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Abstract

Our research aims to help industrial biotechnology develop a sustainable economy

using green technology based on microorganisms and synthetic biology through two

case studies that improve metabolic capacity in yeast models Yarrowia lipolytica

(Y. lipolytica) and Saccharomyces cerevisiae (S. cerevisiae). We aim to increase the

production capacity of beta‐carotene (β‐carotene) and succinic acid, which are

among the highest market demands due to their versatile use in numerous consumer

products. We performed simulations to identify in silico ranking of strains based on

multiple objectives: the growth rate of yeast microorganisms, the number of used

chromosomes, and the production capability of β‐carotene (for Y. lipolytica) and

succinate (for S. cerevisiae). Our multiobjective optimization methodology identified

notable gene deletions by searching a vast solution space to highlight near‐optimal

strains on Pareto Fronts, balancing the above‐cited three objectives. Moreover,

preserving the metabolic constraints and the essential genes, this study produced

robust results: seven significant strains of Y. lipolytica and seven strains of

S. cerevisiae. We examined gene knockout to study the function of genes and

pathways. In fact, by studying the frequently silenced genes, we found that when the

GPH1 gene is knocked out in S. cerevisiae, the isocitrate lyase enzyme is activated,

which converts the isocitrate into succinate. Our goals are to simplify and facilitate

the in vitro processes. Hence, we present strains with the least possible number of

knockout genes and solutions in which the genes are turned off on the same

chromosome. Therefore, we present results where the constraints mentioned above

are met, like the strains where only two genes are switched off and other strains

where half of the knockout genes are on the same chromosome. This study offers

solutions for developing an efficient in vitro mutagenesis for microorganisms and

demonstrates the efficiency of multiobjective optimization in automatizing metabolic

engineering processes.
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1 | INTRODUCTION

Synthetic biology tools offer a cost‐efficient and eco‐compatible

alternative to the traditional high energy rate manufacturing

processes for producing renewable feedstocks (King, Dräger

et al., 2015; King, Lloyd, et al., 2015; Nielsen & Keasling, 2016). In

this field, mathematical modeling can help find optimal genetic

manipulations (Stracquadanio et al., 2010) and speed up the

identification of better‐performing strains to produce specific

metabolites of interest (Umeton et al., 2011) that can replace their

petrochemical‐derived equivalents. The yeast models are the

bioreactors of metabolic precursors, which are converted into a wide

range of consumer products, for example, beta‐carotene (β‐carotene)

and succinic acid (or succinate).

The β‐carotene has nutraceutical and antioxidant properties. These

properties make β‐carotene a highly desired product in agriculture, food,

pharmaceutical, and industries alike. In 2018, it had an estimated $1.4

billion in market demand (Abdel‐Mawgoud et al., 2018; Larroude

et al., 2018). Furthermore, the high versatility of succinic acid in multiple

industrial chemical applications and consumer products makes its

market demand grow steadily at a compound annual growth rate of

around 27.4% to reach $1.8 billion (768 million metric tons (MT) at

$2.3 kg−1) by 2025 (Nghiem et al., 2017).

The β‐carotene and succinic acid are mainly produced by specific

host yeasts: the oleaginous yeast Yarrowia lipolytica (Y. lipolytica) is the

preferred host to produce carotenoids (β‐carotene) because of its

naturally high supply of carotenoids precursor cytosolic as acetyl‐

CoA and redox cofactor: nicotinamide adenine dinucleotide phos-

phate (NADPH), which reduces nicotinamide adenine dinucleotide

(Kildegaard et al., 2017). On the other hand, the preferred succinic

acid producer yeast is Saccharomyces cerevisiae (S. cerevisiae), known

for its ability to grow under acidic conditions and for its well‐

characterized role in wine acidity (Cao et al., 2013; Franco‐Duarte

et al., 2017; Vilela, 2019).

Our study proposes a robust methodology based on a multi-

objective evolutionary algorithm (MOEA) for in silico identification of

competitive genetically manipulated strains of Y. lipolytica and

S. cerevisiaemetabolism (Section 2). This is through selecting effective

gene deletions (knockout) in the respective genome‐scale metabolic

(GEM) models. In addition, the algorithm attempts to knock out genes

on the same chromosome to simplify the in vitro process. We

describe the results of the two case studies in Section 3. The results

show that our methodology is an effective strategy to optimize the

design of competitive strains to produce organic compounds in large‐

scale fermentation that leads to a more targeted in vitro mutagenesis

(King, Dräger et al., 2015; King, Lloyd, et al., 2015; Nielsen &

Keasling, 2016; Patanè et al., 2015, 2019).

The β‐carotene is the main source of provitamin A; this is its main

nutritional function. Vitamin A is also known as retinol, which is used

as a visual pigment chromophore in the eyes. It is also implicated in

the growth and reproductive efficiency of the epithelial tissue. Thus,

retinoids have been used in dermatological treatments, such as for

acne. The antioxidant property of carotenoids is linked to their

capacity to bind with singlet oxygen by a conjugated double

bond system. Moreover, β‐carotene is used as a food colorant and

as a nutritional supplement of vitamin A. In fact, 100% of β‐carotene

can be converted into vitamin A. The international trade of

β‐carotene is dominated by private companies such as Roche

and BASF.

These companies produced β‐carotene through a synthetic

approach. Both companies started the synthesis using the same

molecule, namely, β‐ionone, but used different methods. Roche used

a synthesis for polyenic aldehydes in the form of enol–ether

condensation. BASF used the Witting condensation for the produc-

tion of β‐carotene. The aspect that enhances the interest in the

natural β‐carotene is that it contains several other carotenoids in low

concentrations, which provides further health benefits. Only a low

percentage of the total β‐carotene produced worldwide is natural,

and it is really interesting to increase the natural production of this

chemical and make the process more environmentally friendly

(Ribeiro et al., 2011). It was illustrated that globally β‐carotene

production via herbal sources comprises 2%. Carotenoids are isolated

from components of flowers, plants, and fruits. They can be found in

vegetables and in fruits, in which orange carrots are the most

common source of β‐carotene. As said above, industrial carotenoids

are produced by extraction and chemical synthesis; chemical

synthesis produces hazardous wastes, which are harmful to the

environment (Gupta et al., 2022).

The succinic acid is traditionally made from fossil resources used

in different ways, such as a chemical intermediate in medicine, in the

manufacture of lacquers, and perfume. An interesting application

field is that it can be used as an intermediate for producing

biodegradable polymers (Rex et al., 2017). In fact, succinic acid was

selected as one of the top bio‐based chemicals. Moreover, it can be

converted into other valuable chemicals such as 1,4‐butanediol and

tetrahydrofuran. In 2015 the total market for succinic acid was

hovering around 30,000–50,000 tons per year, but this value has

grown, probably because the knowledge of technology for bio‐based

production has increased. Four companies (Reverdia, Succinity,

Bioamber, and Myriant) commercialized the processes for the bio‐

based production of succinic acid. Also, it works on the conversion of

succinic acid to various derivatives such as polybutylene succinate by

BioAmber, Sinopec. The versatility of this molecule has allowed the

development of an increasing interest in the synthesis, extraction,
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and purification of this chemical, with processes that will increase the

yield and especially make the process more environmentally friendly

(Choi et al., 2016).

2 | IN SILICO ENGINEERED STRAIN AND
CASE STUDIES FOR YEASTS

2.1 | Automated in silico strain design of
genome‐scale models

The genome‐scale models are among the most effective tools for in

silico representation and analyses to tackle strain design and

optimization tasks (King, Dräger et al., 2015; King, Lloyd, et al., 2015;

Lu et al., 2019; Nielsen & Keasling, 2016; Palsson, 2015). Such

genome‐scale models can include a metabolic network of pathways or

organisms that offers a representation of microorganisms as realistic

as possible (Palsson, 2015). The metabolic network reconstruction is

based on the stoichiometry of metabolic chemical reactions and

metabolites involved as products or reagents.

In the stoichiometry of metabolic chemical reactions and

metabolites, the stoichiometric coefficients are grouped in a sparse

matrix S of size m n× , wherem is the number of metabolites in the

model (each row is a unique compound) andn is the number of

simulated reactions (each column is a reaction). The matrix S

permits the definition of a system ofm mathematical constraints,

given by a mass balance equation: Sv = 0, wherev is a vector of

variables representing flux through all reactions in a steady‐state.

Solving Sv = 0 is known as flux balance analysis (FBA)

(Palsson, 2015).

The constraints Sv = 0 ensure that the balance of mass for each

metabolite in a model holds. Moreover, in all reconstructions, m n< ,

due to more reactions than the metabolites). However, such a system

of constraints defines an unconstrained solution space. Therefore, a

feasible solution space is usually defined by applying a lower bound

and upper boundlbi andubi on each fluxvi . These bounds are applied

to internal reactions and external exchange reactions simulating the

uptake and secretions of chemicals to and from the extracellular

regions. These bounds mainly represent the environmental condi-

tions in which a cell is located and its metabolic footprinting.

Once a feasible solution space is defined, it is possible to select a

specific pointv that is optimal for a specific objective function vbio ,

which is defined as linear combination vectorsv andc, wherec is a

vector of weights indicating the quantity of each reaction (flux

intensity) that contributes to the objective function. The objective

function usually maximizes flux through a single artificial reaction

simulating biomass production or the growth rate. The definition of

this objective function is crucial for the precision of fluxes. This

stoichiometric definition of objective is often complicated in both its

composition and values of coefficients, even though it only refers to

the exponential growth phase of a cell's cycle. The optimal point v

can be found by optimizing systems by solving mmol gDW−1 h−1 and

by using linear programming as

∑ c v c v v

Sv lb v ub i n

maximize = = ,

subjected to = 0 and ≤ ≤ , for all = 1, …, .

j

n

j j
T

i i i

bio

(1)

When the optimal valuev of the growth rate is established, a

subsequent optimization called flux variability analysis (FVA)

(Palsson, 2015) is performed to explore a more constrained feasible

solutions space where this new constraint is defined by hyperedges of

the polytope. FVA allows the definition of flux ranges for a single

reaction in the hyperedge.

The range (lower and upper bounds) is critical for evaluating the

robustness of single strain prediction. For example, if we consider the

production of a compound, a small range could mean that, despite

the variance that the predictions might have along the edge‐link in

the reaction graph, there is still a minimum production always

predicted regardless of other fluxes, and this prediction is comparable

to the theoretical maximum under stress growth conditions. The

parsimonious FBA (pFBA) is another approach that could lead to

more reliable prediction, specifically for the fluxes of internal

metabolic reactions occurring in the internal compartments, different

from the extracellular region (Palsson, 2015).

Similar to FVA, the pFBA approach calculates the optimal growth

rate from FBA optimization as a constraint and then minimizes the

sum of absolute values of fluxes through all reactions in a network.

Thus, this new optimization returns a parsimonious distribution of

fluxes (optimal array of fluxes) throughout the network, avoiding

numerical predictions that do not have any biological justification, a

common issue in FBA (Palsson, 2015). For an optimal array of fluxes,

we define two quantities to evaluate the results of chemical

production: theyield andproductivity of specific chemicals. These

quantities are, respectively, defined as:

yield
v

v
=

bio

cs
(3)

and

⋅productivity
v

v
v= h = .−1 bio

cs
obj (4)

After normalizing yield ≤ 1 using the corresponding molar

masses vcs , the yield becomes a scalar quantity, expressing the

fraction of chemicals produced over the quantity of glucose vglc (in

general, the quantity of carbon source vcs ) that the cell has used. The

theoretical upper bound for yield equals 1, that is, when all

the glucose is converted to the specific chemical without waste.

The productivity, instead, is measured as (h−1), which gives the rate of

speed at which a product can be obtained, where vobj is the growth

rate. Moreover, Using the extreme ranges obtained from the FVA for

each reaction, the ranges for yield and productivity can be obtained,

and this will give us the energy and carbon source quantity that each

reaction uses.

The predictions on the distribution of reaction fluxes obtained in

wild‐type (WT) and simulated conditions come from evaluating the
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metabolic network. The next question is then how the linear

programming problem must be changed to reproduce the metabolic

engineering techniques, namely, in our case, to simulate the gene

deletions. We use an MOEA to address this issue.

2.2 | Pareto optimal metabolic engineering
framework

We created our metabolic engineering framework (Figure 1) by

applying MOEA on genome‐scale models of yeasts, where the fitness

functions of the models were computed using FBA. As explained in

Figure 1, the genes are present in the genome‐scale models through

gene protein reaction (GPR) relationships that link the genes with the

coded enzymes and coded enzymes with the corresponding catalyzed

chemical reaction.

Using a series of logical rules defined by atomic propositions

referring to single genes of the simulated genome and logical

connectors AND OR, the genes are simulated in the model as a

prerequisite for each reaction to be active. The logical connectors

help represent complex relationships, such as the isoenzymes and

subunits. The rules for each reaction can be evaluated from the

atomic true and false values, and the reactions with satisfied

propositions (that refer to genes) are considered in the metabolic

network. A reaction that must be excluded from the model following

one or more gene deletions is simulated, posing the lower and upper

bounds equal to 0 and forcing the corresponding flux variable to

assume a null value.

Multiobjective optimization algorithms are used for this class of

problems since an exhaustive evaluation of all the possible gene

deletion combinations is practically infeasible, even using a simple

approach such as FBA. The number of different configurations to be

considered for such a study is equal to 2g for g genes. Even when

considering a fixed maximum number of deletions, it would be equal

to a sum of d g∑ ( ) for d gene deletions (knockout). Hence, a

multiobjective optimization framework is useful for efficiently

exploring the large solution space of gene deletions. We propose

using a modified version of the multiobjective metabolic engineering

algorithm (Patané et al., 2019) to explore the possible sets of

deletions and their impact on the growth rate and chemical

production (see Supporting Information in Section A). It is an ad

hoc evolutionary algorithm that follows the principles of natural

selection (De Jong, 2016). That means it starts from an initial

population of candidate strains (logical arrays in which each value

represents a gene), and the population evolves over a fixed maximum

number of generations. In each generation, genetic operators such as

mutation and crossover attempt to switch genes on and off (i.e.,

randomly switch binary components of the array). Then, the selection

operator selects the candidates with the most promising and best‐

performing value of one or more fitness functions (objectives). The

fitness functions, in our case, are growth rate and production capacity.

Such an iterative process evolves a population in the next generation

fitter than the previous generation and helps obtain the near‐optimal

solutions in the final populations.

The optimization of two or more objectives, which in most cases

compete for resources available for the cell from the exchange

reactions, defines a classical multiobjective optimization problem, in

which it is possible to define a set of optimal points, called

Pareto Front (Patanè et al., 2015). Each point in a Front cannot be

improved in all the considered objective functions simultaneously.

F IGURE 1 Metabolic engineering frameworks. This framework takes a multiobjective evolutionary optimization algorithm (MOEA) of a
population of “m” individuals (genetic vector of genes on the far left in the framework) for optimizing yield and growth rate. This optimization
produces a Pareto Front (on the far right in the framework) computed using flux balance analysis (FBA). The FBA takes a reaction vector of
length “n” formed by a combination of “p” enzymes. Active genes in the genetic vector are indicated with 1, and the active reactions (flux),
created based on genes and enzyme rules (“X” indicates AND “+” indicates OR), in FBA are indicated with 1 in the reaction vector. Value 0 in the
genetic vector indicates knockout genes, and 0 in the reaction vector indicates inactive reaction.
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An optimization technique for these problems aims to find such a

Front or a good approximation of the problem. The code of this

framework is available at: https://github.com/GiuseppeNicosia1/

pareto-optimal-metabolic-engineering.

3 | RESULTS

3.1 | β‐Carotene production in engineered
Y. lipolytica

3.1.1 | Optimal strains of β‐carotene production
by Y. lipolytica

The production of β‐carotene in Y. lipolytica is simulated and

evaluated using the iYL619_PCP genome‐scale model (Pan &

Hua, 2012). In addition, based on our literature review, to promote

β‐carotene production in Y. lipolytica, we added the heterologous

metabolic pathway of three knock‐in genes: geranylgeranyl

diphosphate synthase (GGS1 from Y. lipolytica), phytoene synthase/

lycopene cyclase, and phytoene dehydrogenase (carPR and carB from

Mucor circinelloides) (Celińska et al., 2017; Gao et al., 2014; Larroude

et al., 2018). Consequently, the model was modified by adding the

corresponding arch (a new pathway) to the metabolic network. After

introducing three knock‐in genes, the next step is to maximize the

expression of these genes within the yeast. This can be implemented

by engineering the yeast or by biotechnology strategies like Celińska

et al. (2017), where they found that β‐carotene production was

enhanced by increasing lipogenesis and gene copy number and by

identifying the best combination of promoters and genes. For this,

they performed a promoter shuffling strategy by using a golden gate

toolbox for Y. lipolytica.

There are several other examples of the strategy to optimize

Y. lipolytica. For example, Zhang et al. (2020) enhanced the β‐carotene

production by increasing copies of carB (three copies) and carRP (two

copies) genes and overexpressing the genes (GGS1, ERG13, and HMG)

correlated with Mevalonate pathway. This pathway contributes to the

production of carotenoid precursors: isopentenyl pyrophosphate and

dimethylallyl pyrophosphate (DMAPP). The DMAPP metabolite is

converted into farnesyl diphosphate (FPP) in multiple‐step reactions.

The overexpression of the GGS1 enzyme makes the whole of FPP

convert into geranylgeranyl pyrophosphate (GGPP) rather than

entering into the squalene pathway. From GGPP, two knock‐in genes

carRP and carB convert GGPP into phytoene and lycopene, and in the

final step of the pathway, carRP converts lycopene into β‐carotene.

Moreover, Zhang et al. (2020) successfully analyzed 11 sites for

CRISPR/Cas9‐mediated heterologous gene knock‐in Y. lipolytica and

found that four sites are involved in β‐oxidation (POX2, POX3, POX4,

and POX6), six sites belonged to nonfunctional pseudogenes due to

frameshift (E1, A1, B1, A2, F1, and E2), and the last site LIP1 is

engaged in lipid metabolism.

Liu et al. (2021) suggested a modern strategy to optimize the

β‐carotene production by constructing codon‐adapted genes and

minimizing the intermediate accumulation, which plays an important

role in metabolic balance. The metabolic balance means no

accumulation of intermediates at the connecting node when

combining upstream and downstream pathways. This methodology

inserts the β‐carotene biosynthesis pathway consisting of knock‐in

genes carRA and carB from Blakeslea trispora, where these two genes

were codon adapted for a better expression. Here, metabolic balance

is an important factor. In the biosynthesis of β‐carotene, there are

four enzymes that limit the rate of the process: tHMGR, GGS1,

carRA, and carB. The metabolites (intermediates) that are converted

by these enzymes are HMG‐CoA, FPP, GGPP, lycopene, and

phytoene. Therefore, an inadequate expression of these enzymes

will lead to a high accumulation of these intermediates, which results

in a small production of β‐carotene. Hence, they overexpressed the

genes tHmgR, Ggs1, carRA, and CarB with Snf, Lip1, Pox3, and Pox4

as the target sites, which caused the deletion of these genes that led

to increases in lipid body formation that allowed more storage space

for β‐carotene.

F. Yang et al. (2021) proposed a new approach that focuses on a

new feature called DID2 genes. This gene is a subunit of the ESCRT

(endosomal sorting complex required for transport). This complex is

made up of cytosolic protein complexes known as ESCRT‐0, ESCRT‐I,

ESCRT‐II, and ESCRT‐III that, together with other accessory proteins,

enable a remarkable way of membrane remodeling. The DID2 gene in

Y. lipolytica was amplified and inserted into pJN44, leading to pJN44‐

Did2. As a subunit of the ESCRT protein complex, the DID2 improves

β‐carotene production (increased by 260%) and does not cause

metabolic stress for the host cell. To understand why this gene

improved β‐carotene production in Y. lipolytica, they studied the

messenger RNA (mRNA), protein, and precursor that are part of the

β‐carotene pathway. From the study of mRNA of Thmg, Ggs1, carRA,

and carB genes, they realized that due to the introduction of the DID2

gene, the mRNA levels of β‐carotene pathway genes were high. In

their study, DID2 elevated the mRNA level of the β‐carotene

synthesis pathway genes in Y. lipolytica. They found that the DID2

also increased glucose consumption during the exponential growth

phase and stationary phase, which is an important feature in

metabolic engineering.

In our study, for an in silico simulation, we set the growth

conditions of yeast and configured two main objectives: maximization

of β‐carotene production and maintenance of biomass as close as

possible to that of the WT. We employ MOEA for retrieving gene

deletions leading to suboptimal strains. MOEA starts from a

population of WT strains with the highest growth rate prediction,

but a null β‐carotene production and is located at the bottom of the

Pareto Front (see Figure 2). Then, MOEA explores possible deletions

and phenotypes of the resulting strains. The phenotypes tend to

cluster in various separate regions. We discovered that these regions

are related to specific gene deletions that characteristically change

the predictions. Hence, the Fronts in Figure 2 appear to be divided

into steps. However, the clusters vary only slightly from each other.

The MOEA finds the importance of a small set of genes that share

a similarity in predictions through its evolutionary optimization
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procedure. The presence of these clusters highlights the algorithm's

efforts in finding other useful deletions. This is particularly evident in

the top region of Figure 2, where the algorithm considered several

points. Still, none led to other Pareto optimal points, despite the

sensible reduction in the growth rate.

Similarly, we analyzed the productivity of the yeast. The

productivity values are in the order of magnitude of −4 because

both growth rate and production have low values. Furthermore, the

glucose level varies among the points, especially those with low

growth where the metabolic network does not use all the carbon

sources. These differences also change the distribution of the

explored points and the Pareto Front; many points have various

productivity levels that do not correspond to the productions.

Notably, not all the points of the Pareto Front (in Figure 2) are

optimal when considering either productivity or growth rate. Instead,

there is a clear trade‐off. Thus, the best way of comparing the strains

can vary depending on the desired phenotypes and the specificity of

applications.

Figure 3 represents a three‐dimensional graph to compare

minimum productivity, maximum productivity, and growth rates to

determine the characteristics of strains. These three parameters are

essential to determine which strains are best suited for use in the

laboratory. The parameters maximum and minimum productivity

measure the quantity of β‐carotene production under optimal and

nonoptimal conditions. Indeed, it is necessary to find a high value of

the maximum and minimum productivity (see x‐axis and z‐axis in

Figure 3) to achieve high production of β‐carotene. Finding a high

value of minimum productivity is more significant because it is

challenging to maintain stable optimal growth conditions in both in

vitro and industrial bioreactors. Hence, a strain where the value of

minimum productivity is high ensures a high β‐carotene production is

possible even in suboptimal conditions. This gives us a measure of

how resistant an obtained strain is. In Figure 3, the most significant

F IGURE 2 Pareto Front (red asterisk and connected with red line)
obtained by a multiobjective evolutionary algorithm for optimizing
growth rate (x‐axis) and yield (y‐axis) of β‐carotene in Y. lipolytica. The
phenotypes cluster feasible points in several regions related to
specific gene deletions (blue points). Each cluster characteristically
changes the prediction of growth rate (h−1) and β‐carotene yield
based on specific gene knockout.

F IGURE 3 Characterization of each strain for their minimum (x‐axis) and maximum (z‐axis) β‐carotene yields against the corresponding
growth rate (y‐axis). The most significant strains are located at the top right corner of the graph, as they have high values for growth rate
(e.g., 0.011) and maximum β‐carotene yield (e.g., 0.08) and minimum β‐carotene yield (0.08).
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strains are at the top right of the graph because they represent the

best compromise between yeast growth and β‐carotene productivity.

3.1.2 | Carbon source analysis

The relationship between the production of the chemical and the

amount of used carbon source measures the yield. For example, our

study used glucose as a carbon source for yeast growth and to

produce β‐carotene. However, different carbon sources can also be

used, for example, glycerol (GLY).

Larroude et al. (2018) used GLY as a cheap carbon source with

two different media, rich yeast extract peptone dextrose (YPD)

medium and synthetic yeast nitrogen base (YNB) medium, and with

different carbon source concentrations (10, 20, 30, and 60 g L−1),

keeping the amount of nitrogen constant. They selected culture

media YPD10, YPD60, YNB20, YNB30, YNB60, and YNBGLY60 for

β‐carotene production and found that the production varied

significantly based on culture media usage. Additionally, Braunwald

et al. (2013) showed that both the carbon–nitrogen ratio and the

applied initial carbon and nitrogen contents influenced the parame-

ters, that is, high carbon–nitrogen ratio promotes lipid production and

other carbon‐based molecules such as carotenoids. However, they

found that lipid yield was not affected by ammonium contents, while

the carotenoid production decreased significantly at low and high

ammonium supply levels.

Therefore, we can suggest that carbon source has little influence

on production since glucose and GLY have similar titer and yields. In

addition, a clear correlation between the increase in the initial glucose

content and the production titer was found in both rich and synthetic

media (Larroude et al., 2018). Noticeably, the production yields for all

the YNB‐based media were similar and were independent of the

amount or kind of carbon source used. However, this was not the

case for rich media (YPD), and it offered a trade‐off between

production titer and yield. For example, the best β‐carotene titer was

1.5 g L−1 in YPD60, while the best yield was 0.048 g g−1 in YPD10.

Moreover, in all cases, YPD had higher titers and yields than YNB.

(Larroude et al., 2018). Therefore, they selected rich media to further

optimize the culture conditions in a controlled fermentation in a

bioreactor.

3.1.3 | Analysis of strains and relative genes
knockout

We analyzed the results of the MOEA simulation to identify the most

suitable strains for in vitro testing. Table 1 offers growth values of

β‐carotene production, ATP, NADH, NADPH, and especially FAD

(H2). From Table 1, we identified that strain number 7 (row 7 in

Table 1) has a significant exponential increase in its energy value

parameters, that is, the values of ATP, NADH, NADPH, and FADH

have notably increased (see columns in Table 1). Specifically, the

production of ATP rises by 108.72%, NADH by 116.60%, NADPH by T
A
B
L
E

1
T
he

se
ve

n
si
gn

if
ic
an

t
st
ra
in
s
o
f
Y
ar
ro
w
ia

lip
ol
yt
ic
a
se
le
ct
ed

fr
o
m

th
e
P
ar
et
o
F
ro
nt
.

N
o
.
o
f

st
ra
in

B
io
m
as
s
(W

T
va

ri
at
io
n)

β‐
ca
ro
te
ne

p
ro
d
uc

ti
o
n

(m
m
o
lg
D
W

−
1
h
−
1
)

A
T
P
p
ro
d
uc

ti
o
n
(W

T
va

r.
%
)
(m

m
o
lg
D
W

−
1
h
−
1
)

N
A
D
(H

)
p
ro
d
uc

ti
o
n
(W

T
va

r.
%
)
(m

m
o
lg
D
W

−
1
h
−
1
)

N
A
D
P
(H

)
p
ro
d
uc

ti
o
n
(W

T
va

r.
%
)
(m

m
o
lg
D
W

−
1
h
−
1
)

F
A
D
(H

2
)
p
ro
d
uc

ti
o
n
(W

T
va

r.
%
)
(m

m
o
lg
D
W

−
1
h
−
1
)

N
o
.

o
f
K
O

W
T

0
.0
1
1
1
5
2
3
6
2

0
6
2
.6
8
9
1
1
7
0
9

1
1
.8
3
0
8
6
4
6
7

2
9
.8
4
4
5
9
3
4
1

0
.1
2
8
9
4
4
9
8
7

1
0
.0
1
1
1
2
(−
0
.2
9
%
)

0
.0
3
1
7
2
5

6
2
.7
3
7
8
(+
0
.0
8
%
)

1
1
.5
5
0
4
(0
.1
9
)

2
9
.7
8
8
3
(−
0
.1
9
%
)

0
.1
2
8
9
5
(0
%
)

1

2
0
.0
1
0
9
0
7
(−
2
.2
0
%
)

0
.2
2
6
3
4

7
3
.8
9
4
7
(+
1
7
.8
7
%
)

1
4
.7
7
4
3
(+
2
4
.8
8
%
)

3
2
.5
5
9
1
(+
9
.1
0
%
)

0
.9
0
7
3
7
(+
6
0
3
.6
9
%
)

3

3
0
.0
1
0
8
9
7
(−
2
.2
9
%
)

0
.2
2
7
3
6

6
9
.2
0
3
6
(+
1
0
.3
9
%
)

1
4
.7
4
3
7
(+
2
7
.4
0
%
)

3
2
.5
3
8
8
(+
9
.0
3
%
)

0
.9
1
1
4
6
(+
6
0
6
.8
6
%
)

4

4
0
.0
1
0
8
9
7
(−
2
.2
9
%
)

0
.2
2
7
3
6

6
9
.2
0
3
6
(+
1
0
.3
9
%
)

1
4
.7
4
3
7
(+
2
7
.4
0
%
)

3
2
.5
3
8
8
(+
9
.0
3
%
)

0
.9
1
1
4
6
(+
6
0
6
.8
6
%
)

4

5
0
.0
1
0
8
8
5
(−
2
.4
0
%
)

0
.2
2
7
3
6

7
3
.8
9
7
8
(+
1
7
.8
8
%
)

1
4
.7
7
6
(+
2
4
.8
9
%
)

3
2
.5
4
1
4
(+
9
.0
4
%
)

0
.9
1
1
4
6
(+
6
0
6
.8
6
%
)

5

6
0
.0
1
0
8
3
8
(−
2
.8
2
%
)

0
.2
2
7
3
7

7
3
.7
7
9
7
(+
1
7
.6
9
%
)

1
4
.7
4
8
4
(+
2
4
.6
6
%
)

3
2
.4
1
4
1
(+
8
.6
1
%
)

0
.9
1
1
4
6
(+
6
0
6
.8
6
%
)

6

7
0
.0
1
0
6
1
9
(−
4
.7
8
%
)

0
.2
2
6
3
7

1
3
0
.8
4
3
3
(+
1
0
8
.7
2
%
)

2
5
.6
2
5
4
(+
1
1
6
.6
0
%
)

7
3
.4
3
2
5
(+
1
4
6
.0
5
%
)

0
.9
0
7
4
4
(+
6
0
3
.7
4
%
)

6

N
ot
e:
W

e
se
le
ct
ed

se
ve

st
ra
in
s
b
as
ed

o
n
th
e
p
ar
am

et
er
s
sh
o
w
n
in

co
lu
m
ns
.T

he
fi
rs
t
ro
w

sh
o
w
s
re
su
lt
s
o
n
w
ild

‐t
yp

e
(W

T
)s
tr
ai
n.

C
o
lu
m
n
1
is
th
e
nu

m
b
er
in
g
o
f
st
ra
in
s.
T
he

se
co

nd
co

lu
m
n
is
th
e
b
io
m
as
s
(t
he

to
ta
l

m
as
s
o
f
al
l
liv
in
g
m
at
er
ia
l
in

a
sp
ec

if
ic

ar
ea

,h
ab

it
at
,
o
r
re
gi
o
n)
.
O
th
er

co
lu
m
ns

fr
o
m

le
ft

to
ri
gh

t
ar
e
β‐
ca
ro
te
ne

p
ro
d
uc

ti
o
n
(t
he

q
ua

nt
it
y
o
f
β‐
ca
ro
te
ne

p
ro
d
uc

ed
b
y
st
ra
in
s)
,
ad

en
o
si
ne

tr
ip
ho

sp
ha

te
(A
T
P
)

p
ro
d
uc

ti
o
n,

N
A
D
(H

)
p
ro
d
uc

ti
o
n,

N
A
D
P
(H

)
p
ro
d
uc

ti
o
n,

F
A
D
(H

2
)
p
ro
d
uc

ti
o
n.

T
he

la
st

co
lu
m
n
is

th
e
nu

m
b
er

o
f
kn

o
ck
o
ut

ge
ne

s
o
f
st
ra
in
s.
W

e
fo
cu

se
d
p
ri
m
ar
ily

o
n
tw

o
p
ar
am

et
er
s:

b
io
m
as
s
an

d
β‐
ca
ro
te
ne

p
ro
d
uc

ti
o
n.

T
hu

s,
w
e
se
le
ct
ed

th
e
st
ra
in
s
w
it
h
sm

al
le
r
b
io
m
as
s
lo
ss

an
d
hi
gh

er
β‐
ca
ro
te
ne

p
ro
d
uc

ti
o
n.

T
he

hi
gh

es
t
va

lu
es

ar
e
in
d
ic
at
ed

in
b
o
ld
.

AMARADIO ET AL. | 7



+146.05%, and FAD(H2) by +603.74% for strain number 7. This

exponential growth can bring either positive or negative results,

which means that a significant amount of energy is required to grow

yeasts, but such a substantial concentration of molecules can

produce toxic substances as well.

Additionally, Table 1 shows that the strains for the β‐carotene

production fluctuate only marginally. This is due to the metabolic

pathway obtained by adding three knock‐in genes, which were

common to all the strains, and they only differ in their knockout

genes. Table 2 identifies the number and type of genes removed

(knocked out) from the genome of the selected strains. We observed

that there were between 1 and 7 genes switched off. Hence, to

analyze knockout genes and the involved pathway, we used the

Kyoto Encyclopedia of Genes and Genomes (Kanehisa & Goto, 2000).

Moreover, we studied the relationship between yield and the number

of knockout genes. This relation is shown in Figure 4 (left plot), which

indicates that the increase in yield is directly proportional to the

number of knockouts.

Table 2 allows biotechnological considerations to be made.

Namely, as mentioned above, the following is given: the number of

genes deleted in each strain, the name of each gene, and the

chromosomal location of each. The chromosome belonging to each

gene is clarified by the name. Specifically, the chromosome is

indicated in the sixth character of the identifier of the corresponding

gene. Knowledge of the associated chromosome becomes useful in

the transition from in silico to in vitro. This is because the deletion of

genes belonging to the same chromosome is greatly facilitated by

knockouts.

We examined the strains from Table 2, in which most of the

knockout genes were located on the same chromosome. For

example, in strain number 2, we notice three knockout genes

(YALI0A05379g, YALI0F11935g, and YALI0F17996g); as we can see

TABLE 2 Knockout (KO) genes of
Yarrowia lipolytica

No. of
strain

No.
of KO Gene KO

1 1 YALI0F17996g

2 3 YALI0A05379g, YALI0F11935g, YALI0F17996g

3 4 YALI0A5379g, YALI0E22649g, YALI0F15587g, YALI0F17996g

4 4 YALI0A5379g, YALI0B15598g, YALI0F15587g, YALI0F17996g

5 5 YALI0A04983g, YALI0A05379g, YALI0E22649g, YALI0F15587g,

YALI0F17996g

6 6 YALI0A04983g, YALI0A05379g, YALI0C23408g, YALI0E22649g,
YALI0F15587g, YALI0F17996g

7 6 YALI0A05379g, YALI0C04433g, YALI0D06325g, YALI0E16643g,
YALI0E26004g, YALI0F17996g

Note: Results identify the genes that were removed from the genome of Y. lipolytica of each strain and
explain this removal. Strains in rows are arranged in the ascending order of the number of their KO
genes. The frequently occurring KO genes are YALI0A05379g and YALI0F17996g.

F IGURE 4 Correlation between yield and the number of gene deletions. The x‐axis shows the number of knockout genes in ascending order.
Yield along the y‐axis is the ratio between the production of chemicals and the quantity of consumed carbon source. The mean yield is shown by
a horizontal blue line within the box plot. Left plot: Correlation between maximum β‐carotene yield and the number of gene deletions (knockout
genes) in strains obtained from Yarrowia lipolytica. Right plot: Correlation between maximum succinate yield and knockout genes in
Saccharomyces cerevisiae.
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from the name, the first gene is located on chromosome A and the

other two on chromosome F. In this strain, we have a β‐carotene

production of 0.22634 (mmol gDW−1 h−1). We further study the

frequently silenced genes YALI0F17996g and YALI0A05379g in

Table 2. The gene YALI0F17996g has a length of 4527 bp, GC

% = 53.15%, and is a part of chromosome F. This gene translates to a

protein that catalyzes the reaction of ergosterol transport. The gene

YALI0A05379g has a length of 2361 bp, GC% = 51.16%, and is part of

chromosome A. This gene translates an enzyme, chorismate:L‐

glutamine aminotransferase, for para‐aminobenzoate (PabA) synthase

ABZ1. This enzyme is composed of two parts, PabA and PabB. In the

absence of PabA and glutamine, PabB converts ammonia and

chorismate into 4‐amino‐4‐deoxychorismate (in the presence of

Mg2+). On the other hand, the PabA converts glutamine into

glutamate only in the presence of stoichiometric amounts of PabB.

Additionally, this enzyme is coupled with EC 4.1.3.38, aminodeox-

ychorismate lyase, to form 4‐aminobenzoate. Thus, the reaction

catalyzed by this enzyme is chorismate + L‐glutamine→ 4‐amino‐4‐

deoxychorismate + L‐glutamate, and the standard Gibbs free energy

(ΔrG′°) for this reaction is −2.0558853 kcal mol−1, which is an

exergonic reaction. Therefore, this indicates a spontaneous reaction.

To establish the role of YALI0F17996g and YALI0A05379g, we

set up an additional simulation, where we knocked in the

heterologous genes (GGS1, carPR, and carB) and knocked out

YALI0F17996g and YALI0A05379g. We obtained an increase in

β‐carotene productivity and a lower D‐glucose exchange than aWT

strain (see Table 3).

3.2 | Succinic acid production in engineered
S. cerevisiae

3.2.1 | Optimal strains of succinate production by
S. cerevisiae

We changed the MOEA framework to tackle critical points that could

affect the precision and reliability of the results for our case study on

succinic acid production in S. cerevisiae. The analysis of the succinic

acid production in S. cerevisiae is conducted using the GEM yeast

model, v. 8.3.1 (Lu et al., 2019). In this genome‐scale model, no

changes were needed as the pathway for succinate production is

already included in the model. Furthermore, for these simulations, we

set the bounds of the external exchange reactions of the models to

simulate the growth in a rich medium, that is, the synthetic defined

medium for the S. cerevisiae model.

First, we improved the framework based on the knowledge

obtained from β‐carotene production. We found that some obtained

points offered a low growth rate, which signifies an impeded cell

metabolism. Therefore, we limit the tolerance of the MOEA to a

reduced growth rate compared to theWT. We set a bound of 10% on

this growth rate.

Second, using the fluxes predicted by the pFBA, we induced a

similar bound on the sum of the fluxes through the reactions in the

network that produce the metabolites ATP, GTP, NADH, NADPH,

and FADH2. These constraints aimed to improve the quality of the

results obtained by the algorithm, ensuring that the strains do not

differ excessively from the WT at every step. In other words, we

force the algorithm to explore more extensively a narrow region to

produce better results.

Third, we included some restrictions on the gene deletions by not

allowing MOEA to delete some of the essential genes and allowing

the deletions of genes involved in the synthetic double deletions. For

this, we use the database of Heavner and Price (2015). This

restriction helped the algorithm avoid unfeasible mutated strains

that are not always correctly predicted by FBA (Heavner &

Price, 2015). Finally, we considered the maximization of productivity.

The results of the algorithm using this setting are summarized in

Figure 5 (left plot), where we observe a slight reduction in allowable

growth. Nonetheless, the algorithm increased the productivity from

the initial null point. Thus, a step‐like clustering behavior is still

present, but less prominent than the one obtained for β‐carotene

shown in Figure 2.

Contrary to the previous simulation, Figure 5 (left plot), instead

of growth rate, our final simulation in Figure 5 (right) included two

extremes: min and max productivity values as per FVA. The resulting

strains of this simulation are shown in Figure 5 (right). The number of

points in this simulation is in only half of the phenotypic space. The

points lying on the highlighted line (dashed line in Figure 5 (right))

correspond to strains for which the range of productivity collides

with a single value. We speculate that these strains are more robust

as the in silico productivity is always ensured when a higher value of

min productivity is obtained.

For example, the only point of the Pareto Front on the dashed

line in Figure 5 (right plot) is a strain with five gene deletions.

Compared to the other points of the front, the points (strains on the

dashed line) have lower maximum productivity, but have the highest

TABLE 3 Comparison between wild
type (WT) and strains obtained by deletion
of YALI0A5379g and YALI0f17996g
genes, which were frequently silenced
during multiobjective optimization.

Reactions WT
Deletion of YALI0A5379g
and YALI0f17996g

Growth rate (h−1) (WT variation %) 0.011152362 0.010919286 (−2.16%)

Max productivity (h−1) 0 0.062331504

Min productivity (h−1) 0 0.059657794

D‐glucose exchange (WT variation %)
(mmol gDW−1 h−1)

−3.034654555 −3.631218038 (−16.42%)
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minimum productivity predicted. Thus, the points (strains) with the

highest min productivity values should be preferable to the other

points to ensure a less competitive minimum prediction, even though

other parameters such as the metabolic footprinting should also be

considered along with min productivity.

3.2.2 | Analysis of strain in succinate production by
S. cerevisiae

The analysis of the knockout genes through FBA answers the

questions: how knockout of a specific gene influences the production

of a specific metabolite within a cell and how it changes the

metabolism of yeast. Mathematically, this process is described by a

GPR map (Orth et al., 2010). In GPR, the organism's genes are

grouped using “Boolean” relationships, which associate each gene to

a group based on common reactions catalyzed by their respective

associated proteins. From the analysis of S. cerevisiae, we obtained

483 strains derived from gene deletions, which resulted from

exploring possible sites of gene deletion by MOEA.

MOEA results provided important information about the choice of

strains for in vitro testing and the actual succinate production. For

example, Figure 4 (right plot) shows the relationship between the

maximum succinate yield changes and the number of knockout genes.

Here, we observe that the value of succinate yield increases when the

number of knockout increases. This is obvious because the silencing of

genes spares energy that strains might use to produce succinate.

For our research, we used a set of parameters to select strains.

First, we select seven significant strains (shown in Table 4). After this

selection, we focused on analyzing genes. Mainly, we focus on

F IGURE 5 Succinic acid production in Saccharomyces cerevisiae. Pareto Fronts are shown in red and feasible solutions are in blue dots. Left
plot: The trade‐off between the competitive objectives (succinate production vs. growth rate) constitutes the observed Pareto Front. Right plot:
The trade‐off between the competitive objectives (min and max productivity) constitutes the observed Pareto Front. Minimum productivity is
computed to highlight the most robust strains.

TABLE 4 The seven significant strains of Saccharomyces cerevisiae selected from the observed Pareto Front.

Max
productivity (h−1)

Min
productivity (h−1) Max yield Min yield

Succinate production
(mmol gDW−1 h−1)

Biomass (WT
variation) KO

0 0 0 0 0 0.751751629 WT

0.14064 0.10696 0.2395 0.19708 2.9562 0.71361 (−5.07%) 4

0.14795 0.114 0.2295 0.20685 3.1027 0.71528 (−4.85%) 4

0.14795 0.114 0.2295 0.20685 3.1027 0.71528 (−4.85%) 4

0.14795 0.114 0.2295 0.20685 3.1027 0.71528 (−4.85%) 4

0.14795 0.114 0.2295 0.20685 3.1027 0.71528 (−4.85%) 4

0.14795 0.114 0.2295 0.20685 3.1027 0.71528 (−4.85%) 4

0.14841 0.11455 0.2282 0.2081 3.1215 0.71319 (−5.13%) 9

Note: The parameters from left to right are max productivity, min productivity, max yield, min yield, succinate production, biomass, and knockout (KO)
genes. The values of parameters succinate production and biomass are used to select seven strains. The strains in rows are arranged in the ascending
order of the number of their KO genes. Row 1 indicates wild‐type (WT) strain. The highest values are indicated in bold.
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identifying knockout genes of each strain and their position and

length within the genome of S. cerevisiae. In addition, between

three and nine genes were silenced on average for each strain, as

shown inTable 4. Table 5 reports silenced genes of each strain, and a

roman number in the third column in Table 5 explicitly locates

chromosomes to a silenced gene it belonged to.

MOEA, importantly, knockout a varied number of genes for

strains, leading to heterogeneous results. For example, Table 4 shows

that up to nine genes were knocked out, and despite a large number

of knockouts, the algorithm was able to simulate the life of yeast and,

crucially, had an increased succinate production. Thus, intuitively,

knockout genes result from an optimal compromise between the cost

of knockout and the production rate of succinate. The analysis of

genes was carried out through Genemania (Warde‐Farley et al., 2010)

software for predicting functions and involved pathways. Similar to

our analysis of knockout genes in β‐carotene, we characterize the

genes that were silenced with higher frequency in succinate

production. Table 5 identifies frequently silenced (knockout) genes

of S. cerevisiae. These are GLT1, ALD6, and GPH1.

The knockout gene GLT1 of S. cerevisiae encodes for a glutamate

synthase (GOGAT), which is essential in central nitrogen metabolism

(CNM). CNM contains two pathways (glutaminases [GDA] and

GOGAT, which is NADH‐dependent, converts one molecule of

glutamine and one molecule of α‐ketoglutarate into two glutamate

molecules; Guillamon et al., 2001) for glutamate biosynthesis using

glutamine as the sole source of nitrogen. The presence of two

pathways makes it harder to choose the most significant routes for

the biosynthesis of the end product.

Although the pathway GDA (glutaminases)‐encoding genes are

unknown, these glutaminases may exist because mutants grow well

on glutamine even without the GOGAT enzyme. Some authors (e.g.,

Tempest et al., 1970) have suggested that the role of the GOGAT

pathway, with the concerted action of the glutamine synthetase, is to

assimilate ammonium and synthesize glutamate even under a

shortage of ammonium. However, NADPH‐dependent glutamate

dehydrogenase (NADPH‐GDH) is used to incorporate ammonia

during a shortage or excess of nitrogen in other microorganisms.

This hypothesis suggests that NADPH‐GDH is the main pathway for

glutamate biosynthesis. Therefore, physiological studies have re-

ported that in GOGAT or NADPH‐GDH activities, both WT and

mutant strains are impaired. These show that GOGAT has different

roles in different microorganisms (Barel & MacDonald, 1993;

Valenzuela et al., 1998), but its function in S. cerevisiae is still unclear.

Although the clear reason for GLT1 knockout could not be

established, the unclear role of GOAGT in S. cerevisiae may conclude

that GLT1 may have less influence on succinate production and the

growth of the yeast.

The ALD6 gene of S. cerevisiae encodes the cytosolic Mg2+‐

activated NADP‐dependent acetaldehyde dehydrogenase (ACDH)

and exhibits 60% and 30% activity of wild‐type activated

ACDH (Remize et al., 2000). The main cytosolic Mg2+‐activated

ACDH isoform preferentially uses NADP, and this isoform plays an

important role in both ethanol (deletion of ALD6 gene disables the

organism to use ethanol as a carbon source) and glucose. Since the

deletion of a mutant is feasible on glucose, the enzyme encoded by

ALD6 is not solely responsible for producing cytosolic acetyl‐CoA

(Meaden et al., 1997) and thus not solely responsible for succinate

production.

The GPH1 gene of S. cerevisiae translates to glycogen phospho-

rylase enzyme, which is an essential allosteric enzyme in carbohy-

drate metabolism, but not essential for the life of the yeast. Hence,

this gene draws our attention because we need to answer our

question: “why does the genetic algorithm knock out this gene

frequently?” To do this, using Escher (King, Dräger et al., 2015 King,

Lloyd, et al., 2015), we analyzed the strains in which we knocked out

one by one all of these genes. In the case of the GPH1 gene, we

TABLE 5 Knockout (KO) genes of Saccharomyces cerevisiae.

KO Gene KO Gene KO (standard name) and chromosomic locations

4 YDL171C, YPL061W, YPR160W, YPR127W GLT1 (IV), ALD6 (XVI), GPH1 (XVI), YPR127W

4 YBR221C, YDL171C, YPL061W, YPR160W PDB1 (II), GLT1 (IV), ALD6 (XVI), GPH1 (XVI)

4 YDL171C, YGR193C, YPL061W, YPR160W GLT1 (IV), PDX1 (VIII), ALD6 (XVI), GPH1 (XVI)

4 YDL171C, YNL071W, YPL061W, YPR160W GLT1 (IV), LAT1 (XIV), ALD6 (XVI), GPH1 (XVI)

4 YDL171C, YER178W, YPL061W, YPR160W GLT1 (IV), PDA1 (V), ALD6 (XVI), GPH1 (XVI)

4 YDL171C, YHR002W, YPL061W, YPR160W GLT1 (IV), LEU5 (VIII), ALD6 (XVI), GPH1 (XVI)

9 YDL171C, YHR144C, YJR105W, YLR209C, YNL071W,
YNL169C, YOR175C, YPL061W, YPR160W

GLT1 (IV), DCD1 (XII), ADO1 (X), PNP1 (XII), LAT1 (XIV),
PSD1(XIV), ALE1 (XV), ALD6 (XVI), GPH1 (XVI)

Note: For each strain in rows, the number of silenced (KO) genes are reported in column 1, names of KO genes are reported in column 2, and the

chromosomes they belong to are indicated in column 3 by a roman number (note that the budding yeast S. cerevisiae has a 16‐chromosome organization).
In column 2, from left to right, the acronym provides a description of the genes, whereY indicates yeast's unknown sequence, the second letter represents
the chromosome, the third letter indicates the left or right arm of the chromosome, the number indicates the sequence of the open‐reading frame (ORF),
and the last letter W or C represents Watson (5′→ 3′) or Crick strand, respectively. Column 3 shows that the standard name of a gene is composed of
three letters followed by a number and a roman number written in brackets indicating the chromosome it belongs to, the final letter if an uppercase

character indicates a dominant gene, while if it is a lowercase character, it indicates a recessive gene.
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noticed a particular rearrangement of the metabolism. We found that

the yeast's response to gene knockout was to activate the

transcription of the isocitrate lyase enzyme. This enzyme catalyzes

the conversion of isocitrate into succinate. Therefore, we found

evidence that the MOEA algorithm can find new information for the

production of specific chemicals (see Supporting Information in

Section C).

We also analyzed the second strain of Table 4, in which four

genes have been knocked out (PDB1, GLT1, ALD6, and GPH1), with a

model that includes Expression and Thermodynamics FLux (ETFL),

which efficiently integrates RNA and protein synthesis with

traditional GEM models. To adapt this model for S. cerevisiae,

Oftadeh et al. (2021) developed yETFL, in which they increase the

original formulation with supplementary considerations for biomass

composition, the compartmentalized cellular expression system, and

the energetic costs of biological processes. The results of this analysis

are that the strain with four knockout genes loses 1.52% of the

growth rate compared to the WT.

4 | CONCLUSIONS

We developed an automated tool for in silico implementation of

genetic deletions and a precision modulation of the phenotype of the

host yeasts to select optimized strains. We implemented an MOEA

and its refinements to optimize strains to obtain results that can

realize a sustainable synthesis of metabolic precursors used in large‐

scale manufacturing processes. Our approach optimizes two yeasts

Y. lipolytica and S. cerevisiae. This provides many strains with varied

features for selecting the best strains based on the production

capacity of chemicals (β‐carotene and succinate) with the lowest

biomass losses. By examining knockout genes, we characterize

pathways influenced by the knockout. We found seven strains of

Y. lipolytica and seven strains of S. cerevisiae capable of producing a

high amount of β‐carotene and succinate. Such in silico processes of

strains creation save costs, leading to a high biosustainability.
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