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Abstract 

Obesity is an ongoing global epidemic and has adverse consequences for cardiovascular health. 

Obesity is often associated with hypertension, which is, itself, a common condition and an 

important cause of morbidity and mortality worldwide. Although animal models of obesity have 

provided extensive data on the links between obesity and hypertension, a greater understanding 

of the pathways linking obesity and hypertension in humans is likely to assist translation of 

animal data, and may, itself, identify important treatment strategies. Ultimately, this could have a 

substantial impact on human health, both at an individual and population level. The current 

review will focus specifically on studies of experimental weight gain and weight loss in humans 

and the following key areas which are strongly related to blood pressure: cardiovascular function, 

autonomic nervous system function, metabolic function, and the impact of cardiorespiratory 

fitness.  
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Introduction 

Obesity is an ongoing epidemic worldwide. Globally, obesity rates have more than tripled in 

men and doubled in women, since 1975 1, with more than 1 in 3 US adults 2 and 1 in 4 UK 

adults being obese 3.  This is of concern because obesity has marked detrimental effects on 

cardiovascular (CV) health.4, 5 It is associated with an increased risk of developing type 2 

diabetes, dyslipidaemia, stroke and heart disease 6, 7. A key factor underlying the adverse 

consequences of obesity on cardiovascular health is likely to be the presence of 

hypertension, which is, itself, a common condition. Indeed, hypertension is currently the 

leading risk factor for cardiovascular disease and an important cause of morbidity and 

mortality worldwide 8.  

There is extensive evidence from cross-sectional studies that obesity and hypertension co-

exist. Epidemiological evidence demonstrates a positive association between body mass 

index (BMI) and blood pressure (BP) 9, 10 11. Hypertension is also more frequent in obese 

than lean individuals 12 and, amongst subjects in the Framingham Heart study, the 

prevalence of obesity was more common in subjects with borderline or established 

hypertension than in normotensives 13. Moreover, calorie restriction leading to weight loss is 

commonly associated with a fall in BP14, and weight loss is often encouraged as an effective, 

non-pharmacological strategy for preventing development of sustained hypertension. 

Despite the extensive epidemiological evidence linking obesity and hypertension, the precise 

mechanisms of obesity-associated hypertension remain unclear. Whilst cross-sectional 

studies have contributed much to our understanding, longitudinal studies of weight gain and 

weight loss allow a much greater understanding of the relationship between obesity and BP, 

the direction of causality and the underlying pathophysiology. A wealth of overfeeding and 

calorie restriction studies have been undertaken in animals, which have contributed greatly 

to our understanding of some of the mechanisms involved in obesity-associated 
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hypertension, particularly in regard to the hypothalamic-pituitary-adrenal axis (as reviewed 

extensively by Kotsis et al 15 and Esler et al16). Moreover, animal models of obesity have 

been extremely useful in identifying and exploring novel targets for anti-obesity drugs 17. 

However, animals are not humans, and species differences do exist in cardiovascular 

structure and function, which may be differentially affected by weight gain and/or loss. 

Indeed, a number of mechanisms identified in animal models of obesity do not translate 

strongly to humans16. Moreover, despite the success of anti-obesity therapies in preclinical 

models, translation into humans has been largely unsuccessful due to adverse safety 

profiles 18. As such, a greater understanding of the pathways linking obesity and 

hypertension in humans is likely to assist translation of animal data, and may, itself, identify 

important treatment strategies which ultimately could have a substantial impact on health, 

both at an individual and population level.  

A brief review of experimental weight gain studies previously examined the variation in 

susceptibility to gaining weight 19 but did not examine the physiological consequences. 

Therefore, the current review will focus specifically on studies of experimental weight gain 

and weight loss in humans and the following key areas which are strongly related to BP: 

cardiovascular function, autonomic nervous system (ANS) function, metabolic function, and 

the benefits of exercise. Weight gain studies are summarized in Table 1 and weight loss 

studies are summarized in Table 2. 
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Cardiovascular function  

Modest weight gain in humans is associated with significant changes in cardiovascular 

function. In a study of normal-weight males (n=14), weight gain of 5kg was associated with 

increased systolic BP (5±1mmHg, P<0.01) but not diastolic BP. In addition, beta stiffness 

index, a commonly used measure of arterial compliance, was increased by 13±6% and, 

interestingly, the degree of stiffness was associated with the level of abdominal visceral fat 

gain 20. This study confirmed the findings of earlier cross-sectional studies 21, 22 that visceral 

adiposity was an important correlate of an elevated cardiovascular disease risk profile. In a 

further randomised-controlled trial (RCT) in 43 subjects which consisted of weight gain or 

weight maintenance, an average 4.1kg weight gain was associated with impaired flow-

mediated dilatation (FMD), which was reversed with weight loss 23. The degree of FMD 

impairment was signficantly higher in subjects with predominantly visceral rather than 

subcutaneous fat accumulation. However, there were no significant changes in BP or heart 

rate, as a result of weight gain or loss, indicating that vascular responses are either more 

sensitive than, or may precede any effects on, BP. Indeed it is possible that the change in 

body weight, and in particular, amount of visceral fat may affect the material properties of 

blood vessels, independently of arterial distending pressure via mechanisms such as 

hyperinsulinemia 24 25, hyperleptinaemia 26 27 28 29,  a greater sympathetic nervous system 

(SNS) activity 30, 31, and activation of the renin-angiotensin-aldosterone system 32, 33. Such 

mechanisms are thought to be typical of early vascular ageing (EVA); as reviewed by 

Nilsson et al 34.  

Many more studies have investigated the effects of experimental weight loss on blood 

pressure and cardiovascular function. In a meta-analysis which included 25 RCTs, 4874 

subjects were assessed to identify the effects of weight loss on BP 14. The mean age of the 

study populations ranged from 27-66 years and mean weight loss ranged from 0.6 to 11.9 

kg. There was an average reduction in systolic BP of 4.44mmHg and in diastolic BP of 

3.57mmHg, relating to a reduction in systolic BP/diastolic BP per kg of body mass of 
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1.05mmHg and 0.92mmHg, respectively. In a further study of 25 middle-aged and older 

individuals who were randomly assigned to losing weight (7.1kg) via a hypocaloric diet 

versus maintaining weight, brachial systolic BP and diastolic BP decreased only in the 

weight loss group, by 7mmHg and 5mmHg, respectively. 35 

A separate study 36 compared the impact of two weight loss interventions on BP and other 

CV risk factors. The interventions were; 1) a goal of 10% body weight loss and 2) 3 meetings 

per year focusing on social support. Significant improvements were seen in CV risk factors 

such as BP, glycaemia, triglycerides, and HDL cholesterol with modest weight losses of 5-

10%, as well as increased odds of achieving a 5mmHg decrease in systolic BP and diastolic 

BP, 0.5% reduction in HbA1c, a 40mg/dL decrease in triglycerides, and a 5mg/dL increase in 

HDL cholesterol. The relationship between the degree of weight loss and improvement in the 

CV risk profile was almost exponential.  In a further 344 overweight and obese males and 

females aged between 20 and 45 years, a mean weight loss of 6.7kg over 12 months 

reduced aortic, but not brachial pulse wave velocity (PWV) 37. In linear, mixed, log-

transformed models which included age, sex, race and time since baseline, reductions in 

weight and BMI were signficantly associated with the reduction in aortic PWV. In further 

models adjusting for variations in mean arterial pressure, the reduction in aortic PWV was 

positively associated with reduction in BMI and carotid artery diameter. 

Existing intervention studies have examined the impact of weight gain or loss on novel 

aspects of CV function such as arterial stiffness and endothelial function. However, since the 

mean (arterial) BP is a function of cardiac output (CO) and peripheral vascular resistance 

(PVR), it is notable that the existing studies described above have not examined these key 

haemodynamic mechanisms. It is well-established that CO is higher in those with increased 

body size 38 and cross-sectional observations demonstrate a marked elevation of CO in 

overweight or obese subjects in the early stages of BP elevation 39-41. Moreover, longitudinal, 

observational data in 351 children (aged ~10 years) demonstrate a greater increase in SBP 

in those with the greatest increase in BMI over a two-year follow-up, and that this was 
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related to increases in CO and stroke volume, rather than arterial stiffening 11. However, 

recent cross-sectional data in young adults demonstrate that not all overweight and obese 

subjects have elevated BP despite having an elevated CO, and it is the level of PVR, rather 

than CO, which distinguishes between different levels of BP in overweight and obese 

individuals 42 (Figure 1). These data strongly suggest that the ability to modulate PVR in 

response to an increased CO accompanying overweight/obesity may be an important 

determinant of the overall level of BP. Clearly this hypothesis requires testing, and further 

studies in humans are required to explore potential modulatory influences on vascular 

structure and function during weight gain and whether these relate to measurable changes in 

BP.  

To summarise, the available evidence suggests that weight gain and weight loss induce 

changes in BP and other aspects of cardiovascular function. Interestingly, the magnitude of 

change is, in part, related to the extent of change in visceral fat levels. However, further 

longitudinal, interventional studies are warranted to explore, in greater detail, the association 

between weight gain and cardiovascular function. These studies should examine 

haemodynamic mechanisms directly related to BP, such as CO and PVR, as these may 

provide important early insights into how BP becomes elevated with weight gain in humans.  

Autonomic nervous system function 

Since Landsberg first proposed the involvement of the sympathetic nervous system (SNS) 

as an adaptive, thermogenic response to overeating 43, the role of the SNS in obesity-

associated hypertension has been intensively studied and reviewed 44 45 16. It has been 

speculated that the SNS is firstly downregulated, with reduced thermogenesis contributing to 

obesity, but eventually upregulated, contributing to hypertension 44. However, other studies 

have demonstrated that SNS activation is involved in the pathophysiology of hypertension in 

lean individuals 46, 47. Nevertheless, sympathetic overactivity has been widely implicated in 

obesity-associated hypertension, and data from animal models 48 49 (and reviewed by 
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Vickers et al17), cross-sectional studies in humans (as reviewed by Feldstein et al 44 and 

Kotsis et al 50) and interventional weight gain and loss studies largely support this view.  

In an observational study of 1897 Japanese males, 353 individuals (18.6%) gained weight 

over the 12-month study period (defined as an increase in BMI of 10%) 51. Interestingly, a 

rise in BP (increase in mean BP >10%) was detected only in ~ 60% of lean subjects, despite 

similar increases in BMI to those in whom pressure did not rise, indicating a variable 

response of BP to weight gain. Levels of plasma noradrenaline, a marker of SNS activity, 

insulin and leptin all rose with weight gain, irrespective of the change in BP. However, 

significant increases in heart rate and plasma noradrenaline were detected in those 

individuals with accompanying BP elevation, suggesting that SNS activation is likely to be a 

major mechanism of BP elevation with weight gain in humans.  

In 12 healthy, nonobese males 52 in whom 8 weeks of overfeeding by 4 184kJ/day (1000 

Kcal/day) resulted in a mean 5kg weight gain, increased muscle sympathetic nerve activity 

(MSNA) was observed, together with an increase in systolic BP from 114±2mmHg to 

119±2mmHg. Interestingly, the reverse pattern was observed in another study involving an 

acute 3 day period of semi-starvation, followed by longer-term (3-5 months) energy 

restriction in 30 moderately obese, borderline-hypertensive females. With longer-term 

energy restriction, there was a mean weight reduction of 5.8kg.The acute and long-term 

energy restriction resulted in a reduced body weight, diastolic BP and MSNA 53. 

In 41 adults with the metabolic syndrome, a very low calorie diet (VLCD) of 800 calories per 

day for 9 weeks followed by maintenance of weight loss for one year 54, resulted in a mean 

weight loss of 14.6kg. Night-time heart rate decreased and stayed reduced after 1 year. The 

high frequency spectrum of heart rate variability (HRV), which represents predominantly 

vagal activity 55, increased during the weight loss and maintenance periods. Both clinic and 

ambulatory BP decreased signficantly during the VLCD period, but only clinic systolic BP 

remained lower at 6-months. Furthermore, a study in 18 obese, hypertensive patients 



8 
 

involved stress testing (cold pressor, deep breathing and hand-grip test) to assess the 

response of the autonomic nervous system. The effects of a short-term low calorie diet (11 

days) on HRV were examined before and during each stress test. The low frequency domain 

of HRV, a potential 56, 57 but disputed 58, 59  marker of SNS activity was significantly lower 

during the deep breathing and cold pressor tests on the low-calorie versus regular-calorie 

diet 60. Adaptations in sympathetic and parasympathetic activity upon weight loss may 

therefore be important in ‘setting’ the BP level.  

Taken together, the data from human weight gain and weight loss studies support the 

contention that SNS overactivity plays a key role in driving increased BP with weight gain 

(Figure 2) although clearly, further studies in humans are required to clarify the relationship 

between the ANS and BP during weight gain/loss.  

Metabolic function  

It is likely that genetic 61, lifestyle and environmental factors 15 62 interact to modulate an 

individual’s BP and cardiovascular response to fat deposition, fat type and accumulation, 63 

64 as has been demonstrated in animal models 65-69. Subjects with high levels of visceral 

adipose tissue (VAT) are at higher cardiometabolic risk, including higher incidence of 

hypertension 70, 71. In subjects in the Framingham Heart Study, Computed Tomography (CT) 

Substudy 70, ‘quality of fat’, thought to represent lipid density, macrophage accumulation and 

extent of arteriolar dysfunction was assessed in both visceral and subcutaneous regions, by 

CT attenuation. The odds ratio for hypertension, impaired fasting glucose, metabolic 

syndrome (a multiple risk factor syndrome including hypertension) and insulin resistance 

were all significantly greater with lower CT attenuation in visceral adipose tissue. Therefore, 

it may be that the quality, rather than quantity of adipose tissue is better related to metabolic 

health. In a study of 41 overfed 3180kJ (760 Kcal/day), nonobese males, lipid-storage 

related gene expression that underlies visceral fat expansion was evaluated. Diacylgerol O-

acyl-tranferase 2 (DGAT2) was positively associated with increased visceral fat 72. Metabolic 
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characteristics of the subcutaneous fat were related to adipose tissue (AT) expansion and 

resultant increased storage of fat in the visceral depot. The results of this study support the 

‘AT expansion theory,’ which hypothesizes that there is a limited capacity for the expansion 

of subcutaneous fat. This capacity differs from individual to individual, and once reached, will 

result in lipid deposition in ectopic sites, contributing to visceral fat deposition and 

development of the metabolic syndrome 73.  

Increased oxidative stress during fat accumulation has been established as an early initiator 

of metabolic syndrome in animal models 74 and cross-sectional studies in humans have 

demonstrated positive correlations between BMI and markers of systemic oxidative stress 

(74, 75 76). However, factors which are known to cause oxidative stress, such as angiotensin II, 

that induce insulin resistance within adipose tissue 77 do not necessarily cause weight gain 

78. Consequently, the direction of causality still remains unclear and the role of oxidative 

stress in mediating vascular dysfunction in obesity requires clarification through longitudinal 

and interventional trials.    

In another trial of overfeeding lasting 8-weeks, 28 lean, healthy adults (15 males) gained 

approx. 4kg of body fat and an average 4.6±1.6kg of body weight. 79 24-hour insulin levels 

(measured as area-under-curve) positively correlated with body fat measured with dual 

energy X-ray absorptiometry, although low insulin sensitivity was not a precursor to upper 

body fat gain, despite previously reported cross-sectional associations between insulin 

resistance and upper body obesity. 80.  

The evidence from interventional studies of weight loss in humans showing an improvement 

in metabolic function is strong. Cardiovascular risk was assessed in 10 nondiabetic, morbidly 

obese women (age 38±13 years, pre-surgery weight 114±13kg) before and following 36-

months post bilio-pancreatic diversion (BPD) 81. Insulin sensitivity more than doubled after 

surgery and leptin, IL-6, α-defensins, and C-reactive protein were all signficantly lowered 

with weight loss following surgery. These findings led the study authors to suggest that 
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drastic weight loss via BPD demonstrates great potential in reducing the adverse 

inflammatory and metabolic effects of morbid obesity. These findings are supported by a 

meta-analysis of studies inducing weight loss via a variety of interventions 82, which 

demonstrated significant decreases in total cholesterol, low-density lipoprotein, very low-

density lipoprotein and triglycerides. Furthermore, 845 bariatric surgery patients were 

analysed two years post-surgery together with 845 weight-matched controls (BMI 

41.0±4.6kg/m2), with no intervention. Bariatric surgery patients and controls lost 28±15kg 

and 0.5±8.9kg, respectively. Systolic BP (7mmHg), diastolic BP (5mmHg), triglycerides (0.6 

mmol), glucose (1.0 mmol/l), insulin (10.7mmol/l), LDL cholesterol (0.19 mmol/l), and HDL 

cholesterol (0.17mmol/l) were all signficantly lower in patients versus controls 83. Ten years 

following the baseline visit, it was demonstrated that, compared with conventional therapy, 

bariatric surgery still appeared to be a viable option for the treatment of severe obesity and 

improvement in CV risk factors 84. However, it remains unclear whether a causal relationship 

exists between changes in metabolic parameters and changes in BP as a result of weight 

gain or loss. Indeed, risk factors tend to cluster and it may well be the case that metabolic 

BP changes occur in parallel.  

Impact of cardiorespiratory fitness 

Regular aerobic exercise holds significant benefits for CV health. Indeed, several large 

outcome studies demonstrate that cardiorespiratory fitness (CRF) predicts mortality risk in 

the general population. The association between BMI, exercise capacity and mortality risk 

was assessed in 4183 hypertensive veterans (mean age 63.3±10.5 years; mean follow-up of 

7.2 years) who undertook an incremental exercise test and were grouped according to body 

weight and level of fitness 85. There was a strong, inverse association between mortality risk 

and exercise capacity. Interestingly, mortality risks for the overweight-highly fit and obese-

highly fit individuals were 60% and 78% lower than normal-weight, unfit individuals, 

highlighting that being overweight/obese but having high CRF confers a survival advantage 

over those are of normal weight but unfit, particularly in older individuals. In a further large 
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outcome study involving 12 417 males (aged 40-70 years), CRF was assessed by a maximal 

exercise test. Compared to normal-weight, highly fit males, the underweight, unfit males had 

the highest mortality risk (4.5 [3.1-6.6]) whereas highly fit but overweight men had the lowest 

mortality risk (0.4 [0.3-0.6]). Taken together, these findings reflect the importance of 

obtaining and maintaining a high fitness level, regardless of weight status 86.  

Observational data from 25 639 individuals who participated in the EPIC-Norfolk Population 

and were followed up for 11.4 years 87 demonstrate that physical inactivity and high 

abdominal adiposity independently correlate with high BP, which increased coronary heart 

disease (CHD) risk. A positive association existed between systolic and diastolic BP and 

waist circumference tertiles in both low and high fitness groups. Moreover, within each waist 

circumference tertile, active subjects had a lower systolic BP than inactive subjects. These 

data demonstrate the importance of cardiorespiratory fitness and an active lifestyle for 

reducing cardiovascular risk in the long-term and lend further support to the concept that 

CRF may counterbalance the effects of overweight and obesity.  

The beneficial influence of CRF was prospectively explored in a study of experimental 

weight gain in 12 young males 88. As expected, at baseline, those with a signficantly higher 

fitness level had lower levels of body fat (-13±1.7kg vs. 16.9±1.3kg) and abdominal fat (49±6 

vs. 80±14cm2) than their less fit counterparts.  However, despite similar weight gain, fitter 

study participants had smaller increases in systolic BP and diastolic BP compared with less 

fit participants (-1±3mmHg vs. 5±1mmHg). After weight gain, an inverse correlation was 

demonstrated between fitness and systolic BP (r=-0.64) and diastolic BP (r=-80) with these 

relationships remaining significant after adjusting for the amount of visceral fat. These 

findings are supported by cross-sectional data in 184 males and 223 females, where those 

with high levels of visceral fat had higher BP, which was independent of fitness level 89.  

Weight loss studies largely demonstrate the beneficial influence of exercise on CV health. A 

study of weight loss in 110 females was undertaken which included a dietary component 
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combined with either aerobic exercise, resistance exercise or a combination of both 90. 

Regardless of the exercise type, in the diet-plus exercise intervention, pulse wave velocity, 

carotid intima-media-thickness, body weight, waist circumference, and total and low density 

lipoprotein cholesterol levels were significantly decreased. High density lipoprotein 

cholesterol levels and VO2max increased over the study period.  However, the combination of 

aerobic and resistance exercise together with the dietary intervention was the most 

beneficial regime in overall weight management and in the reduction of subclinical 

cardiometabolic and atherosclerosis risk, particularly in females with abdominal obesity.  

A calorie-restricted diet, exercise and a combination of diet and exercise (D+EX) were also 

assessed as potential weight loss strategies in 30 obese, hypertensive men over 24-weeks 

91. The D+EX subgroup showed the most significant reductions in weight (21kg), plasma 

noradrenaline and insulin concentrations, versus the diet-only (16.2kg) and exercise-only 

(16.6kg) subgroups. In addition, after 4 weeks, subjects in the combined D+EX group had 

reductions in HOMA-IR (Homeostasis Model Assessment – Insulin Resistance) leptin, BMI, 

total body fat mass, waist-to-hip ratio and BP, which occurred earlier than the diet or 

exercise alone groups. After 24 weeks, BMI, total body fat mass and BP levels were 

significantly lower in the combined D+EX group than in the diet or exercise alone groups, 

with marked reductions in systolic BP (20mmHg), diastolic BP (18mmHg) and total fat mass 

(15.7kg).  

Not all trials involving lifestyle interventions have been wholly successful in demonstrating 

benefits on CV outcome. The Look AHEAD trial 92 examined 5,145 type 2 diabetic patients to 

assess intentional weight loss on CV morbidity and mortality. Patients were randomly 

assigned to two groups; ‘intensive lifestyle intervention’ (ILI) which consisted of small group 

sessions, strict food prescriptions of 5021-7531kJ/day (1200-1800kcal/day) via meal 

plans/replacements, >175 minutes/week of moderate intensity physical activity and 

food/activity diary-recording; or ‘diabetes, support and education’ (DSE), as part of usual 

routine care. Patients were followed up after 13.5 years. The ILI and DSE group lost 4.7% 
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and 2.1% of their initial weight, respectively. However, no beneficial effects on all-cause 

mortality, or other CV disease outcomes were seen as a result of the intensive intervention.  

Nevertheless, the majority of studies strongly support the notion that physical inactivity may 

be as important a risk factor for cardiovascular disease as being overweight or obese. 

However, there is a shortage of prospective, interventional studies examining whether CRF 

can prevent or attenuate the adverse physiological consequences of gaining weight. 

Implications for therapy 

The mechanisms of obesity-associated hypertension in humans highlighted in this review 

hold a number of important implications for selecting the ideal non-pharmacological or 

pharmacological therapies. Weight loss and, perhaps more importantly, increased levels of 

physical activity have beneficial effects on blood pressure, and may avoid the need for drug 

therapy and associated side-effects, which could become considerable over the life-course. 

However, in humans, weight loss programmes tend to be unsuccessful in the longer-term 93 

and drug therapy is probably required in the majority of cases. Tailoring therapy towards the 

underlying pathophysiology would seem to be sensible and, in this regard, centrally-acting 

therapies targeted towards reducing SNS outflow or β-adrenoreceptor blocking drugs may 

be useful. They may also attenuate key haemodynamic abnormalities such as a high CO, 

which may be particularly beneficial in young individuals. However, there is evidence to 

suggest that β-adrenoreceptors are down-regulated in patients with neurogenic 

hypertension, presumably due to prolonged SNS activation 44. Moreover, β-adrenoreceptors 

are associated with weight gain and increased insulin resistance 94 and, therefore, may not 

be the ideal choice in the longer term. Sympathetic de-activation with catheter-based renal 

denervation is an emerging therapeutic area, although with an uncertain future 

95.Irrespective of the nature of therapeutic interventions, further studies in humans, which are 

underpinned by sound scientific rationale, are clearly required.  
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Summary 

There is still much that we do not understand in the complex, multifactorial phenomenon of 

obesity. Moreover, obesity and hypertension are becomingly increasingly prevalent, although 

the precise mechanisms underlying obesity-associated hypertension remain relatively poorly 

understood. Whilst a wealth of data from animal models exists, further well-controlled 

mechanistic studies in humans are necessary. Unfortunately, overfeeding studies in humans 

are uncommon due to the adverse psychological, physiological and aesthetic associations 

with gaining weight. Nevertheless, the studies examined in this review have demonstrated 

that weight gain and weight loss are associated with significant changes in BP and 

associated aspects of cardiovascular function, and that activation of the SNS appears to play 

a key role in these changes. In addition, the type and location of fat accumulation, the type of 

macronutrient consumed and method of weight reduction all have significant implications for 

CV and metabolic function. Indeed, visceral fat accumulation, in particular, has been 

highlighted as a predominant factor in the obesity milieu. Finally, it appears that physical 

inactivity, irrespective of body weight or BMI status is an important determinant of CV risk, 

an effect likely to be mediated via unfavourable changes in CV function leading to elevated 

BP. It is clear, however, that the physiological challenge of obesity can be ameliorated by 

weight loss be it via dietary, lifestyle or surgical methods, and gaining physical fitness.  
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Figure legends 

 

Figure 1: Blood pressure (BP) is stratified by level of peripheral vascular resistance (PVR), not 

cardiac output (CO), in overweight/obese young adults (adapted from Middlemiss et al 

2016).Therefore the ability to adapt to an elevated CO with weight gain may ultimately determine the 

level of blood pressure. 

 

Figure 2: Pathophysiological mechanisms highlighted in interventional studies in humans, by which 

weight gain may lead to high BP and a detrimental impact on cardiometabolic health. 

* Metabolic syndrome included high BP    

 SNS = Sympathetic nervous system; BP = Blood pressure 

 


