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Abstract
The replication crisis has prompted many to call for statistical reform within the
psychological sciences. Here we examine issues within Frequentist statistics that may
have led to the replication crisis, and we examine the alternative—Bayesian statistics—
that many have suggested as a replacement. The Frequentist approach and the Bayesian
approach offer radically different perspectives on evidence and inference with the
Frequentist approach prioritising error control and the Bayesian approach offering a
formal method for quantifying the relative strength of evidence for hypotheses. We
suggest that rather than mere statistical reform, what is needed is a better understanding
of the different modes of statistical inference and a better understanding of how
statistical inference relates to scientific inference.

1 Introduction

A series of events in the early 2010s, including the publication of Bem’s (2011)
infamous study on extrasensory perception (or PSI), and data fabrication by Diederik
Stapel and others (Stroebe et al. 2012), led some prominent researchers to claim that
psychological science was suffering a Bcrisis of confidence^ (Pashler and
Wagenmakers 2012). At the same time as these scandals broke, a collective of scientists
was formed to undertake a large-scale collaborative attempt to replicate findings
published in three prominent psychology journals (Open Science Collaboration
2012). The results of these efforts would strike a further blow to confidence in the
field (Yong 2012), and with the replication crisis in full swing old ideas that science
was self-correcting seemed to be on shaky ground (Ioannidis 2012).

One of the most commonly cited causes of the replication crisis has been the
statistical methods used by scientists, and this has resulted in calls for statistical reform
(e.g., Wagenmakers et al. 2011; Dienes 2011; Haig 2016). Specifically, the suite of
procedures known as Null Hypothesis Significance Testing (NHST), or simply signif-
icance testing, and their associated p values, and claims of statistical significance, have
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come in most to blame (Nuzzo 2014). The controversy surrounding significance testing
and p values is not new (see Nickerson 2000 for a detailed treatment); however, the
replication crisis has resulted in renewed interest in the conceptual foundations of
significance testing and renewed criticism of the procedures themselves (e.g.,
Wagenmakers 2007; Dienes 2011; Szűcs and Ioannidis 2017a). Some journals have
gone so far as to ban p values from their pages (Trafimow and Marks 2014) while
others have suggested that what gets to be called statistically significant should be
redefined (Benjamin et al. 2017). Some criticism of p values stems from the nature of
p values themselves—a position particularly common with those advocating some form
of Bayesian statistics—while other criticisms have focused on their use rather than
attacking the conceptual grounding of the procedures themselves (Nickerson 2000;
García-Pérez 2016). However, one thing that was made clear by the replication crisis,
and the ensuing debates about the use of p values, is that few people understood the
nature of p values, the basis of the Frequentist statistics that generate them, and what
inferences could be warranted on the basis of statistical significance. Such was the
confusion and misunderstanding among many in the scientific community that the
American Statistical Association (ASA) took the unusual step of releasing a statement
on statistical significance and p values in the hope of providing some clarity about their
meaning and use (Wasserstein and Lazar 2016).

In order to make sense of the criticisms of p values and to make sense of their role in
the replication crisis it is important to understandwhat a p value is (how it is derived) and
what conditions underwrite its inferential warrant. We detail this in Section 2. There we
also outline what inferences can be made on the basis of p values and introduce a recent
framework, the error statistical approach, which addresses some of the shortcomings of
previous Frequentist approaches. In Section 3 we introduce an alternative to Frequentist
statistics—Bayesian statistics. Specifically, in Section 3.1 we examine some of the
claimed benefits of the Bayesian approach while in Section 3.2 we introduce the
Bayesian notion of statistical evidence, and examine whether the Bayesian approach
and the Frequentist approach lead to different conclusions. In Section 4 we compare the
two approaches more directly and examine how each approach fits into a system of
scientific inference. Finally, we conclude by suggesting that rather than mere statistical
reform what is needed is a change in how we make scientific inferences from data. And
we suggest that there might be benefits in pragmatic pluralism in statistical inference.

2 Frequentist Statistic and p Values

The ASA statement on p values provides an informal definition of a p value as Bthe
probability under a specified statistical model that a statistical summary of the data
(e.g., the sample mean difference between two compared groups) would be equal to or
more extreme than its observed value^ (Wasserstein and Lazar 2016, our emphasis).
Probability is an ill-defined concept with no generally agreed definition that meets all
the requirements that one would want. In the context of significance testing, however,
p values are often interpreted with reference to the long run behaviour of the test
procedure (e.g., see Neyman and Pearson 1933). That is, they can be given a frequency
interpretation (see Morey et al. 2016a for more detail on a frequency interpretation of
confidence intervals). Although a frequency interpretation may not be universally
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accepted (or acknowledged), this interpretation more clearly highlights the link be-
tween p values and the long run behaviour of significance tests. When given a
frequency interpretation, the p indicates how often under a specified model, considering
repeated experiments, a test statistic as large or larger than the one observed would be
observed if it was the case that the null hypothesis (for example, the hypothesis that the
two groups are drawn from the same population) was true. The p value is calculated
from the sampling distribution, which describes what is to be expected over the long
run when samples are tested.

What allows one to draw inferences from p values is the fact that statistical tests
should rarely produce small p values if the null model is true, and provided certain
conditions are met.1 It is also this fact that leads to confusion. Specifically, it leads to
the confusion that if a small p is obtained then one can be 1 - p sure that the alternative
hypothesis is true. This common misunderstanding can result in an interpretation that,
for example, p = 0.01 indicates a 99% probability that the detected effect is real.
However, to conclude this would be to confuse the probability of obtaining the data
(or more extreme) given the null hypothesis with the probability that the null hypothesis
is true given the data (see Nickerson 2000 for examples of this confusion).

The confusion that p values warrant inferences they do not has similarly led to
confusion about the conditions under which p values do warrant inferences. We will
explain what inferences p values do warrant in Section 2.3, but before this can be done
it is important to understand what conditions must be met before they can support any
inferences at all. For now, however, it is sufficient to know that inferences on the basis
of p values rely on the notion of error control. As we will see, violations of the
conditions that grant these error control properties may be common.

2.1 Controlling False Positives

The first condition under which p values are able to provide information on which to
base inferences is that if the null hypothesis is true then p values should be uniformly
distributed.2 For instance, if one was to repeatedly draw samples from a standard
normal distribution centred on 0, and after each sample test the null hypothesis that
μ = 0 (for example, by using a one sample t-test) one would obtain a distribution of
p values approximately like the one shown in Fig. 1(a). This fact appears to contradict
at least one common misinterpretation of p values, specifically the expectation that
routinely obtaining high p values should be common when the null hypothesis is true—
for instance the belief that obtaining p > .90 should be common when the null is true
and p < .10 should be rare, when in fact they will occur with equal frequency (see
Nickerson 2000 for common misinterpretations of p values). Herein lies the concept of

1 These conditions are the assumptions of the statistical test. These might include things such as equal variance
between the two groups in the case of t tests or certain assumptions about the covariance matrix in the case of
factorial ANOVA. These are often violated and, therefore, tests can be inaccurate. Correction procedures, tests
that are robust to violations, or tests that generate their own sampling distribution from the data (such as
randomisation tests) are available. However, we will not discuss these as our focus will primarily be on the
inferences that statistical tests support.
2 We should note that this is only generally true when the null model takes the form of a continuous probability
distribution, which is common for the statistical procedures used in psychology. This assumption does not
necessarily hold for discrete probability distributions.
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the significance threshold. While, for instance, p ≈ .87, and p ≈ .02 will occur with
equal frequency if the null is true, p values less than the threshold (defined as α) will
only occur with the frequency defined by that threshold. Provided this condition is met,
this sets an upper bound on how often one will incorrectly infer the presence of an
effect when in fact the null is true.

The uniformity of the p value distribution under the null hypothesis is, however, only an
ideal. In reality, there are many behaviours that researchers can engage in that can change
this distribution. These behaviours, which have been labelled p hacking, QPRs (questionable
research practices), data dredging, and significance chasing, therefore threaten to revoke the
p value’s inferential licence3 (e.g., Ware and Munafò 2015; Simmons et al. 2011; Szűcs
2016). One of the most common behaviours is optional stopping (also known as data
peaking). To illustrate this behaviour, we will introduce an example, which we will return to
later in the context of Bayesian alternatives to significance testing. Consider Alice who
collects a sample of 10 observations. After collecting her sample, she conducts a significance
test to determine whether the mean is significantly different from some null value (this need
not be zero, but often this is the case). Upon finding p = .10, she decides to add more
observations checking after adding each additional observation whether p< .05. Eventually,
this occurs after she has collected a sample of 20.

On a misunderstanding of the p value this behaviour seems innocuous, so much so
that people often express surprise when they are told it is forbidden (e.g., John et al.
2012; Yu et al. 2013). However, it only seems innocuous on the incorrect assumption
that large p values should be common if the null is true. After all, Alice checked her
p values after every few samples, and while they may have changed as each new
sample was added, they weren’t routinely large. However, optional stopping distorts the
distribution of p + values so that it is no longer uniform. Specifically, the probability of
obtaining p < α, when optional stopping is applied, is no longer equal to α and instead
it can be dramatically higher than α.4 Thus, in the case of optional stopping, the
connection between the value of p and the frequency of obtaining a p value of that
magnitude (or smaller) is broken.
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Fig. 1 Examples of p value distributions under different effect sizes. An effect size of δ = 0 indicates that the
null hypothesis is true

3 Concerns over these behaviours is not new. Referring to the practice as Bcooking^, Charles Babbage (1830)
noted that one must be very unlucky if one is unable to select only agreeable observations out of the multitude
that one has collected.
4 To illustrate this, we conducted a simple simulation. We drew samples (n = 1000) from a standard normal
distribution centred at zero. The values were then tested, using a one sample t-test against the null hypothesis
that μ = 0 by first testing the first 10 values, then the first 11, the first 12 and so forth until either obtaining a
p > 0.05 or exhausting the 1000 samples. After repeating this procedure 10,000 times, we were able to obtain a
significant p value approximately 46% of the time. The median sample size for a significant result was 56.
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A related issue that can revoke the inferential licence of p values occurs when a
researcher treats a collection of p values (also known as a family of tests) in the same
way they might treat a single p value. Consider the case where a researcher runs ten
independent statistical tests. Given the null, the frequency of finding a significant result
(p < 0.05) is 5% for each test. As a result, the chance of finding at least one significant
effect in a family of 10 tests is approximately 40%. While most researchers understand
the problem of confusing the chance of finding a significant test with the chance of
finding at least one significant test in a collection of tests, in the context of simple tests
like t-tests, this confusion persists in more complex situations like factorial ANOVA.
Consider a two factor ANOVA, which produces three test statistics: Researchers can
make this error and confuse the chance of finding at least one significant test (for
example, a main effect or interaction) with the chance of a particular test being
significant. In the case of the former, the chance of finding at least one significant
main effect or interaction in a two factor ANOVA can be approximately 14%. That a
recent survey of the literature, which accompanied a paper pointing out this hidden
multiplicity, found that only around 1% of researchers (across 819 papers in six leading
psychology journals) took this into account when interpreting their data demonstrates
how widespread this confusion is (Cramer et al. 2015). Furthermore, high profile
researchers have expressed surprise upon finding this out (Bishop 2014), further
suggesting that it was not commonly known. As noted by Bishop (2014), this problem
might be particularly acute in fields like event-related potential (ERP) research where
researchers regularly analyse their data using large factorial ANOVAs and then interpret
whatever results fall out. As many as four factors are not uncommon, and consequently,
the chance of finding at least one significant effect can be roughly the same as correctly
calling a coin flip. Furthermore, if a theory can be supported by a main effect of one
factor, or any interaction involving that factor—that is, if one substantive hypothesis
can be supported by multiple statistical hypotheses—then in the case of a four-way
ANOVA that theory will find support as often as 25% of the time even if the null
hypothesis is true.

With this in mind, the advice offered by Bem (2009) appears particularly unwise: In
speaking about data that might have been collected from an experiment, he suggests
B[e]xamine them from every angle. Analyze the sexes separately. Make up new
composite indices.^ (pp. 4–5). That is, add additional factors to the ANOVA to see if
anything pops up. However, as we have seen, adding additional factors simply in-
creases the chance of significance even when the null is true. This hidden multiplicity is
rarely acknowledged in scientific papers. More generally, any data dependent
decisions—for example, choosing one composite index over another based on the
data—greatly increases the chance of finding significance regardless of whether mul-
tiple comparisons were actually made.5 Indeed, Bem (2009 p 6) goes on to state that:

BScientific integrity does not require you to lead your readers through all your
wrongheaded hunches only to show—voila!—they were wrongheaded. A journal
article should not be a personal history of your stillborn thoughts.^

5 In addition to specific data dependent decisions, Steegen et al. (2016) outline how a number of seemingly
arbitrary decisions made during the analysis process can give rise to a very wide range of results.
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While such a journal article may make for tedious reading, it is only by including all
those thoughts, those wrongheaded hunches, those data dependent decisions, that will
allow the reader to determine whether the process by which the results were obtained
deserve to be awarded any credibility, or whether they are as impressive as correctly
calling a coin flip.

2.2 Controlling False Negatives

A second condition that must be met for inferences on the basis of p values to be
warranted is that low p values (i.e., p <α) should occur more frequently when a true or
real effect is present. This occurs because when the discrepancy between the null model
and the model from which the samples are actually drawn increases (something that can
be quantified in terms of effect size), the distribution of p values, obtained in the long
run, departs from uniformity. This is illustrated in Fig. 1(b–d) by showing the distri-
bution of p values obtained from repeated testing of samples drawn from distributions
representing different true effect sizes. When a real effect is present, the frequency with
which a p value occurs is inversely proportional to its magnitude. This skewing of the p
value distribution in the presence of a real effect illustrates the concept of statistical
power (e.g., Cohen 1992). The greater the skew observed in the long run distribution of
p values the greater the statistical power. That is, power is equal to 1 − β, where β is the
proportion of p values > α that occur when a true effect is present. Power, therefore,
allows one to place an upper bound on how often one will incorrectly conclude the
absence of an effect (of at least a particular magnitude) when in fact an effect (of that
magnitude or greater) is present.

That p values skew towards zero in the presence of a true effect implies that p values
near the threshold α should be comparatively rare if a real effect is present. However,
near threshold p values are surprisingly common (Masicampo and Lalande 2012; de
Winter and Dodou 2015). This suggests that the reported effects may actually accord
more with a true null hypothesis. However, they may also imply that statistical power is
very low and that the distribution of p values has not departed sufficiently from
uniformity. Adequate statistical power—that is, the requirement that experiments are
so designed such that in the long run they will produce an extremely skewed distribu-
tion of p values—is a fundamental requirement if inferences are to be drawn on the
basis of p values. However, empirical studies of the scientific literature suggest that this
requirement is not routinely met. For example, studies by Button et al. (2013) and
Szűcs and Ioannidis (2017b) suggest that studies with low statistical power are
common in the literature. Recall, it is only when the two conditions are met—
uniformly distributed p values when the null is true and a heavily skewed p value
distribution when a real effect is present—that good inferences on the basis of p values
are possible. Neither of these conditions are commonly met and, therefore, the episte-
mic value of p values is routinely undermined.

What is the cause of low statistical power? In our definition of power, we said that
power was determined by the skew of the p value distribution in the presence of a given
true effect. That is, if samples of a fixed size are repeatedly drawn and tested with a
statistical test, and a true effect is present, how often p < .05 occurs depends on the
magnitude of the true effect. To draw valid inferences from p values, in the long run,
one needs to know the magnitude of the effect that one is making inferences about. If
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the magnitude of the effect is small, then one needs more information (larger samples)
to reliably detect its presence. When the magnitude of the effect is large, then you can
generate reliable decisions using less information (smaller samples). However, it is
important to note that basing effect size estimates for a priori power analyses on
published results can be very problematic because in the presence of publication bias
(only publishing significant results) the published literature will invariably overestimate
the real magnitude of the effect. That is, when power is low, statistical significance acts
to select only those studies that report effect sizes larger than the true effect. Only
through averaging together significant and non-significant effects can one get a good
estimate of the actual effect size. Interestingly, an examination of replication attempts
by Simonsohn (2015) suggests that in many cases, effect size estimates obtained from
high-powered replications imply that the original studies reporting those effects were
underpowered and, therefore, could not have reliably studied effects of those
magnitudes.

2.3 Frequentist Inferences

Inferences on the basis of p values can be difficult and unintuitive. The
problems that we’ve outlined above are not problems of significance testing
per se, rather they are a result of the inferential heuristics that people apply
when conducting experiments—heuristics such as, Bif it’s nearly significant then
collect more data^ or Bif I can obtain significance with a small sample then it’s
more likely that my hypothesis is true^. Part of the reason why people may
employ inferential heuristics is that several distinct frameworks exist for draw-
ing inferences on the basis of p values and often these are not clearly
distinguished in the statistics textbooks or statistics training. In some cases,
researchers may even be unaware that different frameworks exist. The two most
prominent frameworks are those of Fisher (e.g., Fisher 1925) and Neyman and
Pearson (e.g., Neyman and Pearson 1933). Fisher’s view of inference was
simply that data must be given an opportunity to disprove (that is, reject or
falsify) the null hypothesis (H0). The innovation of Neyman and Pearson was to
introduce the alternative hypothesis (H1) and with it the concept of false alarms
(errors of the first type, or inferring the presence of an effect when the null
hypothesis is true) and false negatives (errors of the second type, or inferring
the absence of an effect when the alternative hypothesis is true). They also saw
a different role for the p value. Fisher was concerned with the actual magnitude
of the p value. Neyman and Pearson, on the other hand, were concerned with
whether the p value crossed a threshold (α). If the p value was smaller than α
then one could reject H0 and if the p value was greater than α one could fail to
reject H0.

6 By fixing α and β (that is, by maximising statistical power) at
particular levels they could fix the long run error control properties of statistical
tests, resulting in rules that, if followed, would lead to inferences that would
rarely be wrong. The type of inferences employed in practice, however, appear

6 Neyman and Pearson (1933) use the terminology accept H0. However, Neyman (1976) uses the terminology
do not reject H0. Furthermore, he goes on to state that his preferred terminology is no evidence against H0. We
follow Neyman (1976) in preferring the no evidence against or do not reject phrasing.
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in many ways to be a hybrid of the two views (Gigerenzer 1993). A conse-
quence of this is that many of the inferences drawn from significance tests have
been muddled and inconsistent.

As a result, some have argued that significance tests need a clearer inferential
grounding. One such suggestion has been put forward by Mayo (Mayo 1996; Mayo
and Spanos 2006; Mayo and Spanos 2011) in the form of her error-statistical philos-
ophy. As the name suggests, it builds on the insight of Neyman and Pearson that
Frequentist inference relies on the long run error probabilities of statistical tests. In
particular, it argues that for inferences on the basis of p values to be valid (that is, have
good long run performance) a researcher cannot simply draw inferences between a null
(e.g., no difference) and an alternative which is simply its negation (e.g., a difference).
Long run performance of significance tests can only be controlled when inferences are
with reference to a specific alternative hypothesis. And inferences about these specific
alternatives are only well justified if they have passed severe tests.

Mayo and Spanos (2011) explains severity informally with reference to a math test
as a test of a student’s math ability. The math test counts as a severe test of a student’s
math ability if it is the case that obtaining a high score would be unlikely unless it was
the case that the student actually had a high maths ability. Severity is thus a function of
a specific test (the math test), a specific observation (the student’s score), and a specific
inference (that the student is very good at maths).

More formally, Mayo and Spanos (2011) state the severity principle as follows:

Data x0 (produced by process G) do not provide good evidence for the hypothesis
H if x0 results from a test procedure with a very low probability or capacity of
having uncovered the falsity of H, even if H is incorrect.

Or put positively:

Data x0 (produced by process G) provide good evidence for hypothesis H (just) to
the extent that test T has severely passed H with x0.

Severity is, therefore, a property of a specific test with respect to a specific inference (or
hypothesis) and some data. It can be assessed qualitatively, as in the math test example
above, or quantitatively through the sampling distribution of the test statistic. To
illustrate how this works in practice, we can consider the following example (adapted
from Mayo and Morey 2017). A researcher is interested in knowing whether the IQ
scores of some group are above average. According to the null model, IQ scores are
normally distributed with a mean of 100 and a known variance of 152. After collecting
100 scores (n = 100), she tests the sample against the null hypothesis H0 : μ = 100 with
the alternative hypothesis H1 : μ > 100. If the observed mean (�x) was 103, then a z-test
would be significant at α = .025. From something like a classic Neyman-Pearson
approach, the inference that would be warranted on the basis of this observation would
be something like reject H0 and conclude that the mean is greater than 100.

A severity assessment, however, allows one to go further. Instead of merely con-
cluding that the group’s mean (μ1) is greater than the null value (μ0), one can instead
use the observed result (�x) to assess specific alternate inferences about discrepancies (γ)
from μ0 of the formH1 : μ > μ0 + γ. For example, one might want to use the observation
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(�x ¼ 103) to assess the hypothesis H1 : μ > μ0 + 1 or the hypothesis H1 : μ > μ0 + 3. The
severity associated with the inference μ > 101 would be 0.91,7 while the severity
associated with the inference that μ > 103 is 0.5. Thus, according to the severity
principle, the observation that �x ¼ 103 provides us with better grounds to infer that
μ1 is at least 101 relative to an inference that it is at least 103.

Just as one can use severity to test different inferences with respect to a fixed result,
one can also use severity to assess a fixed inference with respect to different results.
Consider again the inference that μ > 103. The severity associated with this inference
and the result �x ¼ 103 is 0.5. However, if one had observed a different result of, for
example, �x ¼ 105, then the severity associated with the inference μ > 103 would be
0.91. In order to visualise severity for a range of inferences with reference to a
particular test and a particular observation, it is possible to plot severity as a function
of the inference. Examples of different inferences about μ for different observations (�x)
is shown in Fig. 2(a).

The severity assessment of significant tests has a number of important properties.
First, severity assessments license different inferences on the basis of different observed
results. Consequently, rather than all statistically significant results being treated as
equal, specific inferences may be more or less well justified on the basis of the specific
p value obtained. In our above example, the observation of �x ¼ 103 (n = 100, σ = 15)
results in p = .023, while the observation of �x ¼ 105 results in p < 0.001. Thus for a
fixed n, lower p values license inferences about larger discrepancies from the null. The
severity assessment also highlights the distinction between statistical hypotheses and
substantive scientific hypotheses. For example, a test of a scientific hypothesis might
require that the data support inferences about some deviation from the null value that is
at least of magnitude X. The data might reach the threshold for statistical significance
without the inference that μ1 > μ0 + X passing with high severity. Thus, the statistical
hypothesis might find support without the theory being supported.

Severity assessments can also guard against unwarranted inferences in cases where
the sample size is very large. Consider the case where one fixes the observed p value
(for example, to be just barely significant) and varies the sample size. What inferences
can be drawn from these just significant findings at these various sample sizes? On a
simplistic account, all these significant tests warrant the inference reject H0 and
conclude some deviation (of unspecified magnitude) from the null. A severity assess-
ment, however, allows for a more nuanced inference. As sample size increases, one
would only be permitted to infer smaller and smaller discrepancies from the null with
high severity. Again using our example above, the observation associated with p = .025
and n = 100, allows one to infer that μ1 > 101 with a severity of 0.9. However, the same
p value obtained with n = 500 reduces the severity of the same inference to 0.68. An
illustration of the influence of sample size on severity is shown in Fig. 2(b). If one
wanted to keep the severity assessment high, one would need to change one’s inference
to, example, μ > 100.5 (which would now be associated with a severity of 0.89). Or if
one wanted to keep the same inference (because that inference is required by the

7 In the R statistics package, severity for a z-test can be calculated using the command, pnorm(x.bar - (h0 +
gamma)/ (sigma / sqrt(n))), where x.bar is the observed mean, h0 is the null value, sigma is the population
standard deviation, n is the sample size, and gamma is the deviation from the null value that one wishes to
draw an inference about.
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scientific theory or some background knowledge) at the same severity then one would
need to observe a far lower p value before this could occur.8

Severity assessments also allow one to draw conclusions about non-significant
tests. For instance, when one fails to reject H0, it is possible to ask what specific
inferences are warranted on the basis of the observed result. Once again using
the IQ testing example above, but with a non-significant observation (�x ¼ 102,
n = 100, σ = 15), one can ask what inferences about μ are warranted. For
example, one might ask whether an inference that μ1 < 105 is warranted or
whether the inference that μ1 < 103 is warranted. The severity values associated
with each of these inferences (and the observed result) are 0.98 and 0.75,
respectively. Therefore, one would have good grounds for inferring that the
discrepancy from the null is less than 5, but not good grounds for inferring that
it is less than 3. An illustration of severity curves for non-significant observa-
tions is shown in Fig. 2(c).

The two examples outlined above are both cases which involve inferences from a
single test. But as Mayo (1996) notes, a Bprocedure of inquiry… may include several
tests taken together .̂ The use of multiple tests to probe hypotheses with respect to data
may be particularly useful in the case where one has failed to reject the null hypothesis.
While it is usual to think of significance testing in terms of a null of no effect and an
alternative as departures from this null, any value can be designated the null. For
example, one might want to test the null hypotheses H0 : μ ≤ B and H0 : μ ≥ A (where
usually B = − A) as a way to examine whether the data support inferences that μ lies
within specified bounds (what can be termed practical equivalence, see Phillips 1990;
Lakens 2017). This procedure can supplement, or be used as an alternative, to severity
interpretations so that one can determine precisely what inferences are warranted on the
basis of the data. A consequence of this is that Frequentist inference need not come
down to a simple binary (for example, reject H0, fail to reject H0/accept H1). Instead, a
set of data might lead a researcher to form a far wider range of conclusions. These may
include (but are not limited to) inferring: some deviation is present but it is not of
sufficient magnitude to support the theory; there are no grounds for inferring that a
deviation is present, but neither are there good grounds for inferring any effect lies only

8 This final suggestion can take the form of calibrating ones α level with reference to the sample size and the
effect of (scientific) interest. Typically, however, researchers tend to use a fixed α regardless of context,
although recently some have begun to suggest that a single α level may not be appropriate for all contexts
(Lakens et al. 2018).

a b c

Fig. 2 Examples of severity curves for different statistically significant observations (a), barely significant
observations with different sample sizes (b), and different non-significant observations (c)
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within a narrowly circumscribed region around the null; and, there are good grounds for
inferring the presence of a deviation from the null and that the deviation is of sufficient
magnitude to support a theory.

We will return to Frequentist inference later. For now, one important point to note is
that this kind of Frequentist inference is piecemeal. Claims that are more severely tested
are given more weight than those claims that are not severely tested. Importantly, severe
testing might require more than one statistical test—for example, to test assumptions or
to break down a hypothesis into multiple piecemeal statistical hypotheses. The severity
principle also encourages replication because having to pass multiple tests is a more
severe requirement. Activities such as p-hacking, optional stopping, or small samples
sizes, all directly affect severity assessments by directly changing the error probabilities
of the tests. Unfortunately, error statistical thinking has not been common in the
psychological literature. However, its value is now starting to be recognised by some
(e.g., Haig 2016), including some working within Bayesian statistics (e.g., Gelman and
Shalizi 2013). Although some of the finer details of the error statistical approach are
still to be worked out it may provide a good guide for thinking about how to interpret
statistical tests.

3 An Alternative to p Values

In the preceding section, we showed that the grounds on which p values are granted
their epistemic licence are easily violated; however, it has also been argued that
p values are simply not suitable for scientific inferences because they don’t provide
the information scientists really want to know (e.g., see Nickerson 2000; Lindley 2000).
On this view, what scientists really want to know is the probability that their hypothesis
is true given their data—that is, they want to assign some credence to their hypothesis
on the basis of some data they have obtained. Furthermore, p-hacking, optional
stopping, and similar practices demonstrate the need for procedures that are somehow
immune to these behaviours. This alternative, it is claimed, is provided by Bayesian
statistics(Wagenmakers 2007; Dienes 2011; Morey et al. 2016b).9 Bayesian statistics
offers a radically different approach to statistical inference, and while largely a niche
area in the psychological literature in past decades, events like the replication crisis
have sparked renewed interest in these methods.

In offering a solution to what he terms the Bpervasive problem of p values^,
Wagenmakers (2007) suggests that Bayesian statistics has the desirable attributes for
the ideal statistical procedure. These include: 1) that they are dependent only on the
observed data, and not the data that might have been collected, 2) that they are immune
to the unknown intentions of the researcher, and 3) that they provide a measure of the
strength of evidence that takes into account both the null and the alternative. Much of
the discourse surrounding the switch to Bayesian statistics has focused particularly on

9 In this section, we will use BBayesian statistics^ as a shorthand for a suite of approaches that include, but are
not limited to, techniques for computing Bayes factors and approaches for estimating the values of unknown
parameters. Bayesian statistics should not be taken to mean any procedure that makes use of Bayes Theorem.
Bayes Theorem is simply derived from the rules of conditional probabilities. Bayesian statistics, however, is
the approach to statistics that aims to produce outputs in the form of degrees of belief and/or degrees of support
rather than supporting inferences by controlling certain kinds of errors.
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the idea that Bayesian statistics may be the solution to problems caused by optional
stopping, which have arguably contributed significantly to the replication crisis (e.g.
Wagenmakers 2007; Rouder 2014). Others, however, have also focused on notions of
evidence suggesting that the Bayesian conception of strength of evidence is more
amenable to scientific reasoning or that it is closer to what researchers intuitively
require (e.g., Morey et al. 2016b; Szűcs and Ioannidis 2017a). It is worth unpacking
the claimed advantages of Bayesian statistics in more detail. We will examine the basis
of these claims in the sections below.

3.1 Evidence Derived from Data Alone

In order to unpack the claim that Bayesian inferences are dependent only on the
observed data and not data that might have been collected, but wasn’t, it is necessary
to understand how Frequentist statistics fall into this trap. This Bayesian critique of
Frequentist statistics is based on the fact that Frequentist p values are calculated from
the sampling distribution. As outlined earlier, the sampling distribution is a probability
distribution of the values of the test statistic under a specified model, such as the null
model. It includes all the values that the test statistic might take. And the p value is
calculated from the tail end probabilities of this distribution—that is, the p value
expresses: How often would I obtain a value this large or larger under this statistical
model.

Given this, it is trivial to construct two statistical models (sampling distri-
butions) where the probability of observing a specific value of the test statistic
is the same, but the chance of observing other values (specifically, larger
values) is different. Once a specific value is observed, and a p value is
calculated, it will be different depending on the probability of obtaining
larger values even though the two statistical models say the same thing about
the observed data. As Jeffreys (1961) put it, the use of Bp implies… that a
hypothesis that may be true may be rejected because it has not predicted
observable results that have not occurred.^

The second desirable property of Bayesian statistics is that, unlike p values, Bayes-
ian statistics are not dependent on the unknown intentions10 of the researcher. Consider
again the case of Alice in the description of the uniformity assumption of the p value
distribution. Alice collected data from 10 participants, did a significance test and found
p > .05, added another 10 participants, re-running the test after every participant and
then eventually found p < .05. Contrast this with Ashanti, who obtained a sample of 20
participants, ran a significance test and found p < .05. The Frequentist would say that
Alice and Ashanti cannot draw the same inferences on the basis of their data, because
the severity assessment of Alice and Ashanti’s inferences would differ. As
Wagenmakers (2007) states, examples like this Bforcefully [demonstrate] that within
the context of NHST [null hypothesis significance testing] it is crucial to take the
sampling plan of the researcher into account^ (p. 786). Furthermore, he goes on to
state that within the context of Bayesian statistics the feeling people have that Boptional

10 The word intentions is often used in the literature. However, it is not the researcher’s intentions that have an
influence on the interpretations of p values. Rather, it is researchers’ behaviour that influences the interpre-
tation of p values.
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stopping^ amounts to Bcheating^ and that no statistical procedure is immune to this is
Bcontradicted by a mathematical analysis^. The claim here is that Bayesian statistics are
immune to optional stopping and that collecting more data until the patterns are clear is
warranted if researchers are using Bayesian statistics.

3.2 Bayesian Statistics and a Measure of Strength of Evidence

These first two properties of Bayesian statistics, of the immunity to intentions, and of
being dependent only on the collected data and not any other data, are derived from
what is called the Likelihood Principle. The concept of the likelihood allows us to
understand the third property of Bayesian statistics, namely that they give us a measure
of the strength of evidence. To see this, it is important to know what is meant by
evidence. As stated in a recent primer for psychological scientists, BThe Likelihood
Principle states that the likelihood function contains all of the information relevant to
the evaluation of statistical evidence. Other facets of the data that do not factor into the
likelihood function (e.g., the cost of collecting each observation or the stopping rule
used when collecting the data) are irrelevant to the evaluation of the strength of the
statistical evidence^ (Etz 2017, our emphasis). The intuition here is obvious, if you
want to know whether some data supports model A or model B, all you need to know is
whether the data are more likely under model A or model B. On this view, the strength
of evidence is just in the ratio of the likelihoods. If the observed data are three times
more likely under model A than model B, then this can be read as a measure of the
strength of evidence. Furthermore, if model A is the null model, then we can say
something about the evidential support for this null.

A measure of the strength of evidence is meant to have an additional benefit for the
Bayesian. We can weigh our evidence according to some background pre-data beliefs
we have (e.g., that Model A is very unlikely to be true) and then use the data to update
our beliefs. In Bayesian hypothesis testing, this updating factor is called a Bayes factor.
Numerically, the Bayes factor can be interpreted as an odds ratio, and it is calculated as
the ratio of two marginal likelihoods where the marginal likelihood is comprised of a
model of the data and some predictions about likely parameter values (sometimes
referred to as a prior (e.g., Rouder et al. 2009) or a model of the hypothesis (e.g., Dienes
and Mclatchie 2017)). Rouder et al. (2009) give the marginal likelihood for hypothesis
H as:

MH ¼ ∫θ∈ΘH f H θ; yð ÞpH θð Þdθ;

where ΘH represents the parameter space under the hypothesis H, fH represents the
probability density function of the data under the hypothesis H, and pH represents the
prior distribution of the parameter values expected by that hypothesis. The important
point to note here is that calculating a Bayes factor requires the analyst to stipulate some
prior probability function for the parameter that they wish to draw inferences about
under each of the models they are comparing.

It is worth stepping through this in more detail to understand how this calculation
works. To do so, we will consider the task of trying to determine whether a coin is fair
(this example, makes use of discrete rather than continuous probability distributions
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and therefore the integral can be replaced by a sum). For this example, one might define
the null hypothesis as H0 : θ = 0.5, or that the probability of obtaining heads is 50%. In
order to calculate a Bayes factor, one needs another hypothesis. We might define this
hypothesis as the probability of obtaining heads being some other fixed value—for
example, H1 : θ = 0.7, or that the probability of obtaining heads is 70%. If we were to
further consider H0 and H1 equally plausible, our Bayes factor value would simply be
the likelihood ratio of these two hypotheses. For example, given a set of data such as
the observation of 2 heads out of 10 flips we could conclude that this observation is
30.38 times more probable under the hypothesis that θ = 0.5 than the hypothesis that
θ = 0.7.

However, we are ordinarily not interested in a single parameter value but are instead
concerned with models in which the parameter may take one of several different values.
In our coin flipping example, this might mean comparing H0 : θ = 0.5 and an alternative
hypothesis H1 composed of 11 point hypotheses (H : θ = 0, H : θ = 0.1, H : θ = 0.2, …
H : θ = 1) spanning the entire range of values that θ might take. To calculate the Bayes
factor, we first calculate the likelihood ratio of the data under H0 to each of the 11 point
hypotheses of H1. The Bayes factor is then computed as the weighted sum of these 11
values, where the weights are determined by a prior assigned to each of the 11 point
hypotheses that make up H1. The prior makes predictions about what parameter values
(bias values in our example) are expected under H1.

11 If for example, we were to
consider each possible value of θ to be equally likely under our biased coin model, then
we would weigh each likelihood ratio equally. Because the prior is a probability
distribution, the weights should sum to one, which means that each likelihood ratio
would have a weight of 1/11. For our example of observing 2 heads in 10 flips this
would correspond to a Bayes factor of 2.07 in favour of H1.

This uniform prior is just one example of a prior one might choose. One might
decide that the uniform prior is not very realistic and instead decide to employ a non-
uniform prior. In our coin flipping example, we might use a prior that places more
weight on values further from 0.5 than values closer to 0.5 if we believe trick coins are
likely to be heavily biased (for example, a beta prior such as θ ∼Beta(0.9,0.9)). We
might use a prior that represents our belief that trick coins will be heavily biased
towards coming up heads (for example, a beta prior such as θ ∼Beta(5, 1)). Or we
might believe that trick coins are unlikely to be heavily biased and instead use a prior
that places most of its weight at values near 0.5 (for example, a beta prior such as θ ∼
Beta(10, 10)). In each of these cases the Bayes factor will be different: We would obtain
values of 0.5, 8.78, and 0.66 in favour of H0 for each one of these three models or
priors. In these examples, we have chosen to use the prior to quantify our beliefs about
outcomes that are likely to occur when coins are unfair (that is, they are our models of
what unfair coins are like). As Dienes and Mclatchie (2017) points out, this requires the
analyst to specify the predictions of the models being compared and thus the Bayes
factor can be interpreted as the relative predictive accuracy of the two models. That the

11 In this context, prior refers to the weights we assign to each of the likelihood ratios for each of the possible
parameter values. The term prior (sometimes prior odds) is also used to refer to our predata beliefs about how
likely we think it is that H0 or H1 is true. This second type of prior doesn’t factor into the calculation of the
Bayes factor but, as noted above, can be used in conjunction with a Bayes factor to determine our post data
beliefs. Consequently, if we think that biased coins are infinitesimally rare then even obtaining a large Bayes
factor in favour of H1 would not lead us to conclude that we have encountered a biased coin.
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models have to make predictions about what data is likely to be observed has the added
benefit that models that are overly vague are penalised. This can simply be illustrated
by modifying the width of a prior so that a model predicts an increasingly wide range of
implausible values. An example of this (using the default Bayesian t-test discussed
below) is shown in Fig. 3.

There are two broad schools of thought about how one should go about
specifying these model predictions. Subjective Bayes approaches seek to employ
priors that reflect the analyst’s prior beliefs about likely parameter values
(Berger 2006; Rouder et al. 2009; Dienes 2014; Dienes and Mclatchie 2017;
Gronau et al. 2018), as we have done with our coin flipping example. The
objective Bayesian approach, on the other hand, seeks priors that are minimally
informative.12 Often priors are sought that are appropriate in as wide a range of
scenarios as possible or priors that have good frequentist properties (Berger
2006). One such example is the JZS prior on the effect size parameter, which is
found in the default Bayesian t-test (Rouder et al. 2009).

The fact that inference from Bayes factors depends on model specifications
is not inherently problematic. As our coin flipping example shows, deciding
whether a coin is fair or not is dependent on what we think it means for a coin
to be unfair. That is, our inferences are specific to the models being compared.
However, some difficulties can arise when it comes to specifying the models
that are to be compared by the analysis. It is worth examining how disagree-
ments about model specifications can give rise to different inferences by
examining a few examples taken from Dienes and Mclatchie (2017). These
examples will also be instructive because they were selected to highlight some
of the putative benefits of the Bayesian approach over the Frequentist approach.

The first example reported by Dienes and Mclatchie (2017) is of an experiment
where participants in two conditions were required to make judgements about the
brightness of a light. Dienes and Mclatchie (2017) report the results from both the
original finding and a subsequent replication attempt. In the original paper, the authors
report a difference between the two conditions in brightness judgement of 13.3 W, and
a corresponding statistically significant t-test (t(72) = 2.7, p = .009, cohen’s d = 0.64).
For the replication attempt the sample size was increased such that if the true effect was
of the same magnitude as the original finding the replication attempt would produce a
statistically significant result approximately 9 times out of 10—that is, the statistical
power would be 0.9. The replication attempt, however, failed to produce a statistically
significant result(t(104) = 0.162, p = 0.872, cohen’s d = 0.03), and a raw effect of
approximately 5.47 W was observed. What is one to make of this failed replication
attempt?

Dienes and Mclatchie (2017) state in the case of the second experiment that
B[b]y the canons of classic hypothesis testing [that is, frequentist methods] one
should accept the null hypothesis.^ As noted earlier in our discussion of
Frequentist inference, a non-significant result does not warrant the inference
accept H0, at least not from a principled perspective. However, setting this aside,

12 Minimally informative (or non-informative) is used here in the technical sense to refer to, for example,
Jeffreys’ prior, not in the colloquial sense of being vague. A subjective prior might be non-informative in the
colloquial sense without being non-informative in the technical sense.
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for now, we can ask what the Bayesian should conclude. According to the analysis
presented by Dienes and Mclatchie (2017), the original finding, which reported a
raw effect of 13.3 W, should inform the analyst’s model of H1. The resulting
Bayes factor computed on the basis of this model after observing the new data (the
raw difference of 5.47 W) is approximately 0.97. That is, the Bayes factor value
indicates that the new data provide roughly equal support for the null and the alternative
and the conclusion should be that the results are inconclusive. Dienes and Mclatchie
(2017) may be justified in this specification of an informed prior; however, one might,
either through a desire for Bobjectivity^ or through a desire to compare one’s inference to
some reference, instead choose to use a non-informative prior. The JZS prior, employed
in the default Bayesian t-test (Rouder et al. 2009), is one such example. Re-running the
analysis employing this new model specification for the alternative hypothesis now
instead results in a Bayes factor of 0.21—that is, the null is now preferred by a factor of
nearly 5 to 1. Interestingly, this is just the same inference as the heuristic interpretation of
the p value.
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Fig. 3 Bayes factor values as a function of prior width
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It is important to note, however, that the fact that the two Bayesian analyses give
different results is not a problem, at least not from a Bayesian perspective. The analysis
is simply providing a measure of the strength of evidence for one model relative to
another model. A problem only arises when one seeks to interpret the Bayes factor as
an indication of Ban effect^ being present versus Ban effect^ being absent. However, it
is also worth noting that with default priors (that is, the JZS prior), the model being
compared is not really a model of the theory in the same sense as Dienes and
Mclatchie’s (2017) model is, which somewhat breaks the connection between the
statistical hypothesis and the scientific hypothesis. However, since any change in
statistical practice is likely to depend on ease-of-use (both in terms of conceptual
understanding and the availability of, for example, software tools) it seems likely that
default priors may be the dominant type of model specification in use, at least in the
short term. And therefore, it is necessary that the appropriate caveats are observed when
drawing inferences on the basis of these procedures.

Just as Bayesian inference is relative to specific models, it is also important to
reiterate that Frequentist inferences should be relative to specific alternative hypotheses
that are assessed against actual observed results. This more sophisticated frequentist
analysis would actually draw conclusions more similar to the inferences drawn by
Dienes and Mclatchie (2017). For example, the Frequentist might want to use severity
assessments to assess various hypotheses with respect to the observed result. If this was
done, the inference, like the Bayesian inference would be similarly inconclusive.
Inferences about only very small discrepancies being present are not tested with
severity (that is, inferences that accord more with the null hypothesis would not be
supported). The only inferences that would pass with severity are those that entertain
the possibility of a wide range of discrepancies—from negligible to very large—being
present (that is, an inconclusive result). Furthermore, a more sophisticated Frequentist
might also choose to perform multiple statistical tests to test this one scientific
hypothesis, and to build up evidence in a piecemeal manner. One way to do this would
be to perform two one-sided tests against the twin null hypotheses of, for example,
H0 : μ > − 10 Watts and H0 : μ < 10 Watts. This would allow the analysts to draw
inferences about practical equivalence within the range of, for example, −10 to
+10 W. The results of such an equivalence test would be non-significant suggesting
that the null hypotheses cannot be rejected and again suggesting that the result is
inconclusive (t(104) = −0.13, p = 0.45).

It is an interesting exercise to apply severity reasoning to the other examples
presented by Dienes and Mclatchie (2017). For instance, Dienes and Mclatchie
(2017) shows that a Bayesian analysis can be used to show that a non-significant effect
from an experiment with low a priori power need not be viewed as evidentially weak.
However, severity assessments for non-significant results do not rely on pre-experiment
power (that is, a power calculation performed before the data is known), as a naïve
Frequentist might, but rather assess hypotheses with respect to the data actually
obtained. For this example, it is possible to probe various hypotheses to see which
pass with severity. Applying this reasoning to the same example as Dienes and
Mclatchie (2017) would result in concluding that the data are consistent with the
presence of a negligible to very small effect, but not consistent with a large effect. Or
one might use multiple tests, taken together, such as in an equivalence test procedure,
and find that one has good grounds to infer that any deviations from the null fall within
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the bounds of practical equivalence.13 Furthermore, severity assessments of a just
significant effects in a large study would lead one to conclude that there are not good
grounds for inferring that anything but a negligible effect is present just as a significant
(Frequentist) effect in a large study would lead to a Bayes factor that strongly favours
the null model over the alternative model.

4 Two Approaches to Inference, Evidence, and Error

We have outlined a view of inference offered from the Frequentist, error-statistical,
perspective in the form of the severity principle: One can only make claims about
hypotheses to the extent that they have passed severe tests. And we have outlined a view
of inference offered from the Bayesian perspective: One can make claims about
hypotheses to the extent that the data support that hypothesis relative to alternatives.
These two approaches are often pitched as rivals because it is argued that they can
warrant different inferences when presented with the same data, as the examples
presented by Dienes and Mclatchie (2017) are meant to show. However, as our
discussion of Dienes and Mclatchie (2017) shows, this is not clearly the case. What
these examples more clearly demonstrate is that the exact nature of the question being
asked by Dienes and Mclatchie’s (2017) Bayesian analysis and the naïve frequentist
analyses they present are different. With different questions one need not be surprised by
different answers. The same applies to asking two different Bayesian questions (one
using a default prior and one using an informed prior)—a different question results in a
different answer. Consequently, when Dienes and Mclatchie (2017) point out pitfalls of
significance testing they are in fact pointing out pitfalls associated with a naïve ap-
proach. A more sophisticated use of Frequentist inference allows one to avoid many of
the common pitfalls usually associated with significance testing and it is not necessary to
adopt Bayesian methods if all one wants to do is avoid these misinterpretations.

There are, however, situations where Bayesian and Frequentist methods are said to
warrant different inferences that are a consequence of the process that allows each type
of inference to be justified. Consider, for example, the claim of Wagenmakers (2007)
that the feeling that optional stopping is cheating is contradicted by a mathematical
analysis. From an error statistical perspective any claims made as a result of optional
stopping are not warranted (making those claims is cheating) because the claims have
not been severely tested (the probability of detecting an error would be very low so not
detecting an error is unimpressive). The same applies for data-dredging and a range of
other behaviours. For the Bayesian, however, all that matters in assessing the strength of
evidence is the ratio of the likelihoods. The Bayesian can be seen as regarding data as
primary while the Frequentist can be seen as regarding the process as primary. As noted
by Haig (2016), this is a difference between Frequentists (specifically, of the error-
statistical variety) favouring local or context-dependent accounts of statistical inferences
with Bayesians’ favouring broad general or global accounts of statistical inference.

13 In fact, running such an equivalence test on the data presented in their example does result in one rejecting
the null hypothesis of an effect larger than practical equivalence (±1% difference between groups in the
number of questions answered correctly) being present (t(99) = 1.72, p = 0.04).
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The important question, however, is how does each approach fair as a system of
scientific inference? The primary difference between the two can be seen as coming
down to error control. Frequentists, like Mayo (Mayo 1996; Mayo and Spanos 2006;
Mayo and Spanos 2011) insist that any system of inference must be so designed so that
we are not lead astray by the data. Consider the case of collecting observations and then
drawing inferences on the basis of these. It might be reasonable to ask whether those
observations reflect some truth or whether they are possibly misleading. Bayesian
statistics, however, does not care about error probabilities in assessing the strength of
evidence. The strength of evidence (derived from the Likelihood Principle) is simply
construed as the degree to which the data support one hypothesis over the other with no
reference to how often the evidence might be misleading. This is in distinction to
Frequentist approaches that fix at an upper-bound how often inferences will be in error.
This highlights what Birnbaum (1964) called the Banomalous^ nature of statistical
evidence. Gandenberger (2015), similarly, cautions against using the Likelihood Prin-
ciple to argue against Frequentist statistics, particularly the error statistical view.
Whether the Likelihood Principle is true or not, is simply not relevant for this system
of inference and, therefore, Frequentist violations of the likelihood principle are of no
consequence (Gandenberger 2015). Similarly, ignoring error probabilities is of no
consequence within the Bayesian system of inference (Haig 2016). Gandenberger
(2015) states that the likelihood principle only applies if one wants to use methods
that track Bevidential meaning^, but he goes on to state that while Btracking evidential
meaning is intuitively desirable… [it may be] less important than securing one or more
of [the] putative virtues^ of Frequentist methods. These virtues, such as the ability to
control error probabilities and the ability to objectively track truth (in, for example, the
absence of priors), may be virtues that one wishes to retain.

The Bayesian view that the evidential import of the data is only reflected through the
likelihoods is also more nuanced than is often recognised. Specifically, the adherence to
the Likelihood Principle implies an immunity to stopping rules; however, this immunity
must be qualified. There are many instances when the stopping rule may influence the
inferences that the Bayesian wants to draw from the data obtained in an experiment. In
these situations, the stopping rule is described as informative. Stopping rules are said to
be informative if, for example, they provide information about a relevant unknown
parameter that is not contained within the data itself. For example, when trying to
estimate some parameter, θ, if the stopping rule is dependent on θ in some way other
than through the data, such as by making some stopping rule more likely if θ = X and
another stopping rule more likely if θ = Y, then the stopping rule carries information
about θ that is not in the data itself. To adapt an example from Edwards et al. (1963): If
you are trying to count the number of lions at a watering hole, then the fact that you had
to stop counting because you were chased away by all the lions should factor into any
of your inferences about the number of lions. Roberts (1967) presents some more
formal examples and suggests that in these cases it is right and proper to take this
parameter dependence into account in the likelihood function.

Information about the stopping rule can also enter into a Bayesian inference through
the prior more directly when objective priors are used. Consider the example of flipping
a coin multiple times and after each flip recording whether it landed on heads or tails.
Once the data is obtained, one might want to make an inference about the probability of
obtaining heads. As pointed out by Wagenmakers (2007), for a Frequentist to draw
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inferences about the observed data they would need to have information about how the
data was collected—that is, the stopping rule. Specifically, it would be necessary to
know whether, for example, the data were collected until a fixed number of trials were
completed or until a fixed number of heads were recorded. The two sampling rules can
lead to identical observed data, but since the two sampling rules have something
different to say about possible data that could occur under the null hypothesis, this
information must enter into the Frequentist analysis. Etz (2017) also makes use of this
example, not to show the flaw in Frequentist inference (which is what Wagenmakers
(2007) deploys the example for), but to show how a Bayesian can make use of prior
information when computing the posterior probability of obtaining heads. In his
example, Etz (2017) shows how one can combine some prior beliefs (for example,
the belief that the probability of obtaining heads is likely to be between 0.30 and 0.70)
to obtain a posterior distribution of values for obtaining heads. In Etz’s (2017) example,
his prior quantifies his pre-data beliefs, and his posterior quantifies his post-data beliefs
that have been updated in light of the data. However, how is one to perform the
Bayesian analysis if one has no pre-data beliefs or no strong grounds for holding a
particular set of pre-data beliefs?

As mentioned earlier, the use of objective priors is meant to circumvent the
problems of specifying these subjective priors. The solution, therefore, is just to
make use of one of the minimally informative objective priors. Box and Tia
(1973) provide just such a set of non-informative priors derived from Jeffreys’
rule; however, the exact prior that is appropriate turns out to be dependent on the
sampling rule. That this, the Bobjective^ Bayesian inference about the parameter
from a set of data turns out to be different depending on how the data were
collected. As noted by Hill (1974) and Berger (2006), this amounts to a violation
of the Likelihood Principle. In Wagenmakers’s (2007) terms, it would result in a
Bayesian analysis that is dependent on the unknown intentions of the researcher.
Box and Tia (1973 p 46) note that they find the observation that a difference in
sampling rules leads to different inferences Bmuch less surprising than the claim
that they ought to agree.^ Indeed the requirement that one adheres to the Likeli-
hood Principle in drawing inferences is not universally accepted even among
Bayesian’s. For example, Gelman and Shalizi (2013) encourage a kind of data-
dependent model validation that might similarly violate the Likelihood Principle
when the entire inference process is viewed as a whole. Furthermore, Gelman
et al. (2014 p 198) state, B‘the observed data’ should include information on how
the observed values arose^. That is, good Bayesian inference should be based on
all the available information that may be relevant to that inference. However, the
assessment of evidence, once data and models are in hand can still be done in a
manner that respects the Likelihood Principle.

In addition to cases where informative stopping rules are used, cases may also arise
where stopping rules that are ostensibly uninformative from one perspective might be
informative from another perspective. These kinds of situations are likely to arise more
often than is often recognised. Gandenberger (2017) outlines such a situation. Consider
two researchers, Beth employs the stopping rule: collect data until the likelihood ratio
favours H1 over H0 by some amount. Brooke employs the stopping rule: collect data
until reaching some fixed n. The stopping rule employed by Beth is technically
uninformative because the stopping rule is only dependent on the data observed and
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is not dependent on other information about the parameter of interest not contained in
the data. If it happens to be the case that Beth and Brooke obtain identical data then the
Bayesian analysis states that Beth and Brooke are entitled to identical inferences.

However, consider a third party, Karen, who is going to make decisions on the basis
of the data. For Karen, it might not be that easy to discount the stopping rule. For
example, if she suspects that Beth might choose her stopping rule on the basis of a pilot
experiment that showed evidence in favour of H0 then the stopping rule contains
information that is of some epistemic value to Karen. This situation, where there is a
separation between inference-maker and data collector, is not uncommon in science.
Other researchers who will make inferences on the basis of published research, journal
editors, reviewers, or other end users of research may consider a stopping rule
informative even when the researcher themselves does not.

Other instances might also exist where a Bayesian might want to consider stopping
rules. One such example is suggested by Berger and Wolpert (1988). They suggest that
if somebody is employing a stopping rule with the aim of making some parameter
estimate exclude a certain value then an analyst might want to take account of this. For
example, Berger and Wolpert (1988) suggest that if a Bayesian analyst thinks that a
stopping rule is being used because the experimenter has some belief about the
parameter (for example, that the estimate should exclude zero), then adjustments should
be made so that the posterior reflects this. These adjustments, however, should not be
made to the likelihood—that is, they should not affect the strength of evidence—but
should instead be made to the prior so that some non-zero probability is placed on the
value that the experimenter might be trying to exclude. This approach, however, has not
been without criticism. Specifically, the practice of making adjustments to priors
because an analyst might think that an experimenter thinks something about a parameter
runs a severe risk of appearing ad hoc. This is especially the case given that much of the
Bayesian criticism of Frequentist statistics is based on the claim that unknown inten-
tions should not influence inferences. The Frequentist response is much more satisfac-
tory. After all, the Frequentist can point to specific problematic behaviour that justifies
their rule; however, Berger and Wolpert (1988) appear to suggest that the Bayesian
really must care about the mental states of the data collector.

The upshot of examples like this is that far from immunity to stopping rules, the
conditions under which stopping rules are informative can be poorly defined. Further-
more, the responses to these situations can be tricky to implement. The fact remains that
many of the cases where Frequentists are worried about stopping rules may be the very
same cases where stopping rules should worry a Bayesian too.

4.1 What Do we Really Want to Know?

What should we make of examples where stopping rules appear to influence the
epistemic value of the data? One solution is to ask ourselves what we really need for
scientific inference. For example, Gandenberger (2015) recognises that it is reasonable
to care about error probabilities despite them having no influence on evidence. And
Dienes (2011 p 286) suggests that B[u]ltimately, the issue is about what is more
important to us: using a procedure with known long term error rates or knowing the
degree of support for our theory.^ There are several legitimate reasons for deciding that
both are important.
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The reasons for wanting to know both is that the two kinds of inferences figure
differently in scientific reasoning. Caring about error rates is important because one can
learn from the absence of error, but only if there is a good chance of detecting an error if
an error exists (e.g., Mayo 1996). When one collects observations it may be less
important to know whether or not a particular observation is better predicted by theory
A or theory B. Instead, it may be better to know whether inferences about the presence
or absence of error are well justified, which is what can be gained from the severity
principle. For instance, if we wish to conclude that an observation justifies a conclusion
of some deviation from a particular model then whether we have good grounds for this
inference can be determined with reference to the severity principle. Similarly, if we
wish to conclude that we have good grounds for inferring that there is no deviation
(within a particular range), then the severity principle can help here too. And all this can
be done without needing to know whether and to what extent that deviation is predicted
by two theories.

However, if one has good grounds for making one’s models and good grounds for
making predictions, then it seems reasonable to care about whether the evidence
supports one model over its rival. With some observations in hand, along with some
explanations or models, a Bayesian analysis allows us to judge which is the best
explanation. Haig (2016) similarly echoes this view that both forms of inference are
necessary by calling for pragmatic pluralism. However, for this to work it is important
to understand the strengths and weaknesses of each approach, the inferences each
approach warrants, and when each approach should be deployed. This, however, is a
different kind of argument than that which is ordinarily made by those advocating
statistical reform (Wagenmakers 2007; Dienes and Mclatchie 2017). The usual strategy
here is to argue that Bayesian statistics should be adopted because they lead to more
reasonable, more correct, or more intuitive inferences from data relative to Frequentist
inference. As we have pointed out in Section 3.2, in our discussion of Dienes and
Mclatchie (2017), the Frequentist inference and the Bayesian inference can often be
similar on a gross level (the data are inconclusive, the data support an alternative
hypothesis, the data do not support an alternative hypothesis) and, therefore, arguing
that statistical reform is necessary because macro level inferences are different may not
work as a strategy. A better strategy, we believe, is to argue that statistical reform is
necessary because it is necessary to have the right tool for the right job in a complete
system of scientific inference.

Tests of statistical significance find their strength where reasonable priors are
difficult to obtain and when theories may not make any strong quantitative predictions.
For example, when researchers simply want to know whether they can reliably measure
some phenomenon (of a specific magnitude or range) then significance testing might
play a role. (Significance tests play an analogous role in physics, see van Dyk 2014). In
these contexts, however, it is important that researchers at least have some sense of the
magnitude of the effects that they wish to observe so that analyses can be adequately
powered. Furthermore, they might be useful in exploratory contexts. This kind of
exploratory research is importantly different to data dredging—that is, rather than
testing numerous statistical hypotheses, finding significance, and then claiming support
for a substantive hypothesis, this kind of exploratory research involves the systematic
collection of observations. Importantly, the systematic collection of observations will
involve piecemeal accumulation of evidence, coupled with repeated tests and follow-
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ups to ensure severity. In the psychological sciences, one such context might be neuro-
imaging14 where a researcher simply wants to know whether some response can be
reliably measured with the aim of later building a theory from these observations (see
Colling and Roberts 2010). This is essentially a signal detection task and it does not
require that one specify a model of what one expects to find. Instead, the minimal
requirement is a model of the noise, and the presence of signals can be inferred from
departures from noise. Importantly, theories developed in this way could then be tested
by different means. If the theory takes the form of a quantitative model or, better yet,
multiple competing plausible models then a switch to Bayesian statistics would be
justified.

Bayesian statistics thrives in situations involving model comparison, parameter
estimation, or when one actually wishes to assign credences, beliefs, or measure the
degree of support for hypotheses. Significance testing has no formal framework for
belief accumulation. However, to fully exploit these strengths psychological scientists
would not only need to change the way they do statistics but also change the way they
do theory. This would involve an increased emphasis on explanation by developing
quantitative mechanisms (see Kaplan and Bechtel 2011; Colling and Williamson
2014). Unfortunately, the naïve application of significance tests does not encourage
the development of mechanistic theories that make quantitative predictions. Rather, the
focus on simple dichotomous reject/do not reject thinking can, and has, lead researchers
to often be satisfied with detecting any effect rather than specific effects.

Importantly, the debates around statistical reform and the replication crisis highlight
a deeper concern. Rather than merely a statistical issue, the replication crisis highlights
the stark disconnect between those inferences that are warranted and justified and those
inferences that scientists actually make, both with respect to their own work and with
respect to the work of others. Haig (2016) and Szűcs and Ioannidis (2017a) raise similar
concerns. Rather than offloading inferences onto sets of numbers produced by statis-
tical procedures, researchers, and particularly students, need to have a greater under-
standing of how to construct appropriate explanatory theories and how to differentiate
substantive and statistical hypotheses. Additionally, it is also important that researchers
are able to identify contexts in which hypothesis tests (whether Bayesian or
Frequentist) are appropriate and contexts in which parameter estimates are more
appropriate—that is, when to test hypotheses and when to measure phenomena.

5 Conclusions

We do not think that the solution to the replication crisis lies in statistical reform per se.
While there are undoubtedly problems with how people justify scientific inferences on
the basis of statistical significance tests, these problems may lie less with the tests
themselves than with the inferential systems people employ. And we have attempted to
demonstrate how good inferences on the basis of statistical significance tests may be
justified. We have also examined the Bayesian alternative to statistical significance tests

14 This is just used as a hypothetical example. Whether this works in practice depends crucially on the ability
to control error rates. While controlling error rates is in theory possible, in practise, this has proved more
difficult (e.g., Eklund et al. 2016).
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and explored some of the benefits of the Bayesian approach. The argument for
Bayesian statistics is often framed in terms of the macro level inferences that they
permit and in terms of the perceived shortcomings of Frequentist statistics. However,
we have argued that well-justified Frequentist inferences can often lead to the same
gross conclusions. Rather, the key differences lie in their view of evidence and the role
error plays in learning about the world. That is, rather than furnishing different
inferences, per se, each approach provides a different kind of information that is
useful for different aspects of scientific practice. Rather than mere statistical reform,
what is needed is for scientists to become better at inference (both Frequentist and
Bayesian) and for a better understanding of how to use inferential strategies to
justify knowledge.
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