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The re-discovery of the Xagħra Brochtorff Circle 
(1987–94) and the retrieval of prehistoric burials from 
the site represents the material that is the subject of 
this volume. Here we reassess and delve deeper into 
the detail of the excavated remains of a large prehis-
toric population and other prehistoric burials known 
from Malta and Gozo. The original Xagħra fieldwork 
was intense, hot and hard, and it took place mostly 
at the height of summer, during university vacations. 
Such work was not for the faint-hearted; early morn-
ing routines and 6-day weeks, crowded communal 
conditions – these were the standard experience 
for the young team of students and professional 
archaeologists who participated. It was an exciting 
learning experience for the ‘young ones’. For two 
much older men, retired from their careers, to choose 
to participate in this frenetic and noisy environment 
was unexpected, but enormously significant and 
supportive to what was then a major and pioneering 
undertaking. These gentlemen, Dr George Mann (a 

retired ENT consultant from Addenbrookes Hospital 
in Cambridge with a Masters in biological anthropol-
ogy), and Kenneth Stoddart (just retired from a life 
of city commuting and business), brought maturity, 
wisdom, humour, compassion and humanity, as well 
as a vital breath of civilization to each annual season 
of work. We dedicated the 2009 volume to the mem-
ory of Kenneth Stoddart. This volume appropriately 
is dedicated to the memory of George Mann.

Dr George Edgar Mann (1923–2019) participated in 
the Gozo Project between 1990 and the completion 
of osteological study in 1996. Initially George, fresh 
from a post-retirement study of bioanthropology at 
Cambridge, came to assist Corinne Duhig who pre-
pared the initial rock-cut tomb report. Professionally 
he had been a specialist consultant in otolaryngology 
at Addenbrookes Hospital in Cambridge, and had 
done his retirement MPhil dissertation on bony exos-
toses in the outer meatus of the ear, caused by swim-

In memoriam George Mann

Caroline Malone

Figure 0.1. George and Sheila 
Mann at work in the kitchen of the 
dig house, systematically recording 
a skeleton 1994. 
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In memoriam George Mann

ming in cold water. The Gozo assemblage demanded 
a rapid revision of his knowledge of the post cranial 
skeleton, but soon up to speed, George then came 
every year to participate in each field season and 
post-excavation study season. He worked tirelessly 
with his wife Sheila, processing the excavated bones, 
separating out the animal bones for study by Ger-
aldine Barber, and identifying the human remains 
himself with his team. He cheerfully accepted the 

spartan and crowded living conditions where he 
spent much time at the kitchen table or on the roof 
of rented holiday flats, sorting endless sacks of bone 
fragments into coherent identified catalogues. He 
measured, studied and quantified as he went and 
ensured every fragment was recorded. Towards the 
end of the fieldwork, some osteological material 
was transported to Britain, and George continued 
to log, measure, examine and interpret the human 
material in preparation for the 2009 report. His sys-
tematic and painstaking recording work of the entire 
assemblage was of great importance, as the following 
pages reveal. Even with the ERC FRAGSUS Project 
resources, which provided funding at a level unim-
agined in the earlier excavation years, it has been 
possible only to re-examine a sample of the vast oste-
ological archive. George managed to ensure that we 
have the fundamental knowledge of the scope of the 
assemblage, and this is listed in the first report (see 
Malone et al. 2009d) and it forms the base for ongoing 
research of these remarkable ancient people and the 
Xagħra site. The record was written by hand, and the 
hundreds of sheets of record remain in the archives 
of the National Museum of Archaeology, ready for 
future studies, and whilst the original digital data-
base of those handwritten records becomes ever 
more antiquated, George’s immense work remains 
a vital archive even as technology advances. All the 
teams, past and present, are delighted to dedicate 
this volume to George’s memory and his tremendous 
contribution to Maltese and osteological scholarship.

Another key contributor to the work of the original 
Gozo Project was Ann Monsarrat, who lived on Gozo, 
and supported the project and its team with generosity 
and warmth over the many years of work and study.

Figure 0.2. George Mann at work 
on the roof-top of the dig house in 
Gozo in 1994.

Figure 0.3. Sheila Mann cleaning bones for George in 
the dig house 1994.
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Ann Monsarrat (1937–2020) made her home on Gozo, 
where she moved in 1968 with her husband Nicholas, 
the author of many novels about Malta and the sea. 
Gozo was a special place for Ann, a home with peo-
ple that she truly loved, respected and admired. Ann 
was a remarkable person. She was welcomed and felt 
at home in the small village of San Lawrenz, where 
she lived for more than four decades. Her house was 
forever busy with people dropping in and sharing 
news, experiences, aspirations, the changing fortunes 
of Malta and Gozo and, of course, the difficulties of 
writing and the literary world. But beyond these 
and many other conversations, Ann was particularly 
interested in landscape – Gozo’s in particular – where 
archaeology, history and legends carved meaning out 
of a small island full of hills, valleys, majestic cliffs 
and skylines marked by parish church cupolas rising 
above quiet village houses.

FRAGSUS owes a great deal to Ann. For, unbe-
known to her, several good friends – all archaeolo-
gists – whom she supported and entertained annu-
ally during the excavation of the Xagħra Brochtorff 
Circle between 1987 and 1994, came together again to 
deliver another important project. Ann would have 
certainly been happy and excited with the results of 
FRAGSUS. A career journalist and a distinguished 
author in her own right, with works such as And 
the Bride wore; Thackeray: An Uneasy Victorian; Gozo: 
island of oblivion, a graphic literary itinerary, Ann was 
particularly interested in the archaeology of Malta 
and Gozo. She was always keen to follow research 
developments and new discoveries, and was eager 
to see young scholars, budding archaeologists, pho-
tographers, historians, artists, writers, journalists, 
and so many others making headway in areas that 
she understood to be important in promoting Maltese 
cultural identity. Ann was in fact a formidable advo-
cate of Maltese arts, culture and cultural heritage. Her 
work on the governing board of Saint James Cavalier 

Centre for Creativity in Valletta, and her continuous 
presence in Gozitan cultural circles, as well as her 
various contributions to numerous publication pro-
jects reflected an enthusiasm and positiveness which 
was contagious and encouraging. Ann’s enthusiasm 
shone every time she visited the Xagħra Brochtorff 
Circle excavations, during our long walks along the 
ta’ Ċenċ promontory, during visits to the Cittadella, 
or when listening to the sounds rumbling from the 
depths of blocked shafts at the legendary clock-mak-
er’s salt-works on the north coast of Gozo. These 
were real places with real stories, some illustrated in 
prints, others silently waiting to be teased out from 

In memoriam Ann Monsarrat

Anthony Pace

Figure 0.4. Anne Monsarrat (with kind permission 
of her family).
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stone monuments, field terraces and beautiful natural 
spots. Perhaps these were places whose biographies 
could best be understood by visiting and experienc-
ing them in person.

One of the last places Ann and I visited together 
was the archaeological site at Ras il-Wardija on Gozo’s 
western coast. The site is not an easy one to interpret, 
but from a spot rising several metres above the sur-
rounding area, we shared an almost bird’s-eye view 

of Dwejra with the distant Azur Window below us, 
and we chatted about the meaning of the site and its 
links to the sea: seascapes, ancient mariners, people 
lost at sea, shipwrecks; and also of builders who 
constructed beautiful places and made beautiful art, 
making the Maltese Islands their home for at least 
seven thousand years. 

In these pages, the FRAGSUS team pays tribute 
to Ann Monsarrat.
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This volume is the third in the FRAGSUS Project series. 
Volume 1: Temple Landscapes (edited by Charles French, 
Chris O. Hunt, Reuben Grima, Rowan McLaughlin, 
Simon Stoddart & Caroline Malone, 2020) focuses 
on the changing landscapes of early Malta, and pro-
vides the background for the following two volumes. 
Volume 2: Temple Places (edited by Caroline Malone, 
Reuben Grima, Rowan McLaughlin, Eóin W. Parkin-
son, Simon Stoddart & Nicholas Vella, 2020), reports 
on the archaeological studies of six sites through an 
examination of their chronological sequence, material 
culture and economic role in the Neolithic world of 
Malta. These discoveries set the scene against which 
Volume 3: Temple People (edited by Simon Stoddart, 
Ronika K. Power, Jess E. Thompson, Bernardette Mer-
cieca-Spiteri, Rowan McLaughlin, Eóin W. Parkinson, 

Anthony Pace and Caroline Malone, 2022) are reas-
sessed. This volume also has an additional role since 
it follows on more directly from the 2009 publication: 
Mortuary Customs in Prehistoric Malta (edited by Car-
oline Malone, Simon Stoddart, Anthony Bonanno & 
David Trump, 2009). That volume revealed one of the 
largest prehistoric burial assemblages yet discovered in 
the Mediterranean, amounting to some 220,000 bones, 
with a rich assemblage of animal bone, figurative 
sculpture, symbolic artefacts and architectural remains. 
The new volume concentrates on the human remains, 
taking their evidence to a new level. In the light of 
better understanding of the changing environment and 
resources of a small island world, the early people of 
Malta emerge as a remarkable community telling an 
important tale of prehistoric resilience and survival. 

Preface

Caroline Malone and Simon Stoddart
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10.1. Introduction 

A key aim of the FRAGSUS Project was to improve 
understanding of the subsistence patterns and changes 
of the ancient residents of the Maltese Islands. As 
detailed in the introduction of Volume 1, food supply 
and dietary health were identified as important aspects 
of the sustainability of the prehistoric community. The 
goal has been to elucidate the relationship between 
the remarkable prehistoric cultures of the Maltese 
Islands and the landscape upon which human life 
depended, especially over two millennia of unstable 
environmental conditions. It is the notion of time 
that is particularly significant in this study, and the 
FRAGSUS Project has focused particular interest on 
dietary changes associated with the degradation of 
the island’s soils, which was a natural process, but one 
likely accelerated with the pressures of intensifying 
agricultural practices (Volume 1, Chapters 2 and 3). 
In this chapter, we present an analysis of the palaeodi-
etary inferences that can be drawn from stable isotopic 
analysis of human and animal tissue. 

10.2. Background: previous work

Richards et al. (2001) measured carbon and nitrogen 
isotopic values in collagen samples from two indi-
viduals from the rock-cut tomb at the Circle, and 
five from the cave system. They concluded that there 
was no significant input of marine protein, nor any 
detectable dietary differences between the two time 
periods, and that ‘Neolithic’-style agriculture was the 
subsistence base for the population. Lai, O’Connell 
and Tykot, reporting on their results in Stoddart et al. 
(2009a), expanded upon this initial study with carbon 
and nitrogen isotopic analyses of 24 individuals made 
in tandem with AMS radiocarbon dates, and four 

additional measurements of δ13Ccoll, δ15Ncoll, δ13Capa and 
δ18O from bioapatite, of which the latter is a climatic 
and demographic proxy (discussed in Chapter 9). 
Their results confirmed the findings of Richards et al. 
(2001), and highlighted the rather substantial dietary 
differences between individuals from the site. They 
also detected a trend of decreasing collagen carbon 
isotopic values over time, although the significance of 
this trend could not be assessed given the relatively 
small number of samples. The lack of comparative 
faunal data to provide a baseline for the human isotope 
measurements hampered the ability of these earlier 
studies to quantify the relative importance of meat in 
the diet, and to exclude fully the possibility of some 
limited amount of fish.

10.3. Food sources in prehistoric Malta

Recent excavations by the FRAGSUS Project at prehis-
toric sites in Malta have unearthed a wealth of new 
archaeobotanical and faunal data. These consisted 
of assemblages constituting the traditional Neolithic 
‘package’: wheat, barley, lentil and pea, and cattle, 
ovicaprines (sheep and goat, largely indistinguishable 
from each other) and pigs. Barley and wheat seemed 
to have been the most important food crops and ovi-
caprines were by far the most commonplace animal 
(see Volume 2, Chapter 9) and their slaughter patterns 
are consistent with a dairy economy. 

Fish bones were only encountered sporadically 
in the faunal remains from prehistoric Malta, although 
shellfish (particularly limpets) are very commonplace, 
albeit in low numbers. This suggests that they were a 
regular part of the diet, but had limited significance 
in terms of their calorific value. The lack of fish bones 
on the archaeological sites, which seems surprising 
for an archipelago such as Malta, does not exclude 

Chapter 10

An isotopic study of palaeodiet at the Circle and the 
Xemxija tombs

Rowan McLaughlin, Ronika K. Power, Bernardette Mercieca-
Spiteri, Eóin W. Parkinson, Emma Lightfoot, Alessandra Varalli, Jess 

E. Thompson, Catherine J. Kneale, Tamsin C. O’Connell, Paula J. 
Reimer, Simon Stoddart & Caroline Malone
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dental standards were treated and analysed in the 
same manner to provide a control. The samples were 
analysed using an automated gas bench interfaced 
with a Thermo Finnigan MAT253 isotope-ratio mass 
spectrometer at the University of Cambridge. Carbon 
and oxygen isotopic ratios were measured on the delta 
scale against the international standard VPDB scales. 
Analytical error for this instrument has been recorded 
as less than 0.10‰ for oxygen and 0.08‰ for carbon.

10.3.2. Bone collagen
The samples of collagen in the current study were 
extracted from the roots of human molar teeth using 
the method described by Reimer et al. (2015). All 
samples were also 14C dated using AMS (Chapter 3); 
the isotope results discussed here were obtained on 
a separate line using IRMS at the 14CHRONO centre 
at Queen’s University Belfast. Results are reported as 
delta values relative to the VPDB (carbon) and AIR 
(nitrogen) scales. IRMS machine uncertainties are 
sigδ13C=0.22, sigδ15N=0.15.

10.4. Data analysis 

The data were first analysed using standard tools in 
the R environment for statistical computing, which 
was used to calculate summary statistics for various 

the possibility that they were an important part of the 
diet. Fish could have been consumed differently from 
terrestrial animals and their bones do have different 
taphonomic properties; together, these factors could 
render them less visible in the archaeological record. 
Therefore, a key objective of the stable isotope study 
was to clarify the stable isotope results and allow for an 
independent check on whether marine protein featured 
prominently in the diets of those buried at the Circle. 

Measurements of carbon and nitrogen isotope 
ratios from animal bones, taken in tandem with the 
FRAGSUS Project’s programme of radiocarbon dating, 
provide a baseline for interpreting the results from 
human tissue (Tables 10.1 and 10.2).

10.3.1. Tooth enamel samples
Enamel surfaces were first cleaned by ablation prior to 
sampling. Approximately 6 to 10 mg of enamel were 
sampled by drilling enamel powder using a hand-held 
drill with a diamond-tipped drill bit. Sampling was 
performed in a vertical line along the crown. Enamel 
powder was pre-treated following Balasse (2002); 
samples were treated with 2–3% aqueous sodium 
hypochlorite (0.1 ml/mg) for 24 hrs at 4°C and then 
rinsed. They were then treated with 0.1M acetic acid 
(0.1 ml/mg) for four hours at room temperature, 
rinsed again and freeze-dried. Four modern horse 

Table 10.1. Comparative terrestrial faunal isotope data from the Maltese Islands.

Code δ13Ccoll δ15Ncoll C:N ratio Site Species Island Period Reference

UBA-37689 -20.8 5.8 3.20 Santa Verna Bos Gozo Skorba This study

UBA-37665 -20.6 6.7 3.24 Kordin III Ovis Malta Mġarr This study

UBA-37669 -20.5 6.9 3.23 Kordin III Ovis Malta Mġarr This study

UBA-29833 -20.6 11.1 3.23 Taċ-Ċawla Ovicaprine Gozo Ġgantija This study

UBA-37681 -20.5 8.5 3.22 Taċ-Ċawla Bos Gozo Ġgantija This study

UBA-29835 -21 6.7 3.22 Taċ-Ċawla Bos Gozo Tarxien This study

UBA-29836 -20.1 7.1 3.22 Taċ-Ċawla Sus Gozo Tarxien This study

UBA-31711 -19.5 6.8 3.23 Taċ-Ċawla Sus Gozo Tarxien This study

UBA-37683 -21.1 6.9 3.23 Taċ-Ċawla Ovis Gozo Tarxien This study

OxA-27687 -20.6 6.7 3.3 The Circle (Context 714) Ovicaprine Gozo Tarxien Malone et al. 2009d

UBA-10385 -21.7 4.23 3.1 The Circle (Context 1206) Bos Gozo Tarxien Malone et al. 2009d

Table 10.2. Comparative stable isotope measurements from ancient fish bone collagen from the Mediterranean region.

Species Site δ15Ncoll (‰) δ13Ccoll (‰) Period Reference

Sparus sp. Santa Maira (Spain) 8.6 -15.2 Mesolithic Salazar-Garcia et al. 2014

Mugil sp. Santa Maira (Spain) 8.5 -15.2 Mesolithic Salazar-Garcia et al. 2014

Sparidae (n=5) Pompei (Italy) 6.7 ± 1.1 -14.6 ± 0.6 Roman period Craig et al. 2013

Epinephelus marginatus Cova des Riuets (Formentera) 10.1 -10.5 Bronze Age Garcia-Guixé et al. 2010

Pagellus erythrinus Cova des Riuets (Formentera) 8.2 -11 Bronze age  Garcia-Guixé et al. 2010

Sphyraena sphyraena Cova des Riuets (Formentera) 9.4 -12.4 Bronze age  Garcia-Guixé et al. 2010
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an AMS date in preference to stable isotope measure-
ments. Without a direct AMS date, any stable isotope 
measurements of charred seeds would not be a reliable 
indicator of conditions in prehistoric Malta because 
we could not be sure about their chronology. This 
situation is a result of the poor stratigraphic integrity 
of seeds in the rather loose soil profiles and the large 
amount of intrusive material that results. Indeed, we 
have detected significant quantities of this material in 
the sites excavated by the FRAGSUS Project in Malta 
and Gozo (see Volume 2, Chapter 9).

For the purposes of modelling food sources, we 
considered a ‘concentration-independent’ estimate of 
dietary protein, where the quantity of protein in the 
bulk of the source food is not considered during the 
mixture modelling process. This was done using the 
Bayesian mixing model simmr 0.4.5 (Parnell 2021), 
which was used to infer the proportions of food 
sources represented by the stable isotope data. Offsets 
for the enrichment of source isotopes took the values 
of 0.8±0.5‰ for 13C and 4±1.0‰ for 15N (cf Knipper et 
al. 2020; Styring et al. 2017 Hedges & Reynard 2007). 
For the central Mediterranean, the relatively small 
number of published source values for marine foods 
inevitably limits the scope of this exercise, as the 
bones of fish and marine mammals tend to be rare 
and poorly preserved on prehistoric sites. A review 
of the available literature illustrates how variable the 
isotope values from fish were, so for the purposes 
of this preliminary assessment a figure of 8.4±2.1‰ 
δ15Ncoll and -13.5±2.1‰ δ13Ccoll was used for fish (based 
on Table 10.3), 7±1.5 δ15Ncoll and -20.6±0.6‰ δ13Ccoll for 
terrestrial herbivores (this study), and 4.5±2.5‰ δ15Ncoll 
and -23.5±2‰ δ13Ccoll for terrestrial plants (based on 
averaging results from Knipper et al. 2020 & Vaiglova 
et al. 2014). The potentially complicating factor of C4 
pathway plants does not apply in Malta in the Temple 
Period (see Volume 2, Chapter 9).

10.5. Results

The average (mean, standard deviation) results for 
each site are shown in Table 10.3. Full details of each 
sample are given in Appendix Tables A2.3 & A2.4 and 
visualized in Figure 10.1.

groupings of the data, and to project the data into their 
principal components. To study trends in palaeodiet 
with time, linear regression models were applied using 
palaeodietary isotope results and their associated radi-
ocarbon dates (Chapter 3). However, because of the 
radiocarbon history of the atmosphere, radiocarbon 
measurements have a complex probability structure 
once they have been ‘calibrated’ into calendar time 
and cannot be reduced to a reliable point estimate 
for inclusion in a linear model. To circumvent this 
natural limitation of the radiocarbon technique, we 
incorporated radiocarbon uncertainty by bootstrapping 
500 individual linear regression models, each built 
from repeated ‘Monte Carlo’ samples drawn from the 
probability density functions of each radiocarbon date. 
The IntCal13 (Reimer et al. 2013) calibration dataset 
was used to calculate these using rowcal (McLaughlin 
2019). The resulting set of 500 linear models were used 
to estimate a plausible range of correlation coefficients 
and R-squared values, using the mean and standard 
deviation of these statistics for each model. In this 
way we could assess the significance of any temporal 
trend apparent in the data. This is a new method for 
extracting information from paired radiocarbon / stable 
isotope samples developed for this project.

We also explored a Bayesian mixing model as 
a first step towards interpreting these results in the 
context of what is known about the isotopic content of 
dietary sources, and how these are routed through the 
food web. This approach depends on prior information 
about both the isotopic content of the foods people were 
eating, and how it was metabolized by their bodies. 
This exercise can only be considered preliminary, as 
data for dietary sources are still scant. We now have 
a reasonably good set of data for prehistoric Maltese 
terrestrial animals, measured as part of this study, 
although their results were rather variable. Unfortu-
nately, few direct measurements of terrestrial plants 
and marine animals have been made (although see 
below, promising studies have emerged around lipid 
residue characterization in prehistoric pottery (Debone 
Spiteri and Craig, 2011)). The lack of suitable material 
from our excavations undertaken by FRAGSUS and at 
the Circle, namely the small size and sparse quantity of 
the charred seeds, meant priority was given to securing 

Table 10.3. Summary results for each site. A full list detailing the results from each sample appears in Appendix Tables A2.3 & A2.4. *Note that not 
all isotope measurements were made for each element – see Appendix Table A2.3. Also note that at the Circle the minimum number of individuals in 
the isotope study is less than this figure. 

Site N elements* Mean δ13Ccoll (‰) S.d. Mean δ15Ncolll (‰) S.d. Mean δ13Capa (‰) S.d.

The Circle rock-cut tomb 18 -19.3 0.29 10.4 1.59 -12.5 0.88

The Circle main cave system 206 -19.3 0.36 10.7 0.98 -13.2 2.29

Xemxija 5 -19.3 0.23 10.3 0.26 -13.7 0.67
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identifi ed as UB-10375 from Context (714) could be 
read as a recent immigrant to Malta as their diet is 
atypical, or a simply a statistical outlier as their isotopic 
measurements were made during earlier work with 
less refi ned laboratory protocols. 

The off sets between the δ15Ncoll and δ13Ccoll ani-
mal mean values and the means of the three human 
groups show that the diet was consistent between the 

In Figure 10.2 the results from collagen samples 
are visualized and compared with faunal samples from 
the Maltese Islands, and other human populations in 
the wider central Mediterranean region. The results 
indicate that both the Circle and the Xemxija individ-
uals are consistently more enriched in nitrogen-15 
compared with individuals from peninsular Italy, 
or indeed from neighbouring Sicily. One individual, 

Figure 10.1. Stripcharts indicating the range and distribution of carbon and nitrogen isotopes in collagen from tooth 
dentine, and tooth enamel bioapatite carbon isotopic values at the Circle and Xemxija. The x-axis is random jitt er 
allowing the variance of the data to be visualized.

Figure 10.2. Biplot of bone collagen 
carbon and nitrogen isotopic values 
from Circle and Xemxija, plott ed with 
comparative data for the Neolithic of 
peninsular Italy and prehistoric Sicily, 
and Castiglione, an early Bronze Age site 
in southern Sicily (Varalli et al. 2014).
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rock-cut tomb and the main Tarxien phase burials, 
and also between Xagħra and Xemxija. These off sets 
(Table 10.4) are consistent with a mixed diet based on 
terrestrial animals and plant protein. The importance 
of animals in particular is suggested by the degree that 

the off sets fall with the established range of values that 
indicate a step to higher trophic levels (Minagawa and 
Wada 1984; Schoeninger & DeNiro 1984; Bocherens & 
Drucker 2003).

To investigate this in more detail, the results of 
our preliminary att empt at Bayesian mixture modelling 
of source foods are shown in Figure 10.3. The results 
clearly indicate a small but signifi cant contribution 
from marine protein, as well as the likelihood that 
animal foods were the dominant sources of protein 
in the palaeodiet at Xagħra. The same patt ern holds 
for the individuals from Xemxija and indeed for the 
earlier rock-cut tomb at Xagħra, although with less 
certainty because of the smaller sample size.

Table 10.4 Off sets between the δ15Ncoll and δ13Ccoll human and 
animal values.

Site ∆13Chuman-animal (‰) ∆15Nhuman-animal (‰)

Circle (rock-cut tomb) 1.3 3.4

Circle main cave / 
hypogeum 1.3 3.7

Xemxija 1.3 3.3

Figure 10.3. 
Modelled 
contribution of 
terrestrial plants, 
terrestrial animals 
and marine fi sh to 
the palaeodiet at the 
Tarxien phase burials 
at Xagħra calculated 
using Bayesian 
mixing model.
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The large number of samples from certain con-
texts (Table 10.5) provides an opportunity to test 
whether some parts of the site contained human 
remains with palaeodietary signatures that differed 
significantly from the average results from across the 
site. In the event, however, the readings are remarkably 

homogenous, aside from statistical noise caused by the 
smaller sample size in certain contexts (Fig. 10.4). One 
possible exception is 15N values from Context (783), 
which tend to be lower than average, which probably 
reflects a chronological pattern, as discussed below.

Time-dependent changes in nitrogen isotope 
values can be caused by palaeoenvironmental changes, 
especially soil development and aridity, so a detailed 
look at this variable is called for. Turning first to faunal 
remains, using the bootstrapping method detailed 
above (§10.4) to develop the data into a time-series, 
there is an apparent spike in the 15N enrichment around 
3300 cal. bc (Gġantija period), apparent in samples of 
both sheep/goat and, to a lesser degree, cattle from Taċ-
Ċawla. Although more samples would be required to 
confirm this pattern, it suggests that there was an epi-
sode of aridity that drove 15N enrichment of herbivore 
remains to very high levels. An alternative explanation 

Table 10.5. Number of samples of human bone from well-sampled 
contexts subjected to isotopic analysis.

Context Number (δ15Ncoll and δ13Ccoll) Number (δ13Capa)

783 16 36

951 5 41

960 6 9

1206 8 19

1241 6 5

1268 6 9

Figure 10.4. Boxplots of 
the main isotopic results by 
context (width of the boxes 
is proportional to the sample 
size).
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is manuring (Bogaard et al. 2013), although this seems 
unlikely, as we would then expect to also fi nd the sig-
nal in human remains from the period. In the event, 
however, the results the burials of this period from the 
rock-cut tomb are not signifi cantly diff erent from the 
later Tarxien-period individuals from the cave complex.

There is a slight but signifi cant trend towards 
less enrichment of nitrogen-15 during that intensive 

phase of Tarxien-period mortuary activity. Using 
a linear regression model we can estimate that the 
average δ15Ncoll value fell from around 11‰ to 10‰ 
over between 2900 and 2400 cal. bc. The regression is 
statistically signifi cant (p<0.0005) and explains between 
11% and 16% of the variability, with the confi dence 
envelope caused by the inherent uncertainties of the 
radiocarbon dating process (Figure 10.6). 

Figure 10.5. Nitrogen isotopic values of animal 
bone collagen, plott ed as a time series using multiple 
bootstraps of the radiocarbon dates to represent 
chronological uncertainty. The spike around 3300 BC
during the Gġantija period is very noticeable and 
may imply either heavily manuring or an episode of 
extreme aridity although further work will be needed 
to assess the signifi cance of this.

Figure 10.6. Multiple regression 
modelling the dependence of nitrogen 
isotope ratios on time. The results 
indicate a signifi cant linear trend of 
decreasing enrichment explaining 
approximately 13% of the variability 
in the data (R2 values).
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isotopic mixing modelling, the sea cannot be completely 
excluded as a secondary source of nourishment. This 
finding aligns with the archaeological data discussed 
in Volume 2, Chapter 9. FRAGSUS Project excavations 
at Taċ-Ċawla and Santa Verna produced a very small 
number of fish bones, but shellfish remains were ubiq-
uitous in archaeological strata across the island, and 
the bones of marine birds are also quite numerous, 
several of which were modified into simple artefacts 
(see McCormick and Hamilton-Dyer in Volume 2, 
Chapter 9). The question of whether marine foods were 
eaten regularly, in small quantities, or whether they 
provided a major base of subsistence at during times 
of the year when other resources were scarce, must be 
left for future research.

Comparing the different strands of our analysis, 
aside from two outliers, the offset between δ13Capa and 
δ13Ccol for paired measurements was seemingly random, 
normally distributed around a mean value of -6‰. Outli-
ers UBA-32038 and UBA-32039, both from Context (951) 
have significantly lower δ13Capa relative to their δ13Ccol 
values (-9‰ and -8‰ respectively), although this offset 
is not as extreme as the -10‰ measured during previous 
work for the samples BR2 and BR4 by Lai, O’Connell and 
Tykot (2009). Therefore, it seems the proxies are telling 
us different things, although no clear chronological or 
context-dependent pattern is forthcoming from either 
sets of data, the results are difficult to interpret beyond 
the exclusion of marine diet.

Compared with other regions, the nitrogen-15 
results are most intriguing. These set Malta apart from 
peninsular Italy, and even neighbouring Sicily, reflecting 
the more arid climate and poorer soil development. The 
trend detected at the Circle in nitrogen-15 could reflect 
changing dietary practices, such as a gradual decline 
of the importance of meat and milk in the diet, or envi-
ronmental factors. The latter interpretation is slightly 
at odds with geoarchaeological work undertaken by 
the FRAGSUS Project on Gozo, which suggests that a 
gradual aridification trend operated throughout the 
period considered here (Volume 1, Chapter 5). 

More research will be needed to resolve the ulti-
mate cause of this interesting pattern, and this should 
primarily focus on measurement of animal bone sam-
ples. This may prove challenging as, during the current 
phase of work, we attempted analysis of a further 22 
animal bones from the archaeological sites excavated 
by the project, but all failed because of low collagen 
preservation (see Volume 2, Chapter 2). Despite these 
uncertainties and gaps that remain in our knowledge, 
the results discussed here nonetheless reveal a dynamic 
relationship between environment, agriculture and diet 
that was no doubt central to the lived experience of the 
individuals whose remains we study.

10.6. Discussion and conclusion

It is clear that there is a palaeodietary signal that is dis-
tinct to the Maltese Islands. Within Malta, our study has 
found little difference between sites and time periods, 
aside from the subtle trend in nitrogen isotope ratios 
discussed above. One important finding is that the 
results from the Xemxija tombs are very similar to those 
from the Circle. Until this study, any generalizations 
about prehistoric human diet in the Maltese Islands 
have, to date, been made using results from the Circle 
alone. When we consider the dietary sources and their 
offsets, the highly elevated δ15N values for the Ġgantija 
period skew any potential inference. The similarity of 
the Ġgantija period individuals from the rock-cut tomb 
to the main cave system would suggest that whatever 
was causing the elevation of δ15N in animal bones at this 
time did not affect humans; perhaps because animals 
did not feature prominently in the human diet and were 
foddered on separate crops to humans. 

The human-animal offsets and the results of the 
source mixing modelling suggest that animal protein 
was more important than plant protein during the 
Temple Period in Malta. We cannot at present make 
a distinction between meat and dairy in this regard, 
other than point to zooarchaeological evidence of 
slaughter patterns consistent with a dairy economy 
(see Volume 2, Chapter 9). Future modelling work can 
avail of the additional information provided by our 
δ13Capa data, especially if a more extensive database 
for food sources can be assembled, in attempts to 
understand other components in the total diet, such 
as carbohydrate intake, which may present a more 
balanced picture of the relative importance of plants 
and animals. However, it remains that meat and/or 
dairy was of critical importance in Malta during the 
Temple Period, and this reiterates the fundamental 
relationship between people and domesticated animals 
that was key to sustaining island life. Dairy products 
have been reported from the early levels of Skorba by 
lipid analysis (Debono Spiteri et al. 2011; 2016) and an 
extension of such research combined with proteomic 
analysis would be invaluable in providing another line 
of evidence for dairy intake into the diet of prehistoric 
Malta. Could this factor have given rise to occasional 
occurrences of obesity (seen in the prehistoric art)? If 
some individuals had access to relatively high levels 
of dairy after impoverishment of diet in their early life 
course (§8.6.2.8), this could have led to the corpulence 
for which the artistic record is so famous. 

It is also clear that throughout the Temple Period, 
marine food was much less important to these island 
residents than the foods grown and raised on the 
island. However, given the results of the Bayesian 
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Temple people 
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