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29 SUMMARY

30 The multifaceted interactions occurring between gastrointestinal (GI) parasitic helminths and the 

31 host gut microbiota are emerging as a key area of study within the broader research domain of 

32 host-pathogen relationships. Over the past few years, a wealth of investigations has demonstrated 

33 that GI helminths interact with the host gut flora, and that such interactions result in modifications 

34 of the host immune and metabolic statuses. Nevertheless, whilst selected changes in gut microbial 

35 composition are consistently observed in response to GI helminth infections across several host-

36 parasite systems, research in this area to date is largely characterised by inconsistent findings. 

37 These discrepancies are particularly evident when data from studies of GI helminth-microbiota 

38 interactions conducted in humans from parasite-endemic regions are compared. In this review, 

39 we provide an overview of the main sources of variance that affect investigations on human-

40 helminth-gut microbiota interactions and propose a series of methodological approaches that, 

41 whilst accounting for the inevitable constraints of human fieldwork, are aimed at minimising 

42 confounding factors and draw biologically meaningful interpretations from highly variable 

43 datasets.  

44
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45 1. INTRODUCTION

46 A plethora of experimental evidence supports a key role of infections by gastrointestinal (GI) 

47 helminth parasites in shaping the composition of the vertebrate gut microbiota, with significant 

48 implications for local and systemic host immunity (reviewed by Brosschot and Reynolds, 2018). 

49 For instance, recent studies have partly attributed the parasite-associated qualitative and/or 

50 quantitative alterations to host GI microbial profiles to the ability of GI helminths to stimulate the 

51 initial onset of T-regulatory (Treg) immune responses (cf. Cantacessi et al. 2014; Reynolds et al. 

52 2014; Giacomin et al. 2015, 2016; Zaiss et al. 2016). On the other hand, other studies have 

53 reported associations between acute helminth infections and gut microbiota imbalances (= 

54 dysbiosis) characterised by significant expansion of populations of putative pro-inflammatory 

55 bacteria (e.g. Rausch et al. 2013; Jenkins et al. 2018a; Schneeberger et al. 2018a); these 

56 observations have lent credit to the hypothesis that helminth-associated alterations of gut 

57 microbiota composition may lead to both localised and systemic consequences for the host 

58 organism, that include immunopathology and exacerbated malnutrition in at-risk subjects from 

59 parasite-endemic areas (reviewed by Glendinning et al. 2014; Houlden et al. 2015; Cattadori et 

60 al. 2016). 

61 Over the past decade, newly acquired knowledge of the impact that GI helminth infections exert 

62 on the vertebrate gut microbial composition and metabolism has contributed to a better 

63 understanding of parasite systems biology and host-pathogen interactions (reviewed by Peachey 

64 et al. 2017; Leung et al. 2018; Rapin and Harris et al. 2018), and has been proposed as a first step 

65 towards the identification and development of novel strategies of parasite control based on the 

66 targeted manipulation of the host gut microbiota (cf. Peachey et al. 2017). Nevertheless, for 

67 humans in particular, progress in this field of research is greatly impaired by the impact of several 

68 confounding factors that inevitably affect studies conducted in naturally infected individuals 

69 (Mutapi, 2015; Chabé et al. 2017). In this review, we summarise current knowledge of GI 

70 helminth-microbiome interactions in humans under natural conditions of infection, identify 

71 similarities and differences between datasets and provide an overview of the confounding factors 

72 that may affect the interpretation of findings.
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73 2. HUMAN-HELMINTH-GUT MICROBIOTA INTERACTIONS IN REAL-WORLD 

74 SCENARIOS

75 In endemic areas for helminthiases, the vast majority of infected individuals harbour multiple 

76 helminth species, often occupying different niches of the host organism (Hotez et al. 2010). 

77 Whilst polyparasitism is often regarded as a major confounding factor in investigations of 

78 parasite-microbiota interactions conducted in humans under natural conditions of infection 

79 (Cooper et al. 2013; Jenkins et al. 2017; Martin et al. 2018; Rosa et al. 2018), findings from these 

80 studies are key to assessing the impact that GI helminths exert on gut microbiota homeostasis in 

81 a ‘real-world’ scenario. Nevertheless, several factors should be considered when interpreting 

82 results obtained from individuals infected by multiple helminth species. First, anthropometric 

83 (e.g. age and gender) and anthropologic variables (e.g. ethnicity, diet and occupation) are well 

84 known to profoundly impact the ‘baseline’ composition of the human gut microbiota (Sekirov et 

85 al. 2010; Yatsunenko et al. 2012) (cf. Fig. 1); therefore, the enrolment of large cohorts of 

86 individuals is often necessary in order to achieve sufficient statistical power and avoid 

87 uninformative and/or misleading results (Kelly et al. 2015). However, in many studies, the 

88 number of individuals enrolled and samples analysed is inevitably dictated by logistical and 

89 financial constraints. In these instances, population-related variables that impact gut microbiota 

90 composition may contribute substantially to inconsistencies among findings from different studies 

91 (cf. Fig. 1). For instance, a negative association between colonisation by the whipworm Trichuris 

92 trichiura and the abundance of bacteria belonging to the genus Prevotella in the faeces of infected 

93 individuals has been reported in two separate studies conducted in Malaysia (Lee et al. 2014; 

94 Ranaman et al. 2016), while other studies conducted in Ecuador, and Liberia and Indonesia, 

95 respectively, have failed to identify significant variations in faecal populations of Prevotella in 

96 individuals either solely infected by T. trichiura or co-infected with other species of soil-

97 transmitted helminths (STHs) (Cooper et al. 2013; Martin et al. 2015; Rosa et al. 2018). 

98 In addition, whilst Rosa and co-authors (2018) detected several distinctive features in the gut 

99 microbial profiles of helminth-harbouring individuals that were specifically associated to single 
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100 infections with the hookworm Necator americanus, the roundworm Ascaris lumbricoides or T. 

101 trichiura, such features were inconsistent between two independent cohorts of helminth-infected 

102 volunteers from Liberia and Indonesia; this discrepancy suggests that other yet undetermined 

103 environmental factors may contribute to qualitative and quantitative alterations of the gut 

104 microbial profiles of helminth-infected individuals from different geographical areas. In contrast, 

105 an association between the abundance of selected bacterial taxa and infections by one or more 

106 STHs could be consistently detected in samples from both Liberian and Indonesian cohorts (Rosa 

107 et al. 2018). These taxa included bacteria belonging to the genera Olsenella and Allobaculum, 

108 which were expanded in the gut microbiota of helminth-infected individuals when compared to 

109 that of uninfected controls. To the best of our knowledge, the study by Rosa et al. (2018) was the 

110 first to report a link between infections by STHs and the abundance of these bacterial genera in 

111 the human gut. Interestingly, in mice suffering from metabolic syndrome, administration of 

112 probiotics was followed by expansion of populations of Olsenella and/or Allobaculum, and a 

113 reduction in systemic and/or local gut inflammatory responses (Wang et al. 2015). Moreover, 

114 Allobaculum spp. are putative producers of anti-inflammatory short-chain fatty acids (Greetham 

115 et al. 2004), and are severely reduced in the gut of mice genetically predisposed to spontaneous 

116 colitis (Pérez-Muñoz et al. 2014). This knowledge led Rosa et al. (2018) to hypothesize that these 

117 bacteria may play a yet undetermined role in the anti-inflammatory properties of parasitic 

118 helminths, and reinforce the proposition that the interactions between hosts, parasites and gut 

119 microbiota are multidirectional and should be approached in a holistic manner (e.g. Cortés et al. 

120 2018; Leung et al. 2018). Interestingly, in contrast to evidence acquired in human hosts, a negative 

121 association between the genus Allobaculum and colonisation by GI helminths has been observed 

122 in a mouse model of chronic trichuriasis (Holm et al. 2015), in which Th1-mediated immune 

123 responses are dominant (reviewed by Cliffe and Grencis, 2004), as well as in mice with patent 

124 infection by the blood fluke Schistosoma mansoni (Jenkins et al. 2018a), in which migrating eggs 

125 are responsible for the onset of marked Th2-mediated inflammatory responses (reviewed by 

126 Pearce and MacDonald, 2002). The immune-molecular mechanisms via which members of the 

127 genus Allobaculum may regulate local and systemic inflammation are still unclear (Greetham et 
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128 al. 2004; Pérez-Muñoz et al. 2014; Wang et al. 2015). Nonetheless, current data showing 

129 reductions in populations of Allobaculum alongside helminth-associated gut inflammation 

130 supports the hypothesis raised by Rosa et al. (2018); in the future, rodent models of GI helminth 

131 infections whose gut microbiota is deprived of, and subsequently recolonised with, the genus 

132 Allobaculum could be exploited to investigate the potential involvement of these bacteria in 

133 parasite-mediated immunomodulation.

134 Beside the intrinsic variability of the human gut microbiota, studies conducted under natural 

135 conditions of helminth colonisation are likely to be affected by factors linked to the different 

136 combinations of infecting species and their relative abundances. For instance, in a study 

137 conducted in a cohort of Ecuadorian children, the specific features detected in the gut microbial 

138 profiles of subjects co-infected with T. trichiura and A. lumbricoides could not be identified in 

139 the microbiota of Trichuris-only infected individuals (Cooper et al. 2013). Similarly, selected 

140 microbial features that were observed in studies conducted in human volunteers with mono-

141 specific infections with, for instance, A. lumbricoides, could not be detected in the gut microbiota 

142 of subjects harbouring the same parasite alongside other helminth species (e.g. T. trichiura and 

143 N. americanus) (Rosa et al. 2018), thus suggesting that a complex interplay exists between the 

144 host gut and its macro- and microbiota, that might be difficult to replicate in experimental settings. 

145 Furthermore, current evidence obtained from animal models of helminth infections indicates that 

146 worm burdens can impact the nature and/or the magnitude of parasite-associated alterations in gut 

147 microbial composition (Wu et al. 2012; Peachey et al. 2018). Nevertheless, such evidence is not 

148 yet available for human infections, in which parasite burdens may range from low to very high in 

149 endemic areas (Barbour and Kafetzaki, 1991; Churcher et al. 2005). 

150 Another frequent constraint of investigations conducted in cohorts of human subjects with natural 

151 helminth infections is the limited availability of ‘genuine’ negative controls, i.e. individuals from 

152 the same communities of parasite-infected subjects who lack previous exposure to infections by 

153 parasitic helminths. Instead, individuals with no evidence of patent helminth infections are 

154 inevitably enrolled as control subjects (e.g. Cooper et al. 2013; Lee et al. 2014; Jenkins et al. 
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155 2017; Rosa et al. 2018); nevertheless, studies in helminth-infected individuals subjected to 

156 anthelmintic treatment, as well as in primates and pigs exposed to Trichuris spp., have shown that 

157 parasite-associated alterations in gut microbial communities can persist, at least partly, in absence 

158 of active infections (Broadhurst et al. 2012; Wu et al. 2012; Cooper et al. 2013; Kay et al. 2015; 

159 Schneeberger et al. 2018a). These data call for caution when interpreting differences between the 

160 gut microbial profiles of helminth-infected and uninfected volunteers from the same communities. 

161 In addition, patent infections are often diagnosed using stool-based microscopic methods, that are 

162 known for their relatively low sensitivity and that may yield false negative results, e.g. in case of 

163 intermittent shedding of eggs and/or larvae (O’Connell and Nutman, 2016). Recently, Rosa et al. 

164 (2018) used quantitative real-time PCR to diagnose STH infections in individuals subjected to gut 

165 microbiota profiling, indicating that this technique may represent a robust and sensitive 

166 alternative to microscopic methods, since it provides users with the ability to semi-quantify 

167 burdens of different helminth species from minute amounts of DNA template. However, in spite 

168 of their higher sensitivity, molecular methods rely on the use of primers that selectively target the 

169 parasite species of interest, thus impairing the simultaneous detection of potential (asymptomatic 

170 or subclinical) co-infections with other helminth and/or non-helminth pathogens (O’Connell and 

171 Nutman, 2016). Indeed, the impact of protozoa on the gut microbial diversity and composition 

172 has been clearly demonstrated in humans and other vertebrates (reviewed by Chabé et al. 2017; 

173 Stensvold and van der Giezen, 2018). Furthermore, a recent study conducted in a cohort of 

174 Colombian schoolchildren reported common features in the faecal microbial composition of 

175 subjects co-infected with helminths and protozoans and mono-parasitized with the flagellate 

176 Giardia intestinalis compared to uninfected individuals (Toro-Londono et al. 2019). Whilst the 

177 mechanisms via which each group of parasites alters the host gut flora, as well as the nature of 

178 such alterations, are yet to be determined, these findings support the need to conduct additional 

179 diagnostic tests on stool samples from helminth-infected cohorts, as well as the corresponding 

180 uninfected subjects, in order to rule out the influence of concomitant bacterial, viral and/or 

181 protozoan infections that may be responsible for the changing gut microbial profiles of these 

182 individuals (cf. Chabé et al. 2017).
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183 Nevertheless, in spite of the several confounding factors outlined above (cf. Fig. 1), observational 

184 studies in helminth endemic areas have proven useful for the identification of significant 

185 associations between parasite colonisation and the gut microbial profiles of humans under natural 

186 conditions of infection. Importantly, studies conducted in these communities provide excellent 

187 opportunities to evaluate the effect(s) that parasite removal (e.g. via the administration of broad-

188 spectrum anthelmintics) exert(s) on the gut microbiota of previously infected individuals, thus 

189 contributing cues to understand the causality of helminth-microbiota relationships. 

190 3. IMPACT OF DEWORMING ON THE HUMAN GUT MICROBIOTA 

191 The implementation of mass drug administration programmes in endemic areas for STHs and 

192 schistosomiasis offers opportunities to elucidate potential mechanisms via which parasitic 

193 helminths modulate the host gut microbiota. For instance, qualitative and quantitative changes in 

194 gut microbial profiles that are caused by direct interactions between parasites and gut bacteria 

195 may be expected to rapidly reverse following parasite removal, whilst long-lasting alterations are 

196 likely to result from indirect interplay mediated by the host immune system (Houlden et al. 2015; 

197 Su et al. 2018). Nevertheless, such investigations are also generally constrained by the presence 

198 of several confounding factors that include not only the host- and parasite-dependent variables 

199 outlined above, but also variations linked to the use of different drugs and treatment regimes 

200 (Schneeberger et al. 2018b), as well as time of sampling post-anthelmintic treatment (Houlden et 

201 al. 2015) (Fig. 1). The latter in particular may profoundly affect findings from these studies, as 

202 the presence of tissue lesions caused by e.g. parasite feeding activity and location (e.g. blood-

203 feeders vs. non blood-feeders and luminal vs. tissue dwellers) are likely to influence the timespan 

204 between helminth removal and microbiome recovery (reviewed by Leung et al. 2018). Moreover, 

205 for ethical reasons, data from these experiments is often biased by the lack of placebo-treated 

206 control groups. These limitations may be at least partially responsible for the differences between 

207 findings from studies aimed at elucidating the effect of deworming on the gut microbiota of 

208 helminth-infected volunteers; notwithstanding, it is worth noting that, in instances where 
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209 deworming-associated changes in human gut microbial profiles were detected, these were 

210 generally moderate (Ramanan et al. 2016; Martin et al. 2018; Schneeberger et al. 2018b).

211 Consistent with this, a recent study conducted on faecal samples collected from a rural community 

212 in Indonesia reported that the composition of the gut microbiota of individuals repeatedly treated 

213 with either albendazole or placebo (for 21 months) resembled that of samples collected from the 

214 same subjects prior to treatment, rather than that of uninfected controls (Rosa et al. 2018). 

215 Moreover, a parallel investigation conducted on the same cohort of individuals detected reduced 

216 populations of Prevotella in albendazole-treated subjects in which complete deworming did not 

217 occur, compared to placebo-treated individuals with patent helminth infections (Martin et al. 

218 2018). Intriguingly, failure of albendazole treatment was accompanied by a dominance of T. 

219 trichiura (over other helminth species) in these subjects, while placebo-treated individuals 

220 maintained a diverse macrobiota (i.e. multiple helminth infections); hence, differences in the 

221 composition of the GI macrobiota (i.e. species present and their relative abundances) between 

222 albendazole- and placebo-treated individuals could account for variations in the composition of 

223 the intestinal microflora of these subjects (Martin et al. 2018). Significant associations between 

224 colonisation by T. trichiura and Prevotella abundance were not observed in the Indonesian cohort 

225 (Martin et al. 2018; Rosa et al. 2018). However, negative associations between whipworm 

226 infections and Prevotella abundance had been detected previously in two independent studies 

227 conducted in Malaysia (Lee et al. 2014; Ramanan et al. 2016). In particular, Ramanan and co-

228 authors (2016) observed that, following albendazole treatment, expansion of Prevotella 

229 populations in the human faecal microbiota was related to reduced T. trichiura faecal egg counts. 

230 In contrast, no significant associations between helminth infection and abundance of bacteria 

231 belonging to the genus Prevotella was reported in a study investigating the impact of parasite 

232 colonisation and successful treatment with a combination of albendazole and ivermectin on the 

233 faecal microbial profiles of a cohort of Trichuris-infected children from Ecuador (Cooper et al. 

234 2013), nor in a group of helminth-infected adults from Sri Lanka treated with pyrantel pamoate 

235 (Jenkins et al. 2017). Similarly, no qualitative or quantitative changes to faecal microbial 
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236 composition were observed in two cohorts of schoolchildren from Côte d’Ivoire and Zimbabwe 

237 infected by S. mansoni and S. haematobium, respectively, following treatment with praziquantel 

238 (Kay et al. 2014; Schneeberger et al. 2018a). However, successful elimination of S. mansoni was 

239 associated with a higher abundance of Fusobacterium spp. pre-treatment, as well as 24 hrs post-

240 treatment (Schneeberger et al. 2018a). 

241 Whilst drug administration in endemic regions may result in effective elimination of helminth 

242 infections, potential co-infecting protozoan parasites are not susceptible to anthelmintic 

243 treatment; this, together with the sub-standard hygienic and sanitary conditions that generally 

244 characterise these areas and that result in continuous re-exposure to infective helminth 

245 developmental stages (Campbell et al. 2018), impairs the full assessment of the consequences of 

246 helminth removal on the composition of the human gut microbiota. To the best of our knowledge, 

247 thus far, a single study has investigated the effects of chronic infections by a GI helminth, 

248 Strongyloides stercoralis, and anthelmintic treatment on the composition of the faecal microbiota 

249 and metabolome of humans from a non-endemic area of Europe, where parasite transmission had 

250 been interrupted (Jenkins et al. 2018b). Treatment with ivermectin resulted in compositional 

251 changes of the faecal microbiota (analysed 6 months post-treatment), which partially resembled 

252 that of uninfected control subjects (Jenkins et al. 2018b); in particular, alpha diversity [= a 

253 measure of the number of bacterial species present in a given microbial community (richness) and 

254 their relative abundance (evenness)] was reduced in the microbiota of individuals post-treatment 

255 (although statistical significance was not achieved) and accompanied by expanded populations of 

256 potentially pathogenic bacteria (Jenkins et al. 2018b). In addition, the faecal metabolic profiles 

257 obtained from samples collected post-ivermectin treatment shared features with both those 

258 obtained from samples collected pre-treatment and from uninfected controls (Jenkins et al. 

259 2018b); this observation led Jenkins et al. (2018b) to hypothesise that, following parasite removal 

260 and over time, both gut microbiota and metabolome may revert to the original pre-infection state. 

261 Multiple factors, including but not limited to those outlined above, may contribute to the 

262 discrepancies observed between the findings from this work and those that reported no or minor 
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263 effects of anthelmintic treatment on the gut microbiome of helminth-infected humans (Cooper et 

264 al. 2013; Ramanan et al. 2016; Martin et al. 2018; Rosa et al. 2018; Schneeberger et al. 2018a,b). 

265 Despite the limitations outlined above, studies of GI helminth-microbiota relationships conducted 

266 in endemic areas for helminthiases have provided repeated evidence of the perturbations that 

267 parasites and anthelmintic treatment exert on the equilibrium of resident populations of gut 

268 bacteria and on gut homeostasis. However, the identification of common signatures across studies 

269 remains key to designing future experiments, e.g. in animal models of helminth infections, that 

270 may assist the elucidation of the mechanisms that underpin the interactions between GI helminths, 

271 the gut microbiota and the host immune system. 

272 4. DO COMMON SIGNATURES EXIST ACROSS STUDIES OF HOST-HELMINTH-

273 MICROBIOTA INTERACTIONS?

274 The identification of gut microbial signatures that occur reproducibly across several host-GI 

275 helminth systems is crucial for designing novel anti-helminth intervention strategies based on the 

276 manipulation of the gut microbiota (Peachey et al. 2017). Studies conducted in animal models of 

277 helminth infections are expected to assist the identification of such signatures, as well as the direct 

278 (i.e. parasite-mediated) and/or indirect (i.e. immune-mediated) mechanisms that govern helminth-

279 microbiota interactions (Cortés et al. 2018); nevertheless, the inconsistencies that characterise 

280 studies of helminth-microbiota relationships published to date make such a task highly 

281 challenging. Indeed, for patterns to be identified, fluctuations in selected populations of gut 

282 microbes must be interpreted in light of the physical and immunological alterations of the mucosal 

283 environment in which such alterations occur (Leung et al. 2018). For instance, expanded 

284 populations of Lactobacillaceae have been repeatedly detected following infection with several 

285 species of parasitic helminths in several host species (Reynolds et al. 2014; Duarte et al. 2015; 

286 Holm et al. 2015; Houlden et al. 2015; Cattadori et al. 2016; Jenkins et al. 2018a; Kim et al. 

287 2018), and could thus be considered as a ‘consistent alteration’ in gut microbiota composition 

288 upon helminth colonisation. However, key differences exist between host-parasite pairs 

289 investigated in the studies that have reported such an outcome. Indeed, whilst populations of 
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290 Lactobacillaceae promote regulatory responses in mice infected by Heligmosomoides polygyrus 

291 bakeri (Reynolds et al. 2014), a lack of correlation between Lactobacillaceae abundance and Treg 

292 populations has been observed in other host-parasites systems, such as mice chronically infected 

293 with T. muris and rabbits infected with Trichostrongylus retortaeformis, in which the expansion 

294 of populations of gut Lactobacillaceae upon helminth infection occurs in an environment 

295 dominated by Th1-mediated immune responses (Holm et al. 2015; Houlden et al. 2015; Cattadori 

296 et al. 2016). These differences suggest that alternative mechanisms may regulate the 

297 differentiation and development of adaptive immune responses in each host-parasite system 

298 (Houlden et al. 2015), and thus that similar alterations in gut microbiota composition may result 

299 in different consequences that are dependent on the microenvironment where these changes occur. 

300 Notwithstanding, the interactions between hosts, helminths and the gut microbiota are likely 

301 multifaceted and multidirectional, and therefore the potential consequences that selected 

302 compositional changes in gut microbiota exert on host homeostasis are only one aspect of these 

303 complex interplay. For instance, a common yet undetermined mechanism may determine the 

304 expansion of Lactobacillaceae in the gut of helminth-infected hosts. 

305 On the other hand, apparent ‘contradictory’ findings across studies may result from fundamental 

306 differences between gut compartments under investigation. For instance, Prevotella spp. was 

307 expanded in the abomasum and faeces of sheep infected by abomasal trichostrongyles (i.e. 

308 Haemonchus contortus and Teladorsagia circumcincta; Li et al. 2016; Cortés et al. in 

309 preparation), whilst the same taxa were reduced in the faeces of a range of host species, including 

310 mice, humans and horses, infected by nematodes residing in the large intestine, i.e. Trichuris spp. 

311 and cyathostomins, respectively (Lee et al. 2014; Houlden et al. 2015; Peachey et al. submitted). 

312 It must be noted, however, that whilst increased abomasal pH favours Prevotella overgrowth in 

313 the abomasum (De Nardi et al. 2016; Li et al. 2016), the same taxa are likely to be exposed to a 

314 dramatically different microenvironment in the large intestine that may determine the contraction 

315 of these bacterial groups. In addition, given the functional dissimilarities between the abomasal 

316 and colonic microbiota, such alterations are expected to result in fundamentally different 
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317 outcomes for the homeostasis of each of these gut compartments (Ley et al. 2008), and hence 

318 comparisons are, in our opinion, unwarranted. 

319 In parallel to species of bacteria with functions that may vary depending on the gut compartment, 

320 multiple taxa share the same functions in different microenvironments (Lozupone et al. 2012); 

321 therefore, it is plausible that, even though inconsistencies are detected across studies, these may 

322 result in similar functional alterations in the host-parasite pairs being compared. For instance, 

323 recent studies in mouse and humans infected with S. mansoni have reported the expansion of 

324 different genera of bacteria with pro-inflammatory functions in the gut microbiota of the 

325 respective hosts (Jenkins et al. 2018a; Schneeberger et al. 2018a). These observations lend credit 

326 to the hypothesis that the functional role of the gut microbiota in helminth infections could be far 

327 less ‘diverse’ than the taxonomic associations reported thus far. For this hypothesis to be 

328 confirmed or confuted, a better understanding of the function(s) of each bacterial taxon inhabiting 

329 the different gut compartments in a range of host species is needed. To this aim, the integration 

330 of metagenomic, metabolomic and metatranscriptomic technologies, alongside traditional 

331 microbiology and microscopy techniques, may assist to achieve a holistic picture of the impact of 

332 GI helminth infections on the functions of the human gut microbiota, and its significance for 

333 disease pathophysiology and overall host health (Wang et al. 2015). 

334 5. CURRENT NEEDS AND FUTURE DIRECTIONS

335 Understanding the complex interactions between GI helminths and their vertebrate hosts is pivotal 

336 for advancing our knowledge of the fundamental biology of these parasites and the diseases they 

337 cause (see Peachey et al. 2017; Leung et al. 2018; Rapin and Harris et al. 2018 for reviews). 

338 Whilst the role of the gut microbiota in host-parasite relationships has long been overlooked, 

339 current knowledge of the key roles that resident bacteria play in host health and disease, together 

340 with recent technical advancements for microbiota profiling, have boosted research is this area. 

341 This is currently leading to increasing evidence of a role for the gut microbiota in the immune 

342 regulatory properties of helminth parasites (Cantacessi et al. 2014; Reynolds et al. 2014; 

343 Giacomin et al. 2015, 2016; Zaiss et al. 2016). In addition, data collected to date points towards 
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344 a likely role of the gut microflora in the immunopathology of selected GI helminth infections that 

345 awaits experimental validation. Trying to untangle the relevance of particular fluctuations of 

346 specific bacterial taxa on infection outcome is challenging; nevertheless, currently available data 

347 suggest that low-intensity, long-term helminth infections are commonly linked to high microbial 

348 diversity and predominance of bacteria typically associated with gut health. Conversely, high-

349 intensity, acute infections are often associated to gut dysbiosis, characterised by reduced alpha 

350 diversity and an increase in pro-inflammatory and often opportunistic pathogens (Peachey et al. 

351 2017). However, for this knowledge to be exploited in translational studies, further investigations 

352 in both natural and experimental settings are needed to distinguish spurious results from genuine 

353 helminth-microbiota associations (Peachey et al. 2017), and mechanistic studies in animal models 

354 of helminth infections are necessary to dissect the causality of these relationships (cf. Cortés et 

355 al. 2018). Importantly, minimising variations between studies is crucial to warrant meaningful 

356 comparisons between datasets.

357 Whilst reducing the variability amongst samples collected from naturally helminth-infected 

358 humans may be difficult to achieve, the enormous impact that differences in technical and 

359 experimental approaches (from sample collection to bioinformatics and biostatistical analyses) 

360 exert on the overall variation detected across studies can be reduced (Figs. 1 and 2; Lindgreen et 

361 al. 2017; Costea et al. 2017; Golob et al. 2017). In particular, a range of bioinformatics pipelines 

362 are available for the analysis of high-throughput amplicon and metagenomics sequence datasets 

363 that include, e.g., different sequence-processing tools and reference databases for sequence 

364 annotation that could yield slightly different results (Lindgreen et al. 2017; Golob et al. 2017). 

365 For instance, the use of validated open microbiome analysis packages such Multiplexed Analysis 

366 of Projections by Sequencing (MAPseq) (Matias Rodrigues et al. 2017) or QIIME2 

367 (https://qiime2.org/) may assist accurate taxonomic classifications of bacterial 16S rRNA 

368 amplicon datasets; similarly, sequence annotation should rely on the use of regularly updated 

369 reference databases. Amongst these, SILVA (https://www.arb-silva.de/) (Quast et al. 2013) 

370 enables sensitive annotations of bacterial rRNA sequence data (Almeida et al. 2018). The use of 
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371 such standardized analysis workflows and reference databases for sequence annotation might 

372 prove extremely useful to increase consistency across studies and enable researchers to identify 

373 common and/or unique features between the gut microbiota of different host-parasite systems 

374 which, in turn, might assist to better understand the mechanisms that regulate helminth-microbiota 

375 relationships. 

376 The consequences that elucidating such mechanisms may exert on future strategies of parasite 

377 control are two-fold. First, disentangling the potential contribution of the gut flora to the 

378 pathogenesis of the infection is necessary in order to discover and develop new strategies to 

379 contrast helminth-associated pathology. Second, understanding the microbiota-dependent 

380 mechanisms by which parasitic helminths are able to modulate host immune responses and 

381 suppress inflammation may assist the discovery of novel immune-regulatory therapeutics against 

382 chronic inflammatory disorders of the GI tract that may act in synergy with helminth-based 

383 therapy (see Peachey et al. 2017 and Rapin and Harris, 2018 for reviews). However, in order for 

384 this new knowledge to be fully exploited in translational research, further studies that thoroughly 

385 consider inclusion/exclusion criteria for the selection of participants, include appropriate controls, 

386 and follow standardised experimental and data analysis protocols are necessary, and will allow to 

387 disentangle the potential influence of parasite-, drug- and/or population-dependent variables in 

388 each setting (Fig. 2).

389

390
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586 FIGURE LEGENDS

587 Fig. 1 Sources of variation and confounding factors potentially impacting the outcome of studies 

588 of human-helminth-gut microbiota interactions in helminth-endemic regions.

589 Fig. 2 Proposed approaches aimed at reducing the methodological sources of variation 

590 surrounding investigations of human-helminth-gut microbiota interactions.
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Figure 1. Sources of variation and confounding factors potentially impacting the outcome of studies of 
human-helminth-gut microbiota interactions in helminth-endemic regions. 
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Figure 2. Proposed approaches aimed at reducing the methodological sources of variation surrounding 
investigations of human-helminth-gut microbiota interactions. 
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29 SUMMARY

30 The multifaceted interactions occurring between gastrointestinal (GI) parasitic helminths and the 

31 host gut microbiota are emerging as a key area of study within the broader research domain of 

32 host-pathogen relationships. Over the past few years, a wealth of investigations has demonstrated 

33 that GI helminths interact with the host gut flora, and that such interactions result in modifications 

34 of the host immune and metabolic statuses. Nevertheless, whilst selected changes in gut microbial 

35 composition are consistently observed in response to GI helminth infections across several host-

36 parasite systems, research in this area to date is largely characterised by inconsistent findings. 

37 These discrepancies are particularly evident when data from studies of GI helminth-microbiota 

38 interactions conducted in humans from parasite-endemic regions are compared. In this review, 

39 we provide an overview of the main sources of variance that affect investigations on human-

40 helminth-gut microbiota interactions and propose a series of methodological approaches that, 

41 whilst accounting for taking into account the inevitable constraints of human fieldwork, are aimed 

42 at minimising confounding factors and draw biologically meaningful interpretations from highly 

43 variable datasets.  

44

Page 28 of 51

Cambridge University Press

Parasitology



For Peer Review

3

45 1. INTRODUCTION

46 A plethora of experimental evidence supports a key role of infections by gastrointestinal (GI) 

47 helminth parasites in shaping the composition of the vertebrate gut microbiota, with significant 

48 implications for local and systemic host immunity (reviewed by Brosschot and Reynolds, 2018). 

49 For instance, recent studies have partly attributed the parasite-associated qualitative and/or 

50 quantitative alterations to host GI microbial profiles to the ability of GI helminths to stimulate the 

51 initiate initial the onset of T-regulatory (Treg) immune mechanismsresponses, which result in 

52 down-regulation of inflammatory responses and establishment of chronic infections, to 

53 helminthparasite-associated qualitative and/or quantitative alterations to GI microbial profiles the 

54 ability to initiate the onset of T-regulatory (Treg) immune mechanisms, that result in down-

55 regulation of inflammatory responses and establishment of chronic infections (cf. Cantacessi et 

56 al. 2014; Reynolds et al. 2014; Giacomin et al. 2015, 2016; Zaiss et al. 2016). On the other hand, 

57 other studies have reported associations between acute helminth infections and gut microbiome 

58 microbiota imbalances (= dysbiosis) characterised by that involve significant expansion of 

59 populations of putative pro-inflammatory bacteria (e.g. Rausch et al. 2013; Jenkins et al. 2018a; 

60 Schneeberger et al. 2018a); these observations have, thus lending lent credit to the hypothesis that 

61 helminth-associated alterations of gut microbiota compositionme may lead to both localised and 

62 systemic consequences for the host organism, that includeing immunopathology and  (e.g. Rausch 

63 et al. 2013; Jenkins et al. 2018a; Schneeberger et al. 2018a), and as well as exacerbated 

64 malnutrition in at-risk subjects from parasite-endemic areas (reviewed by Glendinning et al. 2014; 

65 Houlden et al. 2015; Cattadori et al. 2016). 

66 Over the past decade, newly acquired knowledge of the impact that GI helminth infections exert 

67 on the vertebrate gut microbialome composition and metabolism has contributed to a better 

68 understanding of parasite systems biology and host-pathogen interactions (reviewed by Peachey 

69 et al. 2017; Leung et al. 2018; Rapin and Harris et al. 2018), and has been proposed as a first step 

70 towards the identification and development of novel strategies of parasite control based on the 

71 targeted manipulation of the host gut microbiota (cf. Peachey et al. 2017). Nevertheless, for 

72 humans in particular, progress in this field of research is greatly impaired by the impact of several 
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73 confounding factors that inevitably affect studies conducted in naturally infected individuals 

74 (Mutapi, 2015; Chabé et al. 2017). In this review, we summarise current knowledge of GI 

75 helminth-microbiome interactions in humans under natural conditions of infection, identify 

76 similarities and differences between datasets and provide an overview of the confounding factors 

77 that may affect the interpretation of findings.

78 2. HUMAN-HELMINTH-GUT MICROBIOTA INTERACTIONS IN REAL-WORLD 

79 SCENARIOS

80 In endemic areas for helminthiases, the vast majority of infected individuals harbour multiple 

81 helminth species, often occupying different niches of the host organism (Hotez et al. 2010). 

82 Whilst polyparasitism is often regarded as a major confounding factor in investigations of 

83 parasite-microbiota interactions conducted in humans under natural conditions of infection 

84 (Cooper et al. 2013; Jenkins et al. 2017; Martin et al. 2018; Rosa et al. 2018), findings from these 

85 studies are key to assessing the impact that GI helminths exert on gut microbiota homeostasis in 

86 a ‘real-world’ scenario. Nevertheless, several factors should be considered when interpreting 

87 results obtained from individuals infected by multiple helminth species. First, anthropometric 

88 (e.g. age and gender) and anthropologic variables (e.g. ethnicity, diet and occupation) are well 

89 known to profoundly impact the ‘baseline’ composition of the human gut microbiotame (Sekirov 

90 et al. 2010; Yatsunenko et al. 2012) (cf. Fig. 1); therefore, the enrolment of large cohorts of 

91 individuals is often necessary in order to achieve sufficient statistical power and avoid 

92 uninformative and/or misleading results (Kelly et al. 2015). However, in many studies, the 

93 number of individuals enrolled and samples analysed is inevitably dictated by logistical and 

94 financial constraints. In these instances, population-related variables that impact gut microbiota 

95 composition may contribute substantially to inconsistencies among findings from different studies 

96 (cf. Fig. 1). For instance, a negative association between colonisation by the whipworm Trichuris 

97 trichiura and the abundance of bacteria belonging to the genus Prevotella in the faeces of infected 

98 individuals has been reported in two separate studies conducted in Malaysia (Lee et al. 2014; 

99 Ranaman et al. 2016), while other studies conducted in Ecuador, and Liberia and Indonesia, 
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100 respectively, have failed to identify significant variations in faecal populations of Prevotella in 

101 individuals either solely infected by T. trichiura or co-infected with other species of soil-

102 transmitted helminths (STHs) (Cooper et al. 2013; Martin et al. 2015; Rosa et al. 2018). 

103 In addition, whilst Rosa and co-authors (2018) detected several distinctive features in the gut 

104 microbial profiles of helminth-harbouring individuals that were specifically associated to single 

105 infections with the hookworm Necator americanus, the roundworm Ascaris lumbricoides or T. 

106 trichiura, such features were inconsistent between two independent cohorts of helminth-infected 

107 volunteers from Liberia and Indonesia, respectively; this discrepancy suggests that other yet 

108 undetermined environmental factors may contribute to qualitative and quantitative alterations of 

109 the gut microbial profiles of helminth-infected individuals from different geographical areas. In 

110 contrast, an association between the abundance of selected bacterial taxa and infections by one or 

111 more STHs could be consistently detected in samples from both Liberian and Indonesian cohorts 

112 (Rosa et al. 2018). These taxa included bacteria belonging to the genera Olsenella and 

113 Allobaculum, which were expanded in the gut microbiota of helminth-infected individuals when 

114 compared to that of uninfected controls. To the best of our knowledge, the study by Rosa et al. 

115 (2018) was the first to report a link between infections by STHs and the abundance of these 

116 bacterial genera in the human gut. Interestingly, in mice suffering from metabolic syndrome, 

117 administration of probiotics was followed by expansion of populations of Olsenella and/or 

118 Allobaculum, and a reduction in systemic and/or local gut inflammatory responses (Wang et al. 

119 2015). Moreover, Allobaculum spp. are putative producers of anti-inflammatory short-chain fatty 

120 acids (Greetham et al. 2004), and are severely reduced in the gut of mice genetically predisposed 

121 to spontaneous colitis (Pérez-Muñoz et al. 2014). This knowledge led Rosa et al. (2018) to 

122 hypothesize that these bacteria may play a yet undetermined role in the anti-inflammatory 

123 properties of parasitic helminths, and reinforce the proposition that the interactions between thus 

124 underpinning the general idea that hosts, -parasites and -gut microbiota are interactions are 

125 multidirectional and should be approached in from a holistic perspective manner (e.g. Cortés et 

126 al. 2018; Leung et al. 2018). Interestingly, iIn contrast to evidence acquired in human hosts, a 

Page 31 of 51

Cambridge University Press

Parasitology



For Peer Review

6

127 negative association between the genus Allobaculum and colonisation by GI helminths has been 

128 observed in a mouse model of chronic trichuriasismice chronically infected with T. muris (Holm 

129 et al. 2015), in which is featured by a dominant Th1-mediated immune responses are dominant 

130 (reviewed by Cliffe and Grencis, 2004), as well as in mice and with patent infection by the blood 

131 fluke Schistosoma mansoni (Jenkins et al. 2018a), in which migrating eggs are responsible for the 

132 onset of marked Th2-mediated inflammatory responses are elicited to migrating eggs (reviewed 

133 by Pearce and MacDonald, 2002). The immune-molecular mechanisms through via which 

134 members of the genus Allobaculum may regulate local and systemic inflammation are yet to be 

135 elucidatedstill unclear (Greetham et al. 2004; Pérez-Muñoz et al. 2014; Wang et al. 2015). 

136 Nonetheless, current data experimental evidence on showing concomitant reductions in 

137 populations of Allobaculum andalongside helminth-associated gut inflammation supports seems 

138 consistent with the hypothesis of raised by Rosa et al. (2018); in the future,, suggesting that 

139 laboratory rodent models of GI helminthiasis helminth infections whose gut microbiota is 

140 deprived of, and subsequently recolonised with, the genus Allobaculum could be exploited to 

141 investigate the potential involvement of these bacteria in the parasite-mediated 

142 immunomodulation mediated by helminth parasites (e.g. via exogenous recolonization with 

143 Allobaculum spp.).Notably, both models of helminth infection are characterised by the occurrence 

144 of severe intestinal inflammation involving different populations of T CD4+ cells (i.e. Th1 and 

145 Th2, respectively; Pearce and MacDonald, 2002; Cliffe and Grencis, 2004), and therefore, the 

146 observed reduction in populations of Allobaculum in these systems supports the immune 

147 regulatory role for this bacterial genus. 

148 Beside the intrinsic variability of the human gut microbiota, studies conducted under natural 

149 conditions of helminth colonisation are likely to be affected by factors linked to the different 

150 combinations of infecting species and their relative abundances. For instance, in a study 

151 conducted in a cohort of Ecuadorian children, the specific features detected in the gut microbial 

152 profiles of subjects co-infected with T. trichiura and A. lumbricoides could not be identified in 

153 the microbiota of Trichuris-only infected individuals (Cooper et al. 2013). Similarly, selected 
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154 microbial features that were observed in studies conducted in human volunteers with mono-

155 specific infections with, for instance, A. lumbricoides, could not be detected in the gut microbiota 

156 of subjects harbouring the same parasite alongside other helminth species (e.g. T. trichiura and 

157 N. americanus) (Rosa et al. 2018), thus suggesting that a complex interplay exists between the 

158 host gut and its macro- and microbiota, that might be difficult to replicate in experimental settings. 

159 Furthermore, current evidence obtained from animal models of helminth infections indicates that 

160 worm burdens can impact the nature and/or the magnitude of parasite-associated alterations in gut 

161 microbial composition (Wu et al. 2012; Peachey et al. 2018).; neverthelessNevertheless, such 

162 evidence is not yet available for human infections, in which whose burdens parasite burdens in 

163 endemic areas may range from low to very high due to overdispersion of parasite loads in endemic 

164 areas (Barbour and Kafetzaki, 1991; Churcher et al. 2005) and, therefore, are likely to be an 

165 important confounding factor for studies of parasite-microbiota interactions in naturally infected 

166 individuals. 

167 Another frequent constraint of investigations conducted in cohorts of human subjects with natural 

168 helminth infections is the limited availability of ‘genuine’ negative controls, i.e. individuals from 

169 the same communities of parasite-infected subjects who lack previous exposure to infections by 

170 parasitic helminths. Instead, individuals with no evidence of patent helminth infections are 

171 inevitably enrolled as control subjects (e.g. Cooper et al. 2013; Lee et al. 2014; Jenkins et al. 

172 2017; Rosa et al. 2018); nevertheless, studies in helminth-infected individuals subjected to 

173 anthelmintic treatment, as well as in primates and pigs exposed to Trichuris spp., have shown that 

174 parasite-associated alterations in the gut microbial communities can persist, at least partlyially, in 

175 absence of active infections (Broadhurst et al. 2012; Wu et al. 2012; Cooper et al. 2013; Kay et 

176 al. 2015; Schneeberger et al. 2018a). These data call for caution when interpreting differences 

177 between the gut microbial profiles of helminth-infected and uninfected volunteers from the same 

178 communities. In addition, patent infections are often diagnosed using stool-based microscopic 

179 methods, that are known for their relatively low sensitivity and that may yield false negative 

180 results, e.g. in case of intermittent shedding of eggs and/or larvae (O’Connell and Nutman, 2016). 
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181 Recently, Rosa et al. (2018) used quantitative real-time PCR to diagnose STH infections in 

182 individuals subjected to gut microbiotame profiling, indicating that this technique may represent 

183 a robust and sensitive alternative to microscopic methods, since it provides users with the ability 

184 to semi-quantify burdens of different helminth species from minute amounts of DNA template. 

185 However, in spite of their higher sensitivity, molecular methods rely on the use of primers that 

186 selectively target the parasite species of interest, thus impairing the simultaneous detection of 

187 potential (asymptomatic or subclinical) co-infections with other helminth and/or non-helminth 

188 pathogens (O’Connell and Nutman, 2016). Indeed, the impact of protozoa on the gut microbial 

189 diversity and composition has been clearly demonstrated in humans and other vertebrates 

190 (reviewed by Chabé et al. 2017; Stensvold and van der Giezen, 2018). Furthermore, a recent study 

191 conducted in a cohort of Colombian schoolchildren reported common features in the faecal 

192 microbial composition of subjects co-infected with helminths and protozoans and mono-

193 parasitized with the flagellate Giardia intestinalis compared to uninfected individuals (Toro-

194 Londono et al. 2019). Whilst the mechanisms via which each group of parasites alters the host 

195 gut flora, as well as the nature of such alterations, are yet to be determined, these findings support 

196 the need to conduct additional diagnostic tests on stool samples from helminth-infected cohorts, 

197 as well as the corresponding uninfected subjects, in order to rule out the influence of concomitant 

198 bacterial, viral and/or protozoan infections that may be responsible for the changing gut microbial 

199 profiles of these individuals (cf. Chabé et al. 2017).

200 Nevertheless, in spite of the several confounding factors outlined above (cf. Fig. 1), observational 

201 studies in helminth endemic areas have proven useful for the identification of significant 

202 associations between parasite colonisation and the gut microbial profiles of humans under natural 

203 conditions of infection. Importantly, studies conducted in these communities provide excellent 

204 opportunities to evaluate the effect(s) that parasite removal (e.g. via the administration of broad-

205 spectrum anthelmintics) exert(s) on the gut microbiota of previously infected individuals, thus 

206 contributing cues to understand the causality of helminth-microbiota relationships. 

207 3. IMPACT OF DEWORMING ON THE HUMAN GUT MICROBIOTA 
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208 The implementation of mass drug administration programmes in endemic areas for STHs and 

209 schistosomiasis offers opportunities to elucidate potential mechanisms via which parasitic 

210 helminths modulate the host gut microbiota. For instance, qualitative and quantitative changes in 

211 gut microbial profiles that are caused by direct interactions between parasites and gut bacteria 

212 may be expected to rapidly reverse following parasite removal, whilst long-lasting alterations are 

213 likely to result from indirect interplay mediated by the host immune system (Houlden et al. 2015; 

214 Su et al. 2018). Nevertheless, such investigations are also generally constrained by the presence 

215 of several confounding factors that include not only the host- and parasite-dependent variables 

216 outlined above, but also variations linked to the use of different drugs and treatment regimes 

217 (Schneeberger et al. 2018b), as well as time of sampling post-anthelmintic treatment (Houlden et 

218 al. 2015) (Fig. 1). The latter in particular may profoundly affect findings from these studies, as 

219 the presence of tissue lesions caused by e.g. parasite feeding activity and location (e.g. blood-

220 feeders vs. non blood-feeders and luminal vs. tissue dwellers) are likely to influence the timespan 

221 between helminth removal and microbiome recovery (reviewed by Leung et al. 2018). Moreover, 

222 for ethical reasons, data from these experiments is often biased by the lack of placebo-treated 

223 control groups. These limitations may be at least partially responsible for the differences between 

224 findings from studies aimed to elucidateat elucidating the effect of deworming on the gut 

225 microbiota of helminth-infected volunteers; notwithstanding, it is worth noting that, in instances 

226 where deworming-associated changes in human gut microbial profiles were detected, these were 

227 generally moderate (Ramanan et al. 2016; Martin et al. 2018; Schneeberger et al. 2018b).

228 Consistent with this, a recent study conducted on faecal samples collected from a rural community 

229 in Indonesia reported that the composition of the gut microbiotame of individuals repeatedly 

230 treated with either albendazole or placebo (for 21 months) resembled that of samples collected 

231 from the same subjects prior to treatment, rather than that of uninfected controls (Rosa et al. 

232 2018). Moreover, a parallel investigation conducted on the same cohort of individuals detected 

233 reduced populations of Prevotella in albendazole-treated subjects in which complete deworming 

234 did not occur, compared to placebo-treated individuals with patent helminth infections (Martin et 
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235 al. 2018). Intriguingly, failure of albendazole treatment was accompanied by a dominance of T. 

236 trichiura (over other helminth species) in these subjects, while placebo-treated individuals 

237 maintained a diverse macrobiota (i.e. multiple helminth infections); hence, differences in the 

238 composition of the GI macrobiota (i.e. species present and their relative abundances) between 

239 albendazole- and placebo-treated individuals could account for variations in the composition of 

240 the intestinal microflora of these subjects (Martin et al. 2018). Significant associations between 

241 colonisation by T. trichiura and Prevotella abundance were not observed in the Indonesian cohort 

242 (Martin et al. 2018; Rosa et al. 2018). However, negative associations between whipworm 

243 infections and Prevotella abundance had been detected previously in two independent studies 

244 conducted in Malaysia (Lee et al. 2014; Ramanan et al. 2016). In particular, Ramanan and co-

245 authors (2016) observed that, following albendazole treatment, expansion of Prevotella 

246 populations in the human faecal microbiota was related to reduced T. trichiura faecal egg counts. 

247 In contrast, no significant associations between helminth infection and abundance of bacteria 

248 belonging to the genus Prevotella was reported in a study investigating the impact of parasite 

249 colonisation and effective successful treatment with a combination of albendazole and ivermectin 

250 treatment on the faecal microbial profiles of a cohort of Trichuris-infected children from Ecuador 

251 (Cooper et al. 2013), nor in a group of helminth-infected adults from Sri Lanka treated with 

252 pyrantel pamoate (Jenkins et al. 2017). Similarly, no qualitative or quantitative changes to faecal 

253 microbial composition were observed in two cohorts of schoolchildren from Côte d’Ivoire and 

254 Zimbabwe infected by S. mansoni and S. haematobium, respectively, following treatment with 

255 praziquantel (Kay et al. 2014; Schneeberger et al. 2018a). However, successful elimination of S. 

256 mansoni was associated with a higher abundance of Fusobacterium spp. pre-treatment, as well as 

257 24 hrs post-treatment (Schneeberger et al. 2018a). 

258 Whilst drug administration in endemic regions may result in effective elimination of helminth 

259 infections, potential co-infecting protozoan parasites are not susceptible to anthelmintic 

260 treatment; this, together with the sub-standard hygienic and sanitary conditions that generally 

261 characterise these areas and that result in continuous re-exposure to infective helminth 
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262 developmental stages (Campbell et al. 2018), impairs the full assessment of the consequences of 

263 helminth removal on the composition of the human gut microbiota. To the best of our knowledge, 

264 thus far, a single study has investigated the effects of chronic infections by a GI helminth, 

265 Strongyloides stercoralis, and anthelmintic treatment on the composition of the faecal 

266 microbiotame and metabolome of humans from a non-endemic area of Europe, where parasite 

267 transmission had been interrupted (Jenkins et al. 2018b). Treatment with ivermectin resulted in 

268 compositional changes of the faecal microbiota (analysed 6 months post-treatment), which 

269 partially resembled that of uninfected control subjects (Jenkins et al. 2018b); in particular, alpha 

270 diversity [= a measure of the number of bacterial species present in a given microbial community 

271 (richness) and their relative abundance (evenness)] was reduced in the microbiota of the former 

272 group ofdewormed individuals post-treatment (although statistical significance was not achieved) 

273 and accompanied by expanded populations of potentially pathogenic bacteria (Jenkins et al. 

274 2018b). In addition, the faecal metabolic profiles obtained from samples collected post-ivermectin 

275 treatment shared features with both appeared to fall somewhere in between those obtained from 

276 samples collected pre-treatment as well as fromand from uninfected controls (Jenkins et al. 

277 2018b); this observation led Jenkins et al. (2018b), to hypothesise that, thus supporting the notion 

278 that, following parasite removal and over time,suggesting a (direct and/or indirect) effect of 

279 parasite infection and removal on both gut microbiotame and metabolome may revert to the 

280 original a pre-infection state. Multiple factors, including but not limited to those outlined above, 

281 may contribute to the discrepancies observed between the findings from this work and those that 

282 reported no or minor effects of anthelmintic treatment on the gut microbiome of helminth-infected 

283 humans (Cooper et al. 2013; Ramanan et al. 2016; Martin et al. 2018; Rosa et al. 2018; 

284 Schneeberger et al. 2018a,b). 

285 Despite the limitations outlined above, studies of GI helminth-microbiota relationships conducted 

286 in endemic areas for helminthiases have provided repeated evidence of the perturbations that 

287 parasites and anthelmintic treatment exert on the equilibrium of resident populations of gut 

288 bacteria and on gut homeostasis. However, the identification of common signatures across studies 
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289 remains key to designing future experiments, e.g. in animal models of helminth infections, that 

290 may assist the elucidation of the mechanisms that underpin the interactions between GI helminths, 

291 the gut microbiota and the host immune system. 

292 4. DO COMMON SIGNATURES EXIST ACROSS STUDIES OF HOST-HELMINTH-

293 MICROBIOTA INTERACTIONS?

294 The identification of gut microbial signatures that occur reproducibly across several host-GI 

295 helminth systems is crucial for designing novel anti-helminth intervention strategies based on the 

296 manipulation of the gut microbiota (Peachey et al. 2017). Studies conducted in animal models of 

297 helminth infections are expected to assist the identification of such signatures, as well as the direct 

298 (i.e. parasite-mediated) and/or indirect (i.e. immune-mediated) mechanisms that govern helminth-

299 microbiota interactions (Cortés et al. 2018); nevertheless, the inconsistencies that characterise 

300 studies of helminth-microbiota relationships published to date make such a task highly 

301 challenging. Indeed, for patterns to be identified, fluctuations in selected populations of gut 

302 microbes must be interpreted in light of the physical and immunological alterations of the mucosal 

303 environment in which such alterations occur (Leung et al. 2018). For instance, expanded 

304 populations of Lactobacillaceae have been repeatedly detected following infection with several 

305 species of parasitic helminths in several host species (Reynolds et al. 2014; Duarte et al. 2015; 

306 Holm et al. 2015; Houlden et al. 2015; Cattadori et al. 2016; Jenkins et al. 2018a; Kim et al. 

307 2018), and could thus be considered as a ‘consistent alteration’ in gut microbiota composition 

308 upon helminth colonisation. However, key differences exist between host-parasite pairs 

309 investigated in the studies that have reported such an outcome. Indeed, whilst populations of 

310 Lactobacillaceae promote regulatory responses in mice infected by Heligmosomoides polygyrus 

311 bakeri (Reynolds et al. 2014), a lack of correlation between Lactobacillaceae abundance and Treg 

312 populations has been observed in other host-parasites systems, such as mice chronically infected 

313 with T. muris and rabbits infected with Trichostrongylus retortaeformis, in which the expansion 

314 of populations of gut Lactobacillaceae upon helminth infection occurs in an environment 

315 dominated by Th1-mediated immune responses (Holm et al. 2015; Houlden et al. 2015; Cattadori 
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316 et al. 2016). These differences suggest that alternative mechanisms may regulate the 

317 differentiation and development of adaptive immune responses in each host-parasite system 

318 (Houlden et al. 2015), and thus that similar alterations in gut microbiota composition may result 

319 in different consequences that are dependent on the microenvironment where these changes occur. 

320 Notwithstanding, the interactions between hosts, helminths and the gut microbiota are likely 

321 multifaceted and multidirectional, and therefore the potential consequences that selected 

322 compositional changes in gut microbiota exert on host homeostasis are only one aspect of these 

323 complex interplay. For instance, a common yet undetermined mechanism may determine the 

324 expansion of Lactobacillaceae in the gut of helminth-infected hosts. 

325 On the other hand, apparent ‘contradictory’ findings across studies may result from fundamental 

326 differences between gut compartments under investigation. For instance, Prevotella spp. was 

327 expanded in the abomasum and faeces of sheep infected by abomasal trichostrongyles (i.e. 

328 Haemonchus contortus and Teladorsagia circumcincta; Li et al. 2016; Cortés et al. in 

329 preparation), whilst the same taxa were reduced in the faeces of a range of host species, including 

330 mice, humans and horses, infected by nematodes residing in the large intestine, i.e. Trichuris spp. 

331 and cyathostomins, respectively (Lee et al. 2014; Houlden et al. 2015; Peachey et al. submitted). 

332 It must be noted, however, that whilst increased abomasal pH favours Prevotella overgrowth in 

333 the abomasum (De Nardi et al. 2016; Li et al. 2016), the same taxa are likely to be exposed to a 

334 dramatically different microenvironment in the large intestine that may determine the contraction 

335 of these bacterial taxagroups. In addition, given the functional dissimilarities between the 

336 abomasal and colonic microbiota, such alterations are expected to result in fundamentally 

337 different outcomes for the homeostasis of each of these gut compartments (Ley et al. 2008), and 

338 hence comparisons are, in our opinion, unwarranted. 

339 In parallel to species of bacteria with functions that may vary depending on the gut compartment, 

340 multiple taxa share the same functions in different microenvironments (Lozupone et al. 2012); 

341 therefore, it is plausible that, even though inconsistencies are detected across studies, these may 

342 result in similar functional alterations in the host-parasite pairs being compared. For instance, 
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343 recent studies in mouse and humans infected with S. mansoni have reported the expansion of 

344 different genera of bacteria with pro-inflammatory functions in the gut microbiota of the 

345 respective hosts (Jenkins et al. 2018a; Schneeberger et al. 2018a). These observations lend credit 

346 to the hypothesis that the functional role of the gut microbiota in helminth infections could be far 

347 less ‘diverse’ than the taxonomic associations reported thus far. For this hypothesis to be 

348 confirmed or confuted, a better understanding of the function(s) of each bacterial taxon inhabiting 

349 the different gut compartments in a range of host species is needed. To this aim, the integration 

350 of metagenomic, metabolomic and metatranscriptomic technologies, alongside traditional 

351 microbiology and microscopy techniques, may assist to achieve a holistic picture of the impact of 

352 GI helminth infections on the functions of the human gut microbiota, and its significance for 

353 disease pathophysiology and overall host health (Wang et al. 2015). 

354 5. CURRENT NEEDS AND FUTURE DIRECTIONS

355 Understanding the complex interactions between GI helminths and their vertebrate hosts is pivotal 

356 for advancing our knowledge ofn the fundamental biology of these parasites and the diseases they 

357 cause (see Peachey et al. 2017; Leung et al. 2018; Rapin and Harris et al. 2018 for reviews). 

358 Whilst the role of the gut microbiota in host-parasite relationships has long been overlooked, 

359 current knowledge of the key roles that resident bacteria play in host health and disease, together 

360 with recent technical advancements for microbiota profiling, have boosted research is this area. 

361 This is currently leading to increasing evidence of an active involvement of the gut microbiota in 

362 the immunopathology of GI helminth infections (e.g. Rausch et al. 2013; Jenkins et al. 2018a; 

363 Schneeberger et al. 2018a). Furthermore, several studies support a role for the gut microbiota in 

364 the immune regulatory properties of helminth parasites (Cantacessi et al. 2014; Reynolds et al. 

365 2014; Giacomin et al. 2015, 2016; Zaiss et al. 2016). FurthermoreIn addition, data collected to 

366 date points towards a likely role whether certain members of the gut microflora in are actively 

367 involved in the immunopathology of particular selected GI helminth infections that awaits 

368 experimental validationis a currently outstanding question that awaits for a response. Indeed, 

369 whilst tTrying to untangle the relevance of particular fluctuations of specific bacterial taxa on 
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370 infection outcome is challenging; nevertheless,, currently available data suggest that low-

371 intensity, long-term helminth infections are commonly linked to high microbial diversity and 

372 predominance of bacteria typically associated with gut health.; Cconversely, high-intensity, acute 

373 infections are often associated to gut dysbiosis, characterised by reduced alpha diversity and an 

374 increase in pro-inflammatory and often opportunistic pathogens (Peachey et al. 2017). However, 

375 for this knowledge to be exploited in translational studies, further investigations in both natural 

376 and experimental settings are needed to distinguish spurious results from genuine helminth-

377 microbiota associations (Peachey et al. 2017), and mechanistic studies in animal models of 

378 helminth infections are necessary to dissect the causality of these relationships (cf. Cortés et al. 

379 2018). Importantly, minimising variations between studies is crucial to warrant meaningful 

380 comparisons between datasets.

381 Whilst reducing the variability amongst samples collected from naturally helminth-infected 

382 humans may be difficult to achieve, the enormous impact that differences in technical and 

383 experimental approaches (from sample collection to bioinformatics and biostatistical analyseis) 

384 exert on the overall variation detected across studies can be reduced (Figs. 1 and 2; Lindgreen et 

385 al. 2017; Costea et al. 2017; Golob et al. 2017). In particular, a range of bioinformatics pipelines 

386 are available for the analysis of high-throughput amplicon and metagenomics sequence datasets 

387 that include, e.g., different sequence-processing tools and reference databases for sequence 

388 annotation that could yield slightly different results (Lindgreen et al. 2017; Golob et al. 2017). 

389 For instance, the use of validated open microbiome analysis packages such Multiplexed Analysis 

390 of Projections by Sequencing (MAPseq) (Matias Rodrigues et al. 2017) or QIIME2 

391 (https://qiime2.org/) taxonomy classification of 16S amplicon datasets, for instance, current 

392 trends indicate that optimised approaches should rely on open microbiome analysis packages such 

393 Multiplexed Analysis of Projections by Sequencing (MAPseq) (Matias Rodrigues et al. 2017) or 

394 QIIME2 (https://qiime2.org/), which have proven fast, accurate and specific in predicting 

395 taxonomic affiliations, may assist accurate taxonomic classifications of bacterial 16S rRNA 

396 amplicon datasets; similarly, sequence annotation should rely on the use of and the usage of 
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397 comprehensive, as well as regularly updated reference databases. Amongst these, , e.g. SILVA 

398 (https://www.arb-silva.de/) (Quast et al. 2013), that enables a sensitive annotations of bacterial 

399 rRNA sequence data (Almeida et al. 2018). Thus, tThe use of such standardized analysis 

400 workflows and continuously updated reference databases for sequence annotation might prove 

401 extremely useful to increase consistency across studies and enable researchers to identify common 

402 and/or unique features between the gut microbiota of different host-parasite systems which, in 

403 turn, might assist to better understand the mechanisms that regulate helminth-microbiota 

404 relationships. 

405 The consequences that elucidating such mechanisms may exert on future strategies of parasite 

406 control are two-fold. First, disentangling the potential contribution of the gut flora to the 

407 pathogenesis of the infection is necessary in order to discover and develop new strategies to 

408 contrast helminth-associated pathology. Second, understanding the microbiota-dependent 

409 mechanisms by which parasitic helminths are able to modulate host immune responses and 

410 suppress inflammation may assist the discovery of novel immune-regulatory therapeutics against 

411 chronic inflammatory disorders of the GI tract that may act in synergy with helminth-based 

412 therapy (see Peachey et al. 2017 and Rapin and Harris, 2018 for reviews). However, in order for 

413 this new knowledge to be fully exploited in translational research, further studies that thoroughly 

414 consider inclusion/exclusion criteria for the selection of participants, include appropriate controls, 

415 and follow standardised experimental and data analysis protocols, are necessary, thus allowingand 

416 will allow to disentangle the potential influence of parasite-, drug- and/or population-dependent 

417 variables in each setting (Fig. 2), are necessary.

418

419
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