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Abstract

Cholesteryl ester transfer protein (CETP) inhibition reduces vascular event risk, but confu-

sion surrounds its effects on low-density lipoprotein (LDL) cholesterol. Here, we clarify asso-

ciations of genetic inhibition of CETP on detailed lipoprotein measures and compare those
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to genetic inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR). We

used an allele associated with lower CETP expression (rs247617) to mimic CETP inhibition

and an allele associated with lower HMGCR expression (rs12916) to mimic the well-known

effects of statins for comparison. The study consists of 65,427 participants of European

ancestries with detailed lipoprotein subclass profiling from nuclear magnetic resonance

spectroscopy. Genetic associations were scaled to 10% reduction in relative risk of coronary

heart disease (CHD). We also examined observational associations of the lipoprotein sub-

class measures with risk of incident CHD in 3 population-based cohorts totalling 616 incident

cases and 13,564 controls during 8-year follow-up. Genetic inhibition of CETP and HMGCR

resulted in near-identical associations with LDL cholesterol concentration estimated by the

Friedewald equation. Inhibition of HMGCR had relatively consistent associations on lower

cholesterol concentrations across all apolipoprotein B-containing lipoproteins. In contrast,

the associations of the inhibition of CETP were stronger on lower remnant and very-low-

density lipoprotein (VLDL) cholesterol, but there were no associations on cholesterol con-

centrations in LDL defined by particle size (diameter 18–26 nm) (−0.02 SD LDL defined by

particle size; 95% CI: −0.10 to 0.05 for CETP versus −0.24 SD, 95% CI −0.30 to −0.18 for

HMGCR). Inhibition of CETP was strongly associated with lower proportion of triglycerides

in all high-density lipoprotein (HDL) particles. In observational analyses, a higher triglyceride

composition within HDL subclasses was associated with higher risk of CHD, independently

of total cholesterol and triglycerides (strongest hazard ratio per 1 SD higher triglyceride com-

position in very large HDL 1.35; 95% CI: 1.18–1.54). In conclusion, CETP inhibition does not

appear to affect size-specific LDL cholesterol but is likely to lower CHD risk by lowering con-

centrations of other atherogenic, apolipoprotein B-containing lipoproteins (such as remnant

and VLDLs). Inhibition of CETP also lowers triglyceride composition in HDL particles, a phe-

nomenon reflecting combined effects of circulating HDL, triglycerides, and apolipoprotein B-

containing particles and is associated with a lower CHD risk in observational analyses. Our

results reveal that conventional composite lipid assays may mask heterogeneous effects of

emerging lipid-altering therapies.

Introduction

Definitive evidence on the causal role of low-density lipoproteins (LDLs) in cardiovascular dis-

ease comes from trials of LDL cholesterol lowering compounds [1], which have shown benefi-

cial effects on risk of coronary heart disease (CHD) and stroke. Consistent effects have been

seen for drugs acting on related pathways, such as 3-hydroxy-3-methylglutaryl-coenzyme A

reductase (HMGCR) inhibitors, i.e., statins, and proprotein convertase subtilisin-kexin type 9

(PCSK9) inhibitors [2], both of which up-regulate hepatic LDL receptor expression, and for

drugs acting on other pathways, such as ezetimibe [3], which inhibits intestinal absorption of

cholesterol [4].

However, trials of drugs primarily designed to alter concentrations of lipids other than LDL

cholesterol have had mixed results [5,6]. One such example is the class of drugs designed to

inhibit cholesteryl ester transfer protein (CETP), a lipid transport protein responsible for the

exchange of triglycerides and cholesteryl esters between apolipoprotein B-containing particles

and high-density lipoprotein (HDL) particles. CETP inhibitors were developed initially on the
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basis of their HDL cholesterol raising effects. Although accumulating genetic evidence suggests

that HDL cholesterol concentration is unlikely to be causally related to CHD [7–9], there were

2 strong reasons to believe that CETP inhibition may still reduce vascular risk: (i) genetic stud-

ies of CETP variants have shown associations with CHD [10,11] and (ii) some CETP inhibitors

not only increase HDL cholesterol but also appear to lower LDL cholesterol as measured by

conventional assays [12,13].

The findings from the phase III REVEAL study, the largest CETP trial to date, showed that

treatment with the CETP inhibitor anacetrapib led to a reduction in risk of coronary events

that was proportional to the reduction in non-HDL cholesterol [14]. Interestingly, anacetrapib

appeared to have discrepant effects based on the assay used to quantify LDL cholesterol (using

beta-quant, direct or Friedewald estimation) [13]. This discrepant effect was also identified in

a genetic study that approximated a factorial clinical trial of CETP inhibition and statin ther-

apy [15]. Thus, although both CETP inhibitors and statins lower Friedewald-estimated LDL

cholesterol, which also includes cholesterol carried by other lipoprotein particles, it is possible

that the drugs have differential effects on the concentration and composition of lipids in differ-

ent apolipoprotein B–containing lipoproteins.

In this study, we used the established approach of exploiting genetic variants near the pro-

tein-coding genes of drug targets to investigate detailed lipid and lipoprotein subclass signa-

tures of CETP inhibition in large population-based studies. We compared the association of

an allele associated with lower CETP expression (to mimic CETP inhibition) with HMGCR
expression associated variant (to proxy statin treatment) to gauge into how these 2 therapies

alter the lipoprotein milieu. The genetic effects of HMGCR inhibition were analysed to provide

a valuable control because these effects are already well understood [16]. We also examined

the role of lipoprotein composition in CHD for the first time. We present findings that the tri-

glyceride composition, in contrast to circulating concentrations, of HDL particles is associated

with CHD.

Results

Data from 62,400 individuals with extensive lipoprotein subclass profiling and genotypes were

available. We combined data from 5 adult cohorts (mean age range from 31–52 years) and one

cohort of adolescents (mean age 16 years) for the genetic analyses in which 51% of participants

of all 6 studies were female. Study-specific and pooled estimates from meta-analyses of genetic

and observational analyses for all 191 traits are presented in Supporting S1–S15 Figs.

Scaled to 10% reduction in relative risk of CHD, CETP rs247617 and HMGCR rs12916 had

near-identical associations with Friedewald-estimated LDL cholesterol (Fig 1) and similar associ-

ations for apolipoprotein B. In contrast, when LDL cholesterol was defined on the basis of choles-

terol transported in LDL based on particle size (diameter 18–26 nm) and measured via nuclear

magnetic resonance (NMR) spectroscopy, CETP expression lowering allele had no association

with this size-specific LDL cholesterol (0.02 SDs; 95% CI: −0.10 to 0.05). Although HMGCR
expression lowering allele had a relatively consistent association with individual apolipoprotein

B–containing lipoproteins (effect estimates ranging from −0.25 for intermediate-density lipopro-

tein [IDL] cholesterol to −0.18 for very-low-density lipoprotein [VLDL] cholesterol), CETP
expression lowering allele had the most pronounced associations with VLDL cholesterol, a

weaker association with IDL cholesterol, but no association with LDL cholesterol defined by par-

ticle size or cholesterol transported by any of the large, medium, or small LDL subclasses (Fig 1).

When examining triglycerides in apolipoprotein B–containing particles, CETP expression

lowering allele associated with lower circulating triglyceride concentrations in VLDL and IDL

subclasses, whereas HMGCR expression lowering allele had weaker effects on these measures,
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except in LDL subclasses (Fig 2). CETP expression lowering allele had a very strong association

with higher HDL cholesterol (0.84; 95% CI: 0.76–0.92) but HMGCR did not (0.04; 95% CI:

−0.02 to 0.10; Fig 3). Similarly, CETP expression lowering allele was associated with lower total

quantity of triglycerides in HDL particles (−0.23; 95% CI: −0.31 to −0.15) but HMGCR expres-

sion lowering allele was not (−0.03; 95% CI: −0.09 to 0.02).

The lipoprotein particle structure is biophysically constrained, generating strong correla-

tions between lipid measures within individual lipoprotein subclasses [19–22]. Notable differ-

ences in lipid concentrations in subclass particles would therefore suggest changes in the

compositional proportions of these lipids. For genetic inhibition of CETP, the effects on circu-

lating triglyceride concentrations in all HDL subclasses were weaker (XL-HDL and L-HDL) or

even in the opposite direction (M-HDL and S-HDL) than the effects on cholesterol concentra-

tion in these subclasses (Fig 3). Examining the genetic associations with the particle lipid com-

positions, the relative amount of triglycerides (in relation to all lipid molecules in the particles)

was remarkably diminished in all HDL subclass particles by genetic inhibition of CETP (Fig

4). Genetic inhibition of HMGCR did not associate with triglyceride concentration or compo-

sition of any HDL subclass. These associations are in line with the known physiological roles

of CETP and HMGCR and their inhibition [23,24]. In addition, as expected, CETP expression

lowering allele associated with higher compositions of triglycerides in most VLDL subclass

Fig 1. Associations of genetic variants in CETP rs247617 (red) and HMGCR rs12916 (blue) with circulating

apolipoprotein B and cholesterol concentrations in size-specific apolipoprotein B particles. Estimates represent the

standardized difference in lipoprotein trait, with per allele associations scaled to a 10% lower relative risk of CHD.

Analyses were adjusted for age, sex, genotyping batch, and 10 genetic principal components. The circles refer to the

effect estimates and the horizontal bars to the 95% CIs. Closed circles represent statistical significance of associations at

P< 0.002 and open circles associations that are nonsignificant at this threshold. The lipoprotein subclasses are defined

by particle size [17–19]: potential chylomicrons and the largest VLDL particles (XXL-VLDL; average particle diameter

�75 nm); 5 different VLDL subclasses, i.e., very large (average particle diameter 64.0 nm), large (53.6 nm), medium

(44.5 nm), small (36.8 nm), and very small VLDL (31.3 nm); IDL (28.6 nm); and 3 LDL subclasses, i.e., large (25.5 nm),

medium (23.0 nm), and small LDL (18.7 nm). Underlying data can be found in S1 Data. ApoB, apolipoprotein B; C,

cholesterol; CHD, coronary heart disease; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; VLDL,

very-low-density lipoprotein.

https://doi.org/10.1371/journal.pbio.3000572.g001
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particles and HMGCR expression lowering allele showed directionally similar albeit weaker

associations.

To understand the clinical relevance of these HDL-related compositional changes arising

from CETP inhibition, beyond lowering the cholesterol concentrations of apolipoprotein B–

containing lipoprotein particles, we studied the observational associations of lipoprotein sub-

class lipid concentrations and compositions with CHD in 3 prospective population cohorts

totalling 616 incident cases and 13,564 controls during an 8-year follow-up. The triglyceride

concentration of HDL was associated with incident CHD when adjusted for nonlipid cardio-

vascular risk factors (Fig 5). However, when serum cholesterol and serum triglycerides were

added to the model, as expected, the associations attenuated. In contrast, the triglyceride com-

positions of all the HDL subclass particles were positively associated with CHD, independent

of circulating concentrations of cholesterol and triglycerides, with hazard ratios around 1.3 for

all HDL subclasses (Fig 5). Adjusting for LDL-C had only very minor effects on the associa-

tions of both circulating HDL-related triglyceride concentrations and the triglyceride compo-

sitions of HDL particles. In addition to the compositional enrichment of triglycerides in HDL

particles, the compositional enrichment of cholesteryl esters in the largest VLDL particles

(XXL-VLDL and XL-VLDL) was also observationally associated with greater risk of CHD (S11

Fig). The genetic inhibition of CETP lowered the cholesteryl ester composition of these VLDL

particles, i.e., was acting toward decreased risk of CHD (S2 Fig).

Fig 2. Associations of genetic variants in CETP rs247617 (red) and HMGCR rs12916 (blue) with circulating

triglyceride concentrations in size-specific apolipoprotein B particles. Estimates represent the standardized

difference in lipoprotein trait, with per allele associations scaled to a 10% lower relative risk of CHD. Analyses were

adjusted for age, sex, genotyping batch, and 10 genetic principal components. The circles refer to the effect estimates

and the horizontal bars to the 95% CIs. Closed circles represent statistical significance of associations at P< 0.002 and

open circles associations that are nonsignificant at this threshold. The lipoprotein subclasses are defined by particle size

[17–19]: potential chylomicrons and the largest VLDL particles (XXL-VLDL; average particle diameter�75 nm); 5

different VLDL subclasses, i.e., very large (average particle diameter 64.0 nm), large (53.6 nm), medium (44.5 nm),

small (36.8 nm), and very small VLDL (31.3 nm); IDL (28.6 nm); and 3 LDL subclasses, i.e., large (25.5 nm), medium

(23.0 nm), and small LDL (18.7 nm). Underlying data can be found in S1 Data. CHD, coronary heart disease; IDL,

intermediate-density lipoprotein; LDL, low-density lipoprotein; TG, triglyceride; VLDL, very-low-density lipoprotein.

https://doi.org/10.1371/journal.pbio.3000572.g002
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To further investigate the novel relation of the triglyceride composition of HDL particles

(and thereby potentially the inhibition of CETP) with incident CHD, we performed systematic

analyses focusing on 3 fundamental measures that characterize the overall lipoprotein profile

fairly well, namely, total serum triglyceride, HDL-C, and apolipoprotein B concentration, and

gradually adjusted the association between HDL particle triglyceride composition and incident

CHD. The results are presented in Fig 6. Adjusting the associations between HDL particle tri-

glyceride compositions and incident CHD with total triglycerides, HDL-C and apolipoprotein

B had all very similar minor effects. However, a combined adjustment for apolipoprotein B

and HDL-C almost abolished the associations similarly to apolipoprotein B and triglycerides.

Discussion

We used genetic variants in CETP and HMGCR to gain insight into the expected effects of

therapeutic inhibition of CETP and HMG-CoA reductase on circulating lipoproteins and lip-

ids. Our data show that although CETP and HMGCR have near-identical effects on Friede-

wald-estimated LDL cholesterol, this result masks a very different association of CETP and

HMGCR with size-specific LDL cholesterol. Genetic inhibition of HMGCR showed similar

effects with cholesterol across the apolipoprotein B–containing lipoproteins but genetic inhibi-

tion of CETP showed stronger associations with larger apolipoprotein B particles, namely,

VLDL and remnant cholesterol [25], but no association with cholesterol carried specifically in

LDL particles defined by size.

Fig 3. Associations of genetic variants in CETP rs247617 (red) and HMGCR rs12916 (blue) with circulating

apolipoprotein A-I as well as cholesterol and triglyceride concentrations in size-specific HDL particles. Estimates

represent the standardized difference in lipoprotein trait, with per allele associations scaled to a 10% lower relative risk

of CHD. Analyses were adjusted for age, sex, genotyping batch, and 10 genetic principal components. The circles refer

to the effect estimates and the horizontal bars to the 95% CIs. Closed circles represent statistical significance of

associations at P< 0.002 and open circles associations that are nonsignificant at this threshold. The lipoprotein

subclasses are defined by particle size [17–19]: the 4 size-specific HDL subclasses are very large (average particle

diameter 14.3 nm), large (12.1 nm), medium (10.9 nm), and small HDL (8.7 nm). Underlying data can be found in S1

Data. Apo A-I, apolipoprotein A-I; C, cholesterol; CHD, coronary heart disease; HDL, high-density lipoprotein; TG,

triglycerides.

https://doi.org/10.1371/journal.pbio.3000572.g003
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Friedewald-estimated LDL cholesterol (as well as ‘direct’ assays) are nonspecific measures

of cholesterol [26–28]. For example, in addition to the cholesterol in size-specific LDL parti-

cles, Friedewald LDL cholesterol also includes, to varying degrees, cholesterol in IDL, VLDL,

and lipoprotein(a) [29]. This nonspecificity of commonly used “LDL” cholesterol assays is

under-recognized and underlies the prevailing opinion that inhibitors of HMGCR and CETP

both alter LDL cholesterol. However, our data show this not to be the case: using NMR spec-

troscopy-based lipoprotein particle quantification, which defines individual lipoprotein sub-

classes based on particle size [18,19,21], our findings demonstrate that CETP has negligible

effect on cholesterol in size-specific LDL particles. As the inhibition of CETP affects the IDL

subclass similarly to all the LDL subclasses, the “LDL cholesterol” via beta-quantification

would also be only minimally affected. In this way, the use of a composite lipid measure can

obscure differential associations of a therapy or gene [20] with individual constituents of the

composite and can have clinical ramifications. For example, if a trial is powered to a given

reduction in Friedewald LDL cholesterol, under the naïve assumption that the drug uniformly

alters all the subcomponents, then the trial may not have the expected result if the drug has dif-

ferential effects on these subcomponents. This is exemplified in the recent phase III ACCEL-

ERATE trial of evacetrapib, which was terminated for futility, and was powered to a difference

Fig 4. Associations of genetic variants in CETP rs247617 (red) and HMGCR rs12916 (blue) with the triglyceride

composition of size-specific lipoprotein particles. Estimates represent the standardized difference in lipoprotein

trait, with per allele associations scaled to a 10% lower relative risk of CHD. Analyses were adjusted for age, sex,

genotyping batch, and 10 genetic principal components. The circles refer to the effect estimates and the horizontal bars

to the 95% CIs. Closed circles represent statistical significance of associations at P< 0.002 and open circles associations

that are nonsignificant at this threshold. The lipoprotein subclasses are defined by particle size [17–19]: potential

chylomicrons and the largest VLDL particles (XXL-VLDL; average particle diameter�75 nm); 5 different VLDL

subclasses, i.e., very large (average particle diameter 64.0 nm), large (53.6 nm), medium (44.5 nm), small (36.8 nm),

and very small (31.3 nm); IDL (28.6 nm); and 3 LDL subclasses, i.e., large (25.5 nm), medium (23.0 nm), and small

(18.7 nm). The 4 size-specific HDL subclasses are very large (average particle diameter 14.3 nm), large (12.1 nm),

medium (10.9 nm), and small (8.7 nm). Underlying data can be found in S1 Data. Apo B, apolipoprotein B; CHD,

coronary heart disease; HDL, high-density lipoprotein; IDL, intermediate-density lipoprotein; LDL, low-density

lipoprotein; TG, triglycerides; VLDL, very-low-density lipoprotein.

https://doi.org/10.1371/journal.pbio.3000572.g004
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Fig 5. Observational associations of circulating triglyceride concentrations and triglyceride composition in lipoprotein subclass particles and risk

of incident CHD. (Left panel) Black: Hazard ratios for incident CHD per SD higher triglyceride concentration within each size-specific lipoprotein

subclass adjusted for traditional risk factors. Pink: adjusted for traditional risk factors, serum cholesterol, and serum triglycerides. (Right panel) Black:

Hazard ratios for incident CHD per SD higher percentage of triglycerides (of all lipid molecules) within each size-specific lipoprotein subclass adjusted

for traditional risk factors. Pink: adjusted for traditional risk factors, serum cholesterol, and serum triglycerides. Basic risk factors include age, sex, mean

arterial pressure, smoking, diabetes mellitus, lipid medication, geographical region in FINRISK, and ethnicity in SABRE. The horizontal bars to the 95%

CIs. Closed circles represent statistical significance of associations at P< 0.002 and open circles associations that are nonsignificant at this threshold. The

horizontal bars refer to the 95% CIs. Underlying data can be found in S1 Data. Apo B, apolipoprotein B; CHD, coronary heart disease; HDL, high-

density lipoprotein; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; VLDL, very-low-density lipoprotein; TG, triglycerides.

https://doi.org/10.1371/journal.pbio.3000572.g005

Fig 6. Observational associations of circulating triglyceride concentrations and triglyceride composition in lipoprotein subclass particles and risk of incident

CHD with multiple adjustments. Hazard ratios for incident CHD per SD higher circulating triglyceride concentrations (upper part) and triglyceride composition

(lower part) in lipoprotein subclass particles within each size-specific lipoprotein subclass adjusted for traditional risk factors and gradually for 3 fundamental measures

that characterize the overall lipoprotein profile pretty well, namely, total serum triglyceride (total TG), HDL cholesterol (HDL-C), and apolipoprotein B (apoB)

concentration. Closed circles represent statistical significance of associations at P< 0.002 and open circles associations that are nonsignificant at this threshold. The

horizontal bars refer to the 95% CIs. Underlying data can be found in S1 Data. Apo B, apolipoprotein B; C, cholesterol; CHD, coronary heart disease; HDL, high-density

lipoprotein; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; TG, triglycerides; VLDL, very-low-density lipoprotein.

https://doi.org/10.1371/journal.pbio.3000572.g006
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in LDL cholesterol based on a composite assay [12]. The differential effects of CETP inhibition

on composite markers such as Friedewald and directly-quantified LDL cholesterol compared

to apolipoprotein B concentrations identified in the subsequent phase III REVEAL trial of ana-

cetrapib [13] suggest that had ACCELERATE used an alternative measure of proatherogenic

lipoproteins (e.g., apolipoprotein B or non-HDL-C [14]) to gauge the expected vascular effect,

the trial may have been more appropriately powered.

This highlights the need to understand, in detail, the consequences of lipid-modifying ther-

apies on lipoproteins and lipids in order to be able to gauge whether a composite measure

(such as Friedewald LDL cholesterol) can be reliably used as an indicator of the likely benefi-

cial effect of a therapy. This is unlikely to be limited to assays for LDL cholesterol. For example,

assays that quantify triglycerides measure the summation of triglycerides across multiple lipo-

protein particle categories. Drugs currently under development that target triglycerides (such

as apolipoprotein C-III inhibitors [30]) have differential effects on triglycerides in lipoprotein

subclass particles as demonstrated in a recent genetic study [31]. If triglycerides within differ-

ent lipoprotein subclasses have heterogeneous effects on vascular disease, a clinical trial pow-

ered to the overall concentration of circulating triglycerides may give an inaccurate portrayal

of the cardiovascular consequences arising from apolipoprotein C-III inhibition.

Another key finding is that the lipid compositions of lipoprotein particles can associate

with disease risk independently of total lipid concentrations. Although genetic inhibition of

CETP increased circulating concentrations of cholesterol in all HDL subclasses, the triglycer-

ide composition, i.e., the percentage of triglyceride molecules of all the lipid molecules in the

particle, was markedly lower in all HDL particles. Intriguingly, our observational analyses, the

first to explore lipoprotein particle lipid composition with CHD outcomes, revealed that tri-

glyceride enrichment of HDL particles associates with higher risk for future CHD, indepen-

dently of total circulating cholesterol and triglycerides. The largest hazard ratio for the

triglyceride enrichment in medium HDL subclass particles was of a similar magnitude

(approximately 1.3) as that for LDL cholesterol and apolipoprotein B [32]. However, this phe-

nomenon appears to be due to combined effects of circulating HDL and apolipoprotein B-con-

taining particles, maybe in connection to CETP function and the circulating amount of total

triglycerides, not an intrinsic indication of the role of HDL particle lipid composition in CHD.

Key strengths of our analyses include the availability of detailed measurements of blood

lipoprotein subclass concentrations and compositions from general population studies with

incident CHD events, together with the availability of genome-wide genotyping. We used sin-

gle CETP and HMGCR variants as genetic proxies for therapeutic inhibition (i.e., instruments

in the Mendelian randomization analyses), assuming that they are not pleiotropic. This

assumption is justifiable on the basis that the SNPs were selected in cis-regions and alter gene

expression and together with the fact that (1) the CETP genetic variant recapitulated the effects

of CETP enzyme activity in relation to the role the enzyme has in shuttling esterified choles-

terol from HDL to apolipoprotein B-containing particles in exchange for triglycerides [23] and

that (2) prospective population-based data of patients taking statins with blood sampling

before and after the commencement of therapy showed that genetic variants in HMGCR
robustly recapitulated the effects of statin therapy on lipoprotein subclasses and lipids [16].

In conclusion, we have shown that, in contrast to genetic inhibition of HMG-CoA (proxy-

ing statin therapy), genetic inhibition of CETP does not alter circulating size-specific LDL cho-

lesterol concentrations. This is masked by using conventional, nonspecific assays for LDL

cholesterol and may be problematic for ongoing and future clinical trials of lipid lowering ther-

apies, especially when a nonspecific marker of lipids is used to derive an expected effect of a

drug with risk of disease. The basis for the reduction in CHD risk seen with CETP inhibition

appears to be due to the lowering of atherogenic non-LDL lipoprotein particles. Our findings
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draw attention to the need for metabolic precision in measurements of lipoprotein lipids and

subclasses and in assessing the role of lipoprotein metabolism in cardiovascular disease in rela-

tion to ongoing treatment trials of novel lipid-altering therapies.

Methods

Ethics statement

The Ethics Committee of the Faculty of Medicine, University of Oulu has approved the North-

ern Finland Birth Cohort 1986 (NFBC86) (17.6.1999) and the Northern Finland Birth Cohort

1966 (NFBC66) studies (17.6.1996). In addition, the Ethics Committee of the Northern Ostro-

bothnia Hospital District has approved the NFBC66 (94/2011) and NFBC86 (108/2017). This

study has been approved by the NFBC Scientific Committee (material request P0268/2018).

The Cardiovascular Risk in Young Finns Study (YFS) was approved by the following Ethics

Committees covering all the 5 participating medical university study sites in Finland: the Eth-

ics Committee of the Hospital District of Southwest Finland (12/2007 §533, 19.12.2006; 8/2007

§330, 28.8.2007; 1/2008 §28, 15.1.2008), the Ethics Committee of the Pirkanmaa Hospital Dis-

trict (ETL-R07100), and the Ethics Committee of the Northern Ostrobothnia Hospital District

(84/2001). The FINRISK 1997 was approved by the Ethics committee of the National Public

Health Institute, Helsinki, Finland (23.01.1997), and the DILGOM 2007 study was approved

by the Ethics Committee of the Helsinki and Uusimaa Hospital District (229/E0/2006). The

SABRE study protocols were approved by the University College London (5.1.1988/PMcK/sp)

and by the St. Mary’s Hospital Research Ethics Committee (07/H0712/109). The INTERVAL

study was approved by the Cambridge (East) Research Ethics Committee (11/EE/0538/74247)

and was also approved by the University of Cambridge’s Research Operations Office and the

Research Governance Office. All studies were approved by local institutional research review

committees, and all clinical investigations were conducted according to the principles

expressed in the Declaration of Helsinki. All participants gave written informed consents.

Prospective and cross-sectional studies and lipoprotein quantification

We used genetic and lipoprotein data from 5 population-based Finnish cohorts and 1 cross-

sectional study in the UK (cohort characteristics are presented in S1 Table and study descrip-

tions are given in S1 Text). Details of study-specific genotyping are provided in S2 Table.

Briefly, the cohorts used were the NFBC66 (n = 4,702 individuals aged 31 y at blood draw)

[33,34], the NFBC86 (n = 3,726 individuals aged 16 y at blood draw), the YFS (n = 1,948 indi-

viduals aged 24–39 y in 2007) [35], 2 population-based Finnish cohorts FINRISK 1997

(n = 6,942 individuals aged 24–74 y) and DILGOM subsample of FINRISK 2007 (n = 4,124

individuals aged 24–74 y) [36,37], and a study of healthy blood donors from the UK (INTER-

VAL: n = 40,958 individuals aged 18–80 y) [38]. For prospective analyses, we used the above-

mentioned FINRISK 1997 and DILGOM cohorts and additionally a tri-ethnic UK

community-based cohort SABRE (n = 4,976 individuals aged 40–69 y) [39,40]. The focus in

this study was to evaluate the impact of variants in CETP (and HMGCR) on lipoprotein metab-

olism, i.e., on the entire cascade of apolipoprotein B–containing lipoproteins and HDL sub-

classes. Therefore, we decided a priori to examine all the 191 lipoprotein and lipid traits

available from the NMR-based methodology [17]. Abbreviations and full descriptions of the

lipoprotein measures are given in S3 Table. Details of this platform have been published previ-

ously [17,41], and it has been widely applied in genetic and epidemiological studies [16,18,42–

44]. Focusing on these 191 traits, we estimated that 28 principal components explain 99% of

their variation in the Finnish cohorts, and therefore we used a P value threshold of 0.05/

28 = 0.002 to denote evidence in favor of an association.
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Where possible, we excluded individuals receiving lipid lowering medication, pregnant

women, and those who had a high proportion (>30%) of values missing across the lipid traits;

details are given in S1 Text. All measures (S3 Table) were first adjusted for sex, age (if applica-

ble), genotyping batch (if applicable), and 10 first principal components from genomic data,

and the resulting residuals were transformed to normal distribution by inverse rank-based

normal transformation.

Selection of genetic variants and genetic analyses

We selected variants as genetic proxies of CETP and HMGCR inhibition on the basis of robust

associations with circulating lipids in GWAS consortia [42,45] and target gene expression. The

HMGCR variant (rs12916) LDL cholesterol lowering T allele (−0.24 SD LDL cholesterol per T

allele; P = 1.3 × 10−14) has been shown to lower HMGCR expression [46,47], and the CETP var-

iant (rs247617) HDL cholesterol increasing A allele (0.84 SD HDL cholesterol per A allele;

P = 5.4 × 10−94) associates with lower CETP gene expression. Rs247617 is the strongest eQTL

for CETP across all tissues in Genotype To Expression (https://gtexportal.org) project data

[48]. Thus, we use these variants as biologically plausible instruments in the Mendelian ran-

domization framework to infer the drug effects through genetic inhibition of these genes

[6,33]. We used an additive model for each cohort separately (see S1 Table for details of analy-

sis software). In order to make the lipoprotein and lipid estimates comparable, the estimates

for CETP rs247617 and HMGCR rs12916 were scaled to the same CHD association as reported

by the CARDIoGRAMplusC4D GWAS Consortium [49]. The per allele log odds (logOR) for

CHD was 0.0358 (standard error = 0.01, P = 1.6 × 10−4 and T allele frequency 0.57) for

HMGCR rs12916 and 0.0309 (standard error = 0.01, P = 2.5 × 10−3 and C allele frequency

0.69) for CETP rs247617; subsequently, the summary statistics of each individual cohort and

each metabolite were scaled to −0.105 logOR of CHD (equivalent to an odds ratio [OR] of

CHD of 0.90) to align the estimates to a 10% lower relative risk of CHD. We use the term rela-

tive risk as a moniker of ratio effect estimates. The cohort-specific association results of lipo-

protein and lipid measures with both variants were then combined using an inverse-variance

weighted fixed effect meta-analysis.

Association of lipoprotein measures with risk of incident CHD

Cohorts contributing to the associations of lipoprotein lipid concentration and composition

measures and the hazard of incident CHD were FINRISK 1997, DILGOM, and SABRE. Partic-

ipants with prevalent CHD were excluded from the analysis. Following exclusion, data were

available from FINRISK 1997 for 6,484 individuals (287 cases/6,197 controls) and 3,318 indi-

viduals from DILGOM (270 cases/3,048 controls) and for SABRE 4,378 individuals with non-

missing data (59 cases/4,319 controls). The follow-up time of FINRISK 1997 and SABRE were

censored to 8 years to match the follow-up time in DILGOM.

Prior to statistical analyses, metabolic measures were log-transformed and scaled to SD in

each cohort. The relationships of lipid measures with the risk of CHD were analysed using

Cox proportional hazards regression models with age, sex, mean arterial pressure, smoking,

diabetes mellitus, lipid medication, and geographical region (Finnish cohorts), ethnicity

(SABRE), total cholesterol, and total triglyceride concentrations as covariates. The cohort-spe-

cific association results of 191 lipid measures were then combined using inverse-variance

weighted fixed-effects meta-analysis. Analyses were conducted in R studio (version 1.0.153, R

version 3.3.3). As above, we used a P value threshold of�0.002 to denote evidence in favor of

an association.
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Supporting information

S1 Text. Study descriptions. Overall description of the individual cohorts.

(PDF)

S1 Table. Characteristics of the study populations. Clinical characteristics for the 7 cohorts

included in the study.

(PDF)

S2 Table. Genotyping detail of the cohorts. Details of the genotyping for the 6 cohorts

including genetic data in this study.

(PDF)

S3 Table. Key for the lipid and lipoprotein abbreviations. Abbreviations and the description

of the lipid and lipoprotein subclass measures.

(PDF)

S1 Fig. Meta-analysis of genetic variants in CETP rs247617 (red) and HMGCR rs12916

(blue) for all lipoprotein concentration measures. Estimates are the standardized difference

in lipoprotein trait, with per allele associations scaled to a 10% lower relative risk of CHD. The

circles refer to the effect estimates and the horizontal bars to the 95% CIs. Closed circles repre-

sent associations at P< 0.002, and open circles show associations that are nonsignificant at

this threshold. The lipoprotein subclasses are defined by particle size: potential chylomicrons

and the largest VLDL particles (XXL-VLDL; average particle diameter�75 nm); 5 different

VLDL subclasses, i.e., very large (average particle diameter 64.0 nm), large (53.6 nm), medium

(44.5 nm), small (36.8 nm), and very small (31.3 nm); IDL (28.6 nm); and 3 LDL subclasses,

i.e., large (25.5 nm), medium (23.0 nm), and small (18.7 nm). Underlying data can be found in

S2 Data. CHD, coronary heart disease; IDL, intermediate-density lipoprotein; LDL, low-den-

sity lipoprotein; VLDL, very-low-density lipoprotein.

(TIF)

S2 Fig. Meta-analysis of genetic variants in CETP rs247617 (red) and HMGCR rs12916

(blue) for all lipoprotein composition measures. Estimates are the standardized difference in

lipoprotein trait, with per allele associations scaled to a 10% lower relative risk of CHD. The

circles refer to the effect estimates and the horizontal bars to the 95% CIs. Closed circles repre-

sent associations at P< 0.002, and open circles show associations that are nonsignificant at

this threshold. The lipoprotein subclasses are defined by particle size: potential chylomicrons

and the largest VLDL particles (XXL-VLDL; average particle diameter�75 nm); 5 different

VLDL subclasses, i.e., very large (average particle diameter 64.0 nm), large (53.6 nm), medium

(44.5 nm), small (36.8 nm), and very small (31.3 nm); IDL (28.6 nm); and 3 LDL subclasses,

i.e., large (25.5 nm), medium (23.0 nm), and small (18.7 nm). Underlying data can be found in

S2 Data. CHD, coronary heart disease; IDL, intermediate-density lipoprotein; LDL, low-den-

sity lipoprotein; VLDL, very-low-density lipoprotein.

(TIF)

S3 Fig. Meta-analysis of genetic variants in CETP rs247617 (red) and HMGCR rs12916

(blue) for all summary lipid measures. Estimates are the standardized difference in lipopro-

tein trait, with per allele associations scaled to a 10% lower relative risk of CHD. The circles

refer to the effect estimates and the horizontal bars to the 95% CIs. Closed circles represent

associations at P< 0.002, and open circles show associations that are nonsignificant at this

threshold. The lipoprotein subclasses are defined by particle size: potential chylomicrons and

the largest VLDL particles (XXL-VLDL; average particle diameter�75 nm); 5 different VLDL
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subclasses, i.e., very large (average particle diameter 64.0 nm), large (53.6 nm), medium (44.5

nm), small (36.8 nm), and very small (31.3 nm); IDL (28.6 nm); and 3 LDL subclasses, i.e.,

large (25.5 nm), medium (23.0 nm), and small LDL (18.7 nm). Underlying data can be found

in S2 Data. CHD, coronary heart disease; IDL, intermediate-density lipoprotein; LDL, low-

density lipoprotein; VLDL, very-low-density lipoprotein.

(TIF)

S4 Fig. Individual cohort associations of genetic variant in CETP rs247617 for all lipopro-

tein concentration measures. Estimates are the standardized difference in lipoprotein trait,

with per allele associations scaled to a 10% lower relative risk of CHD. The circles refer to the

effect estimates and the horizontal bars to the 95% CIs. Closed circles represent associations at

P< 0.002, and open circles show associations that are nonsignificant at this threshold. The

lipoprotein subclasses are defined by particle size: potential chylomicrons and the largest

VLDL particles (XXL-VLDL; average particle diameter�75 nm); 5 different VLDL subclasses,

i.e., very large (average particle diameter 64.0 nm), large (53.6 nm), medium (44.5 nm), small

(36.8 nm), and very small (31.3 nm); IDL (28.6 nm); and 3 LDL subclasses, i.e., large (25.5

nm), medium (23.0 nm), and small (18.7 nm). Underlying data can be found in S2 Data.

CHD, coronary heart disease; IDL, intermediate-density lipoprotein; LDL, low-density lipo-

protein; VLDL, very-low-density lipoprotein.

(TIF)

S5 Fig. Individual cohort results of CETP rs247617 for all lipoprotein composition mea-

sures. Estimates are the standardized difference in lipoprotein trait, with per allele associations

scaled to a 10% lower relative risk of CHD. The circles refer to the effect estimates and the hor-

izontal bars to the 95% CIs. Closed circles represent associations at P< 0.002, and open circles

show associations that are nonsignificant at this threshold. The lipoprotein subclasses are

defined by particle size: potential chylomicrons and the largest VLDL particles (XXL-VLDL;

average particle diameter�75 nm); 5 different VLDL subclasses, i.e., very large (average parti-

cle diameter 64.0 nm), large (53.6 nm), medium (44.5 nm), small (36.8 nm), and very small

(31.3 nm); IDL (28.6 nm); and 3 LDL subclasses, i.e., large (25.5 nm), medium (23.0 nm), and

small (18.7 nm). Underlying data can be found in S2 Data. CHD, coronary heart disease; IDL,

intermediate-density lipoprotein; LDL, low-density lipoprotein; VLDL, very-low-density lipo-

protein.

(TIF)

S6 Fig. Individual cohort associations of CETP rs247617 for all summary lipid measures.

Estimates are the standardized difference in lipoprotein trait, with per allele associations scaled

to a 10% lower relative risk of CHD. The circles refer to the effect estimates and the horizontal

bars to the 95% CIs. Closed circles represent associations at P< 0.002, and open circles show

associations that are nonsignificant at this threshold. The lipoprotein subclasses are defined by

particle size: potential chylomicrons and the largest VLDL particles (XXL-VLDL; average par-

ticle diameter�75 nm); 5 different VLDL subclasses, i.e., very large (average particle diameter

64.0 nm), large (53.6 nm), medium (44.5 nm), small (36.8 nm), and very small (31.3 nm); IDL

(28.6 nm); and 3 LDL subclasses, i.e., large (25.5 nm), medium (23.0 nm), and small (18.7 nm).

Underlying data can be found in S2 Data. CHD, coronary heart disease; IDL, intermediate-

density lipoprotein; LDL, low-density lipoprotein; VLDL, very-low-density lipoprotein.

(TIF)

S7 Fig. Individual cohort association of HMGCR rs12916 variant for all lipoprotein con-

centration measures. Estimates are the standardized difference in lipoprotein trait, with per-

allele associations scaled to a 10% lower relative risk of CHD. The circles refer to the effect
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estimates and the horizontal bars to the 95% CIs. Closed circles represent associations at

P< 0.002, and open circles show associations that are nonsignificant at this threshold. The

lipoprotein subclasses are defined by particle size: potential chylomicrons and the largest

VLDL particles (XXL-VLDL; average particle diameter�75 nm); 5 different VLDL subclasses,

i.e., very large (average particle diameter 64.0 nm), large (53.6 nm), medium (44.5 nm), small

(36.8 nm), and very small (31.3 nm); IDL (28.6 nm); and 3 LDL subclasses, i.e., large (25.5

nm), medium (23.0 nm), and small (18.7 nm). Underlying data can be found in S2 Data.

CHD, coronary heart disease; IDL, intermediate-density lipoprotein; LDL, low-density lipo-

protein; VLDL, very-low-density lipoprotein.

(TIF)

S8 Fig. Individual cohort results of HMGCR rs12916 association with all lipoprotein com-

position measures. Estimates are the standardized difference in lipoprotein trait, with per

allele associations scaled to a 10% lower relative risk of CHD. The circles refer to the effect esti-

mates and the horizontal bars to the 95% CIs. Closed circles represent associations at

P< 0.002, and open circles show associations that are nonsignificant at this threshold. The

lipoprotein subclasses are defined by particle size: potential chylomicrons and the largest

VLDL particles (XXL-VLDL; average particle diameter�75 nm); 5 different VLDL subclasses,

i.e., very large (average particle diameter 64.0 nm), large (53.6 nm), medium (44.5 nm), small

(36.8 nm), and very small (31.3 nm); IDL (28.6 nm); and 3 LDL subclasses, i.e., large (25.5

nm), medium (23.0 nm), and small (18.7 nm). Underlying data can be found in S2 Data.

CHD, coronary heart disease; IDL, intermediate-density lipoprotein; LDL, low-density lipo-

protein; VLDL, very-low-density lipoprotein.

(TIF)

S9 Fig. Individual cohort results of HMGCR rs12916 associations with all summary lipid

measures. Estimates are the standardized difference in lipoprotein trait, with per allele associa-

tions scaled to a 10% lower relative risk of CHD. The circles refer to the effect estimates and

the horizontal bars to the 95% CIs. Closed circles represent associations at P< 0.002, and open

circles show associations that are nonsignificant at this threshold. The lipoprotein subclasses

are defined by particle size: potential chylomicrons and the largest VLDL particles (XXL-

VLDL; average particle diameter�75 nm); 5 different VLDL subclasses, i.e., very large (aver-

age particle diameter 64.0 nm), large (53.6 nm), medium (44.5 nm), small (36.8 nm), and very

small (31.3 nm); IDL; 28.6 nm); and 3 LDL subclasses, i.e., large (25.5 nm), medium (23.0 nm),

and small (18.7 nm). Underlying data can be found in S2 Data. CHD, coronary heart disease;

IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; VLDL, very-low-density

lipoprotein.

(TIF)

S10 Fig. Meta-analysis of incident CHD association for all lipoprotein concentration mea-

sures. Estimates represent hazard ratios for incident CHD per SD lipoprotein concentration.

Black color refers to adjusting for the traditional risk factors and pink color adjusting for the

traditional risk factors and serum cholesterol and serum triglycerides. Traditional risk factors

include age, sex, mean arterial pressure, smoking, diabetes mellitus, lipid medication, geo-

graphical region in FINRISK, and ethnicity in SABRE. Closed circles represent statistical sig-

nificance of associations at P< 0.002 and open circles associations that are nonsignificant at

this threshold. The horizontal bars refer to the 95% CIs. Underlying data can be found in S2

Data. CHD, coronary heart disease.

(TIF)
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S11 Fig. Meta-analysis of incident CHD association for all lipoprotein composition mea-

sures. Estimates represent hazard ratios for incident CHD per SD lipoprotein composition

measure. Black color refers to adjusting for the traditional risk factors and pink color adjusting

for the traditional risk factors and serum cholesterol and serum triglycerides. Traditional risk

factors include age, sex, mean arterial pressure, smoking, diabetes mellitus, lipid medication,

geographical region in FINRISK, and ethnicity in SABRE. Closed circles represent statistical

significance of associations at P< 0.002 and open circles associations that are nonsignificant

at this threshold. The horizontal bars refer to the 95% CIs. Underlying data can be found in S2

Data. CHD, coronary heart disease.

(TIF)

S12 Fig. Meta-analysis of incident CHD association for all summary lipid measures. Esti-

mates represent hazard ratios for incident CHD per SD lipoprotein measure. Black colo r

refers to adjusting for the traditional risk factors and pink color adjusting for the traditional

risk factors and serum cholesterol and serum triglycerides. Traditional risk factors include age,

sex, mean arterial pressure, smoking, diabetes mellitus, lipid medication, geographical region

in FINRISK, and ethnicity in SABRE. Closed circles represent statistical significance of associa-

tions at P< 0.002 and open circles associations that are nonsignificant at this threshold. The

horizontal bars refer to the 95% CIs. Underlying data can be found in S2 Data. CHD, coronary

heart disease.

(TIF)

S13 Fig. Individual cohort results of incident CHD association for all lipoprotein concen-

tration measures. Estimates represent hazard ratios for incident CHD per SD lipoprotein con-

centration adjusted for traditional risk factors (age, sex, mean arterial pressure, smoking,

diabetes mellitus, lipid medication, geographical region in FINRISK, and ethnicity in SABRE),

total cholesterol, and total triglycerides. Closed circles represent statistical significance of asso-

ciations at P< 0.002 and open circles associations that are nonsignificant at this threshold.

The horizontal bars refer to the 95% CIs. Underlying data can be found in S2 Data. CHD, cor-

onary heart disease.

(TIF)

S14 Fig. Individual cohort results of incident CHD association for all lipoprotein composi-

tion measures. Estimates represent hazard ratios for incident CHD per SD lipoprotein com-

position measure adjusted for traditional risk factors (age, sex, mean arterial pressure,

smoking, diabetes mellitus, lipid medication, geographical region in FINRISK, and ethnicity in

SABRE), total cholesterol, and total triglycerides. Closed circles represent statistical signifi-

cance of associations at P< 0.002 and open circles associations that are nonsignificant at this

threshold. The horizontal bars refer to the 95% CIs. Underlying data can be found in S2 Data.

CHD, coronary heart disease.

(TIF)

S15 Fig. Individual cohort results of incident CHD association for all summary lipid mea-

sures. Estimates represent hazard ratios for incident CHD per SD lipoprotein measure

adjusted for traditional risk factors (age, sex, mean arterial pressure, smoking, diabetes melli-

tus, lipid medication, geographical region in FINRISK, and ethnicity in SABRE), total choles-

terol, and total triglycerides. Closed circles represent statistical significance of associations at

P< 0.002 and open circles associations that are nonsignificant at this threshold. The horizon-

tal bars refer to the 95% CIs. Underlying data can be found in S2 Data. CHD, coronary heart

disease.

(TIF)
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S1 Data. Data underlying Figs 1–6.

(XLSX)

S2 Data. Data underlying S1–S15 Figs.

(XLSX)
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