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SUMMARY

Human in vitro generated monocyte-derived
dendritic cells (moDCs) and macrophages are
used clinically, e.g., to induce immunity against
cancer. However, their physiological counterparts,
ontogeny, transcriptional regulation, and heteroge-
neity remains largely unknown, hampering their clin-
ical use. High-dimensional techniques were used to
elucidate transcriptional, phenotypic, and functional
differences between human in vivo and in vitro gener-
ated mononuclear phagocytes to facilitate their full
potential in the clinic. We demonstrate that mono-
cytes differentiated by macrophage colony-stimu-
lating factor (M-CSF) or granulocyte macrophage
colony-stimulating factor (GM-CSF) resembled
in vivo inflammatory macrophages, while moDCs
resembled in vivo inflammatory DCs. Moreover,
differentiated monocytes presented with profound
transcriptomic, phenotypic, and functional differ-
ences. Monocytes integrated GM-CSF and IL-4 stim-
ulation combinatorically and temporally, resulting in
a mode- and time-dependent differentiation relying
Immunity 47, 1051–1066, Decem
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on NCOR2. Finally, moDCs are phenotypically het-
erogeneous and therefore necessitate the use
of high-dimensional phenotyping to open new possi-
bilities for better clinical tailoring of these cellular
therapies.

INTRODUCTION

Recently, transcriptomic, epigenetic, functional, and fate-map-

ping studies established the identity of three mononuclear cell

lineages within the myeloid cell network: macrophages (Macs),

dendritic cells (DCs), and monocytes (MOs) (Schlitzer et al.,

2015a). During murine embryogenesis, progenitors colonize

developing tissues differentiating into tissue-resident Macs,

which are long lived and self-maintained in most tissues (Gin-

houx andGuilliams, 2016). DCs can be separated into plasmacy-

toid DCs, conventional DC 1 (cDC1s), and cDC2s (Merad et al.,

2013). cDC1s and cDC2s arise from specialized precursors

within the bone marrow forming their functional specialization

during development (Grajales-Reyes et al., 2015; Schlitzer

et al., 2015b; See et al., 2017).

The third component of the mononuclear phagocyte (MP)

network are MOs. In mice, MOs are divided into Ly6clo and

Ly6chi MOs (Varol et al., 2015), while in human blood, three
ber 19, 2017 ª 2018 The Authors. Published by Elsevier Inc. 1051
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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different monocyte subsets are identified by expression of CD14

and CD16, in which CD14+CD16� MOs correspond to murine

Ly6chi MOs and CD14�CD16+ MOs to murine Ly6clo MOs (Auf-

fray et al., 2009). Yet little is known whether this classification

relates to functional specialization of distinct subsets.

Prior work suggests functional overlap between DCs, MOs,

and Macs, including basic mechanisms of phagocytosis (Fraser

et al., 2009), anti-bacterial activity (Fehlings et al., 2012), antigen

uptake, processing, and presentation (Cella et al., 1997), the

capacity to activate adaptive immune cells (Toujas et al.,

1997), cellular motility (Rossi et al., 2011), and activation pro-

grams (Frucht et al., 2000). This overlap has proven difficult to

parse, but new knowledge concerning the distinct ontogeny of

these cells provided the opportunity to reassess the division of

labor between DCs, MOs, and tissue Macs.

Currently, assigning functions to subsets of the MP system

requires use of simplified in vitro systems to focus on basic

molecular aspects. Murine granulocyte macrophage colony-

stimulating factor (GM-CSF)- or macrophage colony-stimulating

factor (M-CSF)-driven bone marrow-derived DCs and Mac cul-

tures are frequently used to elucidate and assign molecular

mechanisms of functions to subsets of MPs. However, these

in vitro cultures create heterogeneous cultures, making attribu-

tion of distinct cellular functions difficult (Helft et al., 2015). This

conundrum highlights the need for a detailed investigation of

cellular identity and the regulation thereof in such in vitro cultures

(Xue et al., 2014).

Sallusto and Lanzavecchia (1994) described the in vitro gener-

ation of humanMO-derived DCs (moDCs) by culturing peripheral

blood MOs with GM-CSF and IL-4. Here, the term moDCs has

been attributed to an activatedMO population with DC-like func-

tion based onmorphological and functional criteria. Similar func-

tionally converging phenotypes are observed in human in vitro

systems of MO-derived M-CSF-driven Macs (moMacs) (Aka-

gawa et al., 2006) or GM-CSF (Xue et al., 2014). Systems

biology-based definitions of MP function and nomenclature

have been established, yielding insights about identity, regula-

tion, and developmental origin of those cells (Xue et al., 2014).

However, studies directly addressing their relationships to MPs

observed in vivo remain limited (Ohradanova-Repic et al.,

2016). Understanding such relationships and linking this knowl-

edge to cellular ontogeny is crucial considering the interest in
Figure 1. Relationship of In Vitro Activated Monocyte-Derived Cells

(A and B) PCA (21,250 present probes); displayed principal components (PCs): (

(C) Heatmap of 1,000 most variable genes in dataset. Log2-expression values, z

(D) Heatmap, Pearson correlation values (PCV) calculated pairwise between all c

(E) PCA (23,952 present probes).

(F) Relative fractions of MO, BDCA1+ DC, infM, and infDC gene signatures in CD

(G and H) Heatmaps of genes specifically expressed in (G) infDCs compared

MO-derived cells, CD14+ MOs, and DCs (dataset 2), or in (H) infMs compared to

M-CSF versus MOs-GM-CSFIL-4(0-72h), CD14+ MOs, and DCs (dataset 2). PCVs b

heatmaps (correlation cutoff > 0.4). Genes analyzed in (J) and (K) highlighted in r

(I) Histograms (flow cytometry analysis), relative expression CD226, MARCO, VS

(J) Analysis of cell culture supernatants ofMOs-M-CSF,MOs-GM-CSF, andMOs-

each, mean + SEM, one-way RM [repeated-measures] ANOVA, Tukey’s method

not detected).

(K)MMP12 quantification (relative) in CD14+MOs,MOs-M-CSF,MOs-GM-CSF, a

and Tukey’s method for multiple test correction, with *p < 0.05).

Please also see Figure S1.
using in vitro generated MPs for immunotherapy (Brower,

2005; Garg et al., 2017). Therefore, the functional convergence,

plasticity, and heterogeneity of MO-derived MPs paired with the

clinical interest raises several important questions. What are the

in vivo counterparts of in vitroMO derivatives? DoMOs integrate

cytokine signaling in a temporal fashion and how is it regulated

molecularly? Lastly, how heterogeneous are human in vitro

MO cultures?

Computational analysis of MP transcriptomes and analysis of

cellular phenotype, function, and perturbation experiments

elucidated the relationship of human moDCs and moMacs to

the in vivo MP system. The differentiation of MO in vitro culture

systems is multifaceted, integrating time-dependent signals

delivered by GM-CSF and IL-4 and orchestrated by nuclear

receptor corepressor 2 (NCOR2). Finally, mass cytometry (MC)

revealed cellular heterogeneity of moDCs with several subsets

being identified. These results uncover the in vivo counterparts

of MO derivatives and identify a novel regulator of MO differenti-

ation and plasticity.

RESULTS

In Vitro Differentiated Human MO-Derived MPs Are
Transcriptionally Similar to MO-Derived
Inflammatory MPs
Human MOs differentiated with M-CSF are used as models for

humanMacs (Akagawa et al., 2006), whereasMOs differentiated

with GM-CSF and IL-4 are models for human DCs (Sallusto and

Lanzavecchia, 1994). For clarity and in light of recent findings

concerning DC, MO, and Mac ontogeny (Guilliams and van de

Laar, 2015), we term differentiated MOs according to their

activation, e.g., MOs activated with M-CSF are named MOs-

M-CSF and MOs differentiated for a specified duration

(0–72 hr; 0–144 hr) with GM-CSF and IL-4 are MOs-GM-CSFIL-4.

To establish transcriptional similarity between ex vivo isolated

cells and differentiated MOs, we compared blood CD14+ MOs,

CD1c+ DCs, CD141+ DCs (Haniffa et al., 2012), and T, B, and

NK cells alongside CD45+lin�HLA-DRhi lung derived cells,

to MOs-M-CSF, MOs-GM-CSF, MOs-GM-CSFIL-4(0-72h), and

MOs-GM-CSFIL-4(0-144h) (Figure S1A).

Principle component analysis (PCA) revealed that T, B, and NK

cells formed one of three clusters (Figures 1A and 1B, green), all
A) 1 versus 2 and (B) 1 versus 3.

-transformed, scaled (�2 [blue] to 2 [red]).

ell types (top 1,000 most variable genes).

14+ MOs, different MO-derived cells, DCs.

to infMs, BDCA1+ DCs, MOs (dataset 1), and MOs-GM-CSFIL-4(0-72h) versus

infDCs, BDCA1+ DCs, and MOs (dataset 1), and in MOs-GM-CSF and MOs-

etween indicated group patterns of dataset 1 versus dataset 2, barplot next to

ed. Log2-expression values, z-transformed, scaled (�2 [blue] to 2 [red]).

IG4, and CCR7 (representative data, n = 4).

GM-CSFIL-4(0-72h) for CCL22 andCCL2 using ELISA (n = 3, 2 technical replicates

for multiple test correction, with *p < 0.05, **p < 0.01, and ***p < 0.001; n.d.,

ndMOs-GM-CSFIL-4(0-72h) by immunoblot (n = 3,mean + SEM, one-way ANOVA
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ex vivo isolated MPs formed a second cluster (red and yellow),

and both these clusters were most distinct from a third cluster

containing ex vivo polarized MO-derived MPs (blue, purple,

cyan, lilac). This three-cluster structure was validated by hierar-

chical clustering (HC) of the 1,000 most variable genes (Fig-

ure 1C; Table S1) and Pearson correlation coefficient matrix

(PCCM) analysis (Figure 1D), showing that in vitro differentiated

MOs are transcriptionally unique compared to ex vivo human

peripheral blood cells.

To analyzeMP subsets, T, B, and NK cells were excluded from

the previous dataset and remaining cell types were analyzed by

PCA (Figures 1E, S1B, and S1C). In vitro generated cells clus-

tered separately compared to in vivo MPs, with lung-derived

CD45+lin�HLA-DRhi and CD14+ MOs forming a separate cluster

away from a DC cluster and a cluster for MOs-M-CSF, MOs-

GM-CSF, MOs-GM-CSFIL-4(0-144h), and MOs-GM-CSFIL-4(0-72h).

Additionally, in vitro MO-derived MPs shared a common set of

differentially expressed genes (DEGs) in comparison to ex vivo

CD14+ MOs (Figures S1D and S1E; Table S1), supporting tran-

scriptional difference to homeostatic cells. These findings raised

the question of which cells found in vivo represent the MOmodel

systems.

We assessed whether the in vitro MO-derived MPs reflected

humanMO-derived inflammatory DCs (infDCs) and inflammatory

Mac (infMs) in vivo utilizing a published dataset (Segura et al.,

2013). We generated a signature matrix representing infDCs,

infMs, BDCA1+ (CD1c) DCs, CD14+CD16� MOs, and

CD14dimCD16+ MOs and assessed the relative signature enrich-

ment in our dataset using linear support vector regression (Fig-

ure 1F; Table S1; Newman et al., 2015). MOs-M-CSF showed

highest enrichment of infM genes, while infDC genes were highly

enriched in MOs-GM-CSFIL-4, suggesting that in vitro polariza-

tion conditions reflected in vivo infDCs and infMs as shown for

the mouse (Helft et al., 2015). Control gene sets derived from

CD14+CD16� MOs were most highly enriched in ex vivo CD14+

MOs and lung-derived CD45+lin�HLA-DRhi cells, while the

BDCA1+ DC signature enriched in both ex vivo myeloid DC

subsets. Gene set enrichment analyses (GSEA) confirmed tran-

scriptional similarities between infMs and MOs-M-CSF but also

MOs-GM-CSF and between infDCs and MOs-GM-CSFIL-4

(Figure S1F). Collectively, we defined four groups in both data-

sets, describing comparable cell subsets (see STAR Methods).
Figure 2. MOs-GM-CSFIL-4 Are Most Distinct from MOs-M-CSF and M

(A) Schema describing the questions addressed here and in Figure S2.

(B) PCA (18,318 present probes).

(C) Heatmap of 1,000 most variable genes in dataset. Log2-expression values, z

(D) Heatmap of specifically expressed genes in a single out of the three MO-

Log2-expression values, z-transformed, scaled (�1.5 [blue] to 1.5 [red]).

(E) Co-expression networks (union of 2,086DEG [fold-change > 2 or <�2 and FDR

CD14+MOs. Fold-change of respective cell type versus overall meanmapped ont

fold-change). Based on fold-change patterns, networks were divided into four c

(F) Co-expression network (411 TRs expressed in dataset). For each cell type, fold

type-specific clusters of upregulated regulators were generated, indicated by co

unique master regulators of corresponding cell type. Prediction performed on all g

cell type-specific cluster in (E).

(G) t-SNE display of CD14+ MOs, MOs-M-CSF, MOs-GM-CSF, and MOs-GM-C

(H) Heatmap and HC of mean surface marker expression analyzed usingMC. Norm

depicts cluster assignment according to culture condition. Color code as in (G).

Please also see Figure S2.
Then, we performed PCCM by comparing expression patterns

in both datasets based on the four groups and visualized genes

with highest correlation scores between infDCs and MOs-GM-

CSFIL-4(0-72h/144h) (Figure 1G; Table S1) and between infMs and

both MOs-M-CSF and MOs-GM-CSF (Figure 1H; Table S1),

which included several surface markers and secreted molecules

(Figures S1G–S1J; Table S1). Many genes associated with acti-

vated DCs (CCL22,MMP12,CD226,CCR7) were highly elevated

in both infDCs and MOs-GM-CSFIL-4 (Figure 1G), while typical

Mac genes (MARCO,CCL2, VSIG4) were most highly expressed

in infMs, MOs-M-CSF, and MOs-GM-CSF (Figure 1H). Further-

more, differential regulation of the proteins CD226, MARCO,

VSIG4, CCR7, CCL2, CCL22, and MMP12 was validated (Fig-

ures 1I–1K). Collectively, polarization of MOs in vivo (infDCs,

infMs) (Segura et al., 2013) and in vitro leads to similar transcrip-

tomic identities, including cell surface and effector molecules,

allowing us to use these models to understand the role of

M-CSF, GM-CSF, and IL-4 for inflammation-associated MO

differentiation.

GM-CSF + IL-4 but Not GM-CSF or M-CSF Alone Enforce
a Unique Transcriptional Signature in Human
CD14+ MOs
Next, we wanted to understand the similarities and differences in

MO activation induced by M-CSF, GM-CSF, and IL-4. Previous

work suggested important differences between MOs-M-CSF

and MOs-GM-CSF (Lacey et al., 2012). However, these studies

did not answer the overall relationship between all three

activation conditions (Figure 2A). Using the well-established

surface markers CD14, CD11b, and CD209, we assessed the

differences between MOs-M-CSF, MOs-GM-CSF, and MOs-

GM-CSFIL-4(0-72h) (Figure S2A). This revealed that CD14 marked

MOs, MOs-M-CSF, and MOs-GM-CSF, but not MOs-GM-

CSFIL-4(0-72h) (Sallusto and Lanzavecchia, 1994). CD209 was

exclusively expressed by MOs-GM-CSFIL-4(0-72h). CD11b did

not discriminate between the cell populations. However, when

reassessing the overall relationship between ex vivo isolated

CD14+ MOs, MOs-M-CSF, MOs-GM-CSF, and MOs-GM-

CSFIL-4(0-72h) on transcriptome level (Figure S2B), MOs-M-CSF

and MOs-GM-CSF clustered together, while MOs and

MOs-GM-CSFIL-4(0-72h) clustered separately as demonstrated

by PCA (Figure 2B), PCCM (Figure S2C), and HC (Figure 2C;
Os-GM-CSF

-transformed, scaled (�2 [blue] to 2 [red]).

derived cells versus CD14+ MOs and the other two MO-derived cell types.

-adjusted p value < 0.05]) between each of threeMO-derived cells types versus

o networks and displayed blue (negative fold-change) over white to red (positive

lusters, each cluster representing one of four cell types.

-change of respective cell type versus overall meanmapped onto network. Cell

lor-coded shadings behind network. TRs highlighted in red were predicted as

enes highlighted in red (fold-change > 1.5 over overall mean) in corresponding

SFIL-4(0-144h) analyzed by MC (n = 3).

alized intensity values, z-transformed, scaled (�6 [blue] to 6 [red]). Color code
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Table S2). MOs-M-CSF andMOs-GM-CSF weremarked by high

expression of Mac genes (CD81, VSIG4, SIGLEC1, MARCO,

FPR3) while MOs and MOs-GM-CSFIL-4(0-72h) cell populations

formed separated gene clusters marked by expression of MO-

associated (AHR, SELL, CLEC4D) or DC-associated (CD1C,

ZBTB46) genes, respectively. Gene-level analysis of the present

surfaceome (see STARMethods) of ex vivo isolated CD14+MOs,

MOs-M-CSF, MOs-GM-CSF, and MOs-GM-CSFIL-4(0-72h) re-

vealed only a small number of DEGs for MOs-M-CSF and

MOs-GM-CSF but a markedly different expression profile of sur-

facemarkers related toMOs-GM-CSFIL-4(0-72h) (Figure 2D). Addi-

tionally, profiling the expression of pattern recognition receptors

(PRRs) on these cell populations revealed clear differences

(Figure S2D). MOs-M-CSF, MOs-GM-CSF, and MOs-GM-

CSFIL-4(0-72h) decreased expression of components of the in-

flammasome signaling complex (CASP1, NLRP1, 2, and 3) but

increased expression of the intracellular PRR NOD1. NOD2

expression was maintained only by MOs-GM-CSF. MOs-GM-

CSFIL-4 (0-72h) displayed a unique set of PRRs (high CD209 and

CLEC10A, loss of Toll-like receptor [TLR] 7 and 5). To determine

transcriptional differences, we performed co-expression

network analysis based on the union of DEGs between MOs

and the three differentiation conditions and mapped differential

gene expression onto the network (Figure 2E; Table S2). Within

the network topology, a central large MO-related gene cluster

was surrounded by separate clusters for each of the three differ-

entiation conditions, indicating that despite an overall close rela-

tionship, MOs-M-CSF and MOs-GM-CSF are characterized by

signal-specific subclusters of regulated genes (Figure 2E). Iden-

tification of DEGs between MOs and MOs-M-CSF and MOs-

GM-CSF further supported a close overall relationship, but

also indicated differently regulated genes in only one or the other

condition (Figures S2E and S2F; Table S2). Gene ontology

enrichment analysis (GOEA) revealed that enriched terms in

MOs-GM-CSF are associated with immune response and regu-

lation of protein metabolism, whereas most GO terms enriched

in MOs-M-CSF relate to metabolism and G-protein-coupled re-

ceptor signaling (Figure S2G; Table S2).

To identify the transcriptional regulators (TRs) involved in MO

differentiation, we predicted upstream transcription factors for

each of the four condition-specific clusters identified in Figure 2E

and generated a co-expression network of TRs expressed in the

dataset to identify specific clusters of upregulated TRs for

CD14+ MOs (yellow), MOs-M-CSF (turquoise), MOs-GM-CSF

(light blue), and MOs-GM-CSFIL-4(0-72h) (dark blue) (Figure 2F;

Table S2). Finally, wemapped the predictedmaster transcription

factors onto the co-expression network and identified NFIL3,

ATF4, and ETS2 among others to be putative regulators of

CD14+ MOs. TCF12, MEF2C, and ARID3A were predicted to

specifically regulate MOs-M-CSF, whereas ESR1, MTF1, and
Figure 3. Prediction of Differentiated MO Functionality

(A and B) Flow cytometry analysis of MOs-M-CSF, MOs-GM-CSF, and MOs-GM

representative result [n = 3], bar plot [n = 3], mean + SEM, one-way RM ANOVA, w

and Tukey’s method for multiple test correction, with ***p < 0.001).

(C) Migration tracks (3 hr) of MOs-M-CSF, MOs-GM-CSF, and MOs-GM-CSFIL-4

(D and E) OCR (D) and ECAR (E) of MOs-M-CSF, MOs-GM-CSF, and MOs-GM-

(F) Heatmap of mean secreted cytokine concentrations (n = 4). Expression value

Please also see Figure S3.
SREBF1 were anticipated to regulate MOs-GM-CSF identity.

RELB, implicated as important for mouse DC differentiation

(Wu et al., 1998), was predicted as a central regulator of the tran-

scriptional identity of MOs-GM-CSFIL-4(0-72h), highlighting the

uniqueness of the transcriptional identity induced by GM-CSF

and IL-4.

Since traditional surface markers (CD14, CD11b, CD209) are

not informative to discriminate in vitro polarized MO subsets,

we designed a comprehensive MC panel incorporating markers

defined by our transcriptomic approach and compared ex vivo

isolated blood CD14+ MOs to in vitro M-CSF-, GM-CSF-, and

GM-CSF + IL-4-polarized CD14+ MOs. Dimensionality reduction

using t-distributed neighbor embedding (t-SNE) (Maaten and

Hinton, 2008) of the CD45+lin�HLA-DR+ cell fraction comparing

CD14+ MOs, MOs-M-CSF, MOs-GM-CSF, and MOs-GM-

CSFIL-4(0-144h) revealed donor-independent separation into four

cellular clusters (Figures 2G, 2H, and S2H; Table S7). Overlaying

their differentiation history on the t-SNE topology shows that the

identified clusters corresponded to the four differentiation cues

used, validating their transcriptomic differences (Figure 2B).

Widely used markers for the delineation of MOs, Macs, and

DCs, such as CD11b, CD68, CD11c, and HLA-DR were ex-

pressed uniformly across all four clusters, showing that only a

high-dimensional phenotyping approach enables robust detec-

tion of polarized subsets across all four differentiation conditions

(Figure 2H). CD14+ MOs showed a high expression of CLA and

CD64, whereas MOs-GM-CSF displayed a high expression of

MARCO. VSIG4 was expressed by MOs-GM-CSF and MOs-

M-CSF, whereas MOs-M-CSF expressed high amounts of

CD163, CD169, and MERTK. The MOs-GM-CSFIL-4(0-144h) clus-

ter specifically expressed SEPP1, FcεR1, CD1c, and CD48.

Taken together, MC enabled us to identify transcriptionally vali-

dated markers, facilitating separation of different transcriptomic

entities on the protein level.

In Vitro Differentiated MO Subsets Are Functionally and
Metabolically Different
To understand how the transcriptomic and phenotypic differ-

ences between the Mo-derived cells influence their ability to

phagocytize and to secrete cytokines in response to PRR stimu-

lation, their motility, and their metabolic profile, we first

measured receptor-mediated uptake of GFP-labeled yeast or

YG beads. MOs-M-CSF, MOs-GM-CSF, and MOs-GM-

CSFIL-4(0-72h) phagocytosed GFP+ yeast buds after 1 hr of incu-

bation, similarly indicating no differential induction of receptors

and signaling pathways involved in yeast uptake (Figures 3A

and S3A). MOs-M-CSF displayed an up to 12 times enhanced

uptake of YG beads in comparison to MOs-GM-CSFIL-4(0-72h)

(Figures 3B and S3B), strongly suggesting that M-CSF but not

GM-CSF drives phagocytic capacity in MOs. When assessing
-CSFIL-4(0-72h) after incubation with (A) GFP-expressing yeast (1 hr, histogram:

ith p > 0.05) or (B) YG beads (4 hr, n = 5–6, mean + SEM, one-way RM ANOVA

(0-72h) (representative result, n = 3).

CSFIL-4(0-72h).

s, z-transformed, scaled (–3 [blue] to 3 [red], raw data, Table S3).
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cell motility (Figures 3C, S3C, and S3D), MOs-M-CSF,MOs-GM-

CSF, and MOs-GM-CSFIL-4(0-72h) showed very little, intermedi-

ate, and high motility, respectively, as assessed by distance

and velocity analysis suggesting that migratory capacity was

linked to GM-CSF and further potentiated by IL-4 signaling (Fig-

ures 3C, S3C, and S3D). Metabolically, MOs-M-CSF and MOs-

GM-CSF showed a similar rate of oxidative phosphorylation

(OXPHOS), extracellular acidification (ECAR), ATP production,

and glycolytic capacity (Figures 3D, 3E, and S3E–S3I). MOs-

GM-CSFIL-4(0-72h) displayed an increase of OXPHOS, ATP pro-

duction, and glycolytic capacity alongside an elevated maximal

respiration capacity, indicative of increased energetic fitness

paired with higher metabolic flexibility induced by IL-4-specific

signaling (Figures 3D, 3E, and S3E–S3I).

Linking these phagocytosis, migratory, and metabolic data

back to their transcriptomes, we identified key genes involved

in the regulation of these processes. RAB10 (Cardoso et al.,

2010), MSR1 (Bonilla et al., 2013), and DAB2 (Tumbarello

et al., 2013) were implicated as crucial regulators of phagocy-

tosis in immune cells. These genes alongside other regulators

of phagocytosis (RAPH1, RILPL2, TNS1, SCARB2) were mark-

edly upregulated in MOs-M-CSF (Figure S3J; Table S3). Essen-

tial migration and cell motility molecules (Lymphotoxin b [LTB]

[Yu et al., 2002], CCL13 [Stellato et al., 1997], CCL22 [Godiska

et al., 1997], ASAP1 [Curtis et al., 2015]) were upregulated in

MOs-GM-CSFIL-4(0-72h) (Figure S3K; Table S3). Genes regulating

glycolysis (PFKL, PFKP) were highly upregulated in MOs-GM-

CSFIL-4(0-72h) corresponding to the higher glycolytic capacity

shown before (Figure S3L; Table S3). Furthermore, UQCRC1,

SDHA, ATP5D, COX10, and ATP5I, genes of the respiratory

chain and IDH3G, a molecule involved in the TCA cycle were

highly upregulated in MOs-GM-CSFIL-4(0-72h), further linking the

transcriptomic and functional level.

Finally, we stimulated Mo-derived cells with LPS, LPS + inter-

feron-g (IFN-g), CL097, or Flagellin and measured cytokine

release in response to PRR ligation (Figure 3F; Table S3).

IL-10, IL-1B, and MCP1 were secreted only by MOs-M-CSF

upon activation with either of the four stimuli, demonstrating their

similarities to in vivo infMs. Conversely, IL-12p70 was secreted

only by MOs-GM-CSFIL-4(0-72h) upon LPS, LPS + IFN-g, and

CL097 stimulation, indicating a functional overlap with DCs

regarding the induction of T helper 1 (Th1) cell responses.

IL-23, amajor inflammatory driver essential for Th17 T cell induc-

tion was produced only by cells differentiated by GM-CSF. Both

MOs-GM-CSF and MOs-GM-CSFIL-4(0-72h) produced IL-23

following LPS + IFN-g and CL097 stimulation, respectively.

This is in line with their similarity to infDCs (Segura et al., 2013).

IL-4 Regulates Transcriptomic and Functional
Polarization of moDCs and MO-Derived ‘‘M2-like’’ Macs
Presuming that IL-4 induced a functional and phenotypic

convergence of MOs and DCs, we next asked whether MOs-

GM-CSFIL-4(0-144h) were distinct from what was previously

described as M2 Macs, better described as MO-derived Macs

further activated by IL-4, termed here MOs-GM-CSFIL-4(72-144h).

To reduce variables to a minimum, we generated MOs-GM-

CSFIL-4(72-144h) with GM-CSF, so that the only differences to

MOs-GM-CSFIL-4(0-144h) cells were the onset and duration of

IL-4 exposure. As controls, MOs polarized for only 3 days with
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either GM-CSF (MOs-GM-CSFIL-4(0h)) or GM-CSF+IL-4 (MOs-

GM-CSFIL-4(0-72h)) were included (Figure 4A). PCA determined

that MOs-GM-CSFIL-4(72-144h) were surprisingly distinct from

MOs-GM-CSFIL-4(0-72h), (0-144h) (Figures 4B, S4A, and S4B). Co-

expression network analysis (Figure 4C), HC using the most

variable genes (Figure 4D; Table S4), and PCCM analysis

(Figure S4C) supported these results. Surprisingly, CD23

(Figure S4D)—a marker formerly associated with MOs-GM-

CSFIL-4(72-144h) (Mantovani et al., 2002)—and CD209 (Fig-

ure S4E)—which has been linked to MOs with DC functionality

(Geijtenbeek et al., 2000)—were expressed similarly between

MOs-GM-CSFIL-4(72-144h) and MOs-GM-CSFIL-4(0-72h), (0-144h).

No difference in the expression of MMP-12 (Figures S4F

and S4G) nor in the release of CCL22 (Figure S4H) were de-

tected. In contrast, MOs-GM-CSFIL-4(0-144h) took up more yeast

within 60 min of exposure time (Figure 4E) but phagocytosed

similar amounts of YG bead (Figure S4I) when compared to

MOs-GM-CSFIL-4(72-144h). MOs-GM-CSFIL-4 (0-144h) were more

motile than MOs-GM-CSFIL-4(72-144h) (Figure 4F), with signifi-

cantly higher accumulated distance (Figure S4J) and velocity

(Figure S4K). Investigation of metabolic parameters of MOs-

GM-CSFIL-4(0-144h) and MOs-GM-CSFIL-4(72-144h) revealed no

differences in their rate of OXPHOS, ATP production, and glycol-

ysis (data not shown). Collectively, this strongly suggest that the

IL-4 signal integrates in a time-dependent manner representing a

critical checkpoint for MO differentiation.

Timing of IL-4 Stimulation Determines Transcriptional
Regulation MOs-GM-CSFIL-4

Differences between MOs-GM-CSFIL-4(0-144h) and MOs-GM-

CSFIL-4(72-144h) could be explained either by a dichotomous

model with MOs differentiating into MOs with DC or Mac func-

tionality, or a continuum model that integrates time of exposure

suggesting plasticity ofMO-derived cells. To determine the best-

fitting model, we performed a time kinetics experiment, by add-

ing IL-4 at the start of the culture (Mo-GM-CSFIL-4(0-144h)) or at 12

(MOs-GM-CSFIL-4(12-144h)), 24 (MOs-GM-CSFIL-4(24-144h)), 48

(MOs-GM-CSFIL-4(48-144h)), or 72 (MOs-GM-CSFIL-4(72-144h)) hr

after initiation of differentiation with GM-CSF (Figure 5A). Tran-

scriptomes were assessed after 144 hr and MOs-GM-CSFIL-4(0h)

and MOs-GM-CSFIL-4(0-72h) were used as controls. Assessing

CD14 (Figures 5B and S5A) and CD209 (Figures 5C and S5B)

expression, we observed a dichotomous distribution for cells

differentiated with IL-4 being CD14loCD209hi while cells differen-

tiated only by GM-CSF were CD14+CD209�/lo. In contrast, tran-

scriptomic analysis revealed a different model (Figure S5C). PCA

(Figure 5D), HC (Figure 5E; Table S5), and self-organizing map

(SOM) clustering (Figure 5E) revealed a gradual ordering of sam-

ples corresponding to the exposure time to IL-4 indicating a dif-

ferentiation continuum. Mapping gene expression information

for each time point onto a co-expression network (Figure 5F;

Table S5) revealed a dense network with two major clusters,

one characterized by genes elevated in MOs-GM-CSFIL-4(0)

(0 hr, red: upregulated; blue: downregulated), the other one

defined by IL-4 exposure (Figure 5G). Adjacent time points

showed partially overlapping gene sets suggesting a plastic

continuum integrating IL-4 signaling over time, arguing against

the dichotomous model of polarization. Collectively, these

data suggest that IL-4 signaling differentiates MOs along a



Figure 4. MOs-GM-CSFIL-4(0-144h) Differ from MOs-GM-CSFIL-4(72-144h) MO-Derived Cells

(A) Schema describing questions addressed herein and in Figure S4.

(B) PCA (18,857 present probes).

(C) Co-expression network (13,691 present genes) describing relationships between CD14+ MOs and four types of MO-derived cells.

(D) Heatmap of 1,000 most variable genes in dataset. Log2-expression values, z-transformed, scaled (�2 [blue] to 2 [red]). Highly expressed genes grouped

together (black boxes) according to cell type. Corresponding group-related cell types highlighted, left side of heatmap. Important genes of each cluster depicted,

right side of heatmap.

(E) Flow cytometry analysis of MOs-GM-CSFIL-4(72-144h) and MOs-GM-CSFIL-4(0-144h) after incubation with GFP-expressing yeast (1 hr, n = 4–6, mean + SEM,

Student’s t test with *p < 0.05).

(F) Migration tracks (3 hr) of MOs-GM-CSFIL-4(72-144h) and MOs-GM-CSFIL-4(0-144h) (representative result, n = 3).

Please also see Figure S4.
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Figure 5. Timing of IL-4 Determines Transcriptional Regulation in Differentiated MOs

(A) Schema describing the IL-4 time kinetic experiment.

(B and C) Histograms, relative expression of CD14 and CD209 analyzed by flow cytometry.

(D) PCA (12,794 present genes).

(E) Heatmap of 1,000 most variable genes across dataset. Log2-expression values, z-transformed, scaled (�2 [blue] to 2 [red]). Below, SOM-clustering

(12,794 present genes across cell types).

(F) Co-expression networks (union of 2,775 DEGs, fold-change > 1.5 or <�1.5 and FDR-corrected p value < 0.05) betweenMOs-GM-CSFIL-4 andMOs-GM-CSF.

Foreachcell type, fold-changeof respective cell type versus overallmeanmappedontonetworks, displayed inblue (fold-change%1.5) or red (fold-changeR1.5).

(G) Example of genes located in condition-related clusters depicted in (F) and in first column (fold-changeR 1.5). First column: condition-specific genes; following

columns: genes shared between clusters of two consecutive time points.

Please also see Figure S5.
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transcriptomic continuum with MOs-GM-CSFIL-4(0h) and MOs-

GM-CSFIL-4(72-144h) being at the extreme ends.

NCOR2 Is a Transcriptional Regulator of MOs-
GM-CSFIL-4

To understand how IL-4 enforces the unique transcriptional pro-

gram in MOs-GM-CSFIL-4(0-72h), a co-expression TR network

was generated first using TRs differentially expressed between

MOs, MOs-GM-CSF, and MOs-GM-CSF differentiated with

different durations of IL-4 (Figures 6A, 6B, and S6A). TRs were

then filtered according to differential expression in MOs-GM-

CSFIL-4(0-72h) and ranked based on absolute expression (Figures

6A and 6B, red: upregulated, blue: downregulated; Table S6).

We identified seven eligible TRs with NCOR2 showing the high-

est expression (Figure 6C). We confirmed NCOR2 expression in

MOs-GM-CSF andMOs-GM-CSFIL-4(0-72h) (n = 2) using real-time

PCR showing that MOs-GM-CSFIL-4(0-72h) expressed signifi-

cantly more NCOR2 and CD209 mRNA (Figures S6B and S6C).

Analysis of NCOR2 protein expression by immunoblot analysis

(Figures 6D and 6E) or confocal microscopy (Figures 6F and

6G) revealed a significant enrichment of NCOR2 in the nucleus

of MOs-GM-CSFIL-4(0-144h) but not in MOs-GM-CSF. Using

nanostraw technology (Figure S6D), we introduced anti-

NCOR2 siRNAs for the last 24 hr of the MOs-GM-CSFIL-4(0-72h)

differentiation. After silencing, mean NCOR2 mRNA expression

in MOs-GM-CSFIL-4(0-72h) was reduced to 65% relative to the

control (Figures S6E and S6F), reflecting effective downregula-

tion of NCOR2 transcription considering its long half-life of

more than 24 hr (Raghavan et al., 2002). siRNA silencing of

NCOR2 in MOs-GM-CSFIL-4(0-72h) also reduced CD209 mRNA

(Figures S6E and S6F) and protein (Figure S6G). To understand

the impact of NCOR2 on IL-4-mediated transcriptional

regulation in MOs-GM-CSFIL-4(0-72h), we performed a global

transcriptome analysis of anti-NCOR2 siRNA-treated MOs-

GM-CSFIL-4(0-72h) versus scrambled siRNA-treated MOs-GM-

CSFIL-4(0-72h) (Figures S6H and S6I). NCOR2 silencing resulted

in 1,834 variable genes (Figure S6J; Table S6). Classification of

NCOR2-regulated genes, based on a literature-derived IL-4

signature (GEO: GSE13762, GSE35304, GSE32164; 457

induced, 498 repressed genes) revealed that the large majority

of genes regulated by NCOR2 are IL-4 signature genes (Figures

6H and S6J; Table S6). Additionally, GSEA was performed sepa-

rately for up- and downregulated genes within the IL-4 signature
Figure 6. NCOR2 Is a Transcriptional Regulator of MOs-GM-CSFIL-4(0-7

(A and B) Co-expression networks (267 TRs) for (A) MOs-GM-CSF, (B) MOs-GM-C

CSFIL-4(0-72h)-specific cluster of elevated regulators (dark blue).

(C) TR Heatmap, specifically upregulated in MOs-GM-CSFIL-4(0-72h), MOs-GM

z-transformed, scaled (�1.15 [blue] to 1.15 [red]).

(D) Immunoblot of NCOR2, Lamin A/C, and b-tubulin in cytoplasm and nucleus o

(E) Quantification of relative enrichment of NCOR2 in nuclear fractions isolated fro

(F) Representative confocal microscopy images of medial nuclear region (MNR) of

red: tubulin).

(G) Quantification of mean fluorescence intensity of NCOR2 in MNR identified b

NCOR2; blue: DAPI; red: tubulin, *p < 0.05, mean ± SEM).

(H) Scatterplot (1,834 variable genes in dataset) containing cells treated with aN

lighted genes determined (see Figure S6F) induced (red) or repressed (blue) by I

(I and J) GSEA of genes upregulated (I), downregulated (J) in IL-4 signature in MOs

empirical phenotype-based permutation test [p < 0.05, FDR < 0.25], 1,000 samp

Please also see Figure S6.
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to identify signature enrichments in the transcriptomes of MOs-

GM-CSFIL-4(0-72h) treated with scrambled siRNAs or with anti-

NCOR2 siRNAs (Figures 6I and 6J). We found a statistically

significant enrichment of genes upregulated in the IL-4 signature

in MOs-GM-CSFIL-4(0-72h) treated with scrambled siRNAs (Fig-

ure 6I) whereas genes downregulated in the IL-4 signature

were enriched in MOs-GM-CSFIL-4(0-72h) treated with anti-

NCOR2 siRNAs (Figure 6J), establishing NCOR2 as a key regu-

lator for IL-4-induced MO differentiation.

MC Identifies Heterogeneity in Surface Molecules
Expressed by MOs-GM-CSFIL-4(0-144h)

Within the MC-defined populations (MOs-M-CSF, MOs-GM-

CSF, and MOs-GM-CSFIL-4(0-144h)) (Figure 2G), we recognized

a sub-cluster structure indicating further heterogeneity within

each in vitro subset (Figures 7A and 7B). MOs-M-CSF revealed

four subpopulations (clusters 2, 5, 10, 11) characterized by co-

expression of tissue Mac markers MERTK, CD64, CD169, and

CD163 and by variable expression of L-selectin (CD62L, low in

cluster 2, 11) and CD26 (low in cluster 2), indicating different

migration and maturation profiles (Figure 7B). MOs-GM-CSF

were defined by two subclusters (clusters 7 and 8). Both clusters

expressed CD14, CD64, CD68, and CD206, but not Mac

markers such as MERTK, CD169, and CD163, further corrobo-

rating their difference from MOs-M-CSF. Cluster 7 additionally

expressed the molecules FcεR1 and CD1a, supporting an acti-

vated status of this subpopulation. MOs-GM-CSFIL-4(0-144h)

showed a similar heterogeneity as MOs-M-CSF, but with more

pronounced phenotypic differences (cluster 1, 3, 4, 9). Therefore,

we isolated the MOs-GM-CSFIL-4(0-144h) dataset and analyzed it

using Rphenograph (Figures 7C–7E). This analysis revealed 11

phenotypically different clusters within MOs-GM-CSFIL-4(0-144h)

(Figures 7C and 7D). All 11 subpopulations expressed the

moDC markers CD1c, CD226, CD48, and CD11c. The biggest

differences across all different subpopulations were seen in the

expression of activation and antigen presentation-associated

molecules, such as CD1a, HLA-DR, FcεR1, CD62L, and CD86.

Marker expression differed between the clusters 6, 1, 10, 11

showing high expression of CD1a and CD62L, whereas only

cluster 5 and 2 expressed high amounts of the co-stimulatory

molecule CD86. Expression of CD11b, a marker used to

analyze the purity of moDCs in the clinic, varied across the

examined moDC population, exemplifying the urgent need for
2/144h)

SFIL-4(0-72h), fold-change versus CD14+MOsmapped onto network. MOs-GM-

-CSFIL-4(0-144h) versus CD14+ MOs, MOs-GM-CSF. Log2-expression values,

f MOs-GM-CSF and MOs-GM-CSFIL-4(0-144h) (representative result, n = 4).

m MOs-GM-CSF and MOs-GM-CSFIL-4(0-144h) (n = 4, *p < 0.05, mean ± SEM).

MOs-GM-CSF andMOs-GM-CSFIL-4(0-144h) (n = 3, green: NCOR2; blue: DAPI;

y confocal microscopy of GM-CSF and MOs-GM-CSFIL-4(0-144h) (n = 3, green:

COR2 (y axis), scrambled siRNA (x axis, log2-mean expression values). High-

L-4.

-GM-CSFIL-4(0-72h) treated with scrambled or aNCOR2 siRNA (nominal p value,

les permutations).



Figure 7. Mass Cytometry Analysis Iden-

tifies Unappreciated Phenotypic Hetero-

geneity in Clinically Relevant Mo-GM-

CSFIL-4(0-144h) Cultures

(A) Phenograph of CD14+ MOs, MOs-M-CSF,

MOs-GM-CSF, and MOs-GM-CSFIL-4(0-144h)

based on MC expression data (n = 3, 36 myeloid-

related surface markers). Affiliation of cells to

the 11 identified clusters indicated by color coding

and visualized in t-SNE plot.

(B) Heatmap and HC of mean surface marker

expression of 11 individual clusters. Right side:

Differentiating conditions according to (A) and

Figure 2G.

(C) Phenograph of MOs-GM-CSFIL4(0-144h) and

visualized in t-SNE plot (representative donor;

3,500 cells).

(D) Heatmap and HC of mean surface marker

expression of 11 individual clusters.

(E) Expression feature plot of the depicted surface

markers in MOs-GM-CSFIL-4(0-144h).
a higher-dimensional phenotyping to improve purity and thera-

peutic outcome when using these differentiated MOs therapeu-

tically (Figure 7E).

DISCUSSION

Human CD14+ MOs differentiated by either M-CSF, GM-CSF, or

GM-CSF + IL-4 (formerly moDCs [Sallusto and Lanzavecchia,

1994]) have been extensively studied as in vitro models for

Macs, ‘‘M2-like’’ Macs, or DCs (Akagawa et al., 2006; Sallusto

and Lanzavecchia, 1994). In the past, in vitro generated

Mac and DC models were justified by morphological, phenotyp-

ical, and functional similarities to cells identified in vivo. Recently,

it became clear that Macs, MOs, and DCs present with very
Immunity
different transcriptomes in vivo, reflecting

different ontogeny (Guilliams et al., 2014).

Therefore, reassessment of the relation-

ships between M-CSF-, GM-CSF-, and

GM-CSF + IL-4-differentiated MOs and

their alleged in vivo counterparts on a

transcriptomic, phenotypic, and func-

tional level is imperative.

Using data of ascites-associated infMs

and infDCs (Segura et al., 2013) revealed

that MOs-M-CSF aligned closely to infMs

on the transcriptional level. This was

phenotypically supported by low expres-

sion of CD1a and FcεR1 while MOs-GM-

CSFIL-4 aligned closely to infDCs with

high expression of CD1a, CD206, and

FcεR1. Taken together, the currently

available in vitro models best resemble

inflammatory rather than homeostatic

DC and Mac populations, therefore,

serving best as reductionist models to

study the role of these cells in inflamma-

tion. For the future, we encourage re-

searchers to identify culture conditions
for MO-derived cells that resemble homeostatic DC or Mac phe-

notypes guided by transcriptomic analysis, as shown for in vitro

cultures of microglia (Butovsky et al., 2014), and pursue the iden-

tification of dedicated progenitors of DCs in the human blood

and bone marrow (Breton et al., 2015).

Transcriptome analysis defined the cellular relationships

between these model systems on a much more precise level

and revealed a close association of MOs differentiated by

M-CSF and GM-CSF, while IL-4 was the major driver for

moDC identity. In addition, we found that MOs integrate the

GM-CSF and IL-4 signals over time, which necessitates a reas-

sessment of our dichotomous definition of MOs differentiating

toward a Mac or DC-like phenotype. The varying time of onset

and the variance in overall exposure to IL-4 resulted in gradually
47, 1051–1066, December 19, 2017 1063



changed transcriptional and functional identities of MO-derived

cells. The heterogeneity defined by MCs added an additional

layer of individual cell reactivity. These observations challenge

a dichotomous differentiation model of MOs toward Macs or

DCs induced by a single cytokine, and instead support a dy-

namic model in which cell identity is a function of the duration

of signal input. These findings might also help to better under-

stand IL-4-mediated MO-derived cell expansion during Th2

cell-driven inflammatory conditions, such as parasitic infections

and tissue repair (R€uckerl and Allen, 2014).

We identified NCOR2 as a key transcriptional hub linked to

IL-4-dependent differentiation of MOs. NCOR2 plays an impor-

tant role during development and homeostatic processes in

muscle, adipose, and liver tissues (Mottis et al., 2013). NCOR2

has been shown to be important for cell fate, differentiation,

and lineage progression in the nervous system (Jepsen et al.,

2007). Elevated NCOR2 expression was observed in tissues

with high OXPHOS activity, similar to our observations of

elevated expression of NCOR2 in MOs-GM-CSFIL-4 (Reilly

et al., 2010). Additionally, signaling by nuclear receptors, such

as peroxisome proliferator-activated receptor-g (PPAR-g) or

liver X receptor, NCOR2 was linked to the repression of NF-kB

target genes in response to LPS stimulation of Macs (Pascual

et al., 2005). It has been speculated that IL-4 activation of human

MOs leads to endogenous PPAR-g ligand production (Czim-

merer et al., 2012), but further work is necessary to establish a

link to NCOR2-mediated gene repression.

Unexpectedly, we identified significant heterogeneity within

MO cultures, which was revealed only by a set of surface

markers as applied by MCs. In particular, within MOs-GM-

CSFIL-4 we identified subsets that either expressed HLA-DR

and CD86 or CD1a and FcεR1, the former representing a sub-

population with elevated antigen presenting capacity. While

induction of FcεR1 on CD1a+ DCs derived from CD34+ stem

cells has been reported (Allam et al., 2004), this has not

been studied during MO to MO-GM-CSFIL-4 differentiation.

Considering findings that CD1a+ and CD1a� MOs-GM-CSFIL-4

differ in their capacity to direct Th cell differentiation (Cernadas

et al., 2009), monitoring of these cultures in a clinical setting

might be beneficial for optimizing efficiency of cellular vac-

cines. Furthermore, in studies using bulk MOs instead of

CD14+ MOs, the problem of heterogeneity might even be

more pronounced and should be addressed when analyzing

in vitro MO cultures. Consequently, high-dimensional charac-

terization should be used to optimize culture conditions,

generate more homogeneous cell populations, and thereby

open avenues for optimizing cellular products derived from

human MOs for vaccination strategies.
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Helft, J., Böttcher, J., Chakravarty, P., Zelenay, S., Huotari, J., Schraml, B.U.,

Goubau, D., and Reis e Sousa, C. (2015). GM-CSF mouse bone marrow

cultures comprise a heterogeneous population of CD11c(+)MHCII(+) macro-

phages and dendritic cells. Immunity 42, 1197–1211.

Jepsen, K., Solum, D., Zhou, T., McEvilly, R.J., Kim, H.-J., Glass, C.K.,

Hermanson, O., and Rosenfeld, M.G. (2007). SMRT-mediated repression of

an H3K27 demethylase in progression from neural stem cell to neuron.

Nature 450, 415–419.

Lacey, D.C., Achuthan, A., Fleetwood, A.J., Dinh, H., Roiniotis, J., Scholz,

G.M., Chang, M.W., Beckman, S.K., Cook, A.D., and Hamilton, J.A. (2012).

Defining GM-CSF- and macrophage-CSF-dependent macrophage responses

by in vitro models. J. Immunol. 188, 5752–5765.

Maaten, L.V.D., and Hinton, G. (2008). Visualizing Data using t-SNE. J. Mach.

Learn. Res. 9, 2579–2605.

Mantovani, A., Sozzani, S., Locati, M., Allavena, P., and Sica, A. (2002).

Macrophage polarization: tumor-associated macrophages as a paradigm for

polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555.
Immunity 47, 1051–1066, December 19, 2017 1065

http://refhub.elsevier.com/S1074-7613(17)30525-3/sref1
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref1
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref1
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref1
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref2
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref2
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref2
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref2
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref3
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref3
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref3
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref4
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref4
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref4
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref5
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref5
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref5
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref5
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref6
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref6
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref7
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref7
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref7
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref7
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref8
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref8
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref8
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref9
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref9
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref9
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref9
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref10
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref10
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref10
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref11
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref11
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref11
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref11
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref12
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref12
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref12
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref12
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref13
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref13
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref13
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref13
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref14
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref14
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref14
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref14
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref14
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref15
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref15
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref15
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref15
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref16
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref16
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref16
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref16
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref16
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref17
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref17
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref17
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref18
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref18
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref18
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref19
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref19
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref19
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref19
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref20
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref20
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref21
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref21
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref21
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref21
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref22
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref22
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref22
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref22
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref23
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref23
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref23
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref24
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref24
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref24
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref24
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref25
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref25
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref25
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref25
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref26
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref26
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref26
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref26
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref27
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref27
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref27
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref27
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref28
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref28
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref28
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref28
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref29
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref29
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref30
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref30
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref30


Merad, M., Sathe, P., Helft, J., Miller, J., and Mortha, A. (2013). The dendritic

cell lineage: ontogeny and function of dendritic cells and their subsets in the

steady state and the inflamed setting. Annu. Rev. Immunol. 31, 563–604.

Mottis, A., Mouchiroud, L., and Auwerx, J. (2013). Emerging roles of the core-

pressors NCoR1 and SMRT in homeostasis. Genes Dev. 27, 819–835.

Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., Hoang,

C.D., Diehn, M., and Alizadeh, A.A. (2015). Robust enumeration of cell subsets

from tissue expression profiles. Nat. Methods 12, 453–457.

Ohradanova-Repic, A., Machacek, C., Fischer, M.B., and Stockinger, H.

(2016). Differentiation of human monocytes and derived subsets of macro-

phages and dendritic cells by the HLDA10 monoclonal antibody panel. Clin.

Transl. Immunology 5, e55.

Pascual, G., Fong, A.L., Ogawa, S., Gamliel, A., Li, A.C., Perissi, V., Rose,

D.W., Willson, T.M., Rosenfeld, M.G., and Glass, C.K. (2005). A

SUMOylation-dependent pathway mediates transrepression of inflammatory

response genes by PPAR-gamma. Nature 437, 759–763.

Raghavan, A., Ogilvie, R.L., Reilly, C., Abelson, M.L., Raghavan, S.,

Vasdewani, J., Krathwohl, M., and Bohjanen, P.R. (2002). Genome-wide anal-

ysis of mRNA decay in resting and activated primary human T lymphocytes.

Nucleic Acids Res. 30, 5529–5538.

Reilly, S.M., Bhargava, P., Liu, S., Gangl, M.R., Gorgun, C., Nofsinger, R.R.,

Evans, R.M., Qi, L., Hu, F.B., and Lee, C.-H. (2010). Nuclear receptor core-

pressor SMRT regulates mitochondrial oxidative metabolism and mediates

aging-related metabolic deterioration. Cell Metab. 12, 643–653.

Rossi, R., Lichtner, M., De Rosa, A., Sauzullo, I., Mengoni, F., Massetti, A.P.,

Mastroianni, C.M., and Vullo, V. (2011). In vitro effect of anti-human immuno-

deficiency virus CCR5 antagonist maraviroc on chemotactic activity of mono-

cytes, macrophages and dendritic cells. Clin. Exp. Immunol. 166, 184–190.

R€uckerl, D., and Allen, J.E. (2014). Macrophage proliferation, provenance, and

plasticity in macroparasite infection. Immunol. Rev. 262, 113–133.

Sallusto, F., and Lanzavecchia, A. (1994). Efficient presentation of soluble

antigen by cultured human dendritic cells is maintained by granulocyte/macro-

phage colony-stimulating factor plus interleukin 4 and downregulated by

tumor necrosis factor alpha. J. Exp. Med. 179, 1109–1118.

Schlitzer, A., McGovern, N., and Ginhoux, F. (2015a). Dendritic cells and

monocyte-derived cells: Two complementary and integrated functional sys-

tems. Semin. Cell Dev. Biol. 41, 9–22.
1066 Immunity 47, 1051–1066, December 19, 2017
Schlitzer, A., Sivakamasundari, V., Chen, J., Sumatoh, H.R.B., Schreuder, J.,

Lum, J., Malleret, B., Zhang, S., Larbi, A., Zolezzi, F., et al. (2015b).

Identification of cDC1- and cDC2-committed DC progenitors reveals early

lineage priming at the common DC progenitor stage in the bone marrow.

Nat. Immunol. 16, 718–728.

See, P., Dutertre, C.-A., Chen, J., G€unther, P., McGovern, N., Irac, S.E.,

Gunawan, M., Beyer, M., H€andler, K., Duan, K., et al. (2017). Mapping the

human DC lineage through the integration of high-dimensional techniques.

Science 356, 356.

Segura, E., Touzot, M., Bohineust, A., Cappuccio, A., Chiocchia, G., Hosmalin,

A., Dalod, M., Soumelis, V., and Amigorena, S. (2013). Human inflammatory

dendritic cells induce Th17 cell differentiation. Immunity 38, 336–348.

Stellato, C., Collins, P., Ponath, P.D., Soler, D., Newman, W., La Rosa, G., Li,

H., White, J., Schwiebert, L.M., Bickel, C., et al. (1997). Production of the novel

C-C chemokineMCP-4 by airway cells and comparison of its biological activity

to other C-C chemokines. J. Clin. Invest. 99, 926–936.

Toujas, L., Delcros, J.G., Diez, E., Gervois, N., Semana, G., Corradin, G., and

Jotereau, F. (1997). Human monocyte-derived macrophages and dendritic

cells are comparably effective in vitro in presenting HLA class I-restricted

exogenous peptides. Immunology 91, 635–642.

Tumbarello, D.A., Kendrick-Jones, J., and Buss, F. (2013). Myosin VI and its

cargo adaptors - linking endocytosis and autophagy. J. Cell Sci. 126,

2561–2570.

Varol, C., Mildner, A., and Jung, S. (2015). Macrophages: development and

tissue specialization. Annu. Rev. Immunol. 33, 643–675.

Wu, L., D’Amico, A., Winkel, K.D., Suter, M., Lo, D., and Shortman, K. (1998).

RelB is essential for the development of myeloid-related CD8alpha- dendritic

cells but not of lymphoid-related CD8alpha+ dendritic cells. Immunity 9,

839–847.

Xue, J., Schmidt, S.V., Sander, J., Draffehn, A., Krebs, W., Quester, I., De

Nardo, D., Gohel, T.D., Emde, M., Schmidleithner, L., et al. (2014).

Transcriptome-based network analysis reveals a spectrum model of human

macrophage activation. Immunity 40, 274–288.

Yu, P., Wang, Y., Chin, R.K., Martinez-Pomares, L., Gordon, S., Kosco-Vibois,

M.H., Cyster, J., and Fu, Y.X. (2002). B cells control themigration of a subset of

dendritic cells into B cell follicles via CXC chemokine ligand 13 in a lympho-

toxin-dependent fashion. J. Immunol. 168, 5117–5123.

http://refhub.elsevier.com/S1074-7613(17)30525-3/sref31
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref31
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref31
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref32
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref32
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref33
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref33
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref33
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref34
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref34
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref34
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref34
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref35
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref35
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref35
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref35
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref36
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref36
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref36
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref36
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref37
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref37
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref37
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref37
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref38
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref38
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref38
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref38
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref39
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref39
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref39
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref40
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref40
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref40
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref40
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref41
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref41
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref41
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref42
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref42
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref42
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref42
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref42
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref43
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref43
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref43
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref43
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref43
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref43
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref44
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref44
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref44
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref45
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref45
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref45
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref45
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref46
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref46
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref46
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref46
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref47
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref47
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref47
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref48
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref48
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref49
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref49
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref49
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref49
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref50
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref50
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref50
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref50
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref51
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref51
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref51
http://refhub.elsevier.com/S1074-7613(17)30525-3/sref51


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

APC/Cy7 anti-human CD19 BioLegend Cat# 302218, RRID:AB_314248

Alexa Fluor 647 anti-human CD56 BD Biosciences Cat# 557711, RRID:AB_396820

APC anti-human CD11b BioLegend Cat# 301410, RRID:AB_2280647

APC/Cy7 anti-human CD23 BioLegend Cat# 338520, RRID:AB_10708699

PerCP anti-human HLA-DR BD Biosciences Cat# 347402

Pacific Blue anti-human CD14 antibody BioLegend Cat# 301828, RRID:AB_2275670

Anti-Human Vsig4 R and D Systems Cat# AF4646, RRID:AB_2257239

Anti-Human MARCO R and D Systems Cat# AF7586

Anti-human MMP-12 R and D Systems Cat# AF914

FITC anti-human CD209 BD Biosciences Cat# 551264, RRID:AB_394122

FITC anti-human CD226 BD Biosciences Cat# 559788, RRID:AB_397329

PE anti-human CCR7 R and D Systems Cat# FAB197P, RRID:AB_2244252

Anti-human NCOR2 Abcam Cat# ab24551

Anti-human Lamin A/C Active Motif Cat# 39287

Anti-human beta-Tubulin Cell Signaling Cat# 15115

Anti-human Tubulin Chemicon Cat# MAB1864, RRID:AB_2210391

Anti-Actin Millipore Cat# MAB1501, RRID:AB_2223041

Goat anti-Rabbit IgG (H+L), Alexa Fluor 488 conjugate Thermo Fisher Scientific Cat# A-11034, RRID:AB_2576217

Goat anti-Rat IgG (H+L), Alexa Fluor 555 conjugate Thermo Fisher Scientific Cat# A-21434, RRID:AB_2535855

Qdot 605 anti-human CD14 Invitrogen Cat# Q10013, RRID:AB_2556439

Y89 anti-human CD45 Fluidigm Cat# 3089003, RRID:AB_2661851

Anti-human CD15 BioLegend Cat# 301907, RRID:AB_314194

Anti-human CD3 BioLegend Cat# 300414, RRID:AB_314068

Anti-human CD7 BioLegend Cat# 343102, RRID:AB_1659214

Anti-human CD5 BioLegend Cat# 300602, RRID:AB_314088

Anti-human CD62L BD Biosciences Cat# 555541, RRID:AB_395925

Anti-human CD48 BioLegend Cat# 336702, RRID:AB_1227561

Anti-human CD68 Thermo Fisher Scientific Cat# 14-0688-82, RRID:AB_11151139

Anti-human CD20 BioLegend Cat# 302302 RRID:AB_314250

Anti-human CD19 BioLegend Cat# 302214, RRID:AB_314244

Anti-human CD66a/c/e BioLegend Cat# 342302, RRID:AB_1626265

Anti-human CLA BioLegend Cat# 321302, RRID:AB_492894

Anti-human HLA-DR BioLegend Cat# 307602, RRID:AB_314680

Anti-human CD115 (c-fms) Thermo Fisher Scientific Cat# 14-1159-82, RRID:AB_493929

Anti-human CD64 BD Biosciences Cat# 555525, RRID:AB_395911

Anti-human CD1c BioLegend Cat# 331502, RRID:AB_1088995

Anti-human FceR1 alpha Thermo Fisher Scientific Cat# 16-5899-82, RRID:AB_657792

Anti-human SEPP1 Abcam Cat# ab109514, RRID:AB_10862662

Anti-human CD123 BD Biosciences Cat# 554527, RRID:AB_395455

Anti-human CD163 BioLegend Cat# 333602, RRID:AB_1088991

Anti-human CXCR3 (CD183) BD Biosciences Cat# 557183, RRID:AB_396594

Anti-human CD56 BD Biosciences Cat# 559043, RRID:AB_397180

Anti-human CD226 BioLegend Cat# 338302 RRID:AB_1279155

Anti-human CD169 BioLegend Cat# 346002 RRID:AB_2189031
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Anti-human SIRP1a (CD172a/b) BioLegend Cat# 323802, RRID:AB_830701

Anti-human CD369 (Dectin-1/CLEC7A) BioLegend Cat# 355402, RRID:AB_2561530

Anti-human CD1a BioLegend Cat# 300102, RRID:AB_314016

Anti-human CD141 BD Biosciences Cat# 559780, RRID:AB_397321

Anti-human CD86 BD Biosciences Cat# 555663, RRID:AB_396017

Anti-human CX3CR1 BioLegend Cat# 355702, RRID:AB_2561726

Anti-human CD26 BioLegend Cat# 302702, RRID:AB_314286

Purified anti-phycoerythrin (PE) BioLegend Cat# 408102, RRID:AB_2168924

Anti-human CD88 (C5aR) BioLegend Cat# 344304, RRID:AB_2067175

Anti-human CD34 BioLegend Cat# 343502, RRID:AB_1731898

Anti-Human Mer R and D Systems Cat# MAB8912, RRID:AB_2143588

Anti-human CD39 BioLegend Cat# 328202, RRID:AB_940438

Anti-human CD206 BioLegend Cat# 321102, RRID:AB_571923

Anti-human CD11c BD Biosciences Cat# 555390, RRID:AB_395791

Anti-human CD11b BioLegend Cat# 301312, RRID:AB_314164

Anti-human CD16 Fluidigm Cat# 3209002B

Biological Samples

Buffy coats University Hospital Bonn N/A

Human Perfusates of lung transplant recipients Hannover Medical School N/A

Chemicals, Peptides, and Recombinant Proteins

VLE-RPMI Biochrom Cat# FG1415

GlutaMAX GIBCO Cat# 35050-061

Penicillin-Streptomycin GIBCO Cat# 15140-122

Sodium Pyruvate GIBCO Cat# 11360-039

Fibronectin, human Alfa Aesar Cat# J64560

Fibronectin Sigma-Aldrich Cat# F1141

Pancoll PAN-Biotech Cat# P04-60500

FcR Blocking Reagent, human Miltenyi Biotec Cat# 130-059-901

rhMCSF Immunotools Cat# 11343115

rhGMCSF Immunotools Cat# 11343125

rhIL4 Immunotools Cat# 11340045

Cisplatin Sigma-Aldrich Cat# 1134357

DNA (Iridium interchelator) Fluidigm Cat# 201192A

Paraformaldehyde Electron Microscopy Sciences Cat# 30525-89-4

Perm Buffer BioLegend Cat# 425401

EQ Four Element Calibration Beads Fluidigm Cat# 201078

Fluoresbrite YG Beads Polysciences Cat# 17154

DAPI Sigma-Aldrich Cat# 10236276001

Fluoroshield Sigma-Aldrich Cat# F6182-20ML

PEG 3500 Sigma-Aldrich Cat# P3640

siRNA Buffer Dharmacon Cat # B-002000-UB-100

LPS InvivoGen Cat# tlrl-3pelps

IFN-g Immunotools Cat# 11343536

CL097 InvivoGen Cat# tlrl-c97

Flagellin InvivoGen Cat# tlrl-epstfla

Oligomycin A Sigma-Aldrich Cat# 75351

Fluoro-carbonyl cyanide phenylhydrazone Tocris Cat# 453

Rotenone Sigma-Aldrich Cat# R8875

Antimycin Sigma-Aldrich Cat # A8674

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Glucose Sigma-Aldrich Cat# G7021

Glutamine Sigma-Aldrich Cat# 59202C

2-Deoxyglucose Sigma-Aldrich Cat# D8375

Bicarbonate-free RPMI Sigma-Aldrich Cat# D5030

TRIzol Reagent Thermo Fisher Scientific Cat# 15596026

Critical Commercial Assays

CD14 Microbeads, human Miltenyi Biotec Cat# 130-042-401

Nuclear Extract Kit Active Motif Cat# 40010

miRNeasy Micro kit QIAGEN Cat# 217084

Transcriptor First Strand cDNA Synthesis Kit Roche Cat# 04379012001

LEGENDplex BioLegend N/A

CyQuant Cell Proliferation Assay kit ThermoFisher Cat# C7026

TargetAmp-Nano Labeling Kit Epicenter Cat# TAN091096

TruSeq RNA Sample Preparation Kit v2 Illumina Cat# RS-122-2001

Kapa library quantification kit Kapa Biosystems Cat# 07-KK4852-01

SPRIselect reagent kit Beckman Coulter Cat# B23319

Human CCL2/MCP-1 DuoSet ELISA R and D Systems Cat# DY279

Human CCL22/MDC DuoSet ELISA R and D Systems Cat# DY336

LYNX Rapid RPE Antibody Conjugation Kit Bio-Rad Laboratories Cat# LNK021RPE

Deposited Data

Microarray and RNA-Seq data This Paper GEO: GSE96719

Experimental Models: Primary Cells

Human primary cell isolates This paper N/A

Human primary cell culture This paper N/A

Experimental Models: Organisms/Strains

GFP-expressing Pichia Pastoris This Paper N/A

Oligonucleotides

siRNA targeting sequence: hNCOR2 #1 UGGUUUACAU

GUCGACUAA

This Paper N/A

siRNA targeting sequence: hNCOR2 #2 UGGUUUACAU

GUUGUGUGA

This Paper N/A

siRNA targeting sequence: hNCOR2 #3 UGGUUUACAU

GUUUUCUGA

This Paper N/A

siRNA targeting sequence: hNCOR2 #4 UGGUUUACAU

GUUUUCCUA

This Paper N/A

siRNA non-targeting sequence: control #1 UGGUUUACA

UGUCGACUAA

This Paper N/A

siRNA non-targeting sequence: control #2 UGGUUUACA

UGUUGUGUGA

This Paper N/A

siRNA non-targeting sequence: control #3 UGGUUUACA

UGUUUUCUGA

This Paper N/A

siRNA non-targeting sequence: control #4 UGGUUUACA

UGUUUUCCUA

This Paper N/A

Primer: NCOR2 Forward: GCGAGGTCTCCCTGAGTCTT This Paper N/A

Primer: NCOR2 Reverse: CCAGTCCTCGTCATCAGCTC This Paper N/A

NCOR2 Probe Roche Cat# Universal Taqman ProbeLibrary #16

Primer: CD209 Forward: CCAGGTGAAGCGGTTACTTC This Paper N/A

Primer: CD209 Reverse: GCTCGTCGTAATCAAAAGTGC This Paper N/A

CD209 Probe Roche Cat# Universal Taqman ProbeLibrary #68

Primer: GAPDH Forward: AGCCACATCGCTCAGACAC This Paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Primer: GAPDH Reverse: GCCCAATACGACCAAATCC This Paper N/A

GAPDH Probe Roche Cat# Universal Taqman ProbeLibrary #60

Primer: ACTB Forward 1: TGGTGGGCATGGGTCAGA This Paper N/A

Primer: ACTB Reverse 1: GTACATGGCTGGGGTGTTGA This Paper N/A

Primer: ACTB Forward 2: AACAAGATGAGATTGGCA This Paper N/A

Primer: ACTB Reverse 2: GACCAAAAGCCTTCATACAT This Paper N/A

Software and Algorithms

FlowJo Tree Star RRID:SCR_008520

Partek Genomics Suite Partek Inc. N/A

Cytoscape Cytoscape N/A

Cytofkit Bioconductor N/A

Gene Set Enrichment Analyze Broad Institute N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed and will be fulfilled by the Lead Contact, Andreas

Schlitzer (andreas.schlitzer@uni-bonn.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human primary cell isolation
Buffy coats were obtained from healthy donors (University hospital Bonn, local ethics vote 203/09) after written consent was given

according to the Declaration of Helsinki. Peripheral blood mononuclear cells (PBMC) were isolated by Pancoll (PAN-Biotech) density

centrifugation from buffy coats. CD14-, CD56-, CD4- and CD19-specific MACS beads (Miltenyi Biotec) were used for the enrichment

of CD14+ MO, CD56+ NK cells, CD4+ T cells and CD19+ B cells, respectively. Lung-derived myeloid cells were isolated from human

perfusates of lung transplant recipients with informed consent and immediately sorted for CD45+Lin-HLA-DRhi cells using the FACS

Fusion cell sorter (BD, USA).

Human primary cell culture
CD14+ MO were cultured in RPMI1640 medium supplemented with 10% FCS, 1% Penicillin-Streptomycin, 1% Sodium pyruvate

and 1% Glutamax (GIBCO) for 3 days. CD14+ MO were differentiated into Mo-M-CSF or Mo-GM-CSF in the presence of

100 IU/ml rhM-CSF or 800 IU/ml rhGM-CSF, respectively. Mo-GM-CSFIL-4 were generated by the addition of 800 IU/ml rhGM-CSF

and 500 IU/ml rhIL4 and were incubated for up to 6 days. All cytokines were purchased from Immunotools.

METHOD DETAILS

Flow cytometry
Cells were washed with ice cold PBS. After FcR blockage (Miltenyi, Germany), cells were stained with the respective antibodies in

PBS supplemented with 0.5% FCS, 2.5 mM EDTA for 20min at 4�C. Following antibodies were purchased from Biolegend (USA):

CD19 (HIB19), CD11b (CBRM1/5), CD23 (EBVCS-5), CD14 (M5E2); R&D: VSIG4 (polyclonal), MARCO (polyclonal), CCR7

(150503); Becton Dickinson (BD, USA): CD56 (B159), HLA-DR (L243), CD209 (DCN46), CD226 (DX11); Data acquisition was per-

formed with a LSR II (BD). Analyses were performed with FlowJo software (Tree Star).

Mass cytometry
Following culture, cells were washed with PBS (GIBCO, Life Technologies, Carlsbad, CA) and stained with cisplatin (Sigma-Aldrich,

St Louis, MO). Then, cells were washed with PBS containing 4% FBS and 0.05%Sodium azide and fixed with 2%paraformaldehyde

(PFA; Electron Microscopy Sciences, Hatfield, PA) overnight. Cells were permeabilized (1X perm buffer (Biolegend, San Diego, CA))

and stained withmetal-conjugated antibodies (Table S7) intracellularly. Then cells were washed,metal barcoded and resuspended in

water. EQ Four Element Calibration Beads (Fluidigm Corporation, South San Francisco, CA) were added at a concentration of 1%

prior to acquisition. Cells were acquired and analyzed using a CyTOF1 Mass cytometer. The data was normalized and events

with parameters having zero values were replaced with a randomized value between 0 and �1.
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Mass cytometry data analysis
Normalized MC data was exported in .fcs format and pre-processed in FlowJo Version 9.9.4 (Tree Star Inc). Pre-processing

included removal of cell debris (Iridium-191/193 DNA intercalating fraction) and dead cells (cisplatin+). Myeloid CD45+lin(CD3+CD7+

CD15+CD19+CD20+CD56)- cells were exported and used for analysis. Downstream analysis was performed using the Cytofkit

R package. For comparison of the different differentiating conditions data from 1000 myeloid cells was randomly sampled per donor

and condition (3 donors; 12,000 cells in total) and autoLgcl-transformed including expression values for 36 surface markers (CD45,

CD14, CD5, CD62L, CD48, CD68, CD66ace, CLA, HLA-DR, CD115, CD64, CD1c, FceR1, SEPP1, CD123, CD163, CXCR3, CD226,

CD169, SIRP1a, Dectin1a, CD1a, CD141, MARCO, CD86, CX3CR1, CD206, VSIG4, CD88, CD34, MerTK, CD39, CD26, CD11c,

CD11b, CD16). Detailed analysis on the Mo-GM-CSFIL-4 condition was based on 3500 cells from one individual. To define clusters

of cell subpopulations, PhenoGraph was used. Points representing individual cells in the t-SNE plots were color-coded to illustrate

amount of protein expression or affiliations to clusters, treatment conditions or donors, respectively. Alternatively, the gplots

R package was used to generate heatmaps of marker expression of individual cells or mean values over identified cell clusters.

Dendrograms represent hierarchical clustering results based on the Euclidean distance measure.

Uptake of fluorescent microbeads or yeast
Cells were incubated either with fluorescent monodispersed polystyrenemicrospheres (1 mmdiameter, Fluoresbrite YGBeads, Poly-

sciences) or yeast (GFP-expressing Pichia Pastoris) in a cell-to-bead ratio of 1/10 for 4h or 60 min at 37�C, respectively. Afterward,

cells were harvested, washed and bead/yeast uptake was analyzed by flow cytometry using an LSR II (BD). Negative control samples

were kept at 4�C. Data analysis was performed using FlowJo software (Tree Star).

Immuno blot
The Nuclear Extract Kit (Active Motif) was used to fractionate the cytosolic and nuclear proteins, fractions were separated by SDS-

PAGE and transferred onto a nitrocellulose membrane (Amersham) by wet blotting. Probing was performed using hNCOR2 (Abcam),

b-Tubulin (Cell Signaling) and Lamin A/C (ActiveMotif) antibodies. ForMMP12 protein detection, the cytosolic whole protein fractions

(Dignam extraction) were separated by SDS-PAGE and transferred onto a nitrocellulosemembrane (Amersham) by semi-dry blotting.

Probing was performed by using MMP-12 (R&D) and b-actin antibodies. Signal detection and analysis was performed on the LI-COR

Odyssey system. Cell compartment separation efficiency was validated by enrichment of cytosolic proteins, such as b-Tubulin or

nuclear proteins such as Lamin A/C. Signal expression values of hNCOR2 and MMP-12 were calculated in semiquantitative relation

to the signal expression values of b-Tubulin, Lamin A/C and b-actin following the equation target/reference.

Migration assay
Migration was analyzed in m-Slide 8 well chambered coverslips (Ibidi) coated with 50mg/ml human fibronectin (Alfa Aesar). 0.7x105

cells in 300ml VLE-RPMI (Biochrom) were seeded in each well. Live cell imaging of adherent cells was performed at 37�C and 5%

CO2 using a fully automated inverted Olympus Fluoview 1000 confocal microscope equipped with motorized xyz stage. Cell motility

wasmonitored over a period of 3h by capture of differential interference contrast images every 5min with a 0.40 UPLAPO 10x Objec-

tive (Olympus). Migration parameters were calculated using the Manual Tracking and Chemotaxis Tool plugins in ImageJ.

Confocal microscopy and data analysis
Cover slides were coated with fibronectin (Sigma Aldrich) prior to the seeding of Mo-GM-CSF or Mo-GM-CSFIL-4(0-144h). After an in-

cubation time of 3h at 37�C, adherent cells were washed with PBS and fixed in pre-cooled methanol at �20�C for 10min. Subse-

quently slides were washed twice in PBS and blocked with 5% BSA in PBS for 30min. Staining for NCOR2 and tubulin was done

using aNCOR2 antibody (ab24551, Abcam) at 4�C overnight or using tubulin antibody (MAB1864 (Chemicon)) at room temperature

for 45min. For visualization slides were stained with anti-rabbit-Alexa488 (A11034, Life Technologies) or anti-rat Alexa555 (A21434,

Invitrogen) and DAPI (Sigma Aldrich) at room temperature for 45min. Slides were mounted with fluoroshield (ImmunoBioScience)

plus 1% DABCO and confocal image acquisition of the medial nuclear region was performed using an inverted Olympus Fluoview

1000 confocal microscope equipped with a Plan Apochromat 60x, NA1.4 oil immersion objective (Olympus) and 405nm/488nm/

543nm laser lines. Quantification of mean intensity of the green fluorescence in the nuclear region was performed using Imaris

7.6.5 (Bitplane).

NCOR2 siRNA silencing
24h prior to the experiment, the nanostraw cargo chamber was washed 3x with 10ml of 0.5% PEG 3500 (P3640, sigma) in PBS and

equilibrated; chambers were equilibrated with 100ml RPMI 1640 media. CD14+ human MO were resuspended in RPMI 1640 with

supplements (10% FCS, 1%Pen/Step, 1%GlutaMax and 1%NaPyruvat) and activated. siRNA solutions were prepared in 1x siRNA

Buffer (Dharmacon). hNCOR2 siRNA (Dharmacon) ON Target Plus pool was used for silencing (siRNA sequences targeting hNCOR2:

1. UGGUUUACAUGUCGACUAA, 2. UGGUUUACAUGUUGUGUGA, 3. UGGUUUACAUGUUUUCUGA, 4. UGGUUUACAUGUUU

UCCUA; non-targeting control siRNA sequences: 1. UGGUUUACAUGUCGACUAA, 2. UGGUUUACAUGUUGUGUGA, 3. UGGUUU

ACAUGUUUUCUGA, 4. UGGUUUACAUGUUUUCCUA). After removing the equilibration media the tubing system was filled with the

siRNA solution or PBS. Subsequently, the cell suspension was filled into the chamber and incubated for 72h at 37�C and 5%CO2.

After 72h, cells were directly lysed within the chambers by adding Trizol. qRT-PCR was performed to check silencing efficiency.
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Real time PCR
Total RNA was isolated with the miRNeasy Micro kit (QIAGEN) and analyzed with the High Sensitivity RNA Tapestation system

(Agilent). cDNA synthesis was prepared using the Transcriptor kit (Roche). qRT-PCR was performed using a Lightcycler 480 system

(Roche). Primer sequences: NCOR2 (F, GCGAGGTCTCCCTGAGTCTT; R, CCAGTCCTCGTCATCAGCTC); CD209 (F, CCAGGTGAA

GCGGTTACTTC; R, GCTCGTCGTAATCAAAAGTGC); GAPDH (F, AGCCACATCGCTCAGACAC; R, GCCCAATACGACCAAATCC).

Expression values were calculated by the comparative CT method. GAPDH served as internal control gene. FC is presented relative

to amount of expression in MO

Cell stimulation
Mo-M-CSF, Mo-GM-CSF, Mo-GM-CSFIL-4(0-72h) or Mo-GM-CSFIL-4(0-144h) cells were stimulated overnight under the following

conditions: Media, 100ng/ml LPS ultrapure, 100ng/ml LPS ultrapure + 1000U/ml IFNg, 1mg/ml CL097, 100ng/ml flagellin. Superna-

tants were harvested 19h after stimulation and stored at �80�C.

Cytokine measurement
Cytokines weremeasured using LEGENDplex (Biolegend, USA). Diluted cell culture supernatants were incubated for 2 hours with the

beads and detection antibodies, followed by 30min incubation with SA-PE. After washing, beads were resuspended in washing

buffer and acquired using a LSRII flow cytometer (BD). Data were analyzed with the LEGENDplex Data Analysis Software; concen-

tration values were exported to Excel and visualized in R.

Oxygen consumption rate (OCR) and ECAR measurements
OCR and ECARwere determined using a XF-96 Extracellular Flux Analyzer (Seahorse Bioscience). For ECAR analysis the media was

changed to bicarbonate-free RPMI supplemented 10mM glucose, 1mM pyruvate & 2 mM glutamine 1h prior to the assay and the

plate was kept in a non-carbonated incubator. Measurements were performed under basal conditions and after the sequential addi-

tion of final 1mM oligomycin A, 1.5mM FCCP (fluoro-carbonyl cyanide phenylhydrazone) and 0.5mM rotenone & antimycin each. For

ECAR analysis the media was changed to bicarbonate free RPMI supplemented 2 mM glutamine 1h prior to the assay and the plate

was kept in a non-carbonated incubator. Measurements were performed under basal conditions and after the sequential addition of

final 10 mM glucose, 1mMoligomycin and 100 mM 2-Deoxyglucose. OXPHOS was calculated as (basal OCR – OCR after rotenone &

antimycin treatment), ATP production was calculated as (basal OCR – OCR after oligomycin A treatment), maximal respiration was

calculated as (OCR after FCCP treatment – OCR after rotenone & antimycin treatment), glycolysis was calculated as (basal ECAR –

ECAR after 2-Deoxyglucose treatment), glycolytic capacity was calculated as (ECAR after oligomycin A treatment – ECAR after 2-De-

oxyglucose treatment. All reagents were purchased from Sigma, except FCCPwas purchased from Tocris. ECAR and OCR raw data

was normalized to DNA content using the CyQuant Assay kit (Thermo Fisher).

Microarray data generation
Up to 53 106 cells were harvested and lysed in TRIzol (Invitrogen) and RNAwas isolated and concentration and purity was assessed

using a NanoDrop 1000 UV-Vis Spectrophotometer (Thermo Scientific). Subsequently, the TargetAmp-Nano Labeling Kit for Illumina

Expression BeadChip (Epicenter) was utilized to generate biotin labeled anti-sense RNA (cRNA) according to themanufacturer’s pro-

tocol. As a quality control, 100 ng cRNAwere reverse transcribed to cDNA and a PCR specific forACTB amplification was performed.

For expression profiling, 750 ng cRNA were hybridized to Human HT-12v3 BeadChip arrays (Illumina), stained and imaged on an

Illumina iScan system.

RNA-sequencing
Total RNA was converted into libraries of double stranded cDNA molecules as a template for high throughput sequencing following

the manufacturer’s recommendations using the Illumina TruSeq RNA Sample Preparation Kit v2. Shortly, mRNA was purified from

100 ng of total RNA using poly-T oligo-attached magnetic beads. Fragmentation was carried out using divalent cations under

elevated temperature in Illumina proprietary fragmentation buffer. First strand cDNAwas synthesized using random oligonucleotides

and SuperScript II. Second strand cDNA synthesis was subsequently performed using DNA Polymerase I and RNase H. Remaining

overhangs were converted into blunt ends via exonuclease and polymerase activities and enzymes were removed. After adenylation

of 30 ends of DNA fragments, Illumina PE adaptor oligonucleotides were ligated to prepare for hybridization. DNA fragments with

ligated adaptor molecules were selectively enriched using Illumina PCR primer PE1.0 and PE2.0 in a 15 cycle PCR reaction. Size-

selection and purification of cDNA fragments with preferentially 200 bp in length was performed using SPRIBeads (Beckman-

Coulter). Size-distribution of cDNA libraries wasmeasured using the Agilent high sensitivity DNA assay on a Bioanalyzer 2100 system

(Agilent). cDNA libraries were quantified using KAPA Library Quantification Kits (KapaBiosystems). After cluster generation on a cBot,

a 75 bp single-read run was performed on a HiSeq1500.

Primary handling of microarray datasets
Three major microarray datasets were generated and pre-processed, which were later on combined with each other and/or with

publicly available data. The first dataset (pre-dataset 1) contains CD14+ MO, B, T and NK cells, as well as different types of MO-

derived cells (Mo-M-CSF, Mo-GM-CSF, Mo-GM-CSFIL-4(0-72h) and Mo-GM-CSFIL-4(0-144h)) from the blood of healthy human donors.
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The second dataset (pre-dataset 2) is composed of the sameCD14+monocyte andMO-derived cell samples (Mo-GM-CSF,Mo-GM-

CSFIL-4(0-72h) and Mo-GM-CSFIL-4(0-144h)), but Mo-GM-CSFIL-4(72-144h) in addition. All corresponding samples were hybridized to

Human HT12-V3 Beadchips (Illumina) and scanned on an Illumina iScan system. The third dataset (pre-dataset 3) contains CD14+

MO and CD45+lin-MHCIIhi cells, which were sorted from blood and lungs of healthy human donors, respectively. The corresponding

samples were hybridized to Human HT12-V4 Beadchips (Illumina) and scanned on an Illumina HiScanSQ system. The raw intensity

data of all three datasets was pre-processed by the Gene Expression tool v1.9.0 in GenomeStudio V2011.1 (Illumina) independently.

Values for missing bead types were imputed, but no prior normalization was performed at this step. This revealed 48,803 probesets

for the HT12-V3 datasets, and 47,323 probesets for the HT12-V4 dataset. All datasets were exported using the Partek Report Plugin

2.16 (Partek) and imported into Partek� Genomics Suite software�, version 6.6ª; 2017 (PGS), where they were further processed.

Handling of publicly available data
From a publicly available dataset (GEO: GSE35457, (Haniffa et al., 2012)) the raw data of CD14+ and CD14+CD16+ monocyte sam-

ples, as well as of CD1c+ and CD141+ DC samples from blood of up to four donors (I, II, V and VI) were used. The data was generated

on Human HT12-V4 BeadChips and contained 47,323 probesets, where values for missing bead types were imputed. Since all other

in-house datasets contained CD14+ MO only, the raw expression values for the CD14+ and CD14+CD16+ monocyte samples were

averaged always for the same donor. In the end, the designation ‘‘CD14+ monocyte’’ was kept. The resulting raw expression text file

was imported into PGS as well.

To compare the MO-derived cells to inflammatory conditions, a dataset containing inflammatory Mac and dendritic cells, isolated

from the ascites of ovarian cancer patients, as well as primary BDCA1+ dendritic cells and CD14+CD16- and CD14dimCD16+ MOwas

downloaded (GEO:GSE40484, (Segura et al., 2013)). The rawAffymetrix HumanGene 1.1 ST Array data was imported into PGS using

RMA background correction, quantile normalization and log2-transformation. For the inflammatory cells, only donors 1 to 4 were

considered. Afterward, 12,067 present probes were determined requiring at least one group mean to be larger than 7 on log2 scale.

Of those, only 9,358 probes being annotated with a gene symbol were further considered. Finally, the probes were reduced to 8,612

present genes, by considering only the probe with the highest expression for a given gene. In order to link the Affymetrix data to the

Illumina datasets of MO-derived cells, three different approaches were applied.

Probe matching between platforms
Using the Illumina Probe ID (‘‘ILMN’’), 39,423 common probesets were identified on both HT12-V3 and HT12-V4 arrays. All in-house

datasets (pre-datasets 1-3) and the dataset from Haniffa et al. were filtered down to those probes to enable dataset assembly and

comparability. Since for some of the probes different gene name synonyms were used in the two different platform files, the

annotation presented in the newer file (HT12-V4) was used for all filtered datasets later on.

Assembly of datasets and pre-processing
Based on the identified common probes, four different datasets were generated. The first one (dataset 1) was assembled by

combining the complete pre-datasets 1 and 2, as well as the dataset from Haniffa et al. (GEO: GSE35457, (Haniffa et al., 2012)).

The second (dataset 2) contains the pre-dataset 1 without the B, T and NK cells, plus pre-dataset 2 and the dataset from Haniffa

et al.. The raw expression values of both datasets were first quantile normalized and log2-transformed independently. Afterward,

using the CD14+ blood MO as bridging samples, the batch effect introduced by the combination of the three different datasets

was removed, again separately for datasets 1 and 2. The third dataset (dataset 3) was composed of CD14+ MO, Mo-M-CSF,

Mo-GM-CSF and Mo-GM-CSFIL-4(0-72h) from pre-dataset 1. The fourth (dataset 4) equals the filtered pre-dataset 3. Both datasets

were quantile-normalized and log2-transformed independently.

Primary data analysis and visualization
Each of the four datasets was filtered down to those probes being expressed across the corresponding dataset. To do so, the

maximum of the group mean expression values was determined. Probes with a maximum expression lower than 7, again 7, 6.95

and 6.75 (all on log2 scale) were excluded as not expressed from datasets 1, 2, 3 and 4, resulting in 21,250, 23,592, 18,318 and

18,857 present probes, respectively. The samples of each dataset were always visualized via principal component analysis (PCA)

using the determined present probes as input. For all datasets, principal components (PCs) 1 (x axis) versus 2 (y axis) were displayed,

and for datasets 1, 2 and 4 also other combinations of PCs are shown. Furthermore, the top 1000 most variable probes of datasets

1, 3 and 4 were visualized in the form of a heatmap, where rows and columns were ordered based on hierarchical clustering using

Euclidean distance and average linkage. Based on the revealed row-wise clusters, the genes were grouped together for datasets 3

and 4, dependent on the cell type(s) they appeared as highly expressed. A color code was added to indicate the corresponding

group-related cell types. Additionally, a few genes of each cluster were highlighted next to the heatmap. For datasets 1, 3 and 4,

the top 1000 most variable probes were also used as input to calculate a pearson correlation coefficient matrix (PCCM), which

were displayed as heatmaps as well. Also there, rows and columns were ordered based on hierarchical clustering using Euclidean

distance and average linkage.
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Identification of signature genes
Using the normalized and batch corrected dataset 2, differentially expressed probes (Fold-Change%�2 or > = 2 and FDR-adjusted

p value < 0.05 using a two-way ANOVA including the batch as a random effect) were determined for the three comparisons Mo-GM-

CSFIL-4(0-72h) and Mo-GM-CSFIL-4(0-144h) versus CD14+ MO, Mo-GM-CSF versus CD14+ MO and Mo-M-CSF versus CD14+ MO. The

three lists of probes being upregulated against CD14+ MO were intersected, and the same was done for the probes being downre-

gulated compared to CD14+MO. The probes were then reduced to single genes, by keeping the probe for a corresponding gene with

the highest mean expression across the dataset. This resulted in 287 up- and 361 downregulated genes in MO-derived cells

compared to CD14+ MO. Both lists were further filtered by keeping only those genes, for which the mean expression values of

the four MO-derived cell populations did not differ by a Fold-Change > 1.7 for all pairwise comparisons. This ensured similar expres-

sion values in the MO-derived cells, and resulted in 184 up- and 279 downregulated genes compared to CD14+ MO. The expression

patterns of those genes were displayed in the form of a heatmap, where rows and columns were ordered based on hierarchical clus-

tering using Euclidean distance and average linkage. A few gene names are depicted next to the heatmap.

Linear support vector regression (SVR)
The 8,612 present genes were used as input for CIBERSORT (Newman et al., 2015) to create a signature matrix, which contained 230

genes representing the five different cell types of the inflammatory Affymetrix dataset. After excluding all genes, which did not appear

within the Illumina dataset 2, 197 genes remained. In addition, the 23,592 present probes of dataset 2were reduced to 16,618 present

genes by keeping the probe with the highest mean expression for a given gene. Then, SVR in CIBERSORT was applied to predict the

fractions of the five cell types (in the form of the generated and filtered signature matrix composed of 197 genes) within the gene

expression profiles (present genes) of dataset 2. To reduce complexity, the Mo-GM-CSFIL-4(0-72h) and Mo-GM-CSFIL-4(0-144h) were

considered as a single group (named Mo-GM-CSFIL-4(0-72h/144h)) by calculating the mean expression across all replicates of the

two groups. The resulting fractions were finally visualized in the form of stacked bar plots.

GSEA analysis
Using again the 8,612 present genes, DEG were determined between inflammatory DCs and CD14+CD16- MO, inflammatory DCs

and CD14dimCD16+ MO, inflammatory Mac and CD14+CD16- MO, as well as between inflammatory Mac and CD14dimCD16+ MO

by requiring a Fold-Change > 4 and an FDR-adjusted p value < 0.05 for all four comparisons using one way ANOVA. For each of

the two comparisons inflammatory DCs versus CD14+CD16- MO and inflammatory Mac versus CD14+CD16- MO, specific genes

were determined by excluding all genes appearing as differentially expressed in at least one of the other three comparisons. This

resulted in 27 specific (not overlapping) genes for each of the two comparisons, respectively. Those two gene sets were then

used as input for Gene Set Enrichment Analysis within PGS, using 1000 permutations and restricting the analysis to functional groups

with more than 2 and fewer than 5000 genes. The enrichments were performed on the 16,618 present genes of dataset 2, for the

pairwise comparisons CD141+ DC versus CD1c+ DC, Mo-GM-CSFIL-4(0-72h/144h) versus CD14+ monocyte, Mo-GM-CSF versus

CD14+ monocyte, Mo-M-CSF versus CD14+ monocyte and CD45+lin-MHCIIhi versus CD14+ monocyte. Again here, all replicates

fromMo-GM-CSFIL-4(0-72h) and Mo-GM-CSFIL-4(0-144h) were considered as a single group Mo-GM-CSFIL-4(0-72h/144h). The enrichment

results were visualized within a scatterplot, with the normalized enrichment score (NES) on the x axis versus the FDR-corrected

p value on the y axis.

Correlation of gene expression
As a third approach, the expression patterns of genes in the dataset of MO-derived cells were directly correlated to those in the data-

set of inflammatory DCs and Mac. In both datasets, 6,959 common present genes (according to the gene symbols) were identified.

By considering the results observed after the application of linear SVR, both datasets were divided into four comparable groups.

Within the Illumina dataset 2 containing MO-derived cells, the four generated groups were: 1) Mo-GM-CSFIL-4(0-72h/144h), 2) CD1c+

and CD141+ DCs, 3) Mo-GM-CSF and Mo-M-CSF as well as 4) CD14+ MO and CD45+lin-MHCIIhi cells. The corresponding four

groups in the Affymetrix inflammatory cell dataset were: 1) inflammatory DCs, 2) BDCA1+ DCs, 3) inflammatory Mac as well as 4)

CD14+CD16- and CD14dimCD16+ MO. Finally, for each of the 6,959 genes a Pearson correlation value was calculated between

the profile consisting of the four group mean expression values of Illumina dataset 2 and the corresponding profile of the Affymetrix

dataset. As a first filtering step, only those genes were kept, which had a correlation value > 0.4. Within a second filtering step, certain

Fold-Changes were required. For the Illumina MO-derived cell dataset, Fold-Changes were calculated for Mo-GM-CSFIL-4(0-72h/144h)

compared to all other cell types of this dataset, and for the Affymetrix inflammatory cell dataset, Fold-Changes were determined for

inflammatory dendritic cells compared to all other cell types within the dataset. For both datasets, only those genes were kept, for

which all Fold-Changes were > 1.3. This resulted in 25 genes, which were specifically expressed in both Mo-GM-CSFIL-4(0-72h/144h)

and inflammatory dendritic cells, but overall lower expressed in all other investigated cell types. The same approach was applied to

find commonly expressed genes in inflammatory Mac as well as in Mo-GM-CSF and Mo-M-CSF. Fold-Changes were calculated for

inflammatory Mac compared to all other cell types of the Affymetrix dataset. For each gene of the Illumina dataset, Fold-Changes

were determined between the minimum of the two group mean expressions of Mo-GM-CSF and Mo-M-CSF and all other cell types

(Mo-GM-CSFIL-4(0-72h/144h), CD1c+ and CD141+ DCs, CD14+ MO) of this dataset. Of the genes having a correlation score > 0.4, only

44 specific ones remained after excluding those, which did not have a Fold-Change > 1.3 for all comparisons within both datasets.

Additionally, genes appearing in the final annotation file of 39,423 common probes of dataset 2 with multiple transcript variants - and
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therefore with potentially different expression patterns depending on the variant, of which only one was chosen based on the highest

expression - were removed. The expression patterns of the remaining genes of both lists were visualized in the form of heatmaps, and

the corresponding Pearson correlation values were displayed within bar plots next to the heatmaps.

Identification of subset specific genes
Using dataset 3, the 18,318 present probes were further reduced to 13,452 present genes by keeping the probe with the highest

expression across the dataset for a given gene. To enable the identification of important surfacemarkers, a comprehensive collection

of important surface marker genes was assembled. For this, corresponding lists were downloaded from two different sources. First,

a list of genes encoding membrane proteins was downloaded from the Human Protein Atlas, available at http://www.proteinatlas.

org/search/protein_class:Predicted+membrane+proteins+AND+NOT+protein_class:Predicted+secreted+proteins. Second, a list

of genes encoding surface proteins was obtained from SurfaceDB (de Souza et al., 2012), available at http://www.

bioinformatics-brazil.org/surfaceome/home-. The union of both lists was generated and contained 5,582 gene symbols. Of those,

2,726 genes were found among the 13,452 present genes, which were then considered to represent the present surfaceome of

dataset 3. To find surface markers being specifically expressed in one of the three MO-derived cell types (Mo-M-CSF, Mo-GM-

CSF and Mo-GM-CSFIL-4(0-72h)), Fold-Changes for all pairwise comparisons including the ones against CD14+ MO were calculated.

A marker was defined as condition specific, if all Fold-Changes against the three other cell types were larger than 2. This resulted in

19, 19 and 54 specific genes for Mo-M-CSF, Mo-GM-CSF and Mo-GM-CSFIL-4(0-72h), respectively. For visualization, those lists were

further filtered. Genes belonging to theMHCI and II complexes (HLA-) were excluded since their specificity might be different in other

individuals. Additionally, again here genes appearing in the final annotation file of 39,423 common probes with multiple transcript

variants were removed. The remaining genes were displayed in the form of a heatmap, where the rows were ordered decreasingly

based on the expression patterns in the three-different MO-derived cell types.

Co-expression network analysis
The union of genes being differentially expressed (Fold-Change > 2 or <�2 and FDR-adjusted p value < 0.05 using one way ANOVA)

between each of the three types of MO-derived cells compared to CD14+ MO of dataset 3 were imported into BioLayout Express 3D

version 3.3. Requiring a correlation of at least 0.93 to at least one other gene (based on the anti-log2-expression profiles), a

co-expression network was generated. Smaller networks containing less than 5 genes were excluded, which resulted in a single

network containing 2,086 genes. For each of the four cell types, the Fold-Change of the respective cell type compared to the overall

mean was mapped onto the network and displayed in colors ranging from blue (negative Fold-Change) over white to red (positive

Fold-Change) using the App Enrichment Map v2.0.1 in Cytoscape v3.2.0. Based on the Fold-Change patterns, the networks were

divided into four main clusters, where each cluster represents one of the four cell types, respectively. Based on dataset 4, another

co-expression network was generated to investigate the relationship of Mo-GM-CSFIL-4(72-144h) to the other MO-derived cell types

and CD14+ MO. As input, 13,691 present genes were used, which were obtained by filtering the 18,857 probes in the same ways

as previously described. The network was generated in BioLayout and finally visualized using Cytoscape. Two samples (nodes)

are connected, if the correlation value calculated between their expression profiles was at least 0.9.

Prediction of master regulators
To predict master regulators for each of the four cell types, the Cytoscape App iRegulon v1.3 was applied on those genes of the cell

type specific clusters identified within the co-expression network, which were upregulated in the corresponding cell type compared

to the overall mean with a Fold-Change > 1.5. The prediction was performed by considering ’’20kb centered around TSS’’ as ’’Pu-

tative regulatory region,’’ by using’’ Nomotif collection’’ at ’’Motif collection,’’ and by setting the ‘‘Enrichment Score threshold’’ to 1.5.

The resulting lists were filtered afterward to keep only those predicted regulators, which reached a normalized enrichment score

(NES) > = 3 and which were identified in only one of the four cell types after the previous filtering step.

Transcriptional regulator Co-expression network
Among the 13,452 present genes of dataset 3, 587 transcriptional regulators including transcription factors, co-factors and histone

modifiers were identified (Fulton et al., 2009). Those were imported into BioLayout, and by requiring a correlation of at least 0.83 to at

least one other regulator, a co-expression network was generated. After excluding smaller networks containing less than 4 regula-

tors, a single network composed of 411 transcriptional regulators remained. For each of the four cell types, the Fold-Change of the

respective cell type compared to the overall mean was mapped onto the network using Enrichment Map in Cytoscape. According to

the resulting patterns, cell type specific clusters of upregulated regulators were generated. Additionally, those of the previously pre-

dicted master regulators were marked in these clusters, which were part of the network. Among the 13,691 present genes of data-

set 4, 585 transcriptional regulators were found (Fulton et al., 2009). The expression profiles of those were imported into BioLayout,

and the final co-expression network contained 267 regulators after requiring a correlation of at least 0.85 between a gene and at least

one other gene and excluding resulting smaller networks containing less than 3 regulators. Within Cytoscape using EnrichmentMap,

the Fold-Changes comparing Mo-GM-CSF versus CD14+ MO as well as Mo-GM-CSFIL-4(0-72h) compared to CD14+ MO were map-

ped onto the network, ranging fromblue (Fold-Change < -2) over white to red (Fold-Change > 2). According to the resulting patterns, a

Mo-GM-CSFIL-4(0-72h) specific cluster of upregulated regulators was identified. Additionally, regulators among the 585 present ones

being specifically upregulated in Mo-GM-CSFIL-4(0-72/144h) were determined by requiring all of the following conditions: Fold-Change
Immunity 47, 1051–1066.e1–e12, December 19, 2017 e9

http://www.proteinatlas.org/search/protein_class:Predicted+membrane+proteins+AND+NOT+protein_class:Predicted+secreted+proteins
http://www.proteinatlas.org/search/protein_class:Predicted+membrane+proteins+AND+NOT+protein_class:Predicted+secreted+proteins
http://www.bioinformatics-brazil.org/surfaceome/home-
http://www.bioinformatics-brazil.org/surfaceome/home-


Mo-GM-CSFIL-4(0-72h) versus CD14+ Monocyte > 1.5, Fold-Change Mo-GM-CSFIL-4(0-144h) versus CD14+ Monocyte > 1.5, Fold-

Change Mo-GM-CSFIL-4(0-72h) versus Mo-GM-CSF > 1.5, Fold-Change Mo-GM-CSFIL-4(0-144h) versus Mo-GM-CSF > 1.5 and

Fold-Change Mo-GM-CSF versus CD14+ Monocyte > 1. The expression profiles of the remaining 7 transcriptional regulators

were visualized in the form of a heatmap, were the rows were ordered decreasingly according to expression values in Mo-GM-

CSFIL-4(0-72h). Those of the seven, which were also part of the co-expression network of transcriptional regulators, were highlighted

within the network.

Expression profiles of pattern recognition receptors
Lists were collected of human gene symbols encoding Toll-like, NOD-like, RIG-I-like and C-type lectin receptors, as well as proteins

belonging to the inflammasome. Only those of themwere displayed in the form of barplots, for which the Fold-Change for at least one

of the three MO-derived cell types compared to CD14+ MO was > = 2 or % �2. The bars represent the Fold-Change between the

mean values of each MO-derived cell type compared to the mean of CD14+ MO. Additionally, the Fold-Changes between the single

replicate values compared to the mean of CD14+ MO are added as dots into the corresponding bar.

Comparison of Mo-M-CSF and Mo-GM-CSF cells
Mo-M-CSF andMo-GM-CSF cells were compared both directly and indirectly. First, differentially expressed probes (Fold-Change >

2 or < �2 and FDR-adjusted p value < 0.05 using one way ANOVA) were determined between Mo-M-CSF and CD14+ MO as well as

between Mo-GM-CSF and CD14+ MO. Probes were reduced to single genes by keeping the probe with the highest expression. The

remaining lists of genes were intersected, which identified 348 or 379 genes being commonly up- or downregulated in Mo-M-CSF

andMo-GM-CSF compared to CD14+MO, respectively. The intersections were displayed in the form of Venn Diagrams. Additionally,

the Fold-Changes against CD14+ MO for the union of the 348 and 379 genes (y-axes) were displayed versus the ranks of the corre-

sponding Fold-Changes (x-axes), once ranked according to the values for Mo-M-CSF and once according to the values for Mo-GM-

CSF. Second, DEG were determined directly between Mo-M-CSF and Mo-GM-CSF (Fold-Change > 2 or < �2 and FDR-adjusted

p value < 0.05 using one way ANOVA). After reducing the results to a single probe per gene as described before, 124 genes being

upregulated in Mo-GM-CSF compared to Mo-M-CSF, and 73 genes being upregulated in Mo-M-CSF compared to Mo-GM-CSF,

were identified. Both lists were used as input to perform Gene Ontology Enrichment Analysis (GOEA) in PGS, where 646 as well

as 444 significantly enriched GO terms (Enrichment p value < 0.05) were identified for theMo-GM-CSF as well asMo-M-CSF specific

genes, respectively. Both lists of significant GO terms were used as input for REVIGO, which clusters semantically similar GO terms

together and generates a representative GO term name to facilitate the interpretation of long GO term lists. The identified represen-

tative GO term nameswere then visualized as Treemaps, where each rectangle represents one of the representative GO term names.

Those rectangles were further joined into ‘‘superclusters’’ by REVIGO, indicated by different colors and a common super-represen-

tative GO term name. For simplicity, only the super-names were displayed.

Expression of genes linked to YG bead uptake, motility or OCR/ECAR
To link the experimental data back to the transcriptome data, lists of genes were generated, which had expression patterns being

analogous to the observed functional outcomes between Mo-M-CSF, Mo-GM-CSF and Mo-GM-CSFIL-4(0-72h). For YG bead uptake,

the pattern was generated by requiring a Fold-Change > 1.3 betweenMo-M-CSF andMo-GM-CSF > 1.3 as well as betweenMo-GM-

CSF and Mo-GM-CSFIL-4(0-72h). For migration, Fold-Changes > 1.3 were required between Mo-GM-CSFIL-4(0-72h) and Mo-GM-CSF,

as well as betweenMo-GM-CSF andMo-M-CSF. For OCR/ECAR, Fold-Changes > 1.3 were required betweenMo-GM-CSFIL-4(0-72h)

and Mo-GM-CSF, and also between Mo-GM-CSFIL-4(0-72h) and Mo-M-CSF > 1.3, as well as a Fold-Change < 1.3 between Mo-GM-

CSF andMo-M-CSF. Using literature (references see manuscript), those lists were screened for genes, which were previously linked

to either YG bead uptake,motility or OCR/ECAR, respectively. The resulting gene sets were displayed in the form of heatmaps, where

rows were ordered based on hierarchical clustering using Euclidean distance and average linkage.

Visualization of cytokine responses
Protein expression values of 4 representative donors were averaged and displayed in the form of a heatmap using the function

heatmap.2 of the R package gplots. Not detected values were set to 0. Rows were ordered alphabetically.

Handling of the RNA-Seq time kinetics dataset
The raw fastq-files were aligned against the human genome hg19 using TopHat v2.1.0 with default options. The resulting BAM files

were imported into PGS, andmRNA quantification was performed against the hg19 RefSeq Transcript database version 2015-08-04

to obtain read counts for each individual RefSeq gene. This resulted in a read count table containing 20,359 genes. The dataset was

then normalized using DESeq2 and the table of normalized read counts was imported back into PGS. Then, the technical variation

introduced by the different donors was removed as batch effect. Finally, only 12,794 expressed genes were kept, which had a

normalized mean read count of at least 10 in at least one of the eight investigated groups.

Analysis and visualization of RNA-Seq time kinetics dataset
Based on the 12,974 present genes, a PCA (PC1 versus PC2) as well as a self-organizing map (SOM) clustering were generated.

Additionally, the top 1000most variable genes across the dataset were visualized in the form of a heatmap, where rows and columns
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were ordered based on hierarchical clustering using Euclidean distance and average linkage. Based on the row-wise structure, the

genes were grouped together into 5 clusters, of which a few genes were highlighted next to the heatmap.

Co-expression network for the time kinetics dataset
At first, all normalized read counts < 1 were set to 1 to avoid spurious Fold-Changes. Then, DEG (Fold-Change > 1.5 or < �1.5 and

FDR-corrected p value < 0.05 using a two-way ANOVA including the donor as a random effect) were determined for each of the 7

conditions compared to the mean over all 7 conditions. The union of the resulting 7 lists comprised 3,114 genes, whose expression

profiles were imported into BioLayout. A co-expression network was generated by requiring for each gene a correlation of at

least 0.87 to at least one other gene. The network was finally composed of 2,775 genes, since smaller networks containing less

than 4 genes were excluded. Using Cytoscape, for each cell type the Fold-Change of the respective cell type compared to the overall

mean was mapped onto the network and displayed in blue (Fold-Change % 1.5) or red (Fold-Change > = 1.5). Based on the Fold-

Change patterns, for each condition a condition-specific cluster was generated by hand. Considering only those genes of the clus-

ters, which had a Fold-Change > 1.5 for the corresponding condition compared to the overall mean, examples of genes being solely

present in only one of the groups, or of genes being shared between the clusters of two consecutive time points, were highlighted.

IL-4 signature generation
To generate an IL-4 signature, three different publicly available datasets containing myeloid cells treated with IL-4 were downloaded

and processed. From the first, CD14+ MO (Mo1-3) and Mo-GM-CSFIL4(0-120h) cells (Sample: 5d veh DC1-3) were used

(GEO: GSE13762). The raw Affymetrix data of those samples was imported into PGS using RMA background correction, quantile

normalization and log2-transformation. From the second, CD14+ MO (MO at time point 0h of donors # D1 - # D3) and MoIL4 (0-48h)

(MO at time point 48h cultured in presence of IL-4 of donor # D1 - #D3) were considered (GEO: GSE35304). The raw Agilent data

of those samples was imported into PGS using quantile normalization and log2-transformation. From the third, Mo-M-CSF(0-168h)

(resting fully differentiated MAC (7 days of culture), rep 1-3) and Mo-M-CSFIL4(168-192h) (alternative activated MAC (M2) rep 1-3)

were used (GEO: GSE32164). The raw Affymetrix data of those samples were imported into PGS using RMA background correction,

quantile normalization and log2-transformation.Within each of the three datasets, the technical variation introduced by the donor was

removed as batch effect. Then, differentially expressed probes (Fold-Change > 1.5 or < �1.5 and p value < 0.05 using a two-way

ANOVA including the donor as a random effect) were determined within each dataset independently. Finally, after identifying genes

being commonly upregulated in the IL-4 conditions of at least two datasets, and similarly being commonly upregulated in the

untreated conditions of at least two datasets, 457 genes being induced by IL-4, and 498 genes being repressed by IL-4 were deter-

mined, respectively.

Handling of the siRNA aNCoR2 dataset
The raw fastq-files were also aligned against the human genome hg19 using TopHat v2.1.0 with default options. The resulting BAM

files were imported into PGS, and mRNA quantification was performed against the hg19 RefSeq Transcript database version 2015-

08-04 to obtain read counts for each individual RefSeq gene. This resulted in a read count table containing 19,384 genes. The dataset

was then normalized using DESeq2 and the table of normalized read counts was imported back into PGS. Finally, only 12,816

expressed genes were kept, which had a normalized mean read count of at least 10 in at least one of the two investigated groups.

All normalized read counts < 1 were set to 1 to avoid spurious Fold-Changes.

Analysis and visualization of the siRNA aNCoR2 dataset
Based on the 12,816 present genes, a PCA (PC1 versus PC2) was generated. Additionally, the expression profiles of the 1,834 genes

being variable (p value < 0.05) across the dataset were visualized in the form of heatmap, where both rows and columnswere ordered

based on hierarchical clustering using Euclidean distance and average linkage. Based on the resulting row-wise structure, the genes

were grouped into clusters, of which a few geneswere highlighted next to the heatmap. The variable geneswere also displayedwithin

a scatterplot, displaying the log2-mean expression of the scrambled RNA samples (x axis) versus the log2-mean expression of the

siRNA aNCoR2 samples. In red and blue were specifically highlighted, which of the genes were also part of the previously established

signatures of IL-4 induced and repressed genes, respectively.

GSEA
To test for human IL-4 signature enrichment in samples treated with either anti-NCOR2 or scrambled shRNA we performed GSEA.

GSEA is a computational tool that determines whether a set of genes show statistically significant, concordant differences between

two conditions (http://www.broadinstitute.org/gsea/index.jsp).We have used the normalized data table as input and either genes up-

or downregulated in the IL-4 signature as gene sets for theGSEA. The ‘Signal2Noise’ rankingmetric was used and the gene setswere

chosen showing significant change at FDRc < c0.25, nominal P valuec < c0.05 and 1,000 gene set permutations.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using SigmaPlot (Systat Software Inc.). Statistical tests used are described in the according figure

legend. Mean (±SEM) was indicated as horizontal lines. If not otherwise specified n represents number of biological replicates.

DATA AND SOFTWARE AVAILABILTIY

All expression data related to this manuscript can be found at Gene Expression Omnibus under the accession number GSE96719.
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