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Outline

In a many-body fermionic system, the suppression of continuous transitions to absolute

zero can result in a low temperature quantum fluid which deviates strongly from typical

metallic behaviour; unconventional superconductivity can be induced by the “strange

metal” region surrounding the zero-temperature phase transition. In this thesis we focus

on three systems which demonstrate a highly tunable phase transition, with the aim of

pushing them toward the border of a zero-temperature phase transition, and potentially

superconductivity.

CeAgSb2 is a uniaxial 4f ferromagnet, where physical pressure or a transverse field

may be used to tune the magnetic transition towards T = 0 K. Our investigations,

however, did not reveal the presence of superconductivity. It is likely that the field tuned

transition does not correspond to a “true” critical point, whilst the high pressure region

may be occupied by an antiferromagnetic phase, with the true critical point at higher

pressures. However, other interesting features emerge in the electrical resistivity and

AC-susceptibility, along with novel thermodynamic signatures linking the magnetisation

to the specific heat.

The doping series YxLu1−xFe2Ge2 shows an antiferromagnetic transition which is sup-

pressed to absolute zero at a critical concentration xc = 0.2. YFe2Ge2 displays anomalous

low temperature behaviour consistent with the proximity to quantum critical fluctua-

tions, along with a superconducting transition which appears in the electrical resistivity

beneath a critical temperature of Tc ≈ 1.7 K. Using low temperature DC magnetisation

measurements, we show that this is a bulk effect, and that the superconductivity in

YFe2Ge2 is of type-II. The thermodynamic and BCS properties of the superconducting

phase are analysed in line with the parameters we extract experimentally.

The superconducting 3-4-13 stannides (Ca,Sr)3Ir4Sn13 show a high temperature struc-

tural transition which may be suppressed by the application of hydrostatic pressure or

effective chemical pressure. A superconducting dome is found, which appears to peak

near where the structural transition extrapolates to zero temperature. Anomalous expo-

nents are seen in the electrical resistivity over a wide temperature range. We investigate

the influence of pressure on the superconducting critical temperature in Ca3Ir4Sn13 and

the related compound Ca3Co4Sn13, along with an analysis of the upper critical field and

flux-line phenomena in Ca3Ir4Sn13 and Sr3Ir4Sn13.
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Chapter 1

Introduction

The role of solid-state physics in the explosion of technological prowess which

took place over the past century cannot be overstated. The entirety of modern

computing rests upon the workings of the transistor, a component made possible

due to a complete quantum band theory of materials. Significant strides forward

in our technological capacity are crucially linked to the advances we make in our

understanding of the most fundamental processes which take place within the solid.

In fact, more than just using the richness of solid-state phenomena to make our

mobile phones faster, the struggle toward the understanding of the quantum me-

chanical many-body solid has generated many seminal contributions to modern

physics along the way: for example the Anderson-Higgs mechanism [3, 4] – by

which photons in superconductors can become “massive” – or the Landau theory

of continuous phase transitions [5].

For example, whilst the introduction of superconducting technology – which could

transmit electromagnetic energy without loss – would be likely to transform the

modern world, the current restriction to cryogenic temperatures means that they

can not play much of a role in our everyday lives. For example, amongst the

“classical” superconductors1 the highest Tc found so far is MgB2, whose Tc = 39

K [6].

1Those which are driven by an electron-phonon mechanism.
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For a long time it seemed unlikely that a superconducting material would be found

with a Tc even above liquid nitrogen temperatures (T = 77 K). However, the dis-

covery of layered copper-based superconductors in the late 1980s by Bednorz and

Müller [7, 8], which have since been found to give the highest critical temperatures

yet, opened the door for superconductivity at room temperature. Tantalisingly, the

recent discovery of superconductivity in layered iron-based systems [9] – which in

some respects, are very similar to the copper oxide systems – has afforded us a new

line of attack in our hopeful solution of the problem, whilst a full understanding

of the microscopic picture is still lacking.

In this thesis, we investigate the physics of a zero-temperature phase transition.

This occurs when a macroscopic phase transition is suppressed to absolute zero,

inducing strong quantum-mechanical fluctuations which may profoundly affect the

low-temperature ground state. This can result in novel phenomena which may be

vastly differently to that seen normally. In particular, we focus on the appearance

of superconductivity in this region, which is often found to be of an unconventional

type. The superconductivity which appears in both the cuprate and iron-based

systems is thought to emanate from such a region.

Experimentally, we will mainly use a magnetic probe to investigate the macroscopic

properties of our systems, simultaneously tuning them with hydrostatic pressure,

magnetic field and composition. We show the results of our investigation of the

suppression of a structural phase transition, and two magnetic ones.

In 1959, Richard Feynman gave a lecture about the burgeoning field of nanotech-

nology titled “There’s plenty of room at the bottom!” [10], where he highlighted

the wealth of possibility afforded by the proper study and manipulation of systems

at the nanometer length-scale. The length-scales of the structures in the solid-state

are even smaller still, and so proper understanding of the underlying mechanics

and interactions, will be crucial to both our understanding of physics generally,

and also the exploitation of it to our own ends.
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Chapter 2

Theoretical Background

2.1 Phase transitions

2.1.1 Continuous and discontinuous phase transitions

A physical system can be characterised by a series of well-defined macroscopic

quantities: pressure, volume, internal energy and so on. A phase transition is said

to occur when these properties transform from one well-defined set to another.

Most typically this will occur as a function of one or more external parameters,

such as temperature or pressure. We can classify the nature of the phase transition

by the characteristic manner in which these macroscopic quantities transform into

one another.

The Ehrenfest scheme gives the order of a phase transition based on the lowest-

order derivative of the free energy F which shows a discontinuity with respect to

some other thermodynamic variable, X. A first-order transition would be one in

which ∂XF is non-continuous across the phase boundary1, whilst a second-order

transition would vary smoothly in ∂XF , but show a discontinuity in ∂2XF . The

1Where we adopt the shorthand

∂XF =
∂F

∂X
(2.1)
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(a) Measurable quantities at a first-order transition.

(b) Measurable quantities at a second-order transition.

Figure 2.1: Analytic properties of the derivatives of F at a phase transition.

derivatives of F often correspond to physical quantities which can be determined

through experiment2. Consequently, the order of a phase transition seen in the

lab can be deduced by examining the functional form of variables such as the

specific heat or the magnetisation across the phase boundary. A schematic showing

2For example, in a magnetic system we have that the magnetisation, M -

M = −
(
∂F

∂H

)
V

(2.2)

the specific heat C -
C

T
= −

(
∂2F

∂T 2

)
V

(2.3)

and the magnetic susceptibility χ -

χ = −
(
∂2F

∂H2

)
V

(2.4)

.
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the differences between variables derived from the free energy at first-order and

second-order ferromagnetic (FM) transitions within the Ehrenfest scheme is shown

in figure 2.13

Another key concept in the theory of phase transitions is the idea of an order

parameter. The order parameter is a variable - M , say - whose expectation value

is zero above the phase transition, but non-zero below it4. The order parameter is

commonly related to the first-derivative of the free energy with respect to another

thermodynamic variable. As a consequence for a first-order transition at the crit-

ical temperature – where there is a discontinuity in the first derivative of F at Tc

– the order parameter M must necessarily jump instantaneously from 0 to some

finite value. In contrast, at a second-order transition, where all first derivatives of

F vary smoothly, M is required to grow continuously from zero out of the critical

temperature Tc.

Figure 2.2 shows real examples of first- and second-order behaviour at an anti-

ferromagnetic (AF) transition, determined from neutron scattering [11, 12]. The

order parameter in an AF transition is the magnetisation Mi of the sub-lattices i,

which is determined experimentally by the appearance at the Neél temperature TN

of a magnetic Bragg peak at a finite wavevector Q⃗order. In MnS2, the magnetic re-

flection appears suddenly at TN – a first-order “discontinuous” transition – whilst

at the transition in Pr2I5, the peak grows continuously from zero – a second-order

“continuous” transition.

The crucial difference between the two is that at a continuous transition, the crit-

ical temperature marks the boundary between two totally degenerate macroscopic

states. As a result, thermal fluctuations - on the order of kBTc - can “wobble”

the system into and out of the ordered state; arbitrarily small energy variations

3It should be noted that such exact 2nd order transitions do not exist in nature. The Ehrenfest
scheme represents a mean field approximation, whereby the complex interactions which appear
between all of the microscopic components of a system are replaced with a single averaged
effect, which all constituent particles feel. As will be discussed shortly, mean field theory in real
systems breaks down near the critical temperature due to the presence of strong fluctuations.
In the critical region, physical quantities such as the specific heat are found to diverge with
universal exponents that are the same above and below Tc.

4When we say above and below, we are referring to the temperatures above and below the
critical temperature Tc.
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MnS2

(1/2,0) reflection 

(a)

Pr2I5
(1,0,0) reflection 

(b)

Figure 2.2: First and second order antiferromagnetic transitions in MnS2 and Pr2I5,
determined via neutron scattering [11, 12]. Magnetic peaks which appear below
TN reflect the appearance of the AF order parameter at the phase transitions. In
MnS2 the peak appears discontinuously at TN – a first order transition – whilst in
Pr2I5 the peak grows smoothly from 0 – a second-order transition.

will induce microscopic fluctuations in the order parameter δM . This is not the

case at a first-order transition, where the latent heat QL required (either absorbed

or released) to push the system across the boundary acts a buffer, making the

transition robust against the influence of the thermal fluctuations.

The correlation length ξ(T ) gives a measure of the length-scale over which the

order parameter fluctuates. At a continuous phase transition, ξ(T ) diverges at Tc

such that the system has no characteristic length scale: it is scale-invariant [13]. In

the vicinity of Tc, fluctuations in the order parameter exist across all length scales.

Physically, this means that on the approach to Tc, “bubbles” of incipient order

appear throughout the system, whose size increase as T → Tc. In a ferromagnetic

system this would correspond to pockets of co-aligned spins, of all sizes, forming

then breaking apart, whilst in the liquid-gas transition, nascent bubbles of liquid

and gas fluctuate in and out of existence. The divergence of ξ(T ) at Tc results in

the scaling laws which are found in the susceptibility or specific heat [13].

In fact, these fluctuations may persist over such large length scales that they can

be seen with the naked eye. Figure 2.3 shows a methanol/cyclohexane mixture ex-
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hibiting the phenomena known as critical opalescence [14]. Near the critical point

large density fluctuations are found at all length scales, some of which coincide

with the wavelength of light. This results in an enhancement of optical scattering

through the fluid, which we see as a “milkiness”.

(a) (b) (c)

Figure 2.3: Critical opalescence appearing in a methanol and cyclohexane mixture
near its boiling point [14]. (a) Single phase. (b) Onset of density fluctuations. (c)
Critical opalescence.

2.1.2 Landau theory of the order parameter

The most ubiquitous framework used to describe the phenomenology appearing at

continuous phase transition is Landau theory. The central pillar of Landau theory

is that the free energy is a smoothly-varying function of the order parameter F (M)

such that we may expand it about its minimum. From previous definition of the

order parameter, we would expect that in the high temperature state, F (M) should

have a minimum at M = 0, whilst upon moving through the phase transition,

F (M) would have minima at some finite value of |M | = M̃ . The most simple
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expression of the free energy is given by5:

F (M,T )− F (0, T ) = a(T )M2 +
1

2
b(T )M4 + ..... (2.5)

Upon inspection, we can see that b(T ) > 0 as otherwise there would be no minimum

in energy. Likewise it must be the case that a(T ) changes sign as we pass through

the transition as otherwise we would not find an energy minimum at finite M .

M = 0

M = -  a/b M = +  a/b

a(T) > 0

a(T) < 0
M

F (M ,T)

(a)

M (T)

T

T = T
c

M ~ |T - T
c
|0.5  

(b)

Figure 2.4: (a) Form of the free energy F (M) above and below the transition
temperature. (b) Temperature dependence of the order parameter M(T ) given by
the Landau theory.

Expanding a(T ) in powers of T around Tc:

a(T ) ≈ a(Tc) + ȧ(T − Tc) + ... (2.6)

The constant a(Tc) can be reabsorbed into our definition of F0(0, T ), such that the

5The free energy should be symmetric with respect to the orientation of M , i.e. F (M) =
F (−M), and so only even powers of M are retained.
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prefactor a(T ) in equation 2.5 is now

a′(T ) = ȧ(T − Tc), (2.7)

Consequently, by finding the minima in F (M,T ) at T < Tc we find that close to

the transition, the order parameter M grows as

|M | ∼ |T − Tc|
1
2 (2.8)

Provided an order parameter can be identified, one may construct the Landau

theory and analyse its phenomenology. As the mean-field Landau picture is not

concerned with the microscopics of the problem – only the existence of some order

parameter and its symmetries – it may be applied to manifold and diverse systems,

revealing the universal nature of many seemingly disparate phase transitions. The

form of the free energy given in equation 2.5 is only the very simplest one, whereas

the theory can be augmented to take into account effects such as an inhomogeneous

order parameterM(r⃗), coupling to external fields and/or the possibility of multiple

order parameters.
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2.2 Superconductivity

2.2.1 Overview

Superconductivity was born a century ago following the discovery by Heike Kamer-

lingh Onnes in 1911 that the electrical resistance of mercury dropped to zero be-

neath a critical temperature of 4.2 K6. It was subsequently found by Meissner and

Oschenfeld that a “superconductor” (as named by Onnes) expelled any applied

magnetic flux from its interior.

It took another fifty years for a successful microscopic theory to arrive, although

a large phenomenological framework had been developed in the meantime. The

London brothers were able to explain the magnetic flux expulsion and saw that

the Meissner effect in a superconductor was distinct from the shielding which

would be seen in a perfect conductor. Then, Ginzburg and Landau formulated a

macroscopic, thermodynamic theory in terms of a complex-valued order parameter:

ψ = |ψ|eiθ. (2.9)

The Ginzburg-Landau description was successful as it paid no heed to the (un-

known) microscopics of the problem, only the symmetry of its order parameter,

ψ. This meant that a great deal of the phenomenology could be accounted for, in

spite of the lack of a full quantum mechanical description.

In his 1956 paper Bound electron pairs in a degenerate Fermi gas [15], Cooper

showed how a Fermi surface is always unstable to the formation of pairs, when an

attractive interaction V exists between pairs of electrons near the Fermi energy ϵF

- this holds true even for an arbitrarily small V . This forms the basis of the micro-

scopic solution: that the “pairing off” of electrons into integer-spin quasiparticles

forms a bosonic fluid which is able to undergo a Bose-Einstein-type condensation

into a collective, superfluid ground-state.

In conventional superconductors, the pairing interaction takes place through the

6An experiment made possible by Onnes’ successful condensation of liquid helium a few years
before.
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phononic modes of the crystal7. As a result of its electrostatic attraction to the

screened positive charge at every atom, an electron moving through the solid pulls

the lattice towards itself. The lattice responds far slower than the electrons travel –

owing to the Fermi temperature greatly exceeding the Debye temperature: TF >>

ΘD – meaning that the electron has “whizzed off” long before the lattice relaxes

back to its equilibrium position. The resulting temporary accumulation of positive

charge is then seen by a second electron, which is attracted towards it, giving an

effective attraction between the two electrons.

In its most simple form, this is the basis of the pairing mechanism between electrons

taking place in a conventional superconductor.

2.2.2 BCS result

The BCS (Bardeen-Cooper-Schrieffer) picture [17] is a mean-field theory of the

Fermi gas, whereby electrons of momenta k⃗ and k⃗′, found within ~ωD
8 of the

Fermi surface feel a mutual interaction Vk⃗k⃗′ between themselves [18]. By con-

struction of an appropriate ground-state wavefunction |BCS⟩, and a mean-field

hamiltonian Ĥ which only considers attractive interactions between pairs of elec-

trons with opposite spins, it is possible – via a canonical transformation of the

single-electron operators c†
k⃗
– to diagonalise Ĥ and determine the quasiparticle

excitation spectrum.

Crucially, BCS found that the coherent superconducting groundstate was pro-

tected by an energy gap in the excitation spectrum – a prediction made already

by experiment. The k⃗-dependent gap is given self-consistently by [18]:

∆k⃗ = −
∑
k⃗′

∆k⃗

2Ek⃗′
Vk⃗k⃗′ , (2.10)

7The discovery of the isotope effect [16] was an important early clue on the path to the
electron-phonon mechanism. These experiments found that the superconducting critical tem-
perature Tc was affected by the replacement of lattice sites by their – electronically equivalent,
but more massive – isotopes, showing that the appearance of superconductivity in some ways
depended strongly on the mechanical or vibrational qualities of the crystal.

8Where ωD is the Debye frequency of the lattice.
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where Vk⃗k⃗′ is the attractive interaction between a spin-up and spin-down electron of

momenta k⃗ and k⃗′. The BCS approximation is made by assuming that this pairing

interaction is only present within a thin shell of the Fermi-surface, and that it is

constant within it and zero everywhere else. This removes the k⃗-dependence of

equation 2.10, allowing it to be evaluated exactly. At finite T it follows that the

critical temperature Tc is related to the excitation gap by:

∆BCS(0) = 1.764kBTc, (2.11)

which is found to hold true in a number of systems, namely those which are “weakly

coupled”9.

2.2.3 Ginzburg-Landau theory

The Ginzburg-Landau approach focusses on the appearance of a minima in the

electron free-energy which takes place at Tc, whereby the electron gas is able to

lower its energy by a fraction of the electrons becoming superfluid. The order

parameter is a complex field ψ(r⃗), whose modules squared gives the density of the

superconducting electrons ns = |ψ|2.

Close to the transition temperature where ns is small, and allowing for a spatial

variation in the order parameter |∇ψ|2, the free energy density takes the form:

f = α|Ψ|2 + β

2
|Ψ|4 + 1

2m
|(−i~∇− 2eA⃗)Ψ|2 + |⃗b|2

2µ0

, (2.12)

where coupling of ψ to the EM gauge field A⃗ takes place through the covariant

derivative∇ → ∇− 2e
i~ A⃗, and the last term gives the energy density of the magnetic

induction field. Minimising f with respect to both the applied field and the field

9Weak coupling refers to the magnitude of the electron-phonon coupling parameter, λ
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ψ, one arrives at the two Ginzburg-Landau equations :

0 =
1

2m
(−i~∇+ 2eA⃗)2ψ + (α + β|ψ|2)ψ (2.13)

J⃗s =
ie~
m

(ψ∗∇ψ − ψ∇ψ∗)− 4e2

m
A⃗ψ∗ψ (2.14)

These equations generate a rich catalogue of phenomena and were able to account

for many experimental results before the appearance of the BCS microscopic the-

ory. Reexpression of each of the fields in equation 2.12 as dimensionless parameters

reveals the two characteristic length scales which describe the physics: the pene-

tration depth – λ, and the coherence length – ξ. The coherence length determines

the distance over which ψ is allowed to change10, whilst the idea of a penetra-

tion depth had been found previously in the London brothers’ explanation of the

Meissner effect, giving the length scale over which a magnetic field decays into the

superconductor.

The relative sizes of κ and λ were found to have a profound influence on the

properties of the superconducting fluid. The surface energy associated with a

normal-superconductor (NS) boundary can be either positive or negative depend-

ing on the dominant length scale. For a positive NS surface energy (when λ << ξ)

the boundary is stable and in tension, whilst a negative surface energy (which

occurs when ξ << λ) is unstable - the system would tend to break up into areas

which maximised the NS surface boundaries [18]. Superconductors are found to

belong to two classes according the value of the dimensionless parameter

κ =
λ

ξ
. (2.15)

For κ < 1/
√
2 the superconductor is classed as “type-I”, whilst for κ > 1/

√
2 it is

“type-II”.

Abrikosov found solutions to the Ginzburg-Landau equations [19] whereby at a

critical field Hc1, a type-II superconductor would admit a lattice of quantised flux

lines – “fluxoids” – which arrange themselves periodically throughout the bulk.

10With reference to the BCS picture, the coherence length reflects the spatial extent of the
bound Cooper pair.
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The mutual repulsion between the fluxoids sets up the lattice structure, whereby

within ξ of the centre of the fluxoid, the order parameter ψ is strongly suppressed,

and the material is effectively normal.

2.2.4 Critical fields and the superfluid density

A type-II superconductor has two critical fields which can be seen directly through

experiment. The first occurs at the point at which the quantised flux lines begin

to move into the bulk of the superconductor (Hc1), and the second (Hc2) when the

density of flux lines becomes too high, and the superconductor is driven normal

again. Figure 2.5 shows the magnetisation curves expected below Tc, and the

constitutive relation between B and H is given in the inset.

H

M
Hc1 Hc2Hc

�1 >  

�2 > �1

� < 
1
2 Hc1

H - = M

Hc2

Typical M(H) curves for ideal

type-II superconductors with 

different GL parameters �

B

H

1
2

Figure 2.5: Magnetic isotherms for superconductors with various values of κ, but
identical thermodynamic critical fields, Hc. Inset shows the constitutive relation
B ≡ B(H) for a type-II superconductor.

In the Meissner phase, B = 0 within the bulk of the superconductor, and soM(H)

is totally linear, with a gradient of -1: M = −H. Above Hc1 the magnetisation

is reduced as the field increases; the addition of every extra fluxoid to the bulk

effectively “removes” more of the superconducting fluid, due to the introduction

of more and more of the “normal” region at the centre of the core.
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The traces shown in the main part of figure 2.5 correspond to an ideal, defect-

free superconductor, where at every value of the applied field, the flux lines are

distributed totally homogeneously throughout the sample such that B is constant

and in equilibrium everywhere. In real systems, this is generally not the case, as

pinning sites within the bulk – imperfections, such as crystal grain boundaries or

impurities – tend to “hold on” to the fluxoids, resulting in deviations from the

curves shown in figure 2.5. The influence of the pinning sites on the magnetic

properties of the superconductor are detailed more fully in the appendix.

Establishing both the lower and upper critical fields from experiment reveals much

about the superconducting state. From the upper critical field, we can estimate

the coherence length ξ [20]:

Bc2 =
Φ0

2πξ2
, (2.16)

whilst the lower critical field Hc1 provides valuable information about the gap

structure, due to its relation to both the magnetic penetration depth λL and the

superfluid density ρs.

From [21], the components of the inverse penetration depth, λi along the crystal-

lographic axis i are given by:

1

λ2i
=
µ0e

2

4π3~

∮
dSF

vi
2

|v⃗|

[
1 + 2

∞∫
∆(T,φ)

dE
∂f(E)

∂E

E√
E2 −∆2

]
, (2.17)

where dSF is an element of area on the Fermi surface, vi is the velocity at the Fermi

level along the i axis, f(E) is the Fermi function and ∆(T, φ) is the value of the en-

ergy gap at temperature T at an azimuthal angle φ along the Fermi surface11. The

first term is a constant determined by normal state parameters, whereas the sec-

ond term describes the depletion of the superfluid by gradual thermal population

of the excited Bogoliubov quasiparticle energy levels.

The superfluid density (normalised to its value at T = 0 K) is related the pene-

11This is in the case of a quasi-2d Fermi surface.
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Pairing symmetry g(φ)
isotropic s-wave 1

anisotropic s-wave (1 + a cos(4φ))/(1 + a)
d -wave | cos(2φ)|

Table 2.1: Functional forms of g(φ) for given pairing symmetries, a is a coefficient
controlling the anisotropy.

tration depth λ(T ) by
ρs(T )

ρs(0)
=
λ2(0)

λ2(T )
(2.18)

and also
λ2(0)

λ2(T )
=
Hc1(T )

Hc1(0)
(2.19)

such that the temperature dependence of Hc1(T ) is given directly by ρs(T ). Fol-

lowing the determination of Hc1(T ) experimentally, we can fit to the expression:

Hc1(T )

Hc1(0)
= 1 +

1

π

2π∫
0

∞∫
∆(T,φ)

dφdE
∂f(E)

∂E

E√
E2 −∆2

, (2.20)

where the magnitude and symmetry of ∆ ≡ ∆(T, φ) represents the only degree of

freedom. In general, ∆ ≡ ∆(T, φ) and may be written as [22]

∆(T, φ) = ∆0(T )g(φ), (2.21)

where for different pairing symmetries the function g(φ) takes on different forms

– see table 2.1 [22]. The function ∆0(T ) corresponds to that of the weak-coupling,

isotropic BCS model, and may be determined from the self-consistent gap equation,

as in equation 2.10.

2.2.5 Destruction of the superconducting state

There are a number of mechanisms by which superconductivity may be destroyed,

for example by the application of a sufficiently large magnetic field. This may
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happen through one of two ways. Either, as the field is increased, the density of

the magnetic flux lines within the superconductor becomes so great that the normal

regions at the centre of the fluxoids begin to overlap. Or, the increased Zeeman-

splitting of the up and down-spin electrons under the applied field eventually

destroys all of the Cooper pairs. The first is the orbital limit whilst the second is

the Pauli limit.

The theory of the upper critical field formulated by Werthamer, Helfand and Ho-

henberg considers the effect of the orbital limiting process [23], and they find that

the expected orbital-limited critical field is given by:

Horb.
c2 = γ

∣∣∣dHc2

dT

∣∣∣
H=0

Tc (2.22)

where the factor γ takes the values 0.69 and 0.73 in the dirty and clean limits,

respectively. The Pauli limit is important when the condensation energy of the

superconductor becomes comparable to the increase in energy associated with the

Zeeman splitting of the bands. The Pauli-limited field is given by:

HP
c2 =

∆0√
2µB

, (2.23)

where replacing the gap ∆0 by the BCS expression given in equation 2.11 gives

the Pauli limiting field in the weak-coupling limit as [20]:

HP
c2 = 1.84Tc(T.K

−1) (2.24)

Abrikosov and Gor’kov [25] investigated the influence of the introduction of mag-

netic impurities into the superconducting bulk. They showed that as the magnetic

impurity concentration n increases, there exists a region just before the SC state is

totally destroyed in which the spectral gap in the density-of-states (DOS) ∆ ≡ ΩG

closes, whilst Tc and the gap-function ∆(r) remain finite12. They found this to

occur when n is at 91% of the critical concentration nc required to fully quench

the superconductivity. Figure 2.6 shows a schematic of the effect, taken from [18],

12Here we have to distinguish between the gap in the DOS, and the order-parameter – the
gap-function ∆(r).
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Figure 2.6: The dependence of the transition temperature Tc, the order parameter
at zero temperature ∆(0), and the spectral gap ΩG(0) on the pair breaking param-
eter α. ∆00 is the value of ∆ for T = α = 0, and Tc0 is the transition temperature
at α = 0. The shaded region shows the range of α values in which a supercurrent
may still be supported whilst the spectral gap ΩG = 0. Reproduced from [24].

where the magnetic impurity concentration is given by the pair-breaking param-

eter α. The same physics holds for other pair-breaking mechanisms, such that

figure 2.6 is universal. In the case of magnetic impurities, α is given by

α ≈ nJ2

EF

, (2.25)

where J is the averaged exchange interaction.
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2.3 Quantum Critical Superconductors

The phase transitions introduced at the start of this chapter took place as the

temperature was reduced through a critical temperature Tc, or, at a fixed and

finite temperature, a transition was induced by the tuning of some external pa-

rameter x through a critical value xc. A phase transition at finite temperature is

a “classical” phase transition13. We might imagine that the critical temperature

of a “classical” transition could depend on the value of the tuning parameter x

– pressure or transverse field, say – such that Tc can be suppressed to lower and

lower temperatures by increasing x. If Tc(x) drops monotonically as x increases,

at a critical value of x = xc the ordering temperature Tc will be suppressed to 0

K. This means that were we to cool the system through Tc(x = 0) to absolute

zero and, and then slowly increase x from zero, at the critical value of the tun-

ing parameter xc the system would be driven from the ordered, broken symmetry

state into a new disordered (or hidden ordered) state. This is a “quantum” phase

transition, and for a continuous transition marks the location of a quantum critical

point (QCP).

At the QCP there is a competition between two (or more) totally degenerate

groundstates. At the classical critical point, the degeneracy of the competing

phases resulted in critical behaviour induced by thermal fluctuations – scaling

laws and so on – whilst at absolute zero, in the absence of thermal fluctuations, it

is the quantum fluctuations which are relevant. Quantum fluctuations stem from

the zero-point motion of the vacuum, a consequence of the uncertainty principle.

Crucially, the quantum fluctuations at the QCP show scale invariance in both

space and time [26], and as such their influence may be felt over a wide region

of the phase diagram – at finite temperatures above the true QCP. The quantum

critical region “fans out” as the temperature is increased from absolute zero - see

the schematic in 2.7.

Whilst the critical end point found at absolute zero is beyond the scope of real

experiment, the influence of the associated fluctuations across wide portions of the

13A phase transition at finite temperature is always classed as being “classical”, even when the
new state is an inherently quantum-mechanical one, such as a superconductor or a ferromagnet.
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Figure 2.7: Schematic of a generic phase diagram, showing the regions in which
the classical and quantum fluctuations dominate.

phase diagram elevates the QCP beyond a novel theoretical abstraction, and into

something tangible which can be seen (and is seen) in real systems and across a

wide temperature range.

To understand the influence of quantum critical fluctuations upon the ground-state

of the system, we must introduce the “standard model” for our understanding of

(typical) metallic systems – Fermi liquid theory. The work of Soviet physicist Lev

Landau, Fermi liquid theory maps the insurmountably complicated interactive

many-body problem14 onto a system of weakly scattering fermionic quasiparticles,

which are electron-like in nature, but with dynamical properties – mass, mag-

netic moments and so on – which due to the presence of interactions, may be

strongly renormalised from the bare electron values. In the interacting system,

the low-lying excitations then do not correspond to the “bare” electrons or holes,

14A metallic system contains > 1023 freely propagating electrons, each of which interact mutu-
ally through their own long-range Coulombic repulsion, as well as with the host lattice. Evidently,
this is quite a complicated many-body problem, a notoriously difficult task which has provoked
consternation for the theoretician for many centuries. This was initially a problem in classical
mechanics - the late 19th century King of Sweden, Oscar II, offered substantial prize money for
the analytic solution for the motion of “...arbitrarily many mass points that attract each accord-
ing to Newton’s law ...” [27]. Although the task was found to be insoluble, the prize was finally
awarded to Henri Poincaré for his contribution (but not solution) to the n = 3 problem.
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but “quasiparticles” which behave like bare electrons, but whose properties are

subtly affected (or “dressed”) by the influence of their own interactions. The

quasiparticles themselves are no longer true eigenstates of the system such that

the quasiparticles have a finite lifetime. This is given by the spectral width of the

quasiparticle distribution, which disappears as one approaches the Fermi energy,

meaning that the quasiparticles at ϵF are well-defined and long-lived.

Richard Mattuck offers a (somewhat) helpful analogy in his book - A Guide to

Feynman Diagrams in the Many Body Problem [28] - by casting the “dressed”

electron/quasiparticle picture in terms of horses and dust-clouds - see figure 2.8.

As the horse moves rapidly along a dusty road, it interacts with the ground beneath

its feet and kicks up a dust cloud which conceals it, slightly. What you see – what

you measure – is then not the real bare horse, but a kind of composite, due to the

interaction of the horse with its environment – a quasihorse.

Figure 2.8: Cartoon of the quasiparticle concept, from [28].

Fermi liquid theory set the paradigm for our understanding of the interactive

many-body state within the solid. For example, at its very limit, it is able to ac-

count for the so-called “heavy fermion” materials, whereby the strong correlations

between itinerant s- and p-states with highly-localised f -electron states result in a

groundstate whose low-lying excitations are electron-like, but with effective masses

which may be up to 1000 times that of a bare electron [29].

Fermi liquid theory relies on the presence of short-range, repulsive interactions.
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(a) Logarithmic upturn in the heat capacity.

x = 2.0

1.0

0.5

ρ - ρ0 = ATx

(b) Linear-in-T electrical resistivity.

Figure 2.9: Non Fermi-liquid behaviour in Nb1−xFe2−x [30] and YbRh2Si2 [31].

When these are not present15, the Fermi liquid picture breaks down. This is com-

monly found on the border of the quantum critical region, whereby the divergence

of the magnetic coherence length at the QCP results in a long-range quasiparticle

interaction. Deviation from Fermi-liquid behaviour is therefore taken as a hallmark

of the presence of quantum critical behaviour, most commonly seen as anomalous

temperature dependences in the resistivity16 or specific heat (see figure 2.9).

The most striking manifestation of non-Fermi liquid behaviour is the appearance of

a superconducting phase on the border of a zero-temperature transition. A generic

phase diagram is seen in many systems whereby an ordered (typically magnetic)

state is suppressed to near absolute zero by some external tuning parameter, but

then rather than the phase diagram showing the “bare” critical point, a “bubble”

15As in the BCS superconductor, where the metallic state Fermi gas collapses into a coherent
superfluid groundstate in the presence of the attractive V

16A Fermi-liquid is expected to display an electrical resistivity which varies quadratically with
temperature ρFL ∼ T 2 – a consequence of the quasiparticle scattering pathways available for
excited states at the Fermi level [32]. In real systems, we have to amend this slightly by adding a
constant term which takes into account scattering from impurities and defects, this is the residual
resistivity ρ0 which becomes apparent as T → 0. The quality of a sample is then reflected in the
magnitude of the ρ0 term. We define a measure – the RRR value, which is given by the ratio of
the resistivity at room temperature to that at the lowest temperatures

RRR =
ρ(T = 300K)

ρ(T ≈ 0K)
. (2.26)
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Figure 2.10: Phase diagrams of various “quantum critical” superconductors.

of superconductivity is found around the extrapolated zero-temperature transi-

tion; the QCP is “hidden” by a dome of superconductivity, whose critical tem-

perature often peaks around the extrapolated zero-temperature phase transition.

Figure 5.16 shows various phase diagrams from real systems where this structure

appears, generally as a function of the applied field, pressure or composition.
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The presence of strong magnetic fluctuations associated with a (magnetic) QCP

would be anathema to a conventional, phonon-mediated superconductor, and so

the appearance of superconductivity in such an environment is all the more in-

triguing. It is likely that the electronic pairing mechanism in many of these sys-

tems takes place via magnetic degrees of freedom rather than through the lattice

[42, 43], and as a result we describe them as “unconventional” superconductors.

For instance, in the high-temperature ceramic superconductors – where supercon-

ductivity has been found to persist up to 133 K [44] – the dome of SC is thought to

be related to the suppression of a high-temperature antiferromagnetic transition,

although the true microscopic description of the pairing is not yet known.

For the rest of this thesis we will focus on systems which display a particular phase

transition – structural or magnetic – which can be suppressed with an external

tuning parameter, and focus on the region at which the ordering temperature is

suppressed to absolute zero.
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Chapter 3

Experimental approach

Most of the data presented in this thesis are magnetic measurements. The mag-

netic behaviour of a solid-state system arises due to the collective interaction of

its electrons, each of which behaves on its own somewhat like a microscopic mag-

net. We define the magnetisation of the sample M⃗ as being the average magnetic

moment per unit volume, and the magnetisation induced in reaction to an applied

field H⃗ is given by:

M⃗ = χH⃗, (3.1)

where χ is the response function - the magnetic susceptibility. As χ = dM/dH,

it is more sensitive to small changes of flux than M⃗ . Both M⃗ and χ may be

established experimentally, and so with knowledge of how these variables should

respond to field and/or temperature for different magnetic phases, we can interpret

experimental data accurately and usefully.
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3.1 DC magnetometry

Here we detail the means of determining the macroscopic M⃗ of a sample, using a

highly-sensitive superconducting detection system.

3.1.1 S700X Susceptometer

All of the DC magnetisation data presented within this thesis were collected using

a Cryogenics Ltd S700X susceptometer, capable of performing DC susceptibility

measurements - a schematic cross-section of which is shown in figure 3.3. It can

collect data across a temperature range 300 K - 1.6 K, extendable down to <280

mK using the 3He insert option.

Figure 3.1: Cross-section of the S700X susceptometer, from [1].

The sample sits within a variable temperature insert (VTI), which is connected

to the 4He reservoir via a fine impedance - the needle valve. By vacuum pumping
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on the VTI, liquid helium is drawn through the needle valve towards the sample.

Upon meeting the low pressure within the insert, the liquid helium rapidly expands

and boils back to gas, which flows over the sample and cools it. A heater controls

the temperature of the 4He gas such that the whole temperature range may be

covered. By adjusting the needle-valve one can reduce the “base temperature”

down to ≈ 1.5 K, although in practise it is not straightforward to operate at

T < 2.1 K, as this is when 4He undergoes a superfluid transition, making it difficult

to control the temperature. Temperature control takes place through a Lakeshore

336 temperature controller, which monitors two thermometers and drives a PID

controlled heater. Thermometer “A” gives the temperature of the helium flowing

into the VTI, whereas thermometer “B”, is the sample temperature.
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Figure 3.2: Superconducting isotherm from a sample of Sn used to determine the
level of remanent field ≈ 0.5 mT.

A superconducting magnet can apply fields of up to ±7 T. There are two operating

regimes for the applied field, using more or less sensitive power supplies for the

“low field” and “high field” regimes, respectively. For low fields, it is possible to

operate at a field spaced resolution of ∼ 0.05 mT, where the remanent field is on

the order of 0.5 mT when the system is at its “zero-field” setting. This was tested
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by measuring the superconducting response of a sample of tin and identifying the

offset in M(H) at the notionally zero field - see figure 3.2.

The superconducting detection coils are arranged in a second-order gradiome-

ter configuration, whereby two wound-coils are sandwiched between two single

counter-wound-coils (seen in the left-hand side of figure 3.3.) This arrangement

makes the pick-up coils robust against any relaxation in the applied field from

the magnet, as the flux changes in the central coils is cancelled by those on the

outside. The introduction of additional coils would make the detection even more

robust, although there is a tradeoff between the added stability and the increased

complexity in interpreting the shape of the signal.

Weak insulating

links

Biasing

current

"Magnetic moment"

reading 

2nd order

gradiometer

Input coil

V
Feedback

coil

SQUID

Figure 3.3: Schematic of squid and coilset [1].

The pick-up system is coupled to a SQUID, a particular arrangement of Josephson

junctions1, whose IV characteristics are very sensitive to the local magnetic flux.

As in the schematic shown in figure 3.3, a superconducting loop is formed which

1The Josephson junction is named after Brian Josephson, who won a Nobel prize for his
prediction of the mechanism by which a supercurrent may tunnel across a weak insulating link
- the junction - in the absence of an applied voltage.

45



DC magnetometry Experimental approach

is broken in two places by weak insulating links. The magnitude of the Josephson

currents passing through the links depends on the difference in superconducting

phase across the junctions, which in turn is dependent on the flux enclosed by the

loop.

During a measurement, the sample is tracked up and down through the gradiome-

ter, which induces supercurrents to flow within the coils. The pick-up circuit is

coupled inductively to the SQUID via another coil (shown in the dotted blue line

of figure 3.3) such that this other coil generates a flux which is injected into the

SQUID loop. This “secondary” magnetic flux then affects the Josephson currents

which tunnel through the insulating links2. Above a critical current Ic such an

arrangement of junctions will show a voltage across it. In operation, a biasing cur-

rent with I > Ic is applied through the SQUID, such that a voltage appears across

its ends. The magnitude of this voltage is related to the flux passing through the

SQUID, and therefore the sample in the pick-up coils. By measuring this voltage

we can ascertain the corresponding magnetic moment of the sample.

The ultimate sensitivity of such a device is ultimately governed by the magnitude

of the flux quantum Φ0 = h/2e, although for such a magnetometer as this we can

in practice typically measure signals down to around 10−9 emu.

3.1.2 Fitting the SQUID voltage

For an ideal dipolar point-like sample, the output voltage of the SQUID as a func-

tion of the sample’s vertical position V I(z) can be modelled exactly [1]. Hopefully,

in performing a scan with a real sample, the voltage put out by the SQUID V R(z)

would bear some resemblance to V I(z), such that we can fit to V R(z) with V I(z)

and determine the magnetic moment of the sample µ. Typically - in the case of the

Quantum Design MPMS, for example [45] - this is done by the fitting algorithm

within the software identifying a feature in the total scan V R(z) which most resem-

bles V I(z), and then least-squares fitting the function around this point, thereby

establishing µ⃗.

2The SQUID itself is highly shielded from the field of the magnet, and as such only sees the
flux associated with the pick-up coils.
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Figure 3.4: Comparison of the magnetisation per-unit-mass for conducting rings
of varying radii r, for a least-squares dipole fit and the multipole-expansion fit.
The multipole method is far less sensitive to the sample geometry than the least-
squares fit. The inset shows how the first-order term of the expansion subsumes
the influence of the geometry, growing as r is increased.

The S700X susceptometer does not fit the moment in this way. Instead of choosing

an arbitrary portion of V R(z) to fit to, it always assumes that the sample is centred

in the middle of the scan. Next, the output voltage V R(z) is fit not only to V I(z),

but also a weighted summation of its derivatives. This is known as a “multipole”

fit, and is given by:

V (z) =
n∑

i=0

ci
diV I(z)

dzi
, (3.2)

where the coefficients ci are determined via singular value decomposition. The

benefit of this method is two-fold. In the first case, it is far less sensitive to

the influence of sample geometry due to demagnetising fields [1], or samples not

properly centred in the coils [46]. The pick-up coils are sensitive to both of these

effects and without careful treatment of V R(z), artifacts can arise in data. The

extra terms in equation 3.2 represent the higher-order moments of the sample -
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quadrupole, octopole and so on - which may change with sample geometry, but

should not affect the dipole contribution3.

The benefit of this procedure is shown in figure 3.4, which shows the calculated

moment from a series of conductive loops, using the least-squares fit and the

multipole method. The main figure shows the magnetisation per unit mass for

loops of different size, which - one would expect - should remain constant for any

sized loop. As can be seen, the multipole method is not sensitive to the changing

geometry of the rings, whereas the least-squares fit is. In contrast, the inset shows

how the first-order term of equation 3.2 changes as r increases, which does seem

to grow. The i > 1 terms in the summation absorb the influence of the sample

geometry and/or mislocation, resulting in a better fit of the dipole contribution.

3.1.3 Sample mounting and background subtraction

Given the extreme sensitivity of the pick-up coils, it is crucial any background

magnetic signals are minimal, and as such great care must be taken in choosing

a sample holder. For three “up/down” scans, the susceptometer should achieve a

standard error of around 0.01% on the calculated moment. Whilst it is true that

the overall influence of the sample holder can be subtracted after the measurement,

the level of scatter in the final data will remain unaltered.

The most common sample holder in SQUID measurements tends to be a plastic

straw, where the sample is wrapped in PTFE tape and held within a gel cap-

sule. Whilst this method is not unreasonable, weak diamagnetic contributions

from each of the straw, the capsule and the PTFE still remain in the measured

signal [47]. Whilst for strongly ferromagnetic materials, or superconductors, the

magnetic response of these materials are irrelevant, they can become significant

when measuring samples with low magnetic susceptibilities and/or in large applied

fields.

3Obviously, the influence of these multipole effects is diminished as the radius of the pick-up
coils increases. As the sample becomes more “point like” with respect to the gradiometer, the
particular shape of the sample has less influence, and the higher-order terms in such an expansion
will become attenuated and the dipole contribution will dominate.
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≈ 20 cm

Figure 3.5: Carbon fibre reinforced epoxy resin sample holder (above) and plastic
straw/gel capsule/PTFE sample holder (below).

For example, in figure 6.4 from chapter 6, some DC magnetisation measure-

ments are shown from the system (Ca,Sr)3Ir4Sn13, made to investigate magnetic

anisotropy. These compounds have very low magnetic susceptibilities4, such that

it was necessary to apply around 1 T of field to induce a measurable signal. In this

case, the straw proved totally inadequate, as by 1 T the signal from the sample

was wiped out completely by the sample holder. Instead, a carbon fibre reinforced

epoxy resin rod was used, with the sample stuck on with superglue5. This has

proven itself to be a far superior sample holder.

Figure 3.6 shows the magnetic response of the carbon fibre stick and the plas-

tic straw/capsule/PTFE as a function of temperature and applied field. Quite

evidently, the carbon fibre rod gives a magnetic response which is orders of mag-

nitude less than the straw/PTFE/capsule6. The advantage rests not only with

the enormously reduced magnetic background, but also in the ability to orient the

sample on the stick with precision, making studies involving sample orientation

with respect to the field/pick-up system far easier.

4χm ≈ 10−4emu.mol−1 [38]
5Cryanoacrylate.
6As described in the caption of figure 3.6, the carbon fibre rod in this test had a film of

superglue at its centre, similar to the amount used during a run, and the plastic straw contained
the 39 mg gelatin capsule and 140 mg of PTFE tape, also similar to that which would be used
in a run
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Figure 3.6: Comparison of sample mounting methods. The blue traces are from
the straw shown in figure 3.5 which has length 15cm, and is holding a 39 mg gelatin
capsule 7 cm along its length, containing 140 mg of PTFE tape. The red traces
correspond to the carbon fibre sample holder, also shown in 3.5, which has had a
film of superglue coated onto it, a similar amount to that which would be used in
measurement.

3.1.4 3He Insert

To extend the temperature range of our measurements down to 275 mK, the system

is equipped with a 3He insert. 3He has an odd number of nuclei, meaning that

its atoms obey fermionic rather than bosonic statistics. The lower mass of the

nucleus gives a lower boiling point, and the differing quantum statistics avoid

the superfluid transition - at least not until very low temperatures [48] - both of

which render it more useful as a coolant. Unfortunately, owing to its scarcity and

cost we cannot use it with as much abandon as 4He, so more subtle experimental

approaches are necessary.

The 3He probe for the magnetometer consists of an enclosed 3He space, which

couples thermally to the sample via a silver sample holder, which is held in an
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evacuated copper can, as shown in figure 3.7. The 3He space is coupled to the VTI

via a weak thermal link, such that we are able to cool the gas to 1.7 K, whilst the

sample is totally decoupled from the cryostat (except indirectly through the 3He).

The sample is held in place with a small amount of apiezon “N” grease, which

improves the thermal link with the 3He bath. Care must be taken when measuring

samples which are strong thermal insulators, as the lack of exchange gas within the

sample space means that all of the cooling takes place through the contact with

the silver sample holder. When this becomes an issue, samples can be crushed,

mixed with Ag powder and then sintered into a pellet with an improved thermal

conductivity.

3He gas

Sorb

Cooling

from VTI

Vacuum 

space

  Sorb 

heated

 Gas

released

Cold 

surface
    3He 

condenses

Sorb heater

  off

Sorb takes

in gas

1. 2. 3. 4.

Figure 3.7: Schematic showing the cycle by which the 3He insert achieves 275 mK.

Cooling within the insert occurs evaporatively, as in the main cryostat, except

here we use a sorption pump rather than an external mechanical one. The pump

comprises activated charcoal which adsorbs gas particles onto the surfaces of its

internal microstructure. The charcoal acts somewhat like a sponge, albeit one

whose ability to “sponge-up” 3He gas is dependent on its temperature. At low
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temperatures, the charcoal draws the gas inside itself until it reaches saturation,

and as the temperature increases it gradually “gives up” more and more of the gas

back to the 3He space. A schematic showing the operating procedure to reach 275

mK is given in figure 3.7 which comprises the following steps:

1. After the sample is mounted and the can evacuated the probe is inserted to

cool. As the insert cools (through the cold surfaces shown in turquoise), 3He

is drawn from the inner space onto the internal surfaces of the charcoal.

2. At base temperature, the sorbs become fully saturated with 3He, having

drawn in most of the gas.

3. Heaters ramp up the temperature of the charcoal, resulting in 3He being

rereleased. The gas subsequently condenses onto the cold surfaces, which

are at the VTI temperature T = 1.8 K. A puddle of liquid 3He forms at the

bottom of the insert.

4. The sorb heaters are ramped back down to base temperature, such that the

charcoal readsorbs the remaining 3He gas back inside itself. This results in a

reduction in pressure within the probe, causing the boiling point of the 3He

to drop: the puddle and by extension, the sample, drop to a temperature of

275 mK.

The probe is able to maintain its base temperature (275 mK) for around 2.5 - 3

hours before it begins to warm again. The hold time is dictated by the size of

the 3He puddle obtained in stage 3 before the sorbs are ramped back down. A

three hour wait on stage 3 appears to provide an almost optimal hold time, which

is crucial when performing field sweeps at base temperature. Once the liquid has

boiled off completely, the insert cannot get any lower than the VTI temperature,

and so the process must be repeated again.
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3.2 DMS

A cryogen-free demagnetising cryostat was used to carry out the transport and

AC-susceptibility measurements.

3.2.1 Adiabatic demagnetising refrigeration

The DMS (Dryogenic Measurement System) is a commercial cryogen-free cryostat

which uses adiabatic demagnetisation refrigeration (ADR) to cover a measurement

range from room temperature down to 100 mK. A two-stage cryocooler driven by

a compressor is able to precool the system to 4 K, before the ADR cycle which

achieves base temperature. The probe sits within an evacuated can which is placed

inside the cryostat tube. The tube is held at a slight over pressure of 4He such

that it remains “dry” - free of air which would otherwise freeze onto the surfaces

of the interior. This actually results in a build-up of liquid 4He at the bottom

of the tube, which helps anchor the can thermally to the base temperature of

the cryostat. The probe itself is coupled thermally to the can via spring-loaded

“buttons”, which push against its interior when the probe is twisted into position.

The sample and demagnetising magnets can both provide up to 7 T of field. A

cross-section of the cryostat is shown in figure 3.8. [49].

A paramagnetic salt pill which is attached to the very bottom of the probe draws

out the remaining heat to reduce the temperature of the sample from 4 K to 100

mK. The salt pill is a paramagnet, containing an ionic lattice of highly degenerate

local moments. In zero magnetic field, the moments are fully randomised which

results in a full magnetic entropy per site of Sm = kB ln(2J + 1), whilst in the

presence of an applied magnetic field, more and more moments will tend to coalign

along the direction of the field, which quenches the magnetic entropy. The salt pill

and sample stage may be coupled or decoupled to the cryostat - which acts as a

reservoir held at 4 K - via a mechanical heat switch which may be closed (coupled)

or opened (decoupled).

Figure 3.9 shows the entropy profile as a function of the temperature during the
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Figure 3.8: Cross-section schematic of the DMS [49].

demagnetising cycle. The salt-pill and low-temperature stage (LTS) are cooled to

4 K with the heat switch closed, before the demagnetising field is ramped up. The

field is increased to its maximum (typically ∼ 6.5 T), and the salt pill moments

become aligned. The heat switch is then opened - decoupling the LTS from the

reservoir - and the demagnetising field is ramped back to zero, re-randomising

the spins. As the pill/LTS is now effectively isolated, its entropy must remain

constant throughout the ramp. Consequently, as the local moments randomise,

their increase in entropy is matched by a reduction in the entropy associated with

their thermal motion - they slow down, and the system cools to 100 mK. The ability

of the LTS/salt pill to stay at base temperature is dictated by how well we can
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decouple it from the “universe”, and so both are protected from thermal radiation

by reflective shields, along with LTS being suspended by thermally insulating

Kapton supports once the heat-switch has been opened. In practise, we can hold

the sample below 500 mK for around 7 hours before the system begins to warm

up. Low temperature thermometry takes place via a semiconducting ruthenium

oxide sensor, whilst a Cernox sensor covers the high temperature range.

T

Sm / NkB

ln (2J +1)

μ0H = 6 T

μ0H = 0 T

TcryostatTlow

1. Cool sample to cryostat 

    base temperature with 

    heat switch closed.

2. Ramp up demag. field,

    holding the temperature

    constant. Spins become

    aligned.

3. Decouple experiment from 

    surroundings and ramp down 

    the field. The salt-pill draws

    heat from the sample in 

   "re-randomising" its moments.

4. Heat leaks into 

the experiment, 

warming it back 

to cryostat temp.

Figure 3.9: Entropy profile of the salt pill during a demagnetisation cycle.

Experimentally, the resistive and AC-susceptibility measurements are very similar.

In both cases, an AC excitation current is driven through a part of the set-up, and

the corresponding in-phase (or out-of-phase) AC voltage response is measured.

Figure 3.10 shows the arrangement for a “four-point” resistivity measurement.

Four contacts are made to the sample, approximately in a line, with the outer

two contacts passing a current I through the sample, and a potential difference V

measured across the inner two contacts.
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The current density J⃗ within the sample along the i-axis is given by Ohm’s law:

Ji = σijEj (3.3)

where σij is the conductivity tensor and Ej is the electric field within the sample

along the j-axis. For the geometry in figure 3.10 - if the sample is taken as

homogeneous and we assume a totally uniform electric field between the voltage

contacts - this relation reduces to7:

V =
ρIL

A
, (3.6)

where the resistivity ρ is the inverse of the conductivity σ. So, to maximise the

measurable signal - and consequently the signal-to-noise ratio - we can either in-

crease the excitation current I or make our sample thinner and longer (reduce

A/L). Increasing the excitation current is helpful, but this must be matched

against the resulting ohmic heating which takes place within the sample, growing

as I2. Samples are ideally as long as possible - although the length is generally

dictated by the original dimensions of the crystals themselves - and then polished

down to a very fine thickness8

In an AC susceptibility measurement the sample is placed within a measurement

coil, and is driven by a small AC magnetic field. By Faraday’s law of induction,

the voltage V measured across the ends of the coil is dependent on the perme-

ability µ = µ0(χ + 1) of the volume it encloses, such that we can determine the

magnetic susceptibility χ from the magnitude of V . From an excellent review of

AC-susceptibility measurements by Nikolo [51] - a driving field of frequency f and

7In the uniform field case, the current density reduces to:

J = I/A, (3.4)

and the electric field to -
E = V/L, (3.5)

such that a simple rearrangement of equation 3.3 produces equation 3.6.
8Focussed Ion Beam (FIB) lithography techniques have recently been exploited to make minia-

ture four-point measurements [50] such that samples with dimensions on the order of 1 µm may
be measured, where the signal from such a small sample can be boosted by precisely cutting
them into novel shapes which maximise the geometric factor L/A.
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Figure 3.10: Schematic of the sample and field arrangement in this four-point
resistivity measurement.

an amplitude Hac should produce a voltage V across the coil given by:

V =
vfHacχ

α
, (3.7)

where v is the sample volume and α is the coil constant, which is dependent on the

dimensions of the coil. Generally, due to the lagging of the magnetisation behind

the driving field, χ will have both real and imaginary components:

χ = χ′ + iχ′′, (3.8)

where the real part of χ reflects the actual magnetic susceptibility, whereas the

imaginary part describes energy losses within the sample due to eddy currents and

other irreversible processes.

In both cases we use phase-sensitive detection, whereby a lock-in amplifier provides

an excitation signal9 at frequency f , and then is able to detect the corresponding

component of the response at the same frequency. The lock-in acts somewhat like

a band-pass filter centred on the frequency f with a quality factor Q which is

determined by the time constant setting.

9The “reference signal”.
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3.3 Pressure

When applying pressure to a crystal lattice, the lattice shrinks in accordance with

its bulk modulus, which can have a profound influence upon a the electronic struc-

ture of a material.

3.3.1 Miniature anvil cell

An anvil cell generates a hydrostatic pressure environment by the compression of

a small volume of fluid, which is held within the walls of a metal chamber. The

“chamber” comprises a hole which has been drilled through the centre of a disc of

a ductile metal - the gasket - which holds the pressure fluid, and forms the sample

space. The “anvils” consist of two blocks of very hard material, each of which have

a smooth flat face known as the “culet”. The hole in the gasket is then pinched

between the culets, such that their walls flow inwards, reducing the volume of the

sample space and resulting in a build-up of pressure within the fluid. One anvil

is held fixed, whilst the other is attached to the end of a “piston”, and they are

driven towards the other by a hydraulic ram. A schematic of this process is shown

in figure 3.11:

Sample
Ruby

From laserTo spectrometer

Gasket

Anvils

Flow Flow

Force 

from ram

Figure 3.11: Operating principle of the anvil cell.
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Dunstan [52–54] has given a complete and comprehensive discussion of the oper-

ation of the anvil cell, with considerable focus on gasket design/preparation. He

finds that whilst the material used for a gasket must be sufficiently ductile that it

may flow in a way which creates an insulated and stable environment, it must also

be tough enough to withstand the enormous forces being generated by the pistons.

As the central portion of the gasket - see figure - flows into the centre, compress-

ing the “hole”, the portion of the gasket which sits just outside the central region

provides massive support to the material in the centre. This is shown in fig. 3.11

as a build-up of material outside of the central gasket region. The cumulation of

gasket material around the centre acts as a buffer, forcing the interior of the gasket

to extrude inwards, pressurising the fluid (and sample) within.

Piston

Gasket

Anvils

8
0

 m
m

6 mm

Figure 3.12: Miniature anvil SQUID cell, from [55].

Whilst diamond anvil cells have been commonly used in transport [37], AC-

susceptibility [56] or NMR measurements[57], in this thesis we present DC sus-

ceptibility data from a miniature anvil cell (MAC). This cell was designed within

the Quantum Matter group with the expressed purpose of use with a commercial
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SQUID magnetometer [55] - it is shown in figure 3.12.

As the pick-up coils in the magnetometer see the total flux from both the pressure

cell and the sample, it is crucial that the magnetic background from the cell is

as low as possible. In fact, it is somewhat amazing that such a set-up is able

to give any useable data at all, given the orders-of-magnitude difference between

the mass of the ≈ 20 g cell and the < 0.1 µg sample. Yet, with a suitable

choice of materials for the cell components, such cells have been shown to be

effective in studies of superconductors [58] and ferromagnets [59]. A high-purity

copper titanium alloy (97% Cu, 3% Ti) is used for the cell body, due to its very

low magnetic response. The alloying ratio is chosen such that the paramagnetic

susceptibility of the titanium matches the diamagnetic susceptibility of the copper

over a wide temperature range. Another alloy of copper - BeCu - is used for the

gaskets, owing to its superior mechanical strength. The anvils themselves would

ideally be made of ultra-high-purity diamond, whose strong covalent structure

gives it an unmatched “hardness”. In reality, there is always a tradeoff between

the benefit of the robustness of diamond and the significantly lower cost of a

synthetic alternative. Consequently, our SQUID cell uses Moissanite (SiC) anvils,

rather than diamond, and are more than adequate for the pressure region < 100

kbar [60].

1 mm

Preindented 

region

Sample

Figure 3.13: Preindented region of the gasket with a sample in the sample space.
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Prior to operation, the gasket undergoes a preindentation process, whereby the

thickness of the central portion of the gasket is reduced to an appropriate thickness.

A gasket which is too thick at the beginning of the run must change dimension

considerably during the course of an experiment, which can make the gasket prone

to failure10. For our gaskets, the final thickness is typically on the order of 100µm,

with a 400µm diameter hole drilled through its centre. Every effort must be made

to ensure that the walls of the drilled hole are as sharp and as clean as possible, as

any irregularities or asymmetries can serve as the nuclei for structural instability.

After preindentation, the gasket is cleaned ultrasonically in ethanol before being

heat-treated at 370◦C for 15 minutes to harden it.
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Figure 3.14: Main: Raw M(T ) data along with the empty cell run. Inset: Data
following background subtraction - a clear superconducting transition is present.

The gasket sits upon the lower anvil in the cell and is held in place with small blobs

of “Double Bubble” epoxy. Once dry, the sample and manometer can be placed

within the sample space along with the pressure medium. Figure 3.13 shows a

gasket after preindentation with a sample loaded. Consideration must also made in

10“Failure” here means that the walls of the sample space collapse, or the gasket splits slightly
causing pressure fluid to leak out, or in the worst scenario the complete destruction of the anvils.
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the appropriate choice of pressure medium. There are numerous review articles on

this subject [61, 62], and generally there is a balance between pressure media which

are easy to load experimentally, but may result in non-hydrostatic conditions at

high pressure - glycerin, Daphne 7474, say - or more technically challenging fluids

which give better pressure conditions in the high pressure limit - nitrogen, argon

and so on. For the pressure studies in this thesis, glycerin was used as a pressure

medium, which is adequate for the pressure regime < 50 kbar [61].

As a brief side-note, figure 3.14 shows how the magnetic background from the cell

is subtracted after a measurement. Namely, by removing the sample from the cell,

remeasuring the empty cell, and then subtracting this from the raw data. As can

be seen, this can work quite well.

3.3.2 Manometry

Green laser light

Adjustable mirror

Pressure cell

Dichroic mirror Spectrometer

Fluorescent light

from ruby

Figure 3.15: Layout of the optical bench used for the ruby fluorescence technique.

For pressure to be a useful tuning parameter we must be able to determine it with

convenience and accuracy. A manometer is always included in the high pressure

space to give out information about the pressure conditions within. For cells with

optical access to the sample space, a ruby chip is included, and its optical properties

as a function of the pressure can be tracked. Where no optical access is possible

- in the case of a piston-cylinder cell, say - a superconducting element (usually
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tin or lead) is included, whose pressure dependence of Tc(P ) is well-known. Given

the bulk nature of the SQUID cell measurement, the tin or lead method is far

from ideal. A large magnetic background becomes present in the data beneath the

critical temperature of the manometer, which can spoil data - particularly if one

is looking for features in the vicinity of the manometer transition11.
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Figure 3.16: Pressure dependence of the characteristic spectra of a ruby chip.

The MAC cell allows for optical access, and the ruby technique is used in prefer-

ence. This allows for rapid adjustment of pressure, by successively moving between

the ram and the optical bench. It also allows for the pressure to be determined at

room temperature, rather than having to cool the sample in a cryostat to find the

tin/lead transition.

Due to the presence of chromium (IV) impurities, the fluorescent spectra of ruby

shows two characteristic peaks at specific wavelengths R1 and R2. The location of

these peaks is strongly pressure dependent [63], shifting to higher wavelengths as it

is increased. The optical bench which is used for pressure determination is shown

in figure 3.15, whereby green laser light is directed by a series of adjustable mirrors

11This is not the case in a resistive measurement, where the tin or lead is totally decoupled
from the sample measurement, such that they can be both measured totally independently and
without interference
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to the interior of the cell, causing the ruby chip to fluoresce. The fluorescent light

then leaves the cell, passing back through one of the mirrors - which is dichroic

such that it reflects the green light, but transmits the red - and is focussed by two

lenses into the eye of the spectrometer. The signal from the ruby is optimised by

successive adjustment of each of the controls moving the cell and mirrors, before the

spectra is recorded. A Matlab function is then used to extract the corresponding

pressure from the peak location. An example of real spectra at ambient pressure

and at 46 kbar is shown in figure 3.16.
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Chapter 4

CeAgSb2

Here we investigate the ferromagnetic 4f system – CeAgSb2 with the aim of driving

it towards a ferromagnetic quantum critical point. We detail the pressure and field

dependence of the magnetic order, with particular focus on the critical fields and

pressure required to suppress the ferromagnetism totally.

4.1 Ferromagnetism in a 4f system

The experimental realisation of the ferromagnetic quantum critical point (FMQCP)

has been made difficult due to the reluctance of many FM transitions to remain

second-order down to the lowest temperatures. Initial focus on the behaviour of

weakly ferromagnetic d-electron systems such as MnSi [64] and ZrZn2 [65] found

that whilst magnetic order could be suppressed towards absolute zero by the appli-

cation of hydrostatic pressure, in both compounds the FMQCP was evaded by the

transition by becoming weakly first-order whilst still at finite temperature. This

crossover marks the existence of a tri-critical point, from which sheets of meta-

magnetic transitions extend, accessible by the application of a finite applied field

[66].

Perhaps the most dramatic example of such a scenario is found in the 5f ferro-

magnet URhGe. URhGe is a coexistent ferromagnetic superconductor with Curie
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(a)
(b)

Figure 4.1: (a) Magnetic phase diagram of URhGe for two different field directions.
Tricritical point can be seen at around 12 T as TC is suppressed to 0 K, around
which superconductivity grows, from [67]. (b) Reemergence of superconductivity
at high fields in the proximity of the tricritical point, from [39].

and superconducting critical temperatures of TC = 9.5 K and Tc = 0.25 K, respec-

tively [68]. Both transition temperatures may be suppressed with a magnetic field

applied along the crystallographic b⃗ direction. As in the d-electron systems just

mentioned, the line of second order transitions corresponding to TC(Bb) terminates

at a tricritical point at around 12 T – shown in figure 4.1 (a) – from which two

metamagnetic wings extend into Bc phase space1 [67]. Amazingly, superconduc-

tivity is found to reemerge around this tricritical point, as shown in figure 4.1 (b)

[39]. The applied field initially “kills off” SC at low Bb, before inducing it again at

much greater fields! Although the origin of this effect is not known for certain, it

has been suggested to be the result of a complicated interplay between the critical

fluctuations stemming from the end-points of the sheets, and a small pocket of

heavy quasiparticles whose size shrinks to zero at a topological Lifshitz transition

[67].

There has been evidence of a Yb based 4f 13 system showing behaviour consistent

with ferromagnetic criticality2. YbNi4P2 is a quasi-one-dimensional ferromagnet,

1This corresponds to field applied in the c⃗ direction
2Yb-based systems are analogous to Ce-based compounds: instead of having a nearly empty
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with isolated chains of Yb ions coaligning below a Curie temperature of TC = 0.17

K [69]. Here, a linear-in-T dependence of the electrical resistance is found over

many decades, along with a logarithmic dependence of the heat capacity. Doping

on the phosphorus site with isovalent arsenic (effective negative chemical pres-

sure) suppresses TC [70], and at a critical concentration the magnetic Grüneisen

ratio is found to diverge, consistent with the approach of the FMQCP and strong

associated ferromagnetic fluctuations. This is shown in figure 4.2.

Figure 4.2: Signatures of ferromagnetic quantum criticality in the 1-dimensional
system YbNi4(P1−xAsx)2 at a critical doping xc = 0.1, taken from [70].

It is likely that the difficulties faced by 2-D or 3-D ferromagnets as T → Tc are

circumvented due to the effective low-dimensionality of the system. It is known

that quantum fluctuations become enhanced as the dimensionality of a system

is reduced, also becoming more prone to electronic or structural instability3. For

example, in a purely theoretical limit, the Mermin–Wagner theorem [72] shows that

no phase transition exists into a magnetically ordered, spontaneously-symmetry-

broken state for any system with D≤ 2, due to the strong influence of the quantum

fluctuations.

f shell, containing a single electron (Ce3+ ion: 4f1), they have a nearly full 4f shell containing
a single hole (Yb3+ ion: 4f13.)

3See - for example - the “Peierls instability” in 1-D [71]
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CeAgSb2 is an interesting system to study in that it offers a unique possibility

of realising the FMQCP in a 4f ferromagnet. Whilst there are now a wealth of

“classical” quantum critical antiferromagnets – CeCu2Si2, CeIn3, CePd2Si2 and so

on [73] – there are as of yet no instances of a 4f ferromagnetic system showing

critical behaviour as its magnetic order is tuned to zero temperature.

This is partially due to most intermetallic Ce-based Kondo-lattice systems ordering

antiferromagnetically at low temperatures, making CeAgSb2 somewhat unusual.

It has been shown to order ferromagnetically below a Curie temperature TC of 9.6

K4 and belongs to a broader family of Kondo-lattice systems forming as CeTSb2,

where T = Au, Ag, Pd, Cu, Ni [74, 75], all of which crystallise in the ZrCuSi2-type

structure (space group P4/nmm [76]) – this structure is shown in figure 4.3.

c-axis

Figure 4.3: Crystal structure of CeAgSb2. Each unit cell contains two formula
units, four unit cells are shown here.

The tetragonal symmetry of the crystalline electric field (CEF)5 acting upon the

4Coincidentally, CeAgSb2 shares the same transition temperature and ordered moment as
URhGe, although whilst URhGe is orthorhombic, CeAgSb2is tetragonal. Also, 4f and 5f states
are not exactly analogous, as can be seen from their radial distribution functions – 5f states are
more delocalised than 4f states, such that they are on the boundary between local and itinerant
states.

5In crystalline solids, the electrostatic influence of neighbouring atoms may act so as to lift
the degeneracy of their sub-shells. The particular point symmetry of the site in question then
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Ce3+ ion lifts the 6-fold degeneracy of the J = 5/2 ground state multiplet, creating

three Kramer’s doublets. The crystal field scheme has been well described from

thermodynamic measurements [77] and via inelastic neutron scattering [76]. The

neutron measurements have also identified the magnetic order as being unequiv-

ocally ferromagnetic, with each Ce moment oriented uniaxially along the c⃗-axis,

albeit coupled via anisotropic exchange interactions [76, 78]. The new |Jz = ±1
2
⟩

CEF ground state accounts for the reduced saturated moment observed in the FM

phase. The excited levels (∆1, ∆2) sit far from the transition temperature TC –

at 60 K and 140 K [76–78] – and as such the ordered moments in the magnetic

ground-state are of an Ising-type6.

Figure 4.4: Theoretical Fermi surfaces for CeAgSb2, matched against dHvA fre-
quencies from [79]. The left hand figure corresponds to a hole sheet, whilst the
other two are electron-like.

The Fermi surface has been probed via de Haas-van Alphen (dHvA) [79] and

Shubinikov-de Haas [77, 80] measurements, revealing the presence of a large and

hollow, corrugated cylindrical Fermi-surface, with a mass enhancement of around

20-30 me, along with smaller hole and electron pockets - these are shown in figure

determines the characteristics of the newly split levels.
6In the Ising model a lattice of spins are made to point in one of two directions, with an

exchange interaction between neighbours which can be ferro- or anti-ferromagnetic in character.
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4.4. The comparison of the Fermiology with LaAgSb2 suggests that the 4f electron

remains localised in CeAgSb2; we are not yet in the heavy Fermi-liquid regime.

Thermopower measurements in the literature suggest that the Kondo temperature

TK in this system may be around 60 K [81], although this seems to be at odds

with the fact that the full magnetic entropy R ln 2 is retained by TC [82]. Kondo

screening setting in so far above the transition temperature would be expected to

have begun to quench the magnetic degree of freedom on the local moment at TC ,

whereas this is not seen in thermodynamic data.

The ordered phase is populated by thermally activated ferromagnetic spin waves,

which – owing to the uniaxial nature of the ordered state – are necessarily gapped.

The magnons are the Goldstone bosons corresponding to the symmetry breaking

which takes place at Tc [83]. This is made manifest in an exponential e−∆/kBT

dependence of the heat capacity and electrical resistivity [77, 78, 84], and can be

seen explicitly in the magnon dispersion as determined from inelastic neutron

scattering [76].

Figure 4.5: Spin-wave dispersion of CeAgSb2along high-symmetry directions,
taken from [76].

Previous studies have attempted to drive the magnetic transition to zero temper-

ature through application of hydrostatic pressure [84–86] and an in-plane tuning
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field [76, 78, 84, 87]. Resistivity and specific-heat measurements found that TC is

suppressed with pressure, and appears to extrapolate to 0 K by 35 kbar. The A

coefficient to the quadratic term of the electrical resistivity – which reflects the

quasiparticle scattering cross-section [28] – becomes greater near the critical pres-

sure Pc [84], a feature commonly associated with the enhanced scattering due to

critical fluctuations. The residual resistivity ρ0 is also affected in the proximity of

Pc, jumping by two orders of magnitude at pressures beyond 35 kbar [86].

A magnetically ordered ground state in a Kondo lattice system means that the

RKKY interaction [88] has precedence over Kondo screening at low temperatures.

RKKY coupling is an indirect exchange interaction between local spins via itin-

erant states which promotes magnetic order. The exchange interaction takes the

form –

J (R) ∼ sin(2kFR)− 2kFR cos(2kFR)

(kFR)4
(4.1)

where kF is the Fermi wavevector and R is the separation between local spins,

meaning that it may favour co-parallel or antiparallel spins depending on the value

of kFR [89]. The oscillatory nature of the RKKY term means that as kFR changes

under the influence of an external tuning parameter, a ferromagnetic phase could

turn antiferromagnetic before the FMQCP is reached. Indeed, this may be the

case in CeAgSb2 – Sidorov et al [84] report that the transition becomes first-order

at around 27 kbar, at which point a new antiferromagnetic ground state sets in.

It is not, however, so clear that the transition truly does turn first-order from

their data as they infer this only from a change in the nature of the anomaly in

dρ/dT , rather than from a thermodynamic quantity such as the magnetisation or

specific-heat – see figure 4.6.

The AF phase is said to persist to up to a second critical pressure P c at around 50

kbar, although it could be that the features tracked in ρ(T ) become too indistinct

to follow to higher pressures. A similar scenario arises in the sister compound

CeAuSb2, which is AF below TN = 6.8 K [90], and cascades through a series of

high-P magnetic states as the pressure is increased – see figure 4.6.
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(a)

(b)

Figure 4.6: (a) From [84] - dρ/dT at a range of P , the pressure dependence of the
A coefficient and the residual resistivity, and the proposed PT phase diagram. (b)
PT phase diagram of CeAuSb2 from [90].

CeAgSb2 is made more attractive still by the sensitivity of its magnetic order

to a transverse applied field. A critical field Hc of around 3 T [76] applied in-

plane is sufficient to destroy the magnetic phase. This has been tracked via the

magnetisation [87], transport [77] and most revealingly through neutron scattering

measurements [78]. No critical behaviour has yet been reported near the critical

field, although there is a lack of focussed low-temperature study around Hc.

Inelastic neutron scattering [76] has shown that the ordered moment along the

c⃗-axis is suppressed continuously to zero as the transverse field is increased to Hc.

They claim that the critical field corresponds to the switch from a |+1
2
⟩ ground

state to a linear combination of |±1
2
⟩ and are able to reproduce the magnetic

behaviour of CeAgSb2 – shown as solid lines in figure 4.7 – via a Hamiltonian which
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(a) Field dependence of the in-plane and
easy moments as determined from neutron
scattering.

(b) HT phase diagram showing the
boundary between the ordered and the
paramagnetic/spin-polarised states.

Figure 4.7: Inelastic neutron scattering of CeAgSb2, [76].

takes into account the CEF splitting, the Zeeman interaction, and an anisotropic

exchange interaction between neighbouring Ising-like moments. Again, under the

influence of a transverse field, CeAuSb2 has been shown to display non-Fermi liquid

characteristics consistent with critical fluctuations at its in-plane field induced

QCP [91, 92].

The motivation and approach we adopted in studying CeAgSb2 can be summarised

as follows:

1. Using a miniature-anvil SQUID cell, study the pressure dependence of the

ferromagnetic phase via the magnetisation: reproduce the pressure depen-

dence of the Curie temperature TC(P ) given in the literature [84], and de-

termine the pressure dependence of the saturated moment Msat(P ).

2. Investigate the purported AF phase which may appear above 27 kbar –

determine the pressure dependence of TN(P ) and the critical pressure Pc2.

3. On approach to the critical pressure Pc = 35 kbar, look for diamagnetic

signatures in the magnetisation consistent with the appearance of supercon-

ductivity (and around Pc2 if the high pressure phase exists).

4. Using a transverse field, map out the phase boundary separating the FM and
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PM states as described in [76–78] via DC/AC-susceptibility and the electrical

resistivity.

5. With the DMS, make careful low-temperature measurements of the region

of the HT phase diagram near the critical field Hc, to look for signatures of

critical fluctuations in the AC-susceptibility and the electrical resistivity.
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4.2 Synthesis and characterisation

Samples were grown in-house by Zhuo Feng from the Quantum Matter group and

Prof. Takao Ebihara of Shizuoka University [93]. They were flux-grown in an

excess of Sb, using high purity Ce chips (99.9%), Ag powder (99.99%) and Sb

shots (99.99%). The mixture is loaded into an alumina crucible, vacuum sealed in

a quartz ampoule and then melted together in the furnace. The molten mixture is

heated to 1200 ◦C and then cooled slowly to 720 ◦C at 5-6,◦C.h−1. The excess Sb

is removed by turning over the ampoule at 750 ◦C when the Sb is still liquid. The

dimensions of the synthesised single-crystals are on the order of 1 mm× 1 mm ×
0.5 mm.
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Figure 4.8: Magnetic measurements to characterise single-crystal CeAgSb2 sam-
ples. Red traces correspond to in-plane measurements, whilst the blue ones are
along the easy axis.

The samples cleave into platelets lying in the ab-plane, meaning that it is very

straightforward to identify their orientation [82]. Magnetic characterisation of the

samples – see fig. 4.8 – reveal a magnetic transition appearing at TC = 9.6 K,

whose character differs between the easy and hard directions. Isothermal field

sweeps measured along the c-axis reveal a sharp, clear hysteresis, consistent with

ferromagnetism in this direction.

75



Synthesis and characterisation CeAgSb2

0 100 200 300
0

25

50

75

100

125

150

0 5 10 15
0

50

100

 (
cm

)

Temperature (K)

CeAgSb2

0H = 0 T
J in-plane

 (
cm

)

Temperature (K)

TC

Figure 4.9: Transport measurements to characterise single-crystal CeAgSb2 sam-
ples. Inset shows the kink at TC corresponding to the ferromagnetic transition.

Figure 4.9 shows the temperature dependence of the electrical resistivity from room

to base temperature. The trace was normalised to the values in the literature. It is

weakly temperature dependent at high temperatures before an upturn, which has

been attributed to the onset of the Kondo screening [77]. This Kondo screening

achieves coherence at the start of the downturn shown in the inset of figure 4.9

before the sample becomes magnetic and the resistivity drops exponentially from

the kink at TC , as thermally activated magnons become frozen out [94]. The

high-quality of these samples is reflected in their RRR values, in this case RRR =

130.
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4.3 Pressure Tuning

Firstly, we investigate the influence of hydrostatic pressure upon the magnetisation

M(T, P ) with a miniature anvil cell. The cell was set up as described in chapter 3,

with glycerin used as the pressure-transmitting medium. The magnetic moment

is measured along the easy c-axis, which is convenient experimentally due to the

platelet-like nature of the samples. The sample was placed in the cell before the

ruby, such that it lay as flat as possible on the bottom surface of the culet.

The MAC cell gives the most reproducible signal between different pressure points

when the condition and position of the cell in the pick-ups remains unchanged,

and also that the cell has experienced the same magnetic history prior to each

experimental run. Due to the cell giving a magnetic signal which may be of the

same (or far greater) magnitude than the sample, it is very easy to produce a series

of pressure points which cannot be readily compared, due to care being taken in

preparing the cell properly after every increase of pressure.

This was particularly pertinent in this study, as a key aim was to chart the change

in the saturated moment – Msat – with pressure, as well as the transition temper-

ature Tc. As Tc usually reveals itself as quite a strong feature in the trace, it can

almost always be extracted – even in relatively “low quality” experimental data.

To ensure consistency between pressure points, the cell was washed thoroughly in

solvent after each pressure change. This is to try and eliminate contamination of

the cell from the ram, and other pressure-applying paraphernalia. Also, the posi-

tion of the locknut on the sample rod was not adjusted whatsoever, and similarly

the applied field (0.4 mT) remained unchanged in the susceptometer during the

investigation7

The raw data from this study is shown in figure 4.10 and the background-subtracted

data is shown in figure 4.11. Even in the raw data, the ferromagnetic transition at

TC is very apparent. All plots in figure 4.10 are given on the same scale, such that

7It is worth noting that after six different runs with the MAC to measure CeAgSb2, all yielded
a reasonable TC vs. P relation, only a single data-set was sufficiently “internally consistent”
between each trace that the pressure dependence of the saturated moment could be inferred
with any conviction.
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the difference between them in the FM state can be compared directly. Looking

at the top left plot, which corresponds to the ambient pressure data before the

cell has been properly closed and tightened, it seems strange that the saturated

moment then increases after the application of a relatively modest pressure (2.94

kbar), and then reduces successively after the pressure increases further. It is likely

that during the initial application of pressure, the position of the sample within

the cell changed slightly8, and then remained consistent throughout the rest of

the study. Alternatively, the condition of the cell may have been slightly different

during the ambient pressure run, and then remained consistent throughout the

other pressure points. This is evidenced by the similarity between the character

of each of the traces at temperatures above TC , except that at ambient pressure

which appears to have a slightly different gradient. As this is a region in which

the sample signal is effectively zero, we can use this temperature range to compare

the cell backgrounds.

To extract the influence of the cell from the data, traces at pressures beyond

the critical pressure were used as a background. Ideally, the cell background is

obtained by removing the sample from the cell and then measuring it empty. As

already discussed, the susceptometer is highly sensitive to subtle changes in the

condition of the cell. For this run, the gasket became contaminated during the

removal of the sample and a background run was not possible. The bottom right

plot shows two traces at pressures beyond that which fully destroy the FM phase.

The choice of these traces as an appropriate background corresponding to the cell

is justified by looking at figure 4.9 and also the similarity of the data for T > TC

for all pressures. The characterisation data shows that the signal from the sample

above the transition temperature is many orders of magnitude less than that below

it. Consequently, the shape of the trace above TC must (at least in a very major

way) correspond to the response of the cell.

The background was estimated by making a quadratic fit was made through the 35

kbar trace, whose 1st and 2nd order contributions of (1.41± 0.4)× 10−10A.m
2
.K−1

and (4.9± 2)× 10−12A.m
2
.K−2. The zeroth-order constant is left free for each fit -

8For example, that it was at a slight angle and was pushed flat as the gasket came under
force.
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as the MAC will very rarely gives a consistent initial signal size after the pressure

has been increased9 - and then adjusted such that all traces overlap for T > TC .

The Curie temperature TC is extracted from our temperature sweeps at a nominally

zero field. Here, we use 4 G to encourage the formation of a single magnetic

domain. TC is defined – as shown in the inset of figure 4.11 – as the point of

intersection between two straight lines drawn through M(T ) on either sides of

the turning point. An Arrott-type analysis [95] would provide a more rigorous

determination of TC , although in the present case is not suitable given the strong

influence of the cell inM(H) measurements. Due to the uncertainty in determining

the mass and/or dimensions of such a small sample, the plot has been left in the

raw units of the measured moment.

The application of pressure reduces the ordering temperature and saturated mo-

ment. It is possible to track TC down to temperatures of around 3 K. A plot of

TC(P ) is given in figure 4.12, with pressure points shown from three different anvil

cell runs using the same pressure cell and parent sample. Pressure was determined

for the second and third cell runs via the ruby fluorescence technique, whereas the

superconducting transition of Sn was used for the first. The lack of discrepancy

between the two methods highlights their equivalence, although the ruby method

is more suited to bulk magnetisation measurements.

The curve shown on figure 4.12 is a power-law fit to TC(P ) = A|P − Pc|α. This

yields a critical pressure Pc of 35.8 kbar, along with the exponent α = 0.35± 0.05.

Both of these numbers agree well with those previously reported in the literature

[84, 86]. The pressure dependence of the saturated moment (normalised to the

moment at zero pressure) is shown in the right of figure 4.11. The moment remains

roughly constant up to around 10 kbar, beyond which it begins to fall, dropping

roughly linearly to zero by the critical pressure. The low pressure dependence –

from 0 kbar to ∼ 7 kbar – ofMsat was independently checked with a piston cylinder

SQUID cell, which confirmed its approximate constancy in this pressure range.

As a result, the saturated moment is likely to have a highly non-trivial dependence

9Whilst there may be an arbitrary offset in the signal size between pressure points, pro-
vided care has been taken in increasing the pressure the temperature dependence should remain
identical.
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Figure 4.12: Left: PT phase diagram showing the location of the ferromagnetic
phase as a function of the applied pressure P . The dot-dash line is a fit to TC(P ) ∝
|P −Pc|α with Pc = 35.8 kbar, and α = 0.35±0.05. Right: Pressure dependence of
the saturated moment, where the error bars reflect the change in pressure before
and after the measurement.

on the applied pressure. The simple Landau theory would predict that the moment

should follow a power law dependence - Msat ∼ |1 − P/Pc|0.5, although this is

evidently not the case here10. The benefit of the piston cylinder cell is that in

admitting a much larger sample, the influence of the cell on the data is far less

significant. Consequently it is more suited to the saturated moment study than

the MAC cell, whose sample space (and as a result sample signal) is many orders

10Assuming that the free energy as a function of P and M takes on the form

F = a(P )M2 + b(P )M4 + ..., (4.2)

then, at equilibrium where dF/dM = 0 and a finite magnetisation Msat we have that

M2 = − a

2b
(4.3)

and assuming a(P ) = a0(P − Pc), it follows that

Msat ∼ |P − Pc|
1
2 . (4.4)
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of magnitude smaller. To investigate the apparently unusual dependence of Msat

on P in this region it would be desirable to use a piston cylinder cell which is able

to withstand pressures of up to 15 kbar.

The high pressure (P > 35 kbar) data did not show any signatures consistent with

the existence of antiferromagnetism. Following the removal of the FM state, the

traces became flat and remained so up to the highest measured pressures (≈ 55

kbar). This is not, however, particularly revealing. Unlike a superconducting or

ferromagnetic transition, the system does not undergo an abrupt increase (or de-

crease) of its M at the Neél temperature TN . This means that a DC measurement

such as this (which couples to the magnitude of M) may not have the sensitiv-

ity to resolve TN , whereas a differential measurement coupling to dM/dH – such

as AC-susceptibility – might. For a DC measurement, an AF transition may be

made sharper in the data by applying a suitably strong field; this is not beneficial

here due to the increasing background of the cell in higher fields. Similarly, no

diamagnetism indicative of superconductivity was found around 35 kbar, nor at

higher pressures.
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4.4 Field Tuning

Previous studies in the literature have shown that the ferromagnetic state is sen-

sitive to the application of a transverse applied field, which we will examine here

through the electrical resistivity, and both AC- and DC-susceptibility measure-

ments. Whilst the low temperature critical region of the PT phase diagram has

been investigated in the literature somewhat already, the same measurements do

not exist for the analogous field-induced zero-temperature transition..

4.4.1 Transverse magnetisation

To track the field dependence of the ordered phase we would, ideally, simulta-

neously measure along the easy (Mc⃗) axis, whilst tuning with a transverse field

applied in the a⃗b-plane. Unfortunately, owing to the arrangement of the pick-

up and external field-applying coils within the Cryogenic Ltd SQUID this is not

possible. Instead, we are forced to track TC(H) indirectly, by identifying the corre-

sponding signature in the a⃗b magnetisation and seeing its response to the field. As

shown in the characterisation measurements previously, the in-plane DC response

shows a sharp peaked feature at TC , and so it is this feature which will be followed.

For this study, a sample with mass 6 mg – fixed with superglue to a graphite stick

– was measured in the susceptometer. The flat surfaces of the platelet-like samples

are normal to the easy-axis, making it relatively straightforward to orient them

with precision. The quality of the orientation can be checked further by monitoring

the sharpness of the features appearing in Ma⃗b, as components of the tuning field

which are directed along the c-axis break the symmetry of the magnetic state above

TC , resulting in a softening of the feature in Ma⃗b.

Figure 4.13 shows Ma⃗b(T ) at a number of fields. No hysteresis was found on

any trace at any field or temperature. Unfortunately, we cannot take this as an

indication that the transition has remained second-order, as we are not probing

the FM moment directly. The feature which we identify as corresponding to the

ferromagnetic transition becomes suppressed to lower temperatures as the applied
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Figure 4.13: Temperature dependence of the in-plane magnetisation at various
transverse fields. M and H in SI units such that M/H is dimensionless.

transverse field is increased, although it becomes difficult to resolve the anomaly

in Ma⃗b(T ) at fields above 2.5 T. Consideration of the phase diagrams given in

the literature [76–78] suggests that this may be due to TC dropping away rapidly

towards 0 K as the critical field approaches.

At this point, it becomes useful to approach the phase boundary in an orthogonal

direction by holding the temperature constant and sweeping the field. Some of

these sweeps may be seen in figure 4.14. The disappearance of the c⃗-axis component

of the magnetisation is identified as the change in slope of M(H). As shown in

figure 4.14, Hc is extracted by drawing two straight lines on either side of the

corner and finding the intersection. As in the temperature sweeps, the isotherms

exhibit no hysteresis, and the character of M(H) remains consistent down to 280

mK. This suggests that the nature of the transition remains constant from zero
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up to the critical field.
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Figure 4.14: Isothermal field sweeps for CeAgSb2, measured in-plane.

The critical fields and temperatures for both of these studies are included on the

phase diagram shown later on in this chapter.

A very useful Maxwell relation exists which relates the magnetisation M to the

entropy S: (
∂M

∂T

)
H

= −
(
∂S

∂H

)
T

. (4.5)

This offers a pathway toward other thermodynamic measurements, which can be

used to corroborate the results of our DC-susceptibility study.

Specific heat measurements of CeAgSb2 in a transverse field – made by Yang Zou,

a PhD student in the Quantum Matter group – are shown in figure 4.15. In zero-

field, C/T increases as TC is approached from above and shows a sharp peak at the

transition. This is what we would expect for a continuous phase transition in the
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presence of critical fluctuations. With increased field, the anomaly broadens and

shifts to lower temperatures. Interestingly, up to a field H∗ there exists a crossing

point at a temperature T ∗, through which all curves intersect almost exactly i.e.

C(T ∗, H ′) = C(T ∗, H ′′) for all H ′, H ′′ < H∗, as shown in the inset. As can be

seen, the curve corresponding to 7 T does not intersect at this point, and the rest

of the data (not shown) suggests that H∗ ≈ Hc.

Provided that C(H)|T=T ∗ does not contain any peculiar wiggles up to H = H∗,

the existence of the crossing point means that we can infer:(
∂C

∂H

) ∣∣∣∣
T=T ∗,H<H∗

= 0. (4.6)

Then, equipped with the Maxwell relation (eqn. 4.5) we can examine the conse-

quences of this condition on the magnetisation M . Substituting into equation 4.6

for the heat capacity C in terms of the entropy S, we find

∂

∂H

{
C = T

(
∂S

∂T

)}∣∣∣∣
T=T ∗,H<H∗

=
∂

∂T

(
∂S

∂H

) ∣∣∣∣
T=T ∗,H<H∗

= 0 (4.7)

⇒
(
∂2M

∂T 2

) ∣∣∣∣
T=T ∗,H<H∗

= 0. (4.8)

Thus, the crossing point in the specific heat ought to correspond to a point of

inflection in the magnetisation. The right-hand side of figure 4.15 shows the second

derivative of the magnetisation with an inset showing the point at which M ′′ = 0,

corresponding to the crossover in the specific heat. Also in the specific heat, as

the field moves beyond the critical field the point at which M ′′ = 0 begins to shift,

in this case moving to higher temperatures.

These appearance of such crossovers has been discussed in the literature by Voll-

hardt [96, 97] who highlighted and analysed their presence in a number of systems;

the term isosbestic point was borrowed from spectroscopy as a moniker for the

crossover due to the similarity with an optical effect found in chemical systems.

The intersection of specific heat curves under the influence of a thermodynamic

variable X – here, the applied field H – was shown to be related to a sum rule

involving the entropy at high T . Moreover, the presence and width of the crossing
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window is determined by the properties of the higher-order-moments of the gener-

alised susceptibility associated with the variable X – in our case, ∂nM/∂Hn. Simi-

lar crossing points have also been found in heavy fermion compounds CeCu5.5Au0.5

in a transverse field [98] and CeAl3 under pressure [99], along with the skymion-

lattice system MnSi [100] in an applied field.

A more complete analysis of the M(T,H) and S(T,H) data, not simply the cross-

ing points, using equation 4.5 is currently in progress.
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Figure 4.15: (a) Specific heat of CeAgSb2 in a transverse field. The inset shows
the crossing point at different fields as described in the text. (b) Second-derivative
of the magnetisation M ′′ at various transverse fields, with an inset showing the
corresponding feature to the crossover.
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4.4.2 Resistivity

The in-plane resistivity was also measured in a transverse field using the DMS to

allow measurement down to 100 mK. The single-crystal sample was cut into shape

with a wire-saw before being polished to a suitable thickness, final dimensions

≈ 2×1×0.2 mm. An AC excitation current of 1 mA and f=23 Hz was applied

in-plane, with the external field applied across the sample.

Example traces are shown in Fig. 4.16. An anomaly corresponding to TC can be

seen in the zero-field data, although is rapidly washed as the field is increased,

consistent with reports elsewhere [77]. Figure 4.16 includes a ρ(T ) = ρ0 +AT 2 fit

to the zero-field data, which is fitted up to 500 mK (as shown later in figure 4.18).

Quite evidently, this is not a good description of the data; there is a clear higher-

than-quadratic contribution.
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Figure 4.16: ρ(T ) data at various transverse fields. The dotted line is a low-T fit
of ρ(T ) = ρ0 +AT 2 to the zero-field trace – as shown in the top left of figure 4.18
– to show the superquadratic dependence of the resistivity.

Looking at the low temperature data, as in the top left of figure 4.18, the resistivity

only returns to the T 2 dependence expected of a simple Fermi-liquid at the lowest
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temperatures. This was previously attributed to scattering from thermally acti-

vated spin-waves [77, 79, 84] which become frozen out at the lowest temperatures.

In particular, the existence of a gap ∆ in the magnon dispersion results in an

exponential dependence of ρ(T ), rather than a simple power law11. The resistivity

then has the form ρ = ρFL + ρm, where in addition to the usual quadratic T term

ρFL, the contribution from magnon scattering ρm is given by [94]:

ρFM = BT∆

(
1 +

2T

∆

)
e−∆/T (4.9)

ρAFM = C∆5

{
1

5

(
T

∆

)5

+

(
T

∆

)4

+
5

3

(
T

∆

)3 }
e−∆/T , (4.10)

corresponding to scattering from FM or AFM magnons.
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Figure 4.17: Semilog plot of ρ(T ) for zero and 6 T transverse fields, with a com-
parison of the fits to eqn. 4.9 (red) and 4.10 (blue), together with the Fermi liquid
contribution - ρ(T ) = ρ0 + T 2 - determined as in the top left of figure 4.18.

In figure 4.17 the results of the zero-field and 6 T fit to equations 4.9 and 4.10 are

shown12 Equation 4.9 provides the better fit in zero-field, although upon applica-

11Scattering from AFM / FM ferromagnetic spin-waves results in a T 2/T 1.5 dependence of
ρ(T ) [94].

12This is done by first fitting the low-temperature data - 100 mK to 500 mK - to ρ = ρ0+AT 2,
and then fixing ρ0 and A, before fitting the one of the full expression above up to ≈ 9 K.
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tion of a transverse field, the FM fit becomes superior. The field dependence of the

coefficients from the FM fit are shown in figure 4.18, along with the goodness-of-fit

parameters R2.

The dotted lines on the figures show the location of the zero-temperature critical

field, as determined from the magnetic measurements, and each of the parameters

shows some sort of a change at Hc. For example, the A-coefficient - obtained

via a low temperature (100mK - 500mK) fit to ρ(T ) = ρ0 + AT 2 – appears to

become enhanced in the critical field region ∼ 2.8 T. A naive interpretation of the

system at Hc as a gapless FM state would result in a quadratic T dependence of

the electron-magnon scattering. Therefore it is unclear whether the increase in A

reflects changes in the electron-electron, or electron-magnon scattering. The gap

obtained by the FM fit is suppressed by the transverse field, although remains finite

above Hc
13. In the high-field paramagnetic (PM) region the resistivity retains a

higher-than-quadratic temperature dependence for intermediate T > 1 K.

13It is difficult for us to say exactly what happens at Hc with this data-set for lack of field
points. At the time the data was collected, the critical field was taken as that which was quoted
in the literature – around 3 T – whereas our own subsequent measurements revealed it to be
slightly lower.
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Figure 4.18: Field dependence of the fitting parameters obtained by fitting the data
to equation 4.9. Bottom figure shows the field dependence of the goodness-of-fit
coefficient.
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4.4.3 Transverse AC susceptibility

An AC-susceptibility experiment was designed in such a way to allow simultaneous

detection along the easy axis and transverse field tuning along the hard axis. A

schematic of the set-up which went into the DMS is given in figure 4.20. The

susceptometer itself was made by Dr F. Malte Grosche, and comprises of three

mutually wound coils – two pick-up coils and one modulation coil - held in place

with two nylon bolts, which are then screwed into an aluminium bracket. The

sample is affixed to one of the ends of the bolts by a residue of GE varnish.

Thermalisation to the sample stage takes place via a 500µm silver wire, attached

to the sample with silver epoxy. The wire is fed out of the bracket via a groove

cut into one of the bolts, and then screwed firmly beneath a washer mounted on

the copper sample platform. The device was assembled by Hong’En Tan, another

PhD student in the Quantum Matter group.

Pick-up coil 1

Pick-up coil 2

Modulation coil

Hac

Htune

To heat sink

Nylon screws

Sample

c

(a) (b)

Figure 4.19: (a) Schematic of the coilset and its components. (b) Coilset on copper
sample platform after measurement.

The sample itself was the same sample as was used for the transverse DC-magnetisation

study shown in section 4.4.1, with mass 6 mg and dimensions on the order of

1×1.5×0.5 mm3.

A lock-in amplifier in conjunction with a balanced current source [101] provides

the AC signal at 29 Hz for the drive-coil. The frequency is chosen to optimise

the performance of the transformers, and to avoid multiple or rational fractions
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of 50 Hz. Initially, an excitation current of 1 mA was used, although this was

varied later on in the experiment to investigate the dependence of our signal on

the amplitude of the driving field. An estimate of the field likely to be generated

by our coil using Ampére’s law predicts that an excitation current of 1 mA will

generate a driving field with amplitude 1 Oe.
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Figure 4.20: AC-susceptibility measured along the easy axis for CeAgSb2 in zero
field. The peak at ∼10 K corresponds to the magnetic transition, whilst the feature
at low temperature is due to the superconducting transition of the aluminium
cradle holding the coil. Inset: The imaginary part χ′′

||.

Figure 4.20 shows the real part of the easy-axis susceptibility χ′
||, in zero applied

transverse field. A clear feature can be seen at TC = 9.6 K, which corresponds to

the magnetic transition. Also visible at lower temperatures is a feature due to the

aluminium bracket becoming superconducting14. The inset shows the imaginary

part of the susceptibility χ′′
||, which also shows a strong feature growing out of TC .

14This had been considered when designing the assembly, but given the relatively low critical
field of aluminium (10 mT) [102], was not considered important.
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The response of the imaginary part corresponds to dissipative processes which take

place within the sample.
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Figure 4.21: AC-susceptibility of CeAgSb2 in zero field, inset shows the imaginary
part χ′

||.

Figure 4.21 shows the evolution of χ′
|| under the influence of a finite transverse field.

As the field is increased, the main peak appearing at TC is rapidly suppressed

in both magnitude and temperature. Strikingly, as this feature shifts to lower
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temperatures, a second peak is revealed beneath the main one, pinned near 9.6

K, much smaller in magnitude. By transverse fields of around 0.25 T the peaks

have separated totally, resulting in two very distinct features appearing in χ′
|| - the

higher temperature kink appearing at around 9.5 K still, and a stronger, broader

maximum which appears at a lower temperature T ∗. As the field is increased

further, the more pronounced hump at T ∗ broadens, and disappears by 0.5 T,

whereas the higher temperature kink seems to track the phase boundary found

from our magnetisation data. It was not possible to resolve this feature at fields

beyond 1.75 T.
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Figure 4.22: Comparison of the real part of the susceptibility χ|| in different ac
excitation fields.

The field dependence of both of these features is plot on the HT phase diagram

given in fig. 4.23. Immediate inspection would suggest that the higher tempera-

ture kink ought to correspond to the ferromagnetic transition, as it does seem to

trace the boundary described by other measurements, although this then begs the

question of what the other feature should correspond to, as there is no report in

the literature of a second transition. The imaginary part of the susceptibility χ′′
|| is
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far more sensitive to the feature at T ∗ than the one at TC . This is shown in the

inset of figure 4.21, where the arrow gives the location of TC taken from χ′
||. The

trace appears to be flat as we move through TC , not showing any response at all,

but seems to grow significantly at the onset of the anomalous transition at T ∗15.
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10 Paramagnetic

CeAgSb2

 M(T)
 M(H)
 
 

T C
 (K

)

0H  (T)

Ferromagnetic

Figure 4.23: HT phase diagram for CeAgSb2 showing the phase boundary ex-
tracted from M(T ),M(H) and the small upper anomalyχ′

||, separating the ferro-

magnetic and paramagnetic ground states. The solid line is a fit to tanh(h/t) = h,
with h and t the reduced field and temperature, corresponding to a J = 1/2
mean-field Ising model [103].

Unlike the kink at TC , the anomalous hump shows a strong dependence on the

magnitude of the driving field. The left hand plot of figure 4.22 shows χ′
|| for AC-

fields of 1 Oe and 0.1 Oe, in a transverse field of 0.4 T, with the traces normalised by

the AC-field and overlayed. Clearly, whilst the anomalous feature is significantly

15It may be that the transition at T ∗ is related to a skin-depth effect. A proper study of the
frequency dependence of the broad peak would be required to investigate this further.
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broadened and enhanced in 1 Oe compared to 0.1 Oe, the other feature at TC

remains unchanged. This is consistent at amplitude of driving field we choose –

increasing the amplitude of the AC signal enhances the signal-to-noise ratio of our

data, but does not affect the width or location of the feature. The right hand plot

shows the data in four different excitation currents in zero transverse field – the

peak becomes increasingly narrowed as the driving amplitude is reduced.
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4.5 Discussion

Our study of the pressure dependence of the magnetism in CeAgSb2 found

that 35 kbar is sufficient to destroy the low-pressure magnetic order. Accord-

ing to Doniach’s interpretation of the Kondo lattice [104], the magnitude of the

itinerant/local-state exchange coupling J determines the outcome of the compe-

tition between the RKKY and Kondo energy scales, dictating whether or not the

ground state is magnetic. In applying pressure to a system, there is an increase in

the overlap between neighbouring states, which increases the magnitude of J . For

sufficiently large J , the Kondo effect will always dominate and drive the system

non-magnetic.

We cannot be certain that CeAgSb2 is not driven antiferromagnetic in the region

where TC seems to drop to zero, as it is likely that our high pressure magnetisa-

tion measurements are not sensitive enough to resolve the signature of an AFM

transition. This could be probed more carefully via a microcoil measurement in

an anvil cell, which may be able to better detect the AFM [56], as the induced

voltage couples to the magnitude of dM/dH rather than M .

In a transverse field, FM is destroyed by in-plane fields exceeding 2.8 T. In the

ferromagnetic regime the resistivity follows a higher than quadratic temperature

dependence at elevated T > 1 K, which is consistent with scattering from gapped

magnetic excitations. Near the critical field, the Fermi-liquid A coefficient from

the electrical resistivity is enhanced. This is often taken as a hallmark of increased

scattering due to the presence of critical fluctuations [105]. Here, the increase is

relatively modest with an enhancement of around a factor two, rather than the

order of magnitude increase often found near strong quantum fluctuations. It is

likely that the increase in A is related to the reduction in the anisotropy gap ∆,

which can be see in figure 4.18. As ∆ is lessened, excited magnons persist to

lower and lower temperatures, meaning that ρ remains superquadratic to lower

and lower temperatures.

For H > Hc we do not recover a Fermi-liquid T 2 dependence over an extended

T -range as we may expect, but maintain a superquadratic dependence for T > 1
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K with increased field. In fact, the quality of the fit to the FM spin wave given

in equation 4.9 seems to be better above Hc than below it. The existence of

an exponential T -dependence of ρ above Hc means that the anisotropic exchange

interactions detailed in [76] are still present above Hc. The T
2 behaviour survives

to higher and higher temperatures as the field is increased, reflected in the field-

induced dampening of the electron-magnon coupling coefficient given in figure 4.18.

Measurements of χ|| revealed the existence of two field dependent features. One was

strongly dependent on the driving field and disappeared rapidly with an increased

transverse field, whereas the other appeared to trace the phase boundary given by

other probes. If Hc marked the location of a FMQCP we would expect to find an

enhancement of χ|| in the vicinity of Hc, due to the strong magnetic fluctuations.

This can be seen in the YbNi4P2 data from the beginning of the chapter (figure 4.2)

where χ grows by many orders of magnitude. In CeAgSb2, rather than χ
′
||becoming

enhanced as H → Hc, we cannot even resolve the signature of the transition at

the critical field. The origin of the anomalous hump remains a mystery.

Figure 4.24: Specific-heat data for the Ising-like ferromagnet CoNb2O6 in a trans-
verse field, from [106].

CeAgSb2 has not shown behaviour strongly consistent with the presence of critical

fluctuations at Hc. Perhaps, this could be due to sample misalignment? Maybe
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we are not probing the true “critical region” around Hc, and some finite field-

component along the easy-axis is pushing us away from the sheet of supposedly

second-order transitions found along the line Hc⃗ = 0. This, however, seems un-

likely. Firstly, the agreement of the phase boundary between different probes

shown on figure 4.23 would be hard to explain if one of the measurements had a

badly aligned sample, as any field parallel to the easy-axis promotes TC to higher

temperatures [77]. Secondly, even if the sample was slightly misaligned, we would

expect to feel the extended influence of the FMQCP from our position in the phase

diagram, even though we are not sitting on top of it exactly.

It is likely that the absence of critical behaviour is intrinsic to this system, and

in applying a transverse field we are not inducing increasingly strong quantum

tunnelling between up and down FM states, but perhaps simply gradually rotating

the spins toward the direction of the applied field. Looking back at the specific

heat data shown in figure 4.15, the evolution of C/T in the transverse field is

certainly very different to that seen in other field-tuned quantum critical systems

– see figure 4.24. The character of the anomaly is not consistent as it suppressed

to lower-T with field, but rather it becomes “smeared out” as H is increased; the

character of the FM transition is changed when the transverse field is applied. If the

transition turned first order on the approach to Hc we would find a “sharpening”

of the feature in the specific heat - see the schematics given in chapter 2 of the

Ehrenfest scheme. Presumably in CeAgSb2, in the presence of a finite transverse

field, the “ferromagnetic” transition no longer corresponds to a true second-order

phase boundary, but some sort of crossover into the spin-polarised state instead.

It is for this reason that we do not find superconductivity in the region that TC

goes to zero.

101



Chapter 5

YFe2Ge2

YFe2Ge2 is a paramagnetic metal with anomalous low temperature behaviour: a

T 3/2 dependence of the electrical resistivity ρ(T ) is seen up to 10 K, as well as a

heat capacity with an unusually high Sommerfeld coefficient (γ ∼ 100 mJ/K2),

which shows an upturn as T → 0 K. It is closely related to LuFe2Ge2 which orders

antiferromagnetically at TN = 9 K. In the Lu system, the ordering temperature

TN may be promoted via hydrostatic pressure - or suppressed by doping. In the

doping series YxLu1−xFe2Ge2 a critical doping level xc is sufficient to drive the

ordering temperature to 0 K [107].

Our measurements have found that at around Tc = 1.5 K, the electrical resistivity

of YFe2Ge2 drops to zero, consistent with a hitherto unseen superconducting phase.

This chapter describes a series of low-temperature magnetic measurements which

were made on YFe2Ge2.

The results shown here constitute the first evidence of a diamagnetic response in

this system below Tc.

5.1 Fe-based superconductivity

Following the discovery of superconductivity at Tc = 26 K in a layered system

containing iron [108] there has been an explosion of study in other Fe-based inter-
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metallics. The interest in these systems stems from their apparent analogy with

the ceramic cuprate high-temperature superconductors (HTSC) [8], along with the

integral role iron appears to play in governing the low-temperature electronic state.

In classical phonon-mediated superconductors, magnetic impurities are anathema

to the superfluid state as they as they break the time-reversal symmetry of the

Cooper pair, which rapidly kills off Tc. This makes the appearance of iron-based

families of superconductors all the more surprising.

The iron-based systems found so far can be split into groups based on their struc-

tures and composition1 [9]:

• “11” - FeSe

• “111” - LiFeAs, NaFeAs, ....

• “122” - BaFe2As2, CaFe2As2, SrFe2As2 ...

• “1111” - LaFeAsO, LaFePO, CeFeAsO ...

Despite appearing very different, there are many commonalities shared between

them, such as quasi two-dimensional electronic structures and the presence of

magnetism/strong magnetic fluctuations associated with the moment on the Fe

site [9].

1This list is of the parent systems, whereas in reality hole- or electron-doping may be necessary
to induce superconductivity.
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122-iron

arsenides

Cuprate

superconductors

Figure 5.1: Generic phase diagram for the 122-iron arsenides and the high-
temperature cuprate superconductors, [109].

In the 122 systems, a high-temperature semi-metallic spin density-wave (SDW)

phase is suppressed with doping, either with holes or electrons, and at a critical

doping xc, a low-temperature superconducting state forms. The transition tem-

perature Tc may then boosted by further doping, and at the point it reaches a

maximum the system is said to be “optimally doped”. A schematic of the generic

phase diagram is given in figure 5.1 along with that of the ceramic HTSCs for

comparison.

As in the 4f AF heavy fermion superconductors from the previous chapter, it is

thought that the appearance of a bubble of superconductivity in the phase diagram

at low temperatures is related to the strong AF fluctuations associated with the

zero-temperature magnetic phase transition [110]. To identify and investigate other

systems which may belong to this class, it would then be reasonable to focus

attention on those which order antiferromagnetically, in particular those whose

order may be suppressed with an external tuning parameter.
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Figure 5.2: ThCr2Si2 (I4/mmm) type structure shared by LuFe2Ge2 and YFe2Ge2.

With all of these things in mind, our attentions turns to the ternary Fe-based

compounds LuFe2Ge2 and YFe2Ge2. Both compounds crystallise in the ThCr2Si2-

type (I4/mmm) structure (shown in figure 5.2), and given that Lu is isovalent to Y

but with fewer core states, LuFe2Ge2 can be considered a high pressure analogue

of YFe2Ge2. Magnetically, however, the two systems differ. Whilst YFe2Ge2 is

paramagnetic, LuFe2Ge2 has been shown to order antiferromagnetically below a

Neél temperature of TN = 9 K [111]. Through neutron scattering measurements

[112], the order has been shown to be short-range at ambient pressure, and long-

range as the pressure is increased. At 0 kbar, local moments situated on the Fe

sites order antiferromagnetically along the c⃗-axis.
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Figure 5.3: Composite doping and pressure phase diagram of YFe2Ge2 and
LuFe2Ge2 from [107] and [112].

Hydrostatic pressure [112] promotes TN to higher temperatures, whereas negative

chemical pressure [107] - by doping on the Lu site with Y - depresses TN . A

composite phase diagram showing the combined effects of chemical and physical

pressure is shown in figure 5.3. At a critical concentration xc ≈ 0.2 the transition

to magnetic order can no longer be identified from the electrical resistivity or

magnetic susceptibility. Stoichiometric YFe2Ge2 sits some way out to the right-

hand side of this phase diagram at x = 1.

Both compounds have large Sommerfeld coefficients (γ ≈ 100 mJ.mol−1.K−2) in

their heat capacities [113], as shown in figure 5.4. The Sommerfeld term is given

by the linear-in-T contribution to C(T ), and can be determined by the residual

C/T value at low temperatures. γ is a useful quantity as it gives a direct measure

of the density of states at the Fermi level [114] -

γ =
π2k2B
3

g(ϵF ). (5.1)

Systems with large g(ϵF ) are more prone to electronic instability, such as mag-
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Figure 5.4: Heat capacity of LuFe2Ge2 and YFe2Ge2 from [113].

netism or superconductivity. The iron-pnictide superconductor KFe2As2 displays a

similarly high value [115]. Band structure calculations estimate γ = 10 mJ.mol−1.K−2

[116], meaning that the enhancement of γ seen experimentally may be due to the

effects of correlation, which are not taken into account in the calculation.

Previous work within the group by Zhuo Feng and Yang Zou [2, 93, 117] has re-

vealed a number of anomalous low temperature behaviours in YFe2Ge2. At tem-

peratures below 15 K, the electrical resistivity ρ(T ) shows a subquadratic temper-

ature dependence: ρ− ρ0 = AT x with x ≈ 1.6, shown in figure 5.5 (a). Non-Fermi

liquid (NFL) exponents such as these are often taken as hallmarks of enhanced

quasiparticle scattering due to quantum critical fluctuations [73]. The low-T heat

capacity - shown in figure 5.5 (b) - shows an upturn below 10 K, also characteristic

of NFL behaviour.

Most strikingly, ρ(T ) shows a transition to zero resistance below a critical tem-

perature of around 1.5 K (figure 5.5), suggesting that the sample may become a

superconductor at low-T . This would be akin to the SC which appears in the

related compounds SrPd2Ge2 [118, 119] and SrPt2Ge2 [120] with critical tempera-

tures of 2.6 and 10.2 K, respectively.
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Clear correlation is found between the RRR and the transition temperature Tc,

implying that the resistive anomaly may be due to a bulk, as opposed to an impu-

rity, phase. However, electrical resistivity is not useful as a bulk measurement as a

superconducting surface layer will short-circuit the bulk. An infinitesimally small

amount of surface contamination could result in a partial or even full transition to

zero resistance if there existed a “dirty” pathway between the electrical contacts.

DC-magnetisation or specific heat measurements detect bulk properties, and as

such are more suited to confirming a SC phase.

Our aims for this study are as follows:

1. Perform DC-magnetisation measurements on YFe2Ge2 to investigate its mag-

netic properties down to 280 mK.

2. If a diamagnetic signal consistent with SC is found to be present, determine

the nature of the phase: whether the superconductivity is of type-I or II, the

associated critical fields and the likely gap structure.
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5.2 Synthesis and characterisation

The samples measured in this chapter were grown by previous PhD students of

the Quantum Matter group, Zhuo Feng and Yang Zou, and an undergraduate,

Jiasheng Chen. Both single and polycrystalline samples have been grown, via flux

growth and RF induction respectively, although this chapter focusses mainly on

magnetic measurements of the polycrystals.

Figure 5.6: RF induction furnace.

The ingredients for the melt are placed in a water-cooled copper boat housed

within an evacuated (or Argon loaded) quartz tube. This sits in the centre of coil

through which a high-power RF signal (f = 50− 120 kHz) is driven. The induced

AC-magnetic field induces eddy currents within the sample, resulting in ohmic

heating, causing the constituents to eventually melt together. Samples produced

by this technique are typically polycrystalline, and it can be difficult to achieve

good homogeneity on growths due to the thermal gradients in the melt-zone and

the variation in coupling to the EM field between different melt-components. In

the present case, the samples were melted together in the correct stoichiometry,

before being annealed under high vacuum at 800 ◦C. The length of the annealing
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stage varied for different growths, which had a great influence on the quality of

the samples produced. In particular, it was found that samples which had been

annealed for the longest showed the lowest amount of magnetic background, at-

tributed to unreacted iron. This is seen in the magnetisation as the presence of

a finite (and sometimes large) saturated moment - Msat - at low fields and at all

temperatures. The summary table at the end of this section shows the variation

in Msat across a number of different growths and samples.
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Figure 5.7: Powder XRD spectra from a typical sample of YFe2Ge2.

The best samples produced so far (those with the lowest Msat, or the largest

superconducting volume fractions) came from RF batches which had been annealed

for 9 and 14 days. For the 9 day anneal, a section of the ingot is placed into a

quartz tube which is then pumped down to a low vacuum. It is then placed in

the normal furnace and heated to 800 ◦C in one hour, kept at this temperature

for 9 days, and then cooled back to room temperature also an hour. For the 14

day anneal the process was identical, except that the sample was heated to 800 ◦C
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over six hours and then held there for 14 days, before being cooled back to room

temperature over 20 hours.

The samples grown were characterised via a combination of transport, magnetic,

SEM and diffractive measurements. The powder XRD measurements were per-

formed by Yang Zou and Giulio Lampronti of the Earth Sciences department in

Cambridge. Generally, samples were found to have a phase purity of around 98-99

%, with some samples showing inclusions of elemental iron, or a hexagonal phase

of Y-Fe-Ge with stoichiometric ratio 0.5-3-3. Figure shows a typical spectrum.

Energy Dispersive X-Ray Spectroscopy (EDAX) was performed on the surfaces of

the samples using a Scanning Electron Microscope (SEM) in the microscopy suite

of the Cavendish Laboratory. This probe bombards the sample surface with elec-

trons, resulting in the emission of x-rays. By analysing the characteristics of the

x-ray emissions, the likely stoichiometry of the region of the sample being bom-

barded can be determined. Various spots across the surface of the sample were

looked at, and whilst some darker spots on the surface were more Fe:Ge abundant,

generally a good 1:2:2 ratio is found.

Magnetic characterisation measurements are shown in figure 5.8. Up to the pres-

ence of a finite ferromagnetic background - as a result of finite Fe inclusions - they

agree with those in the literature [113]. Namely, a static magnetic susceptibility

χ(T ) which is only very weakly temperature dependent, and a totally paramag-

netic magnetisation M(H). The abundance of Fe impurities varied greatly across

different growths, although it was found that samples which had been annealed

the longest showed the lowest ferromagnetic background. A complete breakdown

of all magnetic characterisation measurements is shown in table 5.1, which shows

all samples measured which gave a diamagnetic response in the magnetisation.
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Figure 5.8: Temperature and field-dependent magnetisation measurements to char-
acterise samples of YFe2Ge2.
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5.3 Diamagnetism in the magnetisation

5.3.1 Temperature dependence

Figure 5.9a shows a typical M(T ) curve, in this case for sample RF13, B01 2.

The measurement is made by zero-field cooling (ZFC) the sample down to low-T ,

applying a field and then sweeping the temperature up and then back down. The

data collected on cooling the sample is known as a field-cooled measurement (FC)

as the sample is fully penetrated by the field before it goes through the transition.

A clear diamagnetic feature is found in M(T ) which sets in at a temperature

Tc ≈ 1.5 K. This is in good agreement with the critical temperature seen in the

electrical resistivity. The full dots in figure 5.9a correspond to the ZFC data

obtained on warming the sample, whilst the open dots show data when cooling

from above Tc, where the sample is initially fully penetrated by the field. The

hysteresis found between the ZFC and FC runs is a generic feature of type-II

superconductivity, where flux-pinning is present within the sample [121–123].

The traces shown in these plots have been offset to the M/H = 0 axis for temper-

atures above Tc, such that only the diamagnetic response is shown - the raw data

sits upon a finite positive signal from the ferromagnetic iron inclusions within the

sample. For figure 5.9a an offset of 6.43 was subtracted from the raw data, and for

figure 5.9b an offset of 0.58 was subtracted. The temperature dependence of the

susceptibility of iron in this temperature regime has been taken as approximately

constant. The enormous variation in the magnetic background between different

samples reflects their inhomogeneity, which is reflected also in the broadness of the

anomaly at Tc.

The trace given in fig. 5.9a shows a volume fraction of 50 % at 275 mK, although

we have found a very wide variation in this value across our samples. This can be

seen in the summary table from the previous section. No sample has so far shown

a full transition in the magnetisation, i.e. M(T ) has not saturated at the lowest

temperatures. Some samples show a slight “plateauing” of M(T ) on approaching

2The RF– labels the radio-frequency growth number and the B– labels the individual sample.
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Figure 5.9: Comparison of M(T ) for bulk (a) and powdered (b) YFe2Ge2. Clear
flux exclusion is seen beneath a critical temperature Tc ≈ 1.5 K. M and H are
both expressed in SI units such that full diamagnetism would give M/H = −1.
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base-T , but most show a linear-in-T downturn at all T < Tc. To calculate the

volume of the sample, and consequently the magnetisation (M = µ/V ) we use the

mass of the sample as measured in the lab, and the density determined by XRD

measurements.

The temperature dependent magnetisation M(T ) reflects the temperature depen-

dence of the penetration depth λ(T ), which in turn - as described in chapter 2 -

is determined by the gap structure ∆(k⃗). Consequently, the linearity of M(T ) in

YFe2Ge2 could be due to an unusual pairing symmetry.

For example, d-wave superconductors such as the ceramic HTSC’s show a linear-

in-T dependence of λ(T ) [124] due to the closing of the gap along the line-nodes

of the Fermi surface. However, the broad transition in M(T ) could also be a

result of Tc varying across the sample, perhaps due to inhomogeneity within the

polycrystal.

B(x)

0 a

H0

Tc > T > Tc1

Tc1 > T 

T > Tc

B(x)

a

H0

Tc > T 

 T > Tc1

Tc1 > T 

T > Tc

0

Figure 5.10: Schematic showing the spatial variation in the flux density B(x) as the
temperature is changed. Left: warming (ZFC). Right: cooling (FC). unimpeded,
and by T = Tc1 we recover the Meissner condition B = 0 and

As for the difference between the field-cooled and zero-field cooled signal, Clem et

al [125] have given a complete pedagogical explanation of such curves, in which they

show that when there is flux-pinning present within the sample, the field-cooled

volume fraction is necessarily less than the zero-field-cooled volume fraction. This

is detailed more fully in the appendix, although we will address some key points

here.
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A sample which has been zero-field cooled through Tc will completely shield the flux

from any applied field H0 < Hc1(T = 0). Turning on the field sets up persistent

supercurrents flowing within λL of the surface, such that B = 0 throughout the

interior. Upon warming, this continues up to the temperature Tc1 where the field

H0 becomes equal to the lower-critical field - H0 = Hc1(Tc1). Here, flux-lines

begin to enter the bulk, nucleating from the sample surface. In the absence of

pinning, these flux lines would move freely, distributing themselves homogeneously

throughout the sample. However, in a real system, impurities and defects act as

impediments, tending to “hold on” to the flux lines. As shown in figure 5.10, this

causes a “build-up” of B near the sample edges as flux-lines gradually “leak” into

the sample. The spatial gradient in B(x) is proportional to the strength of the

pinning forces, as weakly pinned flux lines are more able to move to the sample

interior, reducing the “build-up”, meaning that a sample which pins weakly will

become fully penetrated by the field more rapidly, as there is less of a “build up”

at the edges.

Above the critical temperature the sample is fully penetrated by the applied field.

As the sample is field-cooled back through Tc, flux is gradually expelled from

the sample edges. However, as when warming, the variation in the flux profile

across the sample is dictated by the strength of the pinning forces. At the sample

exterior - where the pinning forces are effectively zero - the flux lines can leave

unimpeded, and by T = Tc1 we recover the Meissner condition B = 0 and M =

−H. However, throughout the rest of the sample, the presence of the pinning forces

puts a restriction on how rapidly B(x) may decay away to the sample surface,

meaning that by T = Tc1 whilst B = 0 at the exterior, if pinning is present B(x)

has to be finite on the sample interior. The flux which still threads the sample by

Tc1 becomes “frozen-in” as T is lowered further, and as a result the FCC fraction

- when flux-pinning is present - will never be as large as the ZFC fraction . This

is shown in figure 5.11 (b), taken from [125], which shows the dependence on the

ratio between the ZFC/FC fractions on the pinning strength. When the pinning

forces go to zero, B will always take its equilibrium value within the sample, and

the ZFC/FC runs become totally identical.

It is feasible that a sample whose surface was contaminated with a superconducting
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T

M(T)

FC

ZFC

TcTc1

MFC

MZFC

fM = MFC / MZFC

Figure 5.11: From [125] - the anisotropy between FC and ZFC sweeps - fM - as a
function of the pinning strength - γ.

impurity could still shield some amount of flux, although the effect should be

destroyed if the sample is powderised. To eliminate this possibility in our study,

a sample showing a large volume fraction was powderised in a pestle and mortar

before being remeasured in the magnetometer - figure 5.9b shows the corresponding

M(T ) curve. Whilst the volume fraction is reduced, the diamagnetic signature

remains, indicating that the SC phase corresponds to a bulk, rather than a surface

phase.
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(a) Schematic showing bulk and powdered samples in a magnetic field.
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(b) Functional form of F (a) as given in equation 5.3.

Figure 5.12: Effects of sample size on magnetic response.

It was found that the volume fraction in the powder reduced to about 15% from

the 60% seen in the bulk parent sample. This reduction is understood to be a

necessary consequence of the sample dimensions moving closer to the London pen-

etration depth λL. As shown in figure 5.12a, for a fixed λL, smaller samples have

proportionally less volume where B = 0, as the thickness of the shell where B ̸= 0,
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is the same. This means that a smaller volume is shielded. For superconductive

particles of size a, the following expression [126, 127] describes reduction of the

magnetic moment µ as a→ λL

µ = µ̃F

(
a

λL

)
(5.2)

where

F (x) = 1− 3

x
coth(x) +

3

x2
(5.3)

and µ̃ is the limiting magnetic moment when a ≫ λL. The form of F (a) is

shown in the log-log plot figure 5.12b demonstrating the reduction of the moment

as a → λL. This expression can be used to estimate the size of particles in a

powderised sample, by comparing the reduction in the measured moment to the

corresponding value of a/λL.
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5.3.2 Field dependence

To extract the upper and lower critical fields we need to look at the field-dependent

magnetisation M(H), taken at a constant temperature. An isothermal field sweep

at T = 276 mK is given in figure 5.13a. As has been mentioned already, the

samples grown so far have all shown some amount of ferromagnetic background

due to the presence of residual unreacted iron in the final ingot. This was not

an issue for the temperature dependent measurements shown in figure 5.9 as the

variation in the magnetic susceptibility of pure iron in this temperature regime

is negligible. However, the iron does show FM hysteresis during the low-field

loop, which must be subtracted from the raw data to reveal the response of the

superconducting YFe2Ge2.

Figures 5.13b and 5.13c show the raw signal as measured by the SQUID at temper-

atures above and below the diamagnetic transition. As has already been reported

in the literature [113], the magnetic response of YFe2Ge2 in its normal state is

that of a weak paramagnet. The strong ferromagnetic hysteresis we measure at

T = 1.7 K should then be attributed to the Fe with the sample. To extract the

field dependence of the diamagnetic phase in YFe2Ge2, identical field sweeps were

performed at temperatures above and below Tc. The high-temperature sweep was

then subtracted from the low-temperature sweep - point-by-point - to reveal the

hysteresis loop shown in figure 5.13a. Again, this approach assumes that the mag-

netic response of the Fe inclusions has no significant temperature dependence3.

3Samples have been measured which show clear the superconducting hysteresis clearly even
without the background subtraction, but the data from this sample as it produced a particu-
larly convincing loop - even with a significant magnetic background present - due to its large
superconducting volume fraction (80%).
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Such a curve identifies YFe2Ge2 immediately as a type-II superconductor with

pinning present [18]. As before, a more thorough description of these hysteretic

effects is given in the appendix, although we will explain the main features of the

loop here. For each of the regions 1-4 shown in figure 5.13a:

1. Along the virgin curve exists a totally reversible portion ofM(H), extending

from H = 0 to H = Hc1. In this region, persistent shielding supercurrents

are contained within λL of the surface, such that B = 0 in the bulk.

2. Quantised flux lines enter bulk from sample exterior. The rate at which the

sample is penetrated by the field is governed by the ability of the pinning

sites to hold the flux-lattice fixed against the destabilising Lorentz forces.

M reaches a minimum when the flux-fronts meet in the sample centre - the

field has penetrated the sample fully.

3. Increasing the field further continues to strengthen the Lorentz forces, whilst

the strength of the pinning forces remains constant. Consequently, an ever-

smaller critical current can be maintained, which reduces the magnitude of

M .

4. Reducing the field induces currents in the opposite direction. By H = 0 the

sample retains a finite magnetisation due to the persistent supercurrents still

threading the sample.

We now look to try and extract Hc1(T ) and Hc2(T ) from our data. In the first

place, we focus on the low-field region of our isotherms to identify the boundary of

the Meissner and Abrikosov states, the first field at which M ̸= −H. More detail

on the various ways to extract Hc1 is given in the appendix. Figure 5.14 shows a

selection of low-field isotherms at various temperatures.

All methods of extracting Hc1 given in the appendix fail here. At the finest field-

resolution available (0.5 Oe) there is no appreciable field range in which M(H)

is linear in H, as can be seen in the derivative dM/dH, shown in the inset of

figure 5.14. For fields H < Hc1 traces at all temperatures should overlap each

other (have the same gradient). In figure 5.14 no two M(H) sweeps coincide in

any field range or at any temperature.
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Figure 5.14: Low field M(H) curves at various temperatures.

Whilst the FM background has been removed from these traces (by subtracting a

field sweep taken at T > Tc) it may be that the peculiar behaviour of M(H) at

low-H is not intrinsic but due to a background effect not properly accounted for.

It may not be possible to investigate the lower critical field properly until better

quality samples have been grown.

The combined ferromagnetic background and less-than-100% volume fraction, makes

it difficult to resolve the superconducting component of the signal at high fields.

Instead, Hc2 is determined from a series of resistive measurements made by Yang

Zou. The phase boundary described by her data is shown in figure 5.15 from

which data we can extract the limiting upper critical field at zero temperature as

Hc2(0) = 1.75 T, and the value of the gradient4 dHc2/dTc|H=0 = 2.3 T.K−1.

4This is an important parameter which enters into the WHH theory of the upper critical field
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As in the theory chapter, we can evaluate the hypothetical critical fields associated

with various pair-breaking mechanisms such as the Pauli limiting field, along with

the orbital-limit for clean and dirty samples. From equation 2.23, where we use

the BCS expression for the gap ∆0 = 1.764kBTc and taking Tc = 1.6 K - gives the

Pauli limited field HP = 2.97 T, whilst from equation 2.22, the orbital limit field

in the clean and dirty limits give 2.61 T and 2.49 T, respectively.

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

WHH dirty

YFe2Ge2

H
c2

 (T
)

T (K)

dHc2 / dT = 2.3 T.K-1 

WHH clean 

H P

Tc ~ |H - Hc2| 

Figure 5.15: Hc2(T ) for YFe2Ge2as determined from resistivity measurements [2].
The orange and green curves show the WHH result in the clean and dirty limits,
and the blue dotted line is a fit to T ∼ |H−Hc2|α, with α=0.64. The Pauli-limited
field HP is also shown.

That both the orbital and the Pauli limiting fields exceed the experimental upper

critical field leaves some ambiguity as to the dominant pair-breaking mechanism.

In Fe-based systems it is often the case that the Pauli effect is more important

than the orbital one, and so it is likely that our estimate of HP is too high. This

may be due to our selection of the BCS value of the gap ∆0 in the expression for

[23].
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HP :

HP
c2 =

∆0√
2µB

. (5.4)

As will be detailed in the discussion, it is possible that the gap is highly suppressed

from its BCS value in YFe2Ge2 due to the presence of magnetic impurities. This

is evident in the heat capacity data - figure 5.5 - which shows no anomaly at Tc.

5.3.3 Derived quantities

We can estimate the Ginzburg-Landau coherence length ξGL from the upper critical

field by [20]

Bc2 =
Φ0

2πξ2
(5.5)

where Φ0 = h/2e is the flux quantum. With Bc2 = 1.7 T we find ξ =140 Å.

This can be put into some context by evaluating the mean-free-path, using an

expression given in an exhaustive list of BCS parameters made by Orlando et al

[128]:

l = 9× 1011~(3π2)
1
3 (e2ρ04πk

2
F )

−1, (5.6)

where kF is the Fermi wavevector and ρ0 is the residual resistivity. kF may be

estimated by assuming a spherical Fermi surface which fills the Brillouin zone,

which given the volume of the unit cell V = 164 Å3 [113] results in kF = 0.6

Å−1. For the most high purity sample we found ρ0 = 4 µΩcm, resulting in a

mean-free-path l = 700 Å. As l > ξ, YFe2Ge2 can be considered to be closer to

the clean limit, and as such the possibility remains that the superconductivity

in YFe2Ge2 may be unconventional. Whilst Anderson’s theorem [129] protects

the superconducting state against the influence of scattering from non-magnetic

impurities in a conventional superconductor, in a p- or d-wave system impurity

scattering mixes together states with opposite gap parameters, which may force ∆

to zero, reducing Tc [18, 130].

Similar expressions for the London penetration depth gives λL = 0.21 µm, from
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which we can deduce the Ginzburg-Landau parameter -

κ =
λ

ξ
(5.7)

as κ = 15, which consistent with the type-II superconductivity we see in the

magnetisation.

Also from [128] the expression for the Fermi velocity ⟨vF ⟩ is given by -

⟨vF ⟩ =
k2B
~

(
π4

3

) 1
3 4πk2F

γ
(5.8)

where γ is the Sommerfeld coefficient from the heat capacity - 100 mJ.mol−1K−2.

The corresponding Fermi velocity is ⟨vF ⟩ = 1.2 × 104 m.s−1, which results in a

quasiparticle mass of:

m∗ =
~kF
vF

= 58me. (5.9)
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5.4 Discussion

A diamagnetic transition consistent with a bulk low-temperature superconducting

phase was found in both bulk and powderised samples, whose critical temperature

agreed well with that seen in the electrical resistivity. A wide range of super-

conducting volume fractions were obtained, with a maximum in the ZFC runs of

80%, and typical FC fractions of around 5%. As described in section 5.3, the

discrepancy between FC and ZFC signal is an ubiquitous property of type-II su-

perconductors in the presence of flux pinning. Similar data from other systems is

shown in figure 5.16

(a) Ca0.89Na0.11FFeAs [121] (b) MgB2 [123]

Figure 5.16: Examples of ZFC/FC anisotropy appearing in the DC magnetisation
a 1111 compound and MgB2.

Strong pinning within the sample is also shown in the strongly hysteretic features

which appear in the M(H) curves - see figure 5.13a - revealing YFe2Ge2 to be a

type-II superconductor. A series of resistivity measurements gave Hc2 in the zero-

temperature limit to be around 1.75 T, and whilst a complete analysis of Hc1(T )

from M(H) was not possible, it is likely that the lower critical field is of the order

Hc1 ≈1 mT.

The height of the specific heat anomaly at a superconducting transition is pro-

portional to the magnitude of the gap ∆ in the density-of-states (DOS) [18]. Our
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specific heat data do not show a feature at Tc, pointing towards a suppression of ∆.

This may be as a result of magnetic impurities within the sample. Anderson’s the-

orem [129] shows that whilst non-magnetic impurities leave Tc and ∆ unchanged,

the presence of magnetic impurities has a profoundly deleterious effect upon the

formation of Cooper pairs, by breaking the time-reversal symmetry of the up/down

spin state. In chapter 2 we saw how the presence of magnetic impurities within

the superconductor could – above a critical concentration – totally suppress the

gap in the density-of-states, whilst a supercurrent could still be supported.

0.1 1 10
0.1

1

10

100

%
 S

C

Msat (10-2 B /f.u.)

Figure 5.17: Plot of the superconducting volume fraction against the ferromagnetic
impurity level for YFe2Ge2.

Our samples contain ferromagnetic impurities, and the XRD data suggest that

they are likely to be inclusions of unreacted iron. Table 5.1 shows that the samples

which were annealed the longest gave the lowest magnetic backgrounds5. This is a

common issue for crystal growth with strongly magnetic constituents, for example

the nickel inclusions in the growth of YbNi4P2 crystals [69]. The presence of these

5We can perform a straightforward “reality check” on our impurity background we measure
using the literature reported magnetisation of elemental iron - M ≈ 200 emu/g [131], to see
that the FM signal we see corresponds to a reasonable amount of Fe. The bulk 10 mg sample
RF13, B01, for example, gave a FM background of 2.5× 10−2µB/f.u. - corresponding to 0.74%
of unreacted Fe: this seems plausible.
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pair-breaking impurities and the absence of a specific-heat anomaly at Tc could be

related to one another.

However, if it were the case that a fortuitously critical magnetic impurity con-

centration was killing off the gap in the density-of-states, we would also expect a

correlation between the robustness of the superconducting state and the presence of

magnetic impurities. Namely, that samples with the highest backgrounds should

show a weakening of the diamagnetic signal or transition temperature Tc. Fig-

ure 5.17 shows a log-log plot of the superconducting volume fraction plot against

the magnetic background - there is no correlation. Furthermore, all samples gave

generally the same transition temperature. Given that the magnetic background

spans many orders of magnitude, we would expect that - were the Abrikosov-

Gor’kov (AG) “gapless” mechanism responsible - we would at some point exceed

the critical concentration nc at which Tc = 0 K. It is more likely that rather

than the magnetic impurities existing as dilute pair-breakers immersed in the

YFe2Ge2 lattice, the unreacted iron sits as larger lumps embedded in-between

grains of YFe2Ge2, and that the AG mechanism is not at work.

It is then likely that the lack of a specific-heat anomaly is due to the quality of

our crystals. The broadness of the transition in M(T ) suggests a distribution

in Tc across the sample, which then broadens the jump ∆C. Similar problems

were found in the early studies of CeCu2Si2 [132], or more recently in the seminal

compound LaFePO [133]. A new batch of crystals, hopefully of higher quality, are

currently are currently being grown which will go some way in resolving this issue.

Having established that YFe2Ge2 is a superconductor at low temperatures, the

most pertinent question is the origin and nature of the superconductivity. The

application of hydrostatic pressure to YFe2Ge2 should drive it back towards the

doping induced quantum phase transition, said to occur in YxLu1−xFe2Ge2 at xc

[107]. High pressure AC-susceptibility measurements from within the group, by

Hui Chang and Yang Zou [2] suggest that Tc becomes suppressed fully by 22 kbar,

with a maximum in Tc at 10-15 kbar. A miniature anvil cell was also set up for a

SQUID measurement, although no diamagnetic signature were found down to 1.8

K in the pressure range up to 60 kbar. That the superconductivity is suppressed
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fully by 22 kbar is somewhat at odds with the estimate that the doping-induced

QCP should exist at 28 kbar [2]. As regards the symmetry of the superconducting

order parameter, careful measurement of Hc1(T ) can be very revealing [21, 22, 134],

although the quality of our data is not sufficiently high that we can perform such

analysis. Again, better quality samples may help to resolve this.

System Tc/K µ0Hc1/mT µ0Hc2/T H ′
c2/T.K

−1 κ

YFe2Ge2 1.7 - 1.75 2.4 30 [117]
SrPd2Ge2 2.7 4.4 0.7 0.27 13.5 [118, 119]
CaPd2Ge2 1.7 3.1 0.134 0.115 6.3 [135]
SrPt2Ge2 10.2 - - - - [120]
KFe2As2 3.4 - 5(⃗a), 1.5(c⃗) 3.7, 0.6 87, 15 [136]
CeCu2Si2 0.6 1.8 1.7 5.8 22 [137]

LaFePO 6.6 6(||a⃗b), 1(⊥a⃗b) 0.9, 0.15 - [133]

LiFeAs 17.5 20 26(a⃗b), 16(c⃗) 4, 1.4 26, 20 [134, 138]
β-FeSe 9.8 75 18 2.7 11 [22, 139]

Table 5.2: Critical fields and κ values for other type-II superconductors.
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Postscript

Since the completion of this thesis, a new batch of YFe2Ge2 samples has been

grown which show a distinct anomaly in the heat capacity at low temperature.

Preliminary data is shown in figure 5.18.

The zero-field data shows a clear anomaly which sets in below 2 K. The overall

character of the anomaly is reminiscent of that which would be expected at a su-

perconducting transition [18]. The anomaly disappears when a magnetic field of 1

T is applied, also consistent with it being associated with the onset of supercon-

ductivity. The inset shows the feature more closely, and the temperature at which

the resistive transition occurs is also marked.
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Figure 5.18: Heat capacity of YFe2Ge2 from a new batch of flux-grown samples.
A clear anomaly can be seen below T = 2 K which disappears in the presence of
a magnetic field.
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This supports the conclusions drawn from the magnetisation measurements in this

chapter. A more complete study of this new set of samples is currently underway,

which will hopefully reveal more about the nature of the low temperature super-

conducting phase.
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Chapter 6

R3T4Sn13

The ternary stannide doping series (Cax,Sr1−x)3Ir4Sn13 has been shown [38] to

undergo a high-temperature structural transition at temperature T ∗. This super-

lattice structure consists of a deformation of the tin icosahedra found at the cell

corners and centre, causing a doubling of the size of the unit cell. T ∗ may be

suppressed by doping on the Sr site with isovalent Ca – effective chemical pressure

– or by the application of hydrostatic physical pressure. Beyond a critical pressure

Pc, T
∗ extrapolates to zero temperature. A superconducting dome is found at low

temperatures, which seems to peak in the vicinity of Pc, along with a quasi-linear

temperature dependence in the electrical resistivity over a wide temperature range.

The phase diagram then has the appearance of superconductivity being induced

in the proximity of a structural quantum critical point.

In this chapter we investigate the aspects of the superconductivity in Ca3Ir4Sn13

and Sr3Ir4Sn13, along with the related compound Ca3Co4Sn13.

6.1 Structural instability

A crystal lattice undergoes a displacive phase transition when, at a critical temper-

ature T ∗, a periodic distortion of its structure takes place, lowering its symmetry

[140]. In the soft mode theory of displacive phase transition, this is a consequence
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of one of the low-lying phonon modes going soft at the transition – one of the

branches in the dispersion drops to zero energy1. The softening of the mode cor-

responds to the frequency of the lattice vibration slowing down. At the point at

which the mode goes to zero energy, the lattice undergoes a constant structural

displacement - the mode becomes frozen in - which brings about a reduction in

the symmetry of the structure, and a shrinking of the Brillouin zone.

Sn(2)

Ca,Sr

Ir

Sn(1)

Figure 6.1: Crystal structure of (Ca,Sr)3Ir4Sn13, taken from [141].

The ternary stannides (Ca,Sr)3Ir4Sn13 belong to a broader catalogue of compounds

which share the 3-4-13 stoichiometry, including heavy fermion materials [142, 143]

and thermoelectrics [144]. At room temperature both compounds crystallise in

a simple cubic structure - space group Pm3̄m. In spite of the 40 atoms which

are found within every unit cell, their arrangement can be understood relatively

simply, as in figure 6.1. A distinction can be made between the two inequivalent

tin positions – Sn(1) and Sn(2) – such that the chemical formula can be written as

1For a mode to “soften” means that it their is less of an energy cost to excite it, as in a spring
whose spring constant k - mẍ = −kx - is reduced, resulting in the spring “softening” - becoming
less stiff. When k → 0, it costs zero energy to displace the system.
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Sn(1)Ca3Ir4Sn(2)12. Building the structure up from the bottom, the basis of the

lattice is a body-centred cubic lattice formed of Sn(1) atoms at the vertices and

centre, each surrounded by an icosahedral “cage” of Sn(2) atoms. The eight iridium

atoms form a simple cubic structure within each cell, and the calcium/strontium

atoms are found on the faces. The other atoms are arranged as shown in figure 6.1

- this is known as the I phase.

An extensive flux-growth study across the family of 3-4-13 stannides by Espinosa

in 1980 [145] revealed both Ca3Ir4Sn13 and Sr3Ir4Sn13 (amongst many others) to be

superconductors. More recently, focus has turned to an anomaly which appears

at a higher temperature T ∗ in the electrical resistivity, magnetic susceptibility

[146] and specific heat [147], which was initially attributed to the presence of

ferromagnetic spin fluctuations [146]. However, following a comprehensive pressure

study by Klintberg et al [38] of Ca3Ir4Sn13, Sr3Ir4Sn13 and the intermediate dopings

(Cax,Sr1−x)3Ir4Sn13, it was shown that the high temperature anomaly corresponds

to a transition from the high-temperature I phase into the reduced symmetry, low

temperature I ′ phase. The I ′ phase has space group I 4̄3d [148] and corresponds to

a slightly distorted version of the I phase, due to a slight “warping” of the Sn(2)

icosahedra, which result in a doubling of the lattice constant.

The structural transition takes place at T ∗ = 147 K and 45 K in the Ca and Sr

systems, respectively, and it is possible to move between the two by either applying

hydrostatic pressure, or – given the isovalency of Ca and Sr – effective chemical

pressure through doping within the unit cell. In the Klintberg study, dopings

at x = 0, 0.5, 0.75 and 1 were investigated through electrical resistivity and AC

susceptibility under pressure. They were able to determine the point of overlap

between each successive doping2 The full phase diagram of this work is given in

figure 6.2.

Studies of the crystal structure showed that additional superlattice peaks appear

below T ∗, suggesting that the low temperature crystal structure has twice the

lattice constant of the I-phase. Single crystal diffraction measurements have found

that at T ∗ there is a distortion of the Sn “cages”, resulting in an increase in

2From looking at the value of Tc one can see that the x = 0.5 compound at ambient pressure
corresponds to x = 0 under about 35 kbar of pressure.
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Figure 6.2: Doping and pressure phase diagram of the (CaxSr1−x)3Ir4Sn13 series.
My own contribution to this publication was to investigate the magnetic anisotropy
in these compounds, in order to rule out the possibility that the phase transition
taking place at T ∗ was a magnetic – rather than structural – one. Some of this
data is shown in figure 6.4.

the number of inequivalent Sn sites [148]. The temperature dependence of the

bond distances Sn(1)-Sn(2i) is shown in figure 6.3b for the strontium system.

The new bond length formed at T ∗ seem to grow continuously out of the critical

temperature, and there is nothing to forbid a continuous phase transition between

the high and low-symmetry space groups [148]. The shape of the heat capacity

anomaly at T ∗ - shown in figure - also suggests that the transition at T ∗ is second

order.

Given the quasi-linear temperature dependence of ρ(T ) and the existence of a

superconducting dome peaking near Pc, it would be tempting to consider this
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Figure 6.3: (a) Temperature evolution of the Sn(2) bond distances from the central
Sn(1) site growing out of T ∗, from [38]. (b) Heat capacity of Ca3Ir4Sn13from [149],
which shows a clear anomaly at T ∗.

system as being quantum critical on the border of magnetism. However, band-

structure calculations do not support the existence of a magnetic moment [38].

My own study of the temperature dependence of the static magnetic susceptibility

along a number of non-orthogonal orientations, did not reveal the presence of a

significant magnetic anisotropy. This supports the view that the transition taking

place at T ∗ is related to the structural, rather than the magnetic, degrees of

freedom. Some of this data is shown in figure 6.4, where the DC response of both

compounds is shown along a number of different crystallographic orientations.

A drop in the signal size takes place at the structural transition T ∗; as the real

unit cell becomes doubled, the new Brillouin zone cuts through large portions of

the high-symmetry Fermi surface, gapping large portions of it out. The resulting

reduction in the density of states at the Fermi level g(ϵF ) reduce the magnitude of

the Pauli susceptibility, as χP ∝ g(ϵF ). The drop seen experimentally is consistent

with the prediction of band structure calculations [38].

Whilst the synthesis [145] and the structural determination [150] has been reported
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Figure 6.4: Magnetic susceptibility of Sr3Ir4Sn13 and Ca3Ir4Sn13 measured along
a number of non-orthogonal orientations. There is a marked lack of magnetic
anisotropy; the T ∗ transition is non-magnetic.

for Ca3Co4Sn13 there has been very little reported otherwise. Upon immediate in-

spection, we might imagine that Ca3Co4Sn13 should sit somewhere to the right

of the phase diagram given in figure 6.2 owing to its lower transition tempera-

ture (Tc = 6 K), that it shares the undistorted high-temperature I-phase crystal

structure, and that Co sits two above Ir in the periodic table.

Our aims for the study of the A3B4Sn13 were as follows:

1. Using a miniature anvil SQUID cell, investigate the influence of pressure on

the superconducting Tc in Ca3Ir4Sn13, describing the “bubble” of supercon-

ductivity. Namely, showing Tc to go up, and then down as the hydrostatic

pressure is increased.

2. Perform a similar anvil cell study on Ca3Co4Sn13 to determine whether Tc

increases or decreases with pressure. This will allow estimation of its likely

position on the phase diagram given in 6.2.

3. Investigate the superconducting state of Ca3Ir4Sn13 and Sr3Ir4Sn13 through

a series of DC magnetisation measurements. Determine the temperature
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dependence of the critical fields Hc1(T ), Hc2(T ), such that the corresponding

BCS parameters can be determined.
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6.2 Pressure dependence of Tc

Firstly, we examine the pressure dependence of the superconducting transition in

Ca3Ir4Sn13 and Ca3Co4Sn13.

6.2.1 Ca3Co4Sn13

A miniature diamond anvil cell was set up by Dr Swee Goh of the Quantum Matter

group, containing a sample of Ca3Co4Sn13 , along with a ruby chip for pressure

determination. The samples were grown by Professor Yoshimura’s group at Kyoto

university.

The cell used for this study was a different one to that used for the CeAgSb2 data

in the previous chapter, although the experimental procedure was identical. The

raw data at a number of pressures is shown in figure 6.5, where in each case the cell

has been zero-field cooled, before a small positive field was applied at the lowest

temperature. Data was then collected upon warming and then cooling.

The maximum pressure measured was 25.7 kbar. As the primary motive in this

study was to determine whether Tc increased or decreased with pressure, it seemed

unnecessarily risky to move to higher pressures once it was clear that Tc was coming

down with P . Moreover, due to the overall form of the cell background (top left

of figure 6.5, the superconducting drop in the magnetisation at Tc would begin to

overlap with the temperature regime where the cell background rapidly increases

in magnitude. It is likely that the quality of the data would reduce at higher

pressures due to the “step” coinciding with the strongly temperature dependent

background.

Figure 6.6 shows the background-subtracted traces taken at a series of pressures.

As in the YFe2Ge2 measurements, a large anisotropy between the field-cooled and

zero-field cooled runs is apparent (not shown), revealing the presence of pinning

within the sample bulk. Upon warming, the superconducting transition appears

as a step-like feature in M(T ) at Tc.

As can be seen in figure 6.6, the application of hydrostatic pressure in Ca3Co4Sn13 re-
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Figure 6.5: Raw data from the study of Ca3Co4Sn13 in a miniature anvil squid
cell. All traces shown have been zero-field-cooled, and then warmed in 0.4 mT of
applied field. The top left figure shows the empty cell background run after the
sample had been removed.
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Figure 6.6: M(T ) data from Ca3Co4Sn13 taken at various pressures in miniature
anvil SQUID cell. Background has been subtracted. Glycerin used as pressure
medium. Solid (open) symbols show points collected on pressuring (depressuris-
ing).

duces the transition temperature. This is consistent with our initial guess of its

location on the phase diagram in fig. 6.2.

Figure 6.7 shows a PT phase diagram, with the pressure points taken from the

traces in fig. 6.6. As shown in the inset, the transition temperature is determined

from the mid-point of the “step”, where the error bars reflect the width of the

transition (∆T = Thigh − Tlow).

To check for any hysteretic effects, pressure points were taken both upon increasing

(the solid points on the phase diagram) and decreasing the pressure (the hollow

points). Hysteresis is totally absent, with all points appearing to fall on a common

straight line. Extrapolating this line to zero temperature puts an upper bound on

the critical pressure required to drive the transition to zero temperature, giving
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Tc = 0 K by around 110 kbar. In reality, the superconducting dome may well

curve to T = 0 K more rapidly than this.

Superconductivity is suppressed with pressure in Ca3Co4Sn13:- dTc/dP < 0. Pro-

vided that the underlying physics in this system is the same as that which is

present in the (Cax,Sr1−x)3Ir4Sn13 doping series, Ca3Co4Sn13 at ambient pressure

should be found out to the right-hand side of figure 6.2.
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Figure 6.7: Phase diagram showing the pressure dependence of Tsc in Ca3Co4Sn13,
with the pressure determined by the ruby fluorescence technique. Solid (open)
symbols show points collected on pressuring (depressurising). Error bars reflect
the width of the transition appearing in M(T ).
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6.2.2 Ca3Ir4Sn13

Proceeding in exactly the same manner as with Ca3Co4Sn13, a miniature anvil

SQUID cell was set up with a sample of Ca3Ir4Sn13, also containing a ruby chip for

pressure determination, and glycerin as the pressure medium. Here, the aim was

to examine the domed nature of the superconducting bubble, using magnetisation

to determine Tc(P ).
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Figure 6.8: M(T ) data of Ca3Ir4Sn13 at various pressures in a miniature anvil
SQUID cell. The left figure shows the transition temperature increasing as the
pressure is increased, whereas the right figure shows it decreasing with an increased
P .

M(T ) curves at various pressure are shown in figure 6.9. As before, the cell

was zero-field cooled, a small positive field was applied, and then the sample

was warmed through the transition. Also, as in the previous section (and in the

previous chapter) a notable anisotropy was found between the zero-field cooled

and the field cooled data, in that the size of the step is much more pronounced

during the ZFC run than the FC one. The traces shown in figure 6.9 contain a

little more noise than those shown for the Ca3Co4Sn13 runs, due to the fact that
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the signal associated with the transition is slightly smaller, and that not as many

scans were taken per point.

The data which is shown in figure 6.9 is the raw signal from the cell and sample.

No background was subtracted from these runs, as the influence of the cell (a

different cell to the Ca3Co4Sn13 data) was not as significant in the temperature

range being investigated in this study.

The left and right hand sides of figure 6.9 show the changing influence of pressure

on Tc. Initially, the build-up of P results in an increase of the transition tem-

perature, as shown in the left hand figure. This persists up to around 32 kbar,

beyond which the further increase of P results in a decrease in Tc. Extracting
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Figure 6.9: PT phase diagram of Ca3Ir4Sn13, constructed from a series of miniature
anvil SQUID cell runs. Different coloured dots represent different cell runs, whilst
the stars are taken from [38]. The size of the error bars reflect the width of the
transition as shown in the inset of 6.7.
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the transition temperature from each of the M(T ) curves, we may construct the

corresponding PT phase diagram, as shown in figure 6.9. Also included are the

points corresponding to the phase boundary in [38], from AC-susceptibility and

resistivity measurements.

The phase diagram contains points taken from a few different cell runs, shown as

different coloured dots. It is clear from the shape of the boundary that the pressure

∼ 32 kbar corresponds to the apex of the superconducting dome, beyond which

increasing P suppresses Tc. There is mutual agreement between the different cell

runs, and broad agreement with the phase boundary in the literature. Clearly, the

shapes of our domes do not match exactly, as the reported dome does not peak

until around 40 kbar, whilst for our data Tc is already well on its way down by this

point. Unfortunately, it was not possible to extend the study to higher pressures as

the pressure cell used was prone to gasket failure at ≈ 50−60 kbar, owing to slight

imperfections in its construction. This is reflected in the transitions becoming more

broad as the pressure is increased, due to the reduction in hydrostaticity.
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6.3 Upper critical field and the peak effect

Here we evaluate the upper critical field Hc2(T ) from isothermal field sweeps. At

Hc2, the magnetic signal associated with the persistent supercurrents should go to

zero. Figure 6.11 shows a series of field sweeps taken with the Ca and Sr systems

which we can use to extract the critical field.

The inset of figure 6.10a shows a full field-swept loop, starting at H = 0. As in

YFe2Ge2, the presence of hysteresis demonstrates the existence of pinning centres

within the sample. However, the loop shown in this data is not as wide as that

shown in figure 5.13a - this loop looks less hysteretic, or more reversible. This

corresponds to a difference in the level of pinning between the two systems. In an

ideal type-II superconductor, with a total absence of pins, up and down field sweeps

should be totally reversible. As the magnitude of the pinning forces increase, the

field does more work against them and consequently the width of the loop increases

- it becomes less and less reversible.

The critical field Hc2 is extracted fromM(H) as shown in the inset of figure 6.10b.

The corresponding phase boundary Hc2(T ) is given in figure 6.11, with the lines of

fit given by the WHH theory of the upper critical field in the clean limit with the

spin-orbit coupling parameter α = 0. At zero-temperature, the upper critical field

extrapolates to 7.4 T in the calcium-based system, and 1.45 T in the strontium

one.

In both Ca3Ir4Sn13 and Sr3Ir4Sn13 we find that at a particular field Hp (shown

on figure 6.10b), rather than monotonically approaching zero at Hc2, M(H) dips

unexpectedly to more negative values then increases, describing a sort of semi-

circle. Upon ramping the field back down, this procedure is repeated in reverse,

such that overall the trace contains something a little like a “bubble”, beginning

at Hp.

Similar magnetic anomalies were found in the related stannide-superconductor

Ca3Rh4Sn13 [151, 152]3. There, the features were attributed to a flux-line lattice

3At the moment it is unclear what correspondence this system has to the phase diagram
shown in figure 6.2. Given that and that Rh has less core states than Ir would suggest that
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Figure 6.10: M(H) data for Sr3Ir4Sn13 and Ca3Ir4Sn13 to determine the upper
critical field Hc2(T ). Arrows show the direction of the field sweep.
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Figure 6.11: Magnetic phase diagram for (Ca,Sr)3Ir4Sn13 showing the temperature
dependence of the upper critical field Hc2(T ). The lines of fit correspond to the
WHH theory of the upper critical field in the clean limit.

(FLL) phenomenon known as the peak effect [18, 20]. The name “peak effect”

arises due to the sudden increase in the critical current density Jc(H) which is

found in the vicinity of Hp, the same field range as the “fishtail” which appears in

the magnetisation.

Brian Pippard [153] was one of the first to provide a mechanism which could

account for such an effect. He suggested that the features found in the vicinity of

Hp corresponded to a “reorganisation” of the FLL, which may become energetically

favourable at fields near Hc2.

The FLL is not totally rigid; for a particular lattice arrangement, each fluxoid

is able to be held at a position (say, at a pinning centre) slightly away from its

equilibrium position, at an energy cost associated with the elasticity of every flux-

it ought to correspond to some high-pressure analogue of the (Ca,Sr)3Ir4Sn13 system. Looking
at its critical temperature Tc = 8.2 K [151], and our phase diagram in fig. 6.14 shows that the
rhodium system could be equivalent to Ca3Ir4Sn13 under 30 kbar of hydrostatic pressure.
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(a)
(b)

Figure 6.12: Similar “fishtail”-type features appearing in the magnetisation of
Ca3Rh4Sn13 [151], along with the “peak” in the critical current Jc [152].

line position. The energy cost due to the slight deformation of the lattice must be

matched against the reduction in energy due to more and more flux-lines becoming

pinned, which helps stabilise the lattice. The FLL has a certain rigidity which

parameterises its ability to undergo these elastic distortions. Pippard showed

that near Hc2, the shear modulus of the lattice is strongly reduced, such that the

FLL softens and is able to rearrange itself to better match the location of the

pinning centres. The periodicity of the newly reorganised lattice approaches the

defect concentration of the bulk (see figure 6.13). Although the lattice in this

state is now totally fluid it is able to support a higher supercurrent density, owing

to the improved level of pinning. As a result, the bulk can maintain a larger

supercurrent, which is seen experimentally as an increase in Jc and consequently

the magnetisation.
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Figure 6.13: Schematic of the FLL reorganisation which takes place at Hp.
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6.4 Discussion

(CaxSr1-x)3Ir4Sn13 Ca3Co4Sn13

x = 0 x = 0.5 x = 1

T*

Superconductivity

Anvil SQUID cell data from this chapter4 x Tc

Figure 6.14: Composite phase diagram of the A3B4Sn13 series, showing the
(Ca,Sr)3Ir4Sn13 series and data from Ca3Co4Sn13. x = 0 and x = 0.5 data re-
produced from [38].

Figure 6.14 shows all the points from the pressure studies of Ca3Ir4Sn13 and

Ca3Co4Sn13 presented in this chapter, along with the x = 0 and x = 0.5 doping

points of the (Ca,Sr)3Ir4Sn13 series from [38], describing the total extent of the su-

perconducting dome. Based on its transition temperature at ambient pressure, and

the pressure points determined for Ca3Ir4Sn13, we estimate that Ca3Co4Sn13 cor-

responds to Ca3Ir4Sn13 under about 80 kbar of pressure. The critical temperature

does not become maximum at the point at which T ∗ appears to extrapolate to

zero temperature, but at a pressure beyond it. This has been accounted for in the

literature [38] as due to the transition temperature Tc having a complicated depen-

dence on the frequency of the soft mode, whereby competition between different
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mechanisms means that Tc may not necessarily peak where the mode frequency

goes to zero.

Given the combinatorial advantage the system offers of being able to dope on

both the A and the B site, and the application of physical pressure, it should be

possible to fill out this phase diagram more completely. In particular, more study

of materials which can be driven to the region around which T ∗ → 0 K, will help

relate the density-wave transition to the low-temperature superconducting state,

and possibly identify fluctuations in the critical region.

For Sr3Ir4Sn13, the magnitude of our upper critical field - 1.45 T - is somewhat

less than the 3.45 T which was initially reported in the literature [147], whilst

it is strongly in agreement with a recent as-yet unpublished µSR/magnetisation

study [154], which found Hc2 = 1.44 T. For Ca3Ir4Sn13, our estimate of the upper

critical field 7.4 T is in accord with resistivity measurements [146] which produced

a similar value.

2 4 6 8 10

-1.0

-0.5

0.0

Tc

FC

Ca3Ir4Sn13

0H = 0.4 mT

M
 / 

H

Temperature (K)

TSn

ZFC

Figure 6.15: Temperature dependent magnetisation M(T ) for Ca3Ir4Sn13 showing
the bulk superconducting transition at Tc= 6.96 K, along with the impurity phase
transition at TSn= 3.72 K, with ZFC and FC traces shown.

Unfortunately, attempts to measure the lower critical field failed here, due to the

presence of tin inclusions leftover from the flux-growth. The presence of the Sn
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impurities can be seen in the temperature dependent magnetisation, as shown in

figure 6.15, whereby a small step inM(T ) at T = 3.72 K marks the point at which

impurities become superconducting. Consequently, it was not possible to extract

Hc1(T ) from the field-dependent M(H) sweeps due to the interplay between the

bulk and impurity superconducting phases. This had no effect on the extraction of

Hc2(T ), as the critical field of tin is significantly less than the upper critical fields

of Ca3Ir4Sn13 or Sr3Ir4Sn13.
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Appendix A

Determination of Hc1

In the Meissner state the magnetic induction B is zero within the sample, resulting

in M = −H. At Hc1 this condition is no longer satisfied and flux begins to enter

into the bulk. Extracting Hc1 from experimental data is non-trivial, and so we

detail here four different methods to extract Hc1.

A.1 dM/dH ̸= −1

In the Meissner phase M = −H; it follows that the magnetic susceptibility

χ =
dM

dH
= −1. (A.1)

From an isotherm M(H), at temperature T < Tc, it is possible to determine Hc1

from the derivative dM/dH as the point at which dM/dH ̸= −1. Figure A.1a

shows the dM/dH for Ca3Ir4Sn13 at T = 1.8 K. It is possible to identify two

regions on the curve – one at low fields where dM/dH fluctuates around -1, and

another at slightly elevated fields, where dM/dH begins to increase towards zero.

Fitting straight lines through each region and finding their intersection gives the

boundary between the two, yielding Hc1 = 5.8 mT.
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∆M = H +M ̸= 0 Determination of Hc1

A.2 ∆M = H +M ̸= 0

Rewriting the Meissner condition M = −H as

M +H = 0 (A.2)

and also defining ∆M =M +H, we can identify the critical field Hc1 as the field

at which

∆M ̸= 0. (A.3)

This taken as the point at which ∆M(H) exceeds zero by some fixed amount.

Figure A.1b shows ∆M(H), where criterion ∆M = 200A.m−1 is used to extract

Hc1 - found to be 8.5 mT.

A.3
√
∆M I.

The quantity ∆M reflects the amount of flux admitted to the bulk after entering

the mixed regime. It is expected to grow quadratically with the field for H > Hc1

[134, 155]. Plotting (∆M)0.5 against H should yield straight lines growing out of

the lower critical field Hc1, as shown in figure A.1b, giving Hc1 = 6.9 mT at T =

1.8 K.

A.4
√
∆M II.

The flux entering the sample above Hc1 becomes trapped due to the presence

pinning forces. We can measure the onset of the trapped flux by zero-field cooling

the sample to a temperature T and applying a small positive field H, before setting

the field back to zero and then making a measuring the moment on the sample. If

the applied field H is less than the lower critical field Hc1 the sample will not have

acquired a moment. As we have remained within the reversible Meissner regime

found along the virgin curve, the shielding suppercurrents simply die once the field

is turned off. However, if the applied field H was greater than Hc1, some amount of
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√
∆M II. Determination of Hc1

flux will have entered the bulk and, due to the pinning forces, will remain trapped

even after the field has been reduced to zero. In this case, a measurement of the

moment will show that the sample has acquired a finite trapped magnetisationMt.

Repeating this at various H, the trapped moment grows quadratically with the

field above Hc1 [22], so – like in method 3 – extrapolating a straight line through

M0.5
t yields an estimate of the lower critical field Hc1. This can be repeated at

various temperatures to obtain the full Hc1(T ) profile. See figure A.1d.
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Figure A.1: Means of extracting Hc1 from isothermal field sweeps.
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Appendix B

Pinning and irreversibility

A perfect, defect-free type-II superconductor has a magnetisation curveM(H) like

one of those given in figure 2.5. In the mixed state, the quantised fluxoids are able

to move freely throughout the sample and the flux density profile within the bulk

is totally homogeneous – their mutual repulsive interactions making them spread

evenly across the sample. The equilibrium relation between B and H is described

by a constitutive equation like the one shown in the inset of figure 2.5. M(H)

in the pinning-free case is totally reversible, as the vortices enter and leave the

sample in a totally reversible manner.

The origin of the irreversibility seen in real type-II superconductors is due to

the presence of pinning centres – defects, impurities and so on. The flux profile

cannot “relax” homogeneously throughout the interior, as the impedance caused

by imperfections results in a build-up of flux at the sample edges. By Faraday’s

law

∇⃗ × B⃗ = J⃗ , (B.1)

the spatial variation of the magnetic induction in the sample results in the presence

of a finite current density J⃗ . A finite supercurrent within the bulk imparts a

Lorentz force

fl = J⃗ × B⃗ (B.2)

on the flux-line lattice (FLL), which tries to set it in motion, resulting in insta-
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bility. These Lorentz forces act in opposition to the pinning forces, which try to

hold the lattice still. Consequently, when pinning centres are present within a

superconductor, the FLL is robust against the destabilising force, and a finite J⃗

can be supported within the bulk. Counterintuitively, the presence of defects and

impurities within a superconducting material actually proves to be useful if we

wish to pass a current through it! This can also be seen from equation B.1, as for

a totally homogeneous magnetic induction B⃗ – which we would find in an ideal,

perfect superconductor – the curl ∇⃗× B⃗ goes to zero, along with the supercurrent

density J⃗ = 0.

A number of phenomenological models, known as “critical state models”, can

describe the shapes of magnetic measurements by considering the competition

between the pinning and Lorentz forces. The central idea is that the pinning forces

which hold the FLL in place exactly match the Lorentz forces trying to destabilise

them. Consequently, the current density Jc is always at its maximum possible

value, and the FLL is always just on the point of slipping. If the current density

was slightly higher, the Lorentz forces would win, and the FLL would collapse.

A key point is that whilst the strength of the pinning forces are independent of

the applied field – an increased field doesn’t make a grain boundary pin flux more

strongly – the strength of the Lorentz forces scale up with an increased field (see

equation B.2). In real systems, at sufficiently high fields, the Lorentz forces will

always win.

The starting point of the critical state model is to assume the form of the critical

current density Jc(H,T ). With Jc(H,T ), all other relevant quantities may be

constructed – the magnetisation, say, is given by

M⃗ =
1

2V

∫
(r⃗ × J⃗)dV, (B.3)

such that M(H) is then determined solely by the field dependence of the current

density Jc(H) along with boundary conditions due to the magnetic history.

The original and most simple of these is the Bean model. Whilst the Bean model

is not able to account for the reduction seen in the magnetisation as H approaches

Hc2, it is useful as a starting point to describe the hysteresis. In the Bean model,
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the pinning forces are assumed to scale with field exactly with the Lorentz forces.

As a result, the current density J⃗ can only take the values ±J or zero, which

means – due to equation B.1 – that the flux profile which leaks into (or out of)

the bulk must have a constant gradient [18].

Figure B.1 shows the Bean model applied to a superconducting slab (shown in

grey) of length a in the x direction, and infinite along y, the field applied parallel

to the slab. The upper two plots show how, above the lower critical field Hc1,

flux lines leak into the sample. The solid blue line in the bottom figure shows the

hysteresis loop which can be determined from equation B.1 and equation B.3, in

the Bean approximation. Whilst there is evidently hysteresis, the loop never closes,

even at arbitrarily high fields. This is due to the finite and constant gradients in

B(x) which, in this approximation, never reduce.

The dotted line shows an isotherm which would be obtained by assuming a different

field dependence of the current – Jc ∼ 1/(H+H0). In this model, Jc tends to zero

as H goes to infinity, such that the gradients in B(x) will die out in a sufficiently

high field, resulting in the magnetisation tending to zero. There are a number of

more or less complicated models – the Kim model or the exponential model, for

instance [156–158] – which assume more or less complicated functional forms for

Jc(H), and are able to account for more complicated phenomenology.
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Figure B.1: Irreversibility in a type-II superconductor
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