
for u1, and then compute σ2 from Eq. (2.5). The second is to use the eigenmode expansion
(3.1) by solving another 2D global eigenvalue problem, and there is no general rule as to
how many modes are needed for the sum to converge.

The choice between the two methods depends on what kind of information is requested.
If the exact form of the desired base flow change is known (as in § 5.3, where the base flow
change by suction was computed explicitly), then computing the eigenvector correction is
clearly preferable. If the exact form of the base flow change is unknown, forming the first
few terms in the expansion may provide the desired physical insights. In fact, the first
term in the sum is a more computationally efficient way to approximate the sensitivity
core than traversing a Dirac delta function over the x-y-plane, which will be done in
§ 5.2.

The left-hand side of Eq. (2.3) and its specific form Eq. (2.17), are singular as discussed
in § 2, which does not affect σ2 but may place a requirement on the solver. To prevent
singularity, we wish to impose the condition 〈û+

0 , û1〉 = 0. This is true whenever û1 has
a spanwise wavenumber different from β0. As mentioned in § 2.2, the correct way is to
assume that u1 must have the same wavelength as −δL{u0}: β1 = β0±βB . By replacing
∂/∂z with iβ1 in the equations, we hence automatically impose the above condition, and
(L(β1)− σoI) becomes non-singular.
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The equation system derived from (2.3) becomes:

−û(1,+) · ∇Ub −Ub · ∇û(1,+) −∇p̂1,+ +
1

Re
∇2û(1,+) − σû(1,+) =

û(1,+) · ∇δU+ + δU+ · ∇û(1,+)

∇ · û(1,+) =

0

−û(1,−) · ∇Ub −Ub · ∇û(1,−) −∇p̂(1,−) +
1

Re
∇2û(1,−) − σû(1,−) =

û(1,−) · ∇δU− + δU− · ∇û(1,−)

∇ · û(1,−) =

0. (4.2)

where ∂ (δU±) /∂z = ±iβBU, and ∂û1,±/∂z = i (β0 ± βB)U. The base flow change
components are found by decomposing the base flow difference as follows:

δU = δU+ exp (iβBz) + δU− exp (−iβBz) ,

where δU+ and δU− are obtained from Eq. (4.1) in a complex form. The above system
is solved by the same Newton–Raphson algorithm as the base flow, but the algorithm
converges at one iteration because the system is linear. Finally, the second order pertur-
bation of the eigenvalue was extracted by taking the following integral in FreeFem++:

σ2 = 〈−û+
0 , û(1,+) · ∇δU− + δU− · ∇û(1,+) + û(1,−) · ∇δU+ + δU+ · ∇û(1,−)〉 (4.3)

5. Results

To demonstrate the second order perturbation method, we investigate as an example
case the wake behind a flat plate with half thickness h, confined in a channel of height
4h. The inflow velocity is parabolic on both sides of the plate. The problem is nondimen-
sionalized with h, and maximum inflow velocity Uin. The Reynolds number is fixed at
Re = 100 for all results presented here. The numerical domain extends from x = −10 to
x = 60 in the streamwise direction, and we employ a no-slip condition at the plate and
the channel walls.

5.1. Verification of quadratic behaviour

Firstly, we need to show that the eigenvalue drift indeed increases quadratically when the
amplitude of the base flow modification is increased, that is, the eigenvalue sensitivity
is of a 2nd order. Secondly, we want to compare our predicted eigenvalue drifts to the
actual eigenvalue drifts when the base flow is modified and the eigenvalues recomputed.

For the purpose of this test, we have chosen the same artificially modified 1D base flow
profile as Hwang et al. (2013), multiplied by a Gaussian in the streamwise direction:

δU = A
[
exp(−(x2 + 1/2(y − 1)2)) + exp(−(x2 + 1/2(y + 1)2))

]
cos(z) (5.1)

This base flow modification results in a co-flow at and around the trailing edge of the
plate. Note that this test base flow does not satisfy the Navier–Stokes equations, which
is necessary for the sake of method validation. It is impossible to introduce base flow
modifications which have exactly the same shape but at different amplitudes, so that
the total flow satisfies Navier–Stokes. The procedure is comparable to the addition of
optimal streaks to the local base flow profile in Del Guercio et al. (2014), with the same
shape, but at different amplitudes.
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Figure 3. (Color online) (a) Markers: The change of the global mode eigenvalue δσ = δσr+iδσi,
as a function of the amplitude A of a given base flow modification (Eq. 5.1). Solid lines: The
predicted eigenvalue perturbation at the second order (σ2), real and imaginary part. (b) The
same as (a), but as a function of A2, demonstrating that δσ ∝ A2.

The amplitude of the base flow modification is varied from A = 0.01 (1% of the
maximum inlet velocity) to A = 0.5 (50% of the maximum inlet velocity). There is no
reason to expect a quantitative agreement at the highest amplitudes even from a 2nd order
prediction. The results are shown in Fig. 3. The computed changes in both frequency and
growth rate are clearly quadratic with respect to the amplitude. The quantitive agreement
between prediction and computation is almost exact for A < 0.4, and as expected deviates
more for larger amplitudes. Nevertheless, especially the frequency component agrees very
well even for the largest amplitudes.

5.2. Sensitivity core for spanwise wavy base flow changes

Next, we show how the theory can be used not only to predict, but also to physically
understand, the influence of spanwise wavy perturbations. In the following, we aim to
generalise the concept of wavemaker or core of the instability for first-order sensitivities
(Giannetti & Luchini 2007; Marquet et al. 2008), and compare this region for wavy and
non-wavy modifications. To do this, we quantify the regions where localized modifications
of the base flow similar to a Dirac delta function produce the largest eigenvalue drift. The
analogy for first-order sensitivities should not be pushed too far, however. Considering
the eigenvalue drift as a sum over eigenmodes as in Eq. (3.1), we see that the eigenvalue
drifts for large and non-local changes are not obtained from a single integral over many
small changes, but rather from a product of two integrals. For a specific global base flow
modification, these two integrals could potentially be large in two different regions. Hence,
unlike first-order sensitivity base flow modifications, for the second order perturbations
one cannot conclusively obtain all information about the effect of non-local base flow
changes from a spatial map obtained for the Dirac delta function.

However, by applying the Dirac delta function we can identify regions where the local
flow response for control with each spanwise wavelength is maximum, and hence which
are always likely to provide a large contribution. To identify such regions in the flow,
to be called “the sensitivity core”, we consider the following highly localised base flow
modification:

δU = B cos(βBz)
[
exp(−500((x− x0)2 + (y − y0)2)) + exp(−500((x− x0)2 + (y + y0)2))

]
,

δV = δW = 0
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timated by a spatial mapping of the eigenvalue drifts induced by localized modifications ap-
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(5.2)

The base flow change is then normalised to a unit area in the x-y-plane by setting the
amplitude as:

B =

[∫
δŨ(x, y)dxdy

]−1
(5.3)

This procedure approximates the effect of a Dirac delta function, but avoids discontinu-
ities which could potentially cause numerical problems.

This base flow modification is traversed over the x-y-plane, and the eigenvalue drift
is computed for each (x0, y0)-pair. Only the streamwise velocity is shown here, but we
tried a Gaussian modification of vertical and spanwise velocity in a few positions too, and
these tests indicated that the most efficient regions were similar. The resulting sensitivity
core is shown in Fig. 4. Frame (a) shows the standard 2D sensitivity, frame (b) shows the
sensitivity core for βB = 1, and frame (c) shows βB = 30. This leads to two interesting
observations. Firstly, the longer spanwise wavelength (βB = 1) causes a larger eigenvalue
change than the 2D modification by a factor of 60 (see colorbars), and a larger eigenvalue
change than the short spanwise wavelength (βB = 30) by a factor of 2. Secondly, all
three sensitivities are localized along the recirculation bubble, and have their maximum
at x ≈ 3–3.5.

A physical explanation for both phenomena – the efficiency of long wavelengths and the
similar positions of maximum sensitivity for wavy and non-wavy modifications – is found
from the eigenmode expansion (3.1). For spanwise wavy perturbations of wavenumber
βB around a 2D flow, the base flow sensitivity arises through the mode interactions in
the sum (3.1). These only involve modes with β = ±βB . No other modes contribute. For
a wake behind a flat plate, the most unstable eigenvalue varies continuously as β varies.
The eigenvalue spectra at two different values of β are shown in Fig. 5, together with the
2D (β = 0) eigenvalue σ0 that is being perturbed. At small β (long wavelengths), such as
β = 0.3 in Fig. 5, the leading eigenvalue is very close to the 2D eigenvalue (β = 0), while
the other eigenmodes are comparatively far away. Therefore, at small wavenumbers, the
interaction between the most unstable mode at β = ±βB and the original mode at β = 0
provides a large contribution. Qualitatively, the smaller the wavenumber is, the larger
the effect on the eigenvalue is (keeping the restrictions of § 3 in mind). Furthermore, the
most unstable mode does not change its spatial shape much between β = 0 and small
nonzero β. This means that the sensitivity core remains similar for any small spanwise
wavenumbers. At slightly larger wavenumbers (such as βB = 1 in Fig. 5), corresponding
to shorter wavelengths, the leading modes are further apart, which means that the effect
on σ0 from the mode interactions is smaller. In this case, other eigenmodes also contribute
to the sum, and therefore to the spatial sensitivity distribution, in a similar proportion as
the leading mode. However, the wake or shear layer modes which contribute most to the
sum have similar frequencies to the wake mode, and these are not essentially different
in their spatial distribution, which still gives rise to similar sensitivity regions, but at
slightly lower amplitudes.

5.3. Control effect of steady spanwise wavy suction

Finally, we apply the theory to study and explain the effect of actual base flow modifica-
tions induced by suction on a wake behind a flat plate. A sinusoidal steady wall-normal
suction is applied from a slot located near the trailing edge −0.2 < x < −0.01, simi-
larly to Kim & Choi (2005): Uwall = (0, 0.01 cos(βBz), 0). The suction distributions on
the upper and lower surfaces of the plate are in-phase with each other (see Fig. 1 b for
illustration).
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The choice of an in-phase suction distribution (rather than out-of-phase) is worth
mentioning, since this choice turns out to be well grounded in the present theory. In the
earlier works (Kim & Choi 2005; Hwang et al. 2013), in-phase distribution was observed
to be much more efficient in stabilizing the flow than out-of-phase distribution, but this
effect was not explained. The σ2 derived in the present work (Eq. 3.1) contains an integral
product of the mode, its adjoint and the base flow change over y. In order for this integral
not to vanish, in-phase perturbations may only invoke a resonance of the original mode
with sinuous modes, while anti-phase perturbations invoke a resonance with varicose
modes. The global eigenvalues for varicose modes in wakes are very damped, so the
distance between the original eigenvalue and varicose eigenvalues is long. On the other
hand, the eigenvalue distance between the original mode and the leading sinuous mode
is short, if the spanwise wavelength for suction λB = 2π/βB is long, by the arguments in
the previous section. Therefore the theory shows that long wavelength in-phase base flow
modifications induce the largest eigenvalue drift through the resonance of the original
mode with the leading spanwise wavy sinuous mode with wavenumber ±βB .

This in-phase suction is implemented as a boundary condition in the base flow com-
putations for 12 different wavenumbers:
βB = (0(2D), 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2, 30). The difference between the base
flows with and without suction is then extracted, as described in §4. From this point, we
proceed in two ways: (1) by computing the eigenvalue change σ2 based on our theory,
and (2) by recomputing the stability around the 3D modified base flow, to get a refer-

ence result. For the computation of σ2, δÛ(x, y) is extracted from the 3D base flow as
described in §4. The 2D non-wavy base flow modification is normalized to have the same
L2-norm as the spanwise wavy ones, to ensure a similar suction effort.

The first order eigenvector correction û1 is computed in the process, and this quan-
tity is shown for the first time for linear global modes in figure 6 (a–c). Both real
and imaginary parts are computed, and û1 is observed to have the following form:
u1 = ũ1(x, y) cos(βBz), v1 = ũ1(x, y) cos(βBz), w1 = w̃1(x, y) sin(βBz), following the
same symmetry in z as the suction, and the induced base flow modification. The different
velocity components are shown in figure 6 (a–c), for βB = 1.1, and these are reminis-
cent of eigenfunctions of confined wakes as expected. To further validate our method
of computing the eigenvector correction, a true eigenmode correction extracted from a
computed 3D eigenmode is shown in figure 6 (d–f). The latter result was obtained from
a 3D eigenmode with suction, us, by subtracting the component in the direction of the
original eigenmode: us − 〈u+

0 ,us〉. The result is nearly indistuingishable from the one
computed from our theory. Both corrections are normalised to a unit L2-norm.

The norm of u1 which will be obtained in an actual computation of experiment is
arbitrary. The reason is worth discussing in some depth. The norm of u1 is uniquely
determined by the norm of the unperturbed (original) eigenvector u0. Conversely, when
u1 is known, so that 〈u+

0 ,u1〉 = 0, then u0 can be determined uniquely by inverting Eq.
(2.3). However, as mentioned in § 2, an arbitrary component Cu0 can always be added
to u1 to obtain (non-unique) solutions to (2.3). The actual eigenmode returned from a
3D computation or an experiment may therefore have any value of C. The value of C can
be found from u1, by inverting (2.3), if desired. Importantly, the eigenvalue correction
σ2 remains independent of C as shown in § 2.

The eigenmode correction has its largest amplitude at x ≈ 5. However, the relative
amplitude of the correction and the original eigenmode determined the final shape, and
this depends on the (arbitrary) value of C. Hence, the eigenmode correction observed in
computation or experiments might be either small or large, while the observed eigenvalue
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Figure 6. (Color online) (a)–(c): The first order eigenfunc-
tion correction computed from Eq. (2.3) with suction wavelength
βB = 1.1,û1 = [ũ1(x, y) cos(βBz), ṽ1(x, y) cos(βBz), w̃1(x, y) sin(βBz)], (a) ũ1, real part
(b) ṽ1, real part, and (c) w̃1, real part. (d)–(f): The same as (a)–(c), but where a true
eigenfunction correction is extracted from a computed 3D eigenfunction with suction us by
subtracting the component in the direction of the unperturbed eigenfunction. Both correction
fields are normalised to a unit L2-norm.

correction is unique. Figure 7 shows a computed TriGlobal eigenmode with suction. In the
shape of the eigenmode, the spanwise variation only shows further downstream (around
x = 8), where the amplitude of the original 2D eigenmode is small.

When it comes to changing the eigenvalue, however, neither the shape of the correction
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Figure 7. (Color online) The computed TriGlobal eigenmode with suction, A = 0.01 and
βB = 1.1, positive (dark, blue online) and negative (light, yellow online) contours of the vertical
disturbance velocity v̂0(x, y, z). The edge of the flat plate, extending from y = −1 to y = 1, is
also shown in pale grey.

nor the original eigenmode can indicate which region in the flow has most influence on
the eigenvalue change. To know this, we need to overlap the eigenmode correction with
the adjoint original eigenmode and the base flow change induced by suction, as explained
in §2, and as demonstrated later in this section.

Now we turn to the comparison between predicted and computed second order eigen-
value changes, and the efficiency of different suction wavelengths βB in influencing the
stability of the wake flow. The predicted and computed second order eigenvalue changes
for all but the shortest wavelength are shown in Fig. 8, demonstrating good qualitative
agreement and the same value of the most stabilising wavelength. The shortest wave-
length that we tested, βB = 30 (λB = 0.2), is far outside the figure and caused an
unobservable change in the eigenvalue for both methods. There are quantitative differ-
ences between computed and predicted results which were hard to avoid, since they are
computed with two different numerical tools, and the base flow difference had to be
interpolated from one grid to another. The absolute difference between prediction and
computation is small, less than 10−3, and therefore easily influenced by numerics. The
eigenvalue difference increases quadratically with suction amplitude, and the growth rate
decrease is predicted to be δσr = −0.024 for only 2% suction amplitude (A = 0.02), and
δσr = −0.15 for 5% suction amplitude (A = 0.05). We expect the difference between the
two numerical tools to be an absolute difference due to the finite accuracy of solution
and interpolation, and hence we expect that the relative difference between prediction
and computation will be smaller for even slightly larger suction amplitudes.

The growth rate of the eigenvalue decreases slightly for all cases with suction, in both
the prediction and the computation. The eigenvalue is stabilised for a wide range of βB ,
approximately 0.4 < βB < 1.6. The maximal stabilization is reached at βB = 1.1. This
corresponds to a wavelength of around 6. The observed optimal wavelengths for a cylinder
flow are longer: Kim & Choi (2005) obtained 10–12 in our nondimensional coordinates,
and Hwang et al. (2013) 12 in our coordinates. The physical reason for the difference
between optimal wavelengths in these two configurations could be the confinement. In
previous works (Tammisola et al. 2011; Juniper et al. 2011), confinement was shown to
alter the base flow as well as the structure of the eigenmode at similar Reynolds numbers.
Figure 6 indeed seems shows that the eigenmode correction extends all the way to the
surrounding walls, as well as the base flow modification induced by suction does (figure
9 a–c), so they might be affected by confinement. However, the principles behind the
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Figure 8. (Color online) The eigenvalue drift for different suction wavenumbers, βB , for a
wake with steady suction where the base flow satisfies the Navier–Stokes equation. Computed
and predicted eigenvalue change (see legends): (a) change in the real part, (b) change in the
imaginary part. The value where the the growth rate of the suction-modified eigenvalue is zero
(neutral stability point) is marked with a dot-dash line in (a).

wavelength selection which we present next are general, and not tied to the specific wake
flow in question. First of all, figure 8 shows that the stabilising influence only occurs
for relatively long suction wavelengths, and short wavelengths (βB > 1.7) have no effect
on the eigenvalue. This is consistent with the results in § 5.2, where a fixed base flow
modification δU(x, y) was applied with different βB , and the effect on the eigenvalue de-
creased with increasing βB . This also supports the argument presented in § 3 that second
order eigenvalue change can occur due to a resonance between unperturbed eigenmodes
at β = 0 and βB , when their eigenvalues are close to each other (for illustration see figure
5). The inverse of the difference between the most unstable eigenvalues at β = 0 and
βB is depicted in figure 10 (f), and explains the general trend that long wavelengths are
efficient while short wavelengths are not. However, this argument does not explain why
the longest wavelength studied here (βB = 0.3) is not stabilizing, and why some slightly
shorter wavelengths are performing better. To understand the latter, we consider the
structure of the base flow modifications induced by suction.

An important effect was pointed out by Del Guercio et al. (2014): the amplitude of
the actual base flow change induced by suction is a function of βB . In figure 9 (a–c),
the streamwise velocity difference between suction and no suction base flows is shown
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Figure 9. (Color online) The difference between the base flows with and without suction: (a)
streamwise velocity difference at βB = 0 (2D), (b) the streamwise velocity difference at βB = 0.5
at z = π/(2βB), (c) the streamwise velocity difference at βB = 2, z = π/(2βB), (d) L2-norm
squared as a function of βB , and (e) L∞-norm squared as a function of βB .
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for βB = 0 (a), βB = 0.5 (b), and βB = 2 (c). Two things can be immediately observed.
First, spanwise wavy suction (b–c) is clearly more efficient in modifying the base flow
than a spanwise invariant suction (a). Second, the maximal modification is larger for
βB = 2 than βB = 0.5. To quantify how efficiently the base flow is modified by suction as
a function of βB , the square of the L2-norm and the square of the L∞-norm (maximum
norm) of the base flow change are shown for different βB in figure 9 (the reason for taking
the square is that we expect the eigenvalue drift to be proportional on the square of the
base flow change). We can see that both base flow changes are maximal at βB = 1.1. In
particular, the square of the L2-norm of the base flow change seems to be qualitatively
proportional to the growth rate change in figure 8, confirming that this effect plays an
important role in selecting the optimal stabilising wavelength.

It would now be tempting to conclude that the L2-norm of the base flow change induced
by suction, integrated over the whole domain, determines the stability. The region where
eigenvalue changes actually occur (where the base flow modification interacts with the
eigenmode correction and the adjoint eigenmode), can be shown by plotting the integrand
of σ2 (Eq. 2.5 or 4.3). In figure 10 (a–d), this quantity is shown for different βB . The
eigenvalue is only affected by the base flow changes inside the narrow blue region in
these figures, which follows the edge of the recirculation bubble. For all four suction
wavelengths, the base flow changes are seen to influence the flow along the outer edge of
the recirculation zone for the 2D base flow (shown in magenta). This effectively coincides
with the sensitivity cores shown in § 5.2. The maximum negative value of the integrands
(the location in space which contributes to the most stabilizing effect) is in the same
location (x ≈ 3.0, y ≈ 0.6), for all four wavelengths. In figure 10, we show how the base
flow change at the location of maximum sensitivity develops with βB . This shows the
expected trend, with the strongest base flow modification at βB = 1.1.

Our conclusion is that two factors combine to determine the optimal wavelength for
stabilization of this flow: (1) The eigenmode resonance occurs at long wavelengths. (2)
Medium wavelengths induce largest base flow change inside the sensitivity core region.
These competing factors are shown in figures 10 (e) and 10 (f). Regarding how the base
flow change due to suction is created, the reader is referred to the recent paper of Del
Guercio et al. (2014), where the influence on the cylinder wake base flow is explained
to be due to amplification of streaks through the lift-up effect. We expect the same
mechanism to be present in this flow, while the base flow changes are slightly modified
by confinement.

Finally, it is worth pointing out that the effects described here are based on a global
stability analysis, in which the most sensitive region to spanwise wavy perturbations
(“sensitivity core”) has been identified in the (x, y)-plane, and its location related to
where the base flow modifications by suction are acting. This was done by mapping the
effect of a localized base flow modification in the form of a Dirac delta function. Next,
by computing the actual base flow modification induced by suction, and overlapping
this with the product of the adjoint eigenmode and eigenmode correction, we found out
where the eigenvalue changes due to suction originate. This turned out to coincide well
with the sensitivity core. We did not separate the effects of modifying any specific term
in Navier–Stokes equations. Our arguments for spanwise wavelength selection are hence
slightly different than the ones described in the local analysis of Hwang et al. (2013),
detailing the stabilising mechanism of a fixed velocity profile. However, the two analysis
are not contradictory, as these two mechanisms might co-exist in a real flow. Del Guercio
et al. (2014) point out that spanwise-wavy perturbations introduce a base flow change
of a large amplitude through creation of streaks by lift-up effect. We observe that indeed
a 2D suction induces a smaller global base flow modification than a 3D spanwise wavy
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Figure 10. (Color online) (a)–(d): Integrand of the eigenvalue growth rate change (Eq. 2.5).
Suction wavelengths: (a) βB = 0.7 , (b) βB = 1.1 (middle), (c) βB = 1.5, (d) βB = 1.7. A dark
color indicates a stabilizing contribution. The boundary of the recirculation zone of the 2D base
flow is shown by the solid line (magenta online). (e): The amplitude of base flow modification
at x = 3.0, y = 0.6, near the maximum negative of the integrands. (f) Inverse of the distance
from σ0 to the closest unperturbed eigenvalue at β = βB .



Second order perturbation of global modes and spanwise wavy actuation 21

suction, in agreement with Del Guercio et al. (2014). However, we extend the previous
arguments by identifying the most sensitive region in the x-y-plane, and investigating
when the base flow modifications induced by suction are inside this most sensitive region.

The vortex-tilting mechanism described in Hwang et al. (2013) might be examined by
separating our sensitivities into different components, but this is out of the scope of the
present manuscript. The primary aim here is to present and verify theoretical findings
applicable to a much wider class of flow problems involving asymmetric perturbations or
control.

6. Conclusions

The sensitivity of global mode eigenvalues has been generalized by considering the
eigenproblem perturbation expansion up to the 2nd order. The theory and numerical so-
lution of the derived bi-global equation system has been used to shed light on how globally
unstable flows are influenced by spanwise wavy actuation, for which the standard sensi-
tivity theory predicts no effect. The computational methods presented for computation
of the 2nd perturbations are two-dimensional, except for the base flow with suction which
was computed in 3D (but could also be computed in 2D as long as the base flow changes
linearly with suction amplitude). The two-dimensional predictions were verified by three-
dimensional computations. The theoretically predicted eigenvalue drift due to spanwise
wavy actuation agrees well with the directly computed one. Based on this theory, we
argue that the 2nd order effects on the eigenvalue arise from a resonance between the
von Karman eigenmode at infinite wavelength (2D) and the same mode at the actua-
tion wavelength. This explains two observations from previous studies: in-phase suction
distribution is more efficient than an out-of-phase distribution, and short wavelengths
are less efficient than long wavelengths. The optimal wavelength selection is qualita-
tively explained by showing that the base flow changes induced by suction must be large
inside the region most sensitive to spanwise wavy perturbations, called the sensitivity
core. From our analysis, this is seen to happen for medium wavelengths. The theory and
the eigenmode resonance effect may be relevant to a wide class of problems, for exam-
ple, the effect of asymmetric inflow profiles on the stability of axisymmetric flows, or
flow-acoustics interactions.
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