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The potential energy surface of a heteroparticle system will contain points that are local minima
in both coordinate space and permutation space for the different species. We introduce the term
biminima to describe these special points, and we formulate a deterministic scheme for finding them.
Our search algorithm generates a converging sequence of particle-identity swaps, each accompanied
by a number of local geometry relaxations. For selected binary atomic clusters of size N = NA +
NB ≤ 98, convergence to a biminimum on average takes 3NANB relaxations, and the number
of biminima grows with the preference for mixing. The new framework unifies continuous and
combinatorial optimization, providing a powerful tool for structure prediction and rational design
of multicomponent materials.

PACS numbers: 68.65.-k, 61.46.-w, 61.66.Dk

Introduction. A recurrent goal in computational ma-
terials science is efficient and reliable structure predic-
tion in atomic [1, 2], molecular [3], and mesoscopic sys-
tems [4]. This objective is often framed as a global opti-
misation problem [5], whose solution is the configuration
with the lowest energy. Finding the global minimum and
other low-lying structures is generally non-trivial [5–11],
and for multicomponent systems the task is exacerbated
by permutations of inequivalent constituents [12, 13].
The extra layer of complexity also endows the energy
function with various permutational properties, which we
exploit in the present work to construct a general frame-
work for global optimisation that is precise and efficient
in the combinatorial sense.

Most common strategies for global optimisation oper-
ate by sampling local minima [6–11]. The search pro-
cedure usually comprises (i) a local geometry minimisa-
tion step and (ii) a move set, with the two ingredients
iterated in tandem. The main distinction between vari-
ants of basin-hopping [6–8], “Lamarckian” genetic algo-
rithms [9, 10], and other strategies [11] is in the choice
of moves and how they are used to sample local minima.
The local minimisation step provides a many-to-one map-
ping [6] f1 : S 7→ S ′, where S represents the entire config-
uration space and S ′ ⊆ S is the set of distinct local min-
ima. Systematic use of f1 is a highly effective means of
reducing the sampling domain, and improving the search
efficiency. It also alters the occupation probability of
each minimum in a manner that can facilitate global op-
timisation for multiple-funnel energy landscapes [5, 14].

For multicomponent systems, broken permutational
symmetry will enlarge |S ′| by a combinatorial factor [12,
13]. This formidable complication can be mitigated (with
limited success [15]) by including a random particle-
identity swap in the set of escape moves [8, 10]. Another
strategy that has proven more effective is to execute a
sequence of swaps until a loose termination criterion is
fulfilled [16]. Here we exploit the latter approach by de-
riving a framework based on a precise convergence crite-

rion. In short, we propose a deterministic search for con-
figurations in S ′ that define local minima in the permu-
tation space of particle-identity swaps [17]. The method
can also be described as a mapping, f2 : S 7→ S ′′, where
S ′′ ⊆ S ′ contains the biminima. Note that identity swaps
are no longer an escape move, but a means of extending
the conventional notion of local minimisation to endow
it with a hybrid continuous-permutational meaning. We
now present a detailed description of this framework and
apply it to binary atomic clusters.

Generalities. We are concerned with a system of N =∑M
α=1Nα particles, where M is the number of distinct

species and each Nα is fixed. Each particle has a unique
index i, a label li ∈ {α}Mα=1, and coordinates xi ∈ Ω ⊂
Rd, where Ω is a bounded d-dimensional region. The
list of particle indices, I ≡ {i}Ni=1, is partitioned by the
labels: I = ∪Mα=1Iα, where Iα ≡ {i ∈ I : li = α}.

The configuration energy of the system is modelled by
a scalar function E(X,L;P) > −∞, where X ≡ {xi}Ni=1,
L ≡ {li}Ni=1, and P ≡ {pk(Lk)}Kk=1 is a set of K param-
eters whose values may depend on a subset Lk ⊆ L. As
a simple illustrative example consider a Lennard-Jones
potential:

ELJ = 4

N−1∑
i=1

N∑
j=i+1

εlilj

[(
σlilj
rij

)12

−
(
σlilj
rij

)6
]
, (1)

where rij = |xi − xj | is the Euclidean distance between
atoms i and j, and the parameters εlilj (the well depth)
and σlilj (atomic radius) can take different values for
each of the M(M − 1)/2 distinct combinations of lilj .
E(X,L;P) can change value when two distinct labels are
swapped, and a sequence of swaps could generate up to
N !/

∏
αNα! distinct configurations.

We seek configurations with the lowest value of
E(X,L;P) in a search space S = {X} that depends on
d, N and Ω. Following standard practice we focus on
the subset of local minima, S ′, where formally X′ ∈ S ′ if
(and only if) there exists δ > 0 such that E(X,L;P) ≥
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ALGORITHM 1 Converging sequence of swaps.

01 Set C ← FALSE and I′ ← I.
02 while( C is FALSE ) do:
03 if( ∃{I, J} ⊆ I′ : ∆EIJ < 0 ) then:
04 Update L by swapping the labels of I and J .
05 Quench X and update I′ ← I′\{I, J}.
06 elseif( |I′| < |I| ) then:
07 Reset I′ ← I.
08 else:
09 Reset C ← TRUE.

E(X′,L;P) for all X ∈ S with |X − X′| < δ. To help
us narrow the candidate set we introduce the swap-gain
matrix, denoted by ∆Eij(X

′,L;P), which quantifies the
change in energy due to a label swap, li ↔ lj , followed
by a local relaxation of X (i.e. a quench). Note that
swapping two labels is the “smallest” permutation that
does not alter the stoichiometry, while quenching after
the swap is necessary to ensure that we remain in S ′. It
is also worth stressing that ∆Eij can be computed for
any E(X,L;P). We now define a locally optimal label
assignment to be one that satisfies

∆Eij ≥ 0, ∀i, j ∈ I. (2)

That is, (2) requires all the elements of the symmetric
matrix ∆Eij to be non-negative. The set (S ′′) of config-
urations satisfying this criterion defines the image of the
many-to-one mapping f2 : S 7→ S ′′.

The matrix ∆Eij can be arranged into an M×M block
form, where each block contains Nα×Nβ elements for all
the αβ-type swaps. Since ∆Eij = ∆Eji and blocks with
α = β are immaterial, only M(M − 1)/2 blocks with a
total of 1

2

∑
α

∑
β 6=αNαNβ elements need be computed

when satisfying (2), and each block can be treated sepa-
rately. (For instance, one can sweep the different blocks
in a fixed sequence and iterate until all of the individual
blocks have converged, but there may be a more efficient
way.) Hence, without loss of generality, we now consider
a single αβ block with α 6= β, corresponding to the sim-
plest non-trivial case.

Methods. We implement the mapping f2 : S 7→ S ′′
by adapting standard graph partitioning techniques [18],
which in the present context aim to minimise the energy
by interchanging particle identities. A key difference is
that now each swap is accompanied by a quench. Our al-
gorithm (ALG. 1) consists of a single loop, which iterates
until the logical variable C switches from the initial value
of FALSE to TRUE. The switch will happen only when (2)
is satisfied. Note the use of an auxiliary list I ′ ⊆ I, from
which we incrementally remove the indices I and J that
have been selected for a swap. The list is fully replenished
when ∆Eij ≥ 0,∀i, j ∈ I ′. This formulation reduces the
number of candidates at each successive iteration of the
loop, improving the net efficiency and imposing a “mem-
ory” effect. In contrast to our previous study [17], we

FIG. 1. Quenched configuration energy versus quench count
for (a) fast and (b) slow biminimisation schemes as well as
(c) two variants of basin-hopping. The initial configuration is
the same in all cases. In (a) and (b), the dashed lines mark
a random permutation, while the numbers with a downward-
pointing arrow indicate the energy of each biminimum and
the quench where it is first encountered. In (c) we indicate
only the lowest energy for each dataset.

reject swaps with ∆Eij ≥ 0 to avoid climbing “uphill”.
The computational bottleneck in ALG. 1 is on the third

line, requiring either {I, J} ⊆ I ′ with ∆EIJ < 0 or a
verification that no such {I, J} exists. To fulfil this re-
quirement we construct an iterative procedure designed
to converge on a relatively low (and often the lowest)
swap gain within one αβ block. The procedure involves
evaluating rows and columns of the block in an alternat-
ing sequence (see below), until a row and column inter-
secting at a particular ∆Ei′j′ are found. If ∆Ei′j′ < 0,
we set {I, J} = {i′, j′} and terminated the procedure.
Otherwise, the αβ block is reduced to hitherto unevalu-
ated rows/columns, and a new sequence is initiated on
this smaller sub-block. Failure to locate ∆Eij < 0 before
all the rows/columns are depleted will mean that (2) is
satisfied for the entire αβ block.

To describe the alternating sequence, we shall denote
it by (ik)kck=1, where ik ∈ Iα ∪ Iβ and kc < ∞ is defined
below. We first choose i1 by the lowest flip gain [17],
then increment k in steps of one and select ik to min-
imise ∆Eikik−1

. The sequence alternates between α- and
β-type particles by construction, and it is expected to
eventually attain a period of two. That is, ik = ik−2 for
all k > kc > 2, where kc marks the start of the periodic
behaviour. The periodicity is expected when ∆Eikik−1

is
the lowest in column/row ik and row/column ik−1 of the
αβ (sub-)block. The lowest swap gain in the (sub-)block
will always satisfy this criterion, but there may be others
that also qualify.

Results. For our case study we consider binary



3

FIG. 2. Mean first-encounter times, measured in number of
quenches, from a hundred independent searches for BLJ55

icosahedra with particle-size mismatches of 5% (left) and 10%
(right) and all stoichiometries. All three search methods were
targeting the same energy for each NA.

Lennard-Jones clusters (BLJN ) of size N = NA+NB and
E(X,L;P) defined by (1). To keep the number of param-
eters small and retain a rich variety of structures [19], we
set εAA = εAB = εBB and fix σAB by the Lorentz rule:
σAB = (σAA + σBB)/2. Taking σAA as a unit of length
leaves just three parameters: N , NA and σBB/σAA.

As a first test case we choose N = 55, NA = 28 and
σBB/σAA = 1.1, which correspond to sizes, compositions
and particle size mismatches commonly encountered in
nanoalloys [1, 13]. To generate a starting configuration
we first prearrange X into the ground-state geometry
for LJ55 (closed-shell icosahedron). We then randomly
choose L (while respecting the stoichiometry) and quench
X. The prepared structure is then evolved using the de-
terministic scheme for 104 quenches, using another ran-
dom choice of L and a quench to escape from a converged
biminimum. The configuration energy during this evolu-
tion is shown in Fig. 1a, exhibiting a gradual downward
trend after each escape and spikes at shorter intervals
due to unfavourable swaps. To show the effects of (i)
I ′ in ALG. 1 and (ii) our iterative approach to scanning
the matrix ∆Eij , we also use a simpler scheme where all
of the non-zero matrix elements are evaluated on every
swap, which guarantees that the best possible swap is ex-
ecuted each time. The result is plotted in Fig. 1b, show-
ing a slower convergence to the first biminimum com-
pared to Fig. 1a.

In Fig. 1c we provide results for conventional [6] and
self-guided [17] basin-hopping (BH) algorithms with ran-
dom exchange moves. For conventional BH the temper-
ature was adjusted every fifty quenches to maintain a
mean acceptance ratio of 0.5, yielding an average temper-
ature of 0.2. For the self-guided variant (BH∗) the tem-
perature was kept fixed at 0.2. The lowest energy from
104 quenches is indicated for both variants, with neither
of them beating any of the biminima in Fig. 1a. Hence,
repeated biminimisation is more effective at finding the
lowest-lying permutational isomers within a particular

FIG. 3. Counts of distinct biminima from independent
runs for BLJ55 with closed-shell icosahedral geometry and:
σBB/σAA = 1.05 in (a) and 1.10 in (b)-(d); εBB/εAA = 1.0
in (a)-(b) and 0.5 in (c)-(d); εAB/εAA = 1.0 in (a)-(b), 1.2 in
(c) and 0.7 in (d).

geometric motif (i.e. homotops [12]), and the mean first-
encounter times (MFETs) plotted in Fig. 2 further con-
firm this conclusion. Even without statistically reliable
MFETs > 106, it is clear that repeated biminimisation
can outperform both variants of BH by orders of magni-
tude when min(NA, NB) >∼ 5.

In Fig. 2 we compare MFETs for BLJ55 closed-shell
icosahedra with 5% and 10% size mismatch. For 10%
mismatch biminimisation exhibits a striking increase in
MFET at NA = 33, which we link to a narrow catchment
basin in permutation space. We can estimate (by count-
ing) that the probability of convergence to the lowest-
lying biminimum is ∼ 0.005, while for the second-lowest
it is ∼ 0.5. In contrast, for NA = 32 the occupation
probability of the lowest-lying biminimum is ∼ 0.5, and
for the second-lowest it is ∼ 0.03. This simple analysis
hints at the role of the underlying sublandscape topogra-
phy in permutation space, which can be characterised by
analogy with energy landscapes in coordinate space [5].

Note that E(X,L;P) comprises a family of subland-
scapes, with each member defined by a projection of
E(X,L;P) onto the subspace spanned by permutations
of L at fixed X. Our policy of quenching X after every
permutation transforms the projection each time, giving
rise to an effective sublandscape that may not necessar-
ily be singe valued. That is, the same L may be mapped
to different values of E(X,L;P) during a sequence of
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FIG. 4. Mean number of quenches required for convergence
to a biminimum.

quench-assisted permutations, which can lead to inter-
esting behaviour. The sublandscape will be single valued
if the quench-induced change in X is reversible for all per-
mutations, in which case the number of distinct isomers
will be bounded above by the appropriate combinatorial
factor, i.e. N !/NA!NB !. Our extensive numerical exper-
iments suggest that BLJ55 closed-shell icosahedra with
σBB/σAA ≤ 1.1 have a single-valued effective subland-
scape for all NA, and we counted biminima for a few
representative cases in this tractable regime.

The results are presented in Fig. 3, showing that many
randomly-generated initial homotops are mapped onto a
significantly smaller number of distinct biminima. Re-
call that the mapping itself also scans many homotops
(e.g. for NA = 28, Fig. 3a accounts for about 3.5×103 dis-
tinct initial isomers, whereas the total number of unique
isomers encountered during the search is around 4×105).
Note that, although N !/(NA!NB !) peaks at NA = 27 and
28, the number of biminima peaks at a higher value of
NA. This asymmetry is due to smaller (A-type) atoms
concentrating in the core of the cluster, reflecting the
importance of the free surface.

From Figs. 3a-b we infer that increasing size mismatch
raises the number of biminima, but the number remains
relatively small. It rises more when the mismatch is in-
creased to 15% (not shown), but then the closed-shell
icosahedral motif is not always preserved, and so the
counts are not directly comparable. The number of bi-
minima can be tuned by also adjusting the energy-well
parameters in (1). For instance, consider the system with
10% size mismatch and εBB/εAA = 0.5, in which case the
larger species are also less cohesive. We can then set the
value of εAB/εAA to either 0.7, to encourage segregation,
or 1.2 to encourage mixing. These choices show that the
number of biminima increases with the mixing preference
(see Figs. 3c-d).

To assess our particular method of locating biminima,
we now consider the average number of quenches (NQ)

FIG. 5. Biminima for BLJ55 with NA = 28 and σBB/σAA =
1.05 (a), 1.1 (b) and 1.2 (c). A-type atoms are brown (darker)
and B-type are cyan (lighter).

it takes to converge for a wide range of BLJN clusters.
Fig. 4 shows that NQ grows linearly with NANB in all
cases, and from our earlier considerations we expect the
same trend to hold with respect to 1

2

∑M
α=1

∑
β 6=αNαNβ

for a general M -component system. The slope of the
overall trend is 3 ± 1, and there is little variance with
N , geometry or BLJ parameters. We also observe that,
when particle-size mismatch is high (σBB/σAA >∼ 1.15),
quench-assisted swaps often lead to significant geomet-
ric distortion (see Fig. 5c), but this behaviour does not
seem to cause any striking departure from the trend in
Fig. 4. Randomly perturbing the coordinates (as well
as permuting the labels) to escape from biminima also
had no significant effect on the convergence, indicat-
ing that the trend may be independent of the sampling
approach, which can include the use of elaborate geo-
metric moves [8, 16], the Metropolis accept/reject cri-
terion [6, 7], or heuristics based on principles of evolu-
tion [9, 10].

Finally, we illustrate how sampling biminima can fa-
cilitate structure prediction. Recall from Fig. 1 that the
energy spacing between low-lying homotops may be very
small, but the corresponding differences in structure can
be significant, with potentially important consequences.
For instance, visual inspection of all the biminima in
Fig. 1a reveals that B-type atoms populate the outer
shell in a very specific manner (see Fig. 5b), always oc-
cupying all of the twelve vertices and completely filling
six/seven facets. This striking pattern is not fully devel-
oped in the two lowest configurations marked in Fig. 1c,
where at least one of the vertices is occupied by an A-
type atom. For a nanoalloy with catalytic sites at the
vertices, failure to find the lowest-energy mixing pattern
could lead to an incorrect conclusion about the availabil-
ity of desirable sites. For the same system but with half
the size mismatch (now 5%) we find just one biminimum,
with the surface mixing pattern reversed: type-A atoms
occupy all of the vertex sites and fill just one triangular
facet (see Fig. 5a). In addition, despite the obvious dif-
ferences in the surface mixing patterns, the structures in
Figs. 5a-b happen to have the same point-group symme-
try (T).

Summary. We define biminima on the potential en-
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ergy surface of a multicomponent system, and we provide
a rigorous procedure for locating these special points.
We show that sampling the biminima using a random
walk can be effective in optimising the structure of bi-
nary atomic clusters. This approach is expected to be
equally efficient for general multicomponent materials,
modelled using any level of theory.
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