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Abstract— Mechanical self-stability is often useful for con-
trolling systems in uncertain and unstructured environments
because it can regulate processes without explicit state obser-
vation or feedback computation. However, the performance of
such systems is often not optimised, which begs the question
how their dynamics can be naturally augmented by a control
law to improve performance metrics. We propose a minimalistic
approach to controlling mechanically self-stabilising systems
by utilising model-based, feedforward bang-bang control at a
global level and self-stabilizing dynamics at a local level. We
demonstrate the approach in the height control problem of a
sphere hovering in a vertical air jet—the so-called Bernoulli
Ball. After developing a model to study the system and
theoretically proving global asymptotic stability, we present the
augmented controller and show how to enhance performance
measures and plan behaviour. Our physical experiments show
that the proposed control approach has a reduced time-to-target
compared to the uncontrolled system without loss of stability
(ranging from a 2.4 to 4.4 fold improvement) and that we can
plan sequences of target positions at will.

I. INTRODUCTION

There is a long-standing interest in utilizing mechani-
cal self-stability—henceforth termed self-stability—for the
purpose of dynamic motion control [1], [2]. Many animals
are known to take advantage of their mechanical dynamics
to maintain stability during legged locomotion, especially
in unstructured and uncertain environments [3]. Inspired
by this, there have been a range of studies on designing
robust robotic systems, e.g. in legged locomotion [4] where
self-stabilising passive dynamics are exploited [5]–[8], or
the “Blind Juggler” [9], [10], which exploits the passive
dynamics of a ball bouncing on a parabolic surface to
juggle multiple balls without any feedback. Self-stabilizing
properties can even be observed in a bicycle [11].

In general, exploiting self-stability benefits motion control
in three ways. First, self-stability offers motion regulation
mechanisms “for free”, without the need for sensing and
computation for control [1], [8]. Second, self-stability can
be exploited for energy efficiency, even in actively controlled
applications. For example, exploiting pendulum-like [8], [12]
or elastic [9], [12], [13] passive dynamics in legged loco-
motion can yield efficiencies similar to biological systems.
Third, because of the simplicity of self-stability, we can
increase the complexity of system behaviours without adding
extra mechanisms for sensory-motor coordination.
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Despite these advantages, self-stabilizing systems are gen-
erally considered challenging when designing active control
mechanisms, because the system behaviours are dictated by
their intrinsic mechanical dynamics, which we cannot di-
rectly change [14]. Additionally, actuation and control signal
latency may be too large to control the fast dynamics via
feedback control. Various methods exist for the active control
of self-stabilising systems. These include energy shaping
methods [15] or LQR-Trees [16]. While effective, these
approaches require precise system models and high control
bandwidth, which can pose an insurmountable challenge in
noisy real-world systems.

In this paper, we propose a minimalistic control approach
which aims to augment the performance of self-stable me-
chanical systems without loss of their intrinsic stabilizing
properties. We demonstrate the process of control implemen-
tation in the case of the height control problem of a sphere
hovering in a vertical airflow—the so-called Bernoulli Ball.
Though this is an interesting control challenge, it has not
been studied intensively in the past; the authors discovered
one other study [17]. We develop a dynamics model and
show that the self-stabilizing trajectories of the real system
can be augmented by implementing a model-based bang-
bang controller that improves time-to-target considerably
without a loss of stability. The advantage of this approach
is in its robustness to disturbances, simplicity of application,
and its capacity to plan fast switches between target posi-
tions. We argue that this approach generalizes to the control
problem of many real-world systems with self-stabilising
properties.

The paper is organised as follows. First, we introduce
the model of the Bernoulli Ball, which is followed by a
Lyapunov stability analysis to verify self-stability. A bang-
bang control method is then derived and tested in simulation.
Finally, experimental results of the model-based controller
are presented along with comparative analysis of the pro-
posed model.

II. METHODS

Before thinking about controlling a system with any means
of actuation, it is advisable to maximize its mechanical
self-stability. There are, unfortunately, no design principles
for self-stability as its cause is not easily understood even
for seemingly simple systems such as bicycles [11]. In the
case of the Bernoulli ball, the self-stabilizing properties
of the system can significantly simplify the mathematical
description for the purpose of control, despite the complex
three dimensional body-fluid interaction. In the following



sections we will outline how to model, analyze, and syn-
thesise a controller for a self-stable system exemplified by
the Bernoulli ball.

A. Dynamics Modelling

The Bernoulli-Ball system—as shown in Figure 1a—
exhibits two forms of self-stability. Firstly, it is self-stable
in the horizontal plane; when perturbed horizontally the ball
returns to it’s original position. This is commonly explained
using Bernoulli’s principle, which states that as the speed of
a fluid increases, the fluid pressure decreases. Hence, the
pressure within an airflow is lower than the surrounding
environment, creating a self-stabilising force about the jet
centerline [18]. Secondly, it is self-stable in the vertical direc-
tion; when released into the airflow, the ball will eventually
settle around a nominal height. This is due to the force
balance between drag and the ball mass, and the dissipative
effect of moving in the airflow. To simplify matters, we
first assume that motion in the horizontal plane x–y and the
vertical direction z is decoupled. We make this assumption
because the horizontal self-stability acts as a feedback loop,
keeping the ball centred in the flow.

Fig. 1: (a) Bernoulli-Ball system. Air is forced into an
expansion chamber and through a flow straightening nozzle.
A ping-pong ball hovers on the vertical air jet. (b) Schematic
of dynamics modelling assumptions.

The vertical dynamics are the result of complex interac-
tions between the ball, airflow and environment, meaning
the governing equations are non-linear. Here, we present
a simplified model of the system dynamics. We start by
considering the force balance on the ball in the vertical
direction,

mz̈ = Fd(z, ż) + Fb −mg (1)

where z is the vertical distance between the nozzle outlet
and ball centre of mass, Fd(z, ż) is the drag force on the
ball at a height z and velocity ż, Fb is the buoyant force due
to the weight of displaced air and mg is the ball weight. The
buoyant force is minimal, so we have Fb ≈ 0.

We assume that the air-jet flow expands conically from the
nozzle with a cone angle θ and that the velocity profile Vf (z)

is approximately parabolic in the radial direction, as shown
in Figure 1b. We define V̄f (z) as the mean flow velocity at
a height z, with the mean velocity at the nozzle outlet being
denoted by V0 = V̄f (0). Applying flow continuity over z
yields an expression for V̄f (z),

V̄f (z) =
V0r

2
n

(rn + z tan θ)2
(2)

where rn is the nozzle radius.
The mean nozzle outlet velocity changes in response to

a change in fan power, which is controlled using a PWM
signal denoted by u. The dynamics of the fan, expansion
chamber and airflow, and delays in the control PC and micro-
controller introduce latency into the system, which manifests
as a delay between a change in control input and a change
in the ball force balance. Modelling each of these transient
components is challenging, so we model all transience as a
delay in u reaching a demanded value, defined as u∗. We set
a first-order constraint on the time derivative of u, namely

du

dt
= kt(u

∗ − u) (3)

where kt is a time constant to be determined.
We define f(u) as the yet-to-be-determined mapping be-

tween u and V0. Therefore,

V̄f (z) =
f(u)r2n

(rn + z tan θ)2
(4)

Therefore, we can reformulate (1) as

mz̈ = kS
1

2
Cdπr

2
bρ
( f(u)r2n

(rn + z tan θ)2
− ż
)2
−mg (5)

where ks = sgn(V̄f (z)− ż). We recast (5) in its state-space
representation. There are three states

x =

zż
u

 =

x1x2
x3

 (6)

Therefore, the state-space representation of the system is

dx

dt
=

 x2

ks
1
2Cdπr

2
bρ
(

f(x3)r
2
n

(rn+x1 tan θ)2 − x2
)2
−mg

kt(u
∗ − x3)

 (7)

where rb, ρ, rn, m and g are known or easily measurable,
and Cd, f(µ), θ and kt are unknown parameters. Equation
(7) can be easily integrated using the MATLAB ordinary
differential equation solver ODE45.

B. System Identification

The unknown parameters were identified by measuring the
hovering height and flow velocities for a range of control
inputs. Each parameter was tuned to best best match the
modelled and experimentally determined values. Table I
shows all system parameters.



Parameter Value
rb 20 mm
rn 15 mm
ρ 1.22 kgm−3

m 2.7 g
g 9.81 ms−2

θ 1o

Cd 0.185
kt 3 s−1

f(u) −30.24u2 + 47.91u+ 2.45

TABLE I: Unknown system parameters.

C. Global Asymptotic Stability

We have stated that the system exhibits self-stabilizing
properties in the vertical direction. Here, we present an anal-
ysis that proves this self-stability analytically in the uncon-
trolled case with smooth right hand side of (7). Specifically,
we show that for any constant and converged control input
u = u∗, the system will always converge to an equilibrium
state x∗ = [z∗ 0 u∗]T , providing the initial conditions xinitial
lie on the domain Dx = {x|x1 > −rn/ tan θ}; a property
known as global asymptotic stability. Note that Dx is a
positive invariant set with respect to the dynamics (7) for
positive fan speeds due to the singularity at x1 = −rn/ tan θ.
Of course, in reality x1 ≥ 0 as the ball cannot travel
below the nozzle, so any physically plausible state x will
by definition lie in Dx.

First, we define y as the state variable measured around
x∗, i.e.

y =

[
z − z∗
ż

]
=

[
y1
y2

]
(8)

Since we assume the air flow speed has converged to a
constant positive value, we neglect the third system state
and assume u = u∗. Reformulating (7) in this form yields

ẏ =

[
y2

ks
Cdρr

2
bπ

2m

(
f(u∗)r2n

(rn+(y1+z∗) tan(θ))2
− y2

)2
− g

]
(9)

valid on the domain Dy = {y|y1 > −rn/tan θ − z∗}. For
brevity, we denote (9) as

ẏ =

[
y2

F (y1, y2)

]
(10)

We prove the equilibrium y∗ = [0 0]T is globally
asymptotically stable by employing the Lyapunov stability
criterion, which requires that a Lyapunov candidate function
L(y) exists such that

• L(0) = 0
• L(y) > 0 ∀ y ∈ Dy \ {0}
• L̇(y) < 0 ∀ y ∈ Dy \ {0}, i.e. L decreases along

trajectories.
We construct the Lyapunov function

L(y1, y2) =
1

2
my22 +W (y1) (11)

where dW/dy1 = −mF (y1, 0). Hence, L(y1, y2) is the sum
of kinetic and potential energy, deriving the latter from the

sum of gravitational and drag forces but neglecting the effect
of the ball velocity y2.

To find W , we integrate −mF (y1, 0), defining the con-
stant of integration such that W (0) = 0, to give

W (y1) = −m
(

K1

tan θ(K2 + y1 tan θ)3
+

K1

tan θK3
2

− gy1
)

(12)
where K1 = Cdρr

2
bπf

2(u∗)r4n/6m and K2 = rn+z∗ tan θ.
Hence, L(0) = 0.

First, we show the state y = 0 is the unique minimum
for L ∈ Dy. When in equilibrium, F (0, 0) = 0. Since
dW/dy1 = −mF (y1, 0), W is stationary at this point.
Moreover, for y1 < 0, dW/dy1 < 0 and for y1 > 0,
dW/dy1 > 0. Hence, the origin is the unique minimum.
Similarly, the origin is a global minimum for the term 1

2my
2
2 .

Hence, L is the unique minimum for L ∈ Dy.
The time derivative of the Lyapunov function is

L̇ = my2ẏ2 +
dW

dy1
ẏ1 (13)

which, after substituting for y1, dW/dy1 and ẏ2 yields

L̇ = my2(F (y1, y2)− F (y1, 0))

= y2K3(sgn(V̄f − y2)(V̄f − y2)2 − V̄ 2
f ) (14)

where K3 =
Cdρr

2
bπ

2m and V̄f = (f(u∗)r2n)/((rn + (y1 +
z∗) tan(θ))2).

Now, we show that L decreases along trajectories, and
in fact L̇ < 0 except instantaneously when y2 = 0. We
prove this by considering four cases dictated by the signum
function in (14).

Case 1: 0 < y2 ≤ V̄f → sgn(V̄f − y2) = 1 Since V̄ 2
f >

(V̄f − y2)2, the right hand term in (14) dominates so L̇ < 0.
Case 2: 0 < V̄f < y2 → sgn(V̄f − y2) = −1 Both terms

in (14) are negative so L̇ < 0.
Case 3: y2 < 0 → sgn(V̄f − y2) = 1 The left term is

positive and dominates in (14), but y2 is negative so L̇ < 0.
Case 4: y2 = 0 → L̇ = 0. This violates the Lyapunov

criterion as clearly L̇ ≤ 0, i.e. not strictly negative definite;
however, we know from (10) that when y2 = 0, ẏ2 =
F (y1, 0) 6= 0. Hence, L̇ is only zero instantaneously and
the dynamics always return to the provably stable regions
shown in cases 1-3. (In fact, this point indicates an inflection
point for L). These conditions still qualify for LaSalle’s
theorem, which is a proof for global asymptotic stability of
the equilibrium y∗ in a positive invariant set Dy.

Hence, all conditions have been met (with the modification
of L̇ requiring to be only negative semidefinite on Dy to
qualify for LaSalle’s theorem) and the equilibrium y∗ is
globally asymptotically stable on Dy which is equivalent to
x∗ being globally asymptotically stable on Dx for converged
fan speeds.

D. Bang-Bang Control Algorithm

While state feedback commonly helps stabilizing the sys-
tem in theory, the large latencies in actuation and sensory
signals and considerable velocity fluctuation due to fluid



Fig. 2: Example of a bang-bang control policy.

turbulence render state feedback hard to deal with in the
Bernoulli-Ball system, unless considerable investments into
sensory equipment, actuation, and controller synthesis are
made. Therefore, the control approach for the Bernoulli ball
as presented here is to use a model-based feedforward bang
bang approach inspired from time-optimal control in linear
systems. Not only do we need less equipment for control (no
sensors or fast actuators), but we find a highly effective and
robust control law to minimize time-to-target of the Bernoulli
ball. Figure 2 shows an example of a bang-bang control
policy.

It is advantageous to augment the self-stabilizing dynamics
of the Bernoulli-Ball using a bang bang controller for a
number of reasons. First, self-stabilizing systems reliably
follow certain trajectories under certain control inputs. Bang-
bang control harnesses these trajectories, which by nature
are reliable, hence making the control policy robust to
disturbances. Second, the control bandwidth requirement is
minimal—there is no requirement for high-frequency sensing
and computation of control inputs—meaning control policies
can be calculated a priori. Third,the control is defined with
few discrete parameters that give rise to a certain trajectory.
These types of control problems are efficiently optimized
using numerical solvers.

We seek to move the system from an initial state xinitial to
a target state xtarget. In our system, these states correspond to
target hovering heights; for a target height ztarget which corre-
sponds to a control input of u∗target, xtarget = [ztarget 0 u∗target]

T .
It is important to note here that because of the transient
system dynamics, control demands are included in the target
state.

We implement a numerical switching time computation
method, similar to the method outlined in [19]. The proposed
bang-bang controller switches between the maximal, minimal
and target control inputs u∗high, u∗low and u∗target at a set of three
predetermined switching times, as demonstrated in Figure 2a.
We denote the ith switching time as ti and the initial and final
times as t0 and tf , such that 0 = t0 ≤ t1 ≤ t2 ≤ t3 = tf .
The system trajectory between each switching time, denoted
by xi(t), is called the ith bang arc, so the total trajectory
x(t) for 0 ≤ t ≤ tf is the concatenation of xi(t) and ends

(a) Switching curve for idealised system with no
latency.

(b) Three-dimensional switching curve for real-
world system with latency.

(c) Two-dimensional switching curve projection
for real-world system with latency.

Fig. 3: Idealised and real-world bang-bang control switching
curves for ztarget = 0.1 m, showing trajectories for zinitial = 0
m and zinitial = 0.2 m

at the final state xf . The arc time ξi is the time spent on
each bang arc, which together are stored in the arc time
vector ξ = [ξ1 ξ2 ξ3]T . Arc times ξ1 and ξ2 represent the
time spent at u∗high and u∗low, or vice versa, while ξ3 is a
predefined time used to set a consistent point to measure
control performance.

We seek to determine ξ such that the error between xf
and xtarget is minimized. We formally define this using a
control cost function g(ξ), representing the absolute distance
between xf and xtarget,

g(ξ) = ‖xf − xtarget‖ (15)



Hence, we seek to solve the minimization problem

min
ξ

= g(ξ) (16)

Due to the non-linearity of g(ξ) an analytical solution to
(16) is not necessarily tractable, so we employ the MATLAB
fminsearch numerical optimisation function.

For any given ztarget we can numerically construct a set of
switching curves that indicate where in the state-space the
controller should switch between the three control inputs.
Figure 3a-c shows these switching curve for ztarget = 0.1
m, with example trajectories for zinitial = 0 m and zinitial =
0.2 m. Figure 3a shows the switching curve for an idealised
system with no latency, while Figure 3b-c shows the 3D and
projected 2D switching curves for the real world system.

III. EXPERIMENTAL SET-UP

A high-power brushless motor (Diatone M2205 2300KV)
fitted with a 3-blade propeller (Diatone 5045) and a constant
input voltage of 15 VDC was used to propel air into an
expansion chamber then through a circular nozzle posi-
tioned on top of the chamber. To stabilize the outlet jet, a
flow straightener was fitted under the nozzle. Control was
achieved using an electronic speed control (HobbyKing 20A
ESC 3A UBEC) connected to an Arduino UNO interfaced
with MATLAB. A Pulse-width modulation (PWM) signal
was used to vary motor speed by changing the available
current. The ball height was measured using a high frame
rate webcam (Logitech BRIO) capable of delivering 90-
120 frames per second. In each frame the ball was located
using a simple thresholding algorithm, after which the height
was determined using the predetermined camera parameters.
Figure 1a shows the setup.

IV. EXPERIMENTAL RESULTS

The controller was used to calculate the switching times
zinitial = 0 m and ztarget = 0.1, 0.15, 0.2 m. The cal-
culated policies were applied in the real system, as were
the corresponding open-loop control policies for the same
target heights. Figure 4 shows snapshot images of these
controlled responses, while Figure 5 shows the state space
controlled and open-loop responses for ztarget = 0.1, 0.15 and
0.2 m. In all cases, the open-loop response is characterized
by a spiralling trajectory ending in steady-state behaviour,
which manifests as an oscillation around the target height.
Conversely, the controlled response is characterized by a
curved trajectory directly to steady-state.

The time taken for the system to reach its steady state
behaviour—the settling time, ts—in the open-loop and con-
trolled response was measured. The factor of improvement
in ts between the controlled and open loop response was 2.4,
3.6 and 4.4 for ztarget = 0.1, 0.15, 0.2 m respectively. Table
II shows these results.

This difference in improvement based on ztarget can be
attributed to a number of factors. As discussed previously, the
dynamics model is less accurate at duty-cycles, meaning the
bang-bang control policy is likely to be less effective when
ztarget is lower. Furthermore, because the system dynamics are

highly non-linear we expect the relationship between ztarget
and ts to also exhibit non-linearity.

ztarget m Open-Loop ts [s] Controlled ts [s] Improv. Factor
0.1 2.3 0.98 2.4
0.15 4.1 1.12 3.6
0.2 5.2 1.20 4.4

TABLE II: Open-loop and controlled settling time and im-
provement factor, for ztarget = 0.1, 0.15 and 0.2 m and
zinitial = 0 m.

The control policy was also tested for consecutive trajec-
tory following, where ztarget switched every 5 seconds and
applied open-loop control for comparison, as shown in Figure
6 and Supplementary Video 1. This is a more challenging
task, as the initial state is subject to high amounts of
uncertainty. Qualitatively, we see that the controlled response
significantly reduces ts for each height change.

Fig. 4: Snapshot images recorded over five seconds of
controlled response for ztarget = 0.1, 0.15 and 0.2 m and
zinitial = 0 m, corresponding to Figure 5 d,e,f.

V. DISCUSSION & CONCLUSION

We have shown that augmenting the self-stability of
the Bernoulli-Ball via Bang-Bang control can significant
improve the time to target of the system when changing
heights. This example demonstrates how fast dynamics can
be controlled in a robotic system without the need for high-
bandwidth control. We have to be careful in generalizing
the results to other robotic systems as this approach can
technically only guarantee stability in the presence of a glob-
ally asymptotically stable equilibrium in the uncontrolled
system. However, in the real world experiment we have
achieved stable performance in spite of the ground restriction
to positive ball heights, which shows that in practice the
approach can work for locally self-stable equilibria, allowing
its applicability to a larger class of problems including
passive dynamic walking [5] and bicycle stability [11]. We
have studied exclusively the vertical dimension of the sys-
tem. The horizontal component requires different modelling



(a) ztarget = 0.1 m. (b) ztarget = 0.15 m. (c) ztarget = 0.2 m.

(d) ztarget = 0.1 m. (e) ztarget = 0.15 m. (f) ztarget = 0.2 m.

Fig. 5: Open-loop (a,b,c) and controlled (d,e,f) response for ztarget = 0.1, 0.15 and 0.2 m

Fig. 6: Controlled and open-loop response to consecutive
trajectory following.

approaches and more actuators for control which we will
study in future work.

Using bang-bang control in the Bernoulli-Ball system is a
simple yet effective approach to improve the performance,
and is an approach that could generalises to many self-
stable robotic systems. It outsources the difficult tasks of
stabilizing control to the mechanical feedback loop, leaving
the trajectory planning via bang-bang control to a numerical
optimisation which can be solved off-line. The high perfor-
mance and robustness of the presented results thus suggests
that the focus on the mechanical design to allow for self-
stability can be key to overcoming the difficulties arising in
control of systems with fast dynamics.

In conclusion, we believe any robotic system should be

designed to maximize self-stabilizing effects as they can help
improve robustness and reduce actuator efforts. Based on
the example of the Bernoulli ball, we anticipate this work to
provide a modelling and control guide for real world systems
with actuation and signal latency, fast dynamics, and noise.
Furthermore, we present the first model-based approach to
control a Bernoulli ball via bang-bang control and we prove
stability of the self-stable system in the sense of Lyapunov.

REFERENCES

[1] R. Pfeifer, M. Lungarella, and F. Iida, “Self-organization, embodiment,
and biologically inspired robotics,” science, vol. 318, no. 5853, pp.
1088–1093, 2007.

[2] R. Blickhan, A. Seyfarth, H. Geyer, S. Grimmer, H. Wagner, and
M. Günther, “Intelligence by mechanics,” Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 365, no. 1850, pp. 199–220, Jan. 2007. [Online].
Available: https://doi.org/10.1098/rsta.2006.1911

[3] A. J. Ijspeert, “Biorobotics: Using robots to emulate and investigate
agile locomotion,” science, vol. 346, no. 6206, pp. 196–203, 2014.

[4] F. Iida and A. J. Ijspeert, “Biologically inspired robotics,” in Springer
Handbook of Robotics. Springer, 2016, pp. 2015–2034.

[5] T. McGeer et al., “Passive dynamic walking,” I. J. Robotic Res., vol. 9,
no. 2, pp. 62–82, 1990.

[6] M. W. Spong, J. K. Holm, and D. Lee, “Passivity-based control of
bipedal locomotion,” IEEE Robotics & Automation Magazine, vol. 14,
no. 2, pp. 30–40, 2007.

[7] A. Goswami, B. Espiau, and A. Keramane, “Limit cycles in a
passive compass gait biped and passivity-mimicking control laws,”
Autonomous Robots, vol. 4, no. 3, pp. 273–286, 1997.

[8] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal
robots based on passive-dynamic walkers,” Science, vol. 307, no. 5712,
pp. 1082–1085, 2005.

[9] P. Reist and R. D’Andrea, “Design of the pendulum juggler.” in ICRA,
2011, pp. 5154–5159.

[10] ——, “Design and analysis of a blind juggling robot,” IEEE Transac-
tions on Robotics, vol. 28, no. 6, pp. 1228–1243, 2012.

[11] J. Kooijman, J. P. Meijaard, J. M. Papadopoulos, A. Ruina, and
A. Schwab, “A bicycle can be self-stable without gyroscopic or caster
effects,” Science, vol. 332, no. 6027, pp. 339–342, 2011.



[12] F. Iida and R. Tedrake, “Minimalistic control of biped walking in rough
terrain,” Autonomous Robots, vol. 28, no. 3, pp. 355–368, 2010.

[13] S. G. Nurzaman, X. Yu, Y. Kim, and F. Iida, “Guided self-organization
in a dynamic embodied system based on attractor selection mecha-
nism,” Entropy, vol. 16, no. 5, pp. 2592–2610, 2014.

[14] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential com-
position of dynamically dexterous robot behaviors,” The International
Journal of Robotics Research, vol. 18, no. 6, pp. 534–555, 1999.

[15] M. W. Spong, “Passivity based control of the compass gait biped,”
IFAC Proceedings Volumes, vol. 32, no. 2, pp. 506–510, 1999.

[16] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “Lqr-
trees: Feedback motion planning via sums-of-squares verification,” The
International Journal of Robotics Research, vol. 29, no. 8, pp. 1038–
1052, 2010.

[17] S. S. Nudehi, S. Dehmlow, and D. Clark, “Position control of a
floating ball in a vertical air stream,” in ASME 2017 International
Mechanical Engineering Congress and Exposition. American Society
of Mechanical Engineers, 2017, pp. V04AT05A002–V04AT05A002.

[18] P. M. Gerhart, A. L. Gerhart, and J. I. Hochstein, Munson, Young and
Okiishi’s Fundamentals of Fluid Mechanics, Binder Ready Version.
John Wiley & Sons, 2016.

[19] C. Y. Kaya and J. L. Noakes, “Computations and time-optimal
controls,” Optimal control applications and methods, vol. 17, no. 3,
pp. 171–185, 1996.


