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ABSTRACT
We present an accurate machine learning (ML) model for atomistic simulations of carbon, constructed using the Gaussian approximation
potential (GAP) methodology. The potential, named GAP-20, describes the properties of the bulk crystalline and amorphous phases, crystal
surfaces, and defect structures with an accuracy approaching that of direct ab initio simulation, but at a significantly reduced cost. We combine
structural databases for amorphous carbon and graphene, which we extend substantially by adding suitable configurations, for example, for
defects in graphene and other nanostructures. The final potential is fitted to reference data computed using the optB88-vdW density functional
theory (DFT) functional. Dispersion interactions, which are crucial to describe multilayer carbonaceous materials, are therefore implicitly
included. We additionally account for long-range dispersion interactions using a semianalytical two-body term and show that an improved
model can be obtained through an optimization of the many-body smooth overlap of atomic positions descriptor. We rigorously test the
potential on lattice parameters, bond lengths, formation energies, and phonon dispersions of numerous carbon allotropes. We compare the
formation energies of an extensive set of defect structures, surfaces, and surface reconstructions to DFT reference calculations. The present
work demonstrates the ability to combine, in the same ML model, the previously attained flexibility required for amorphous carbon [V. L.
Deringer and G. Csányi, Phys. Rev. B 95, 094203 (2017)] with the high numerical accuracy necessary for crystalline graphene [Rowe et al.,
Phys. Rev. B 97, 054303 (2018)], thereby providing an interatomic potential that will be applicable to a wide range of applications concerning
diverse forms of bulk and nanostructured carbon.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0005084., s

I. INTRODUCTION

The same characteristics that make carbon a fascinating ele-
ment for study also make it challenging to model computationally.
It exhibits some of the greatest structural diversity—and associ-
ated diversity of properties—of any of the elements.1–7 Its allotropes
range from zero to three-dimensional, have metallic, semicon-
ducting and insulating phases, and boast mechanical properties
including some of the highest tensile strengths, hardnesses, and bulk
moduli measured.8,9 It is unsurprising, therefore, that carbon is con-
sidered to be not just an element of prime technological importance
but also remains the subject of continued fundamental scientific
study.10–16

Current applications of elemental carbon are numerous, and
they include lightweight and strong structural materials, anodes of
batteries, and components in advanced optical technologies.9,13,16–19

The usefulness of elemental carbon has also clearly not yet been
exhausted; future applications propose to make use of graphene’s
unique electronic properties for advanced electronics,11,20 carbon
nanotubes’ structural and optical characteristics for performance
materials,18,21 and the thermal and optical properties of diamonds
for laser optics,9,22,23 among others.

Atomistic simulations have played a major role in developing
our understanding of carbon materials. Among the many scien-
tific problems that have been addressed with carbon potentials, we
may mention the wear process of diamond24 or the compression
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behavior of glassy carbon.25 The first many-body (MB) interatomic
potential for modeling carbon was published in 1988 by Tersoff.
This potential was used to investigate the properties of carbon’s
crystalline and amorphous allotropes.26 The reactive empirical bond
order (REBO, REBO-II) potentials were built on the original Ter-
soff formulation including a wider range of parameters and data
in the fit, as well as adding additional conjugation and torsional
terms, and modifying the bond order expression for small angles.27,28

However, the Tersoff and REBO-II potentials only considered near-
est neighbor interactions and did not account for the effects of
dispersion. The adaptive intermolecular REBO (AIREBO) poten-
tial29 sought to correct this by adding an additional long-range
Lennard-Jones term between atoms with larger separations while
making no modifications to the short-range part of the potential.
The long-range carbon bond order potential (LCBOP) not only
increased the range of the potential to account for longer-range
interactions but also constituted a complete reparameterization of
the bond order potential to improve the accuracy and transferabil-
ity of the model, though long-range dispersion interactions are still
omitted.30

Further developments, beyond the scope of detailed discus-
sion here, include the LCBOP-II potential, which expanded the
application range of the model to include the liquid phase,31,32

the environment dependent interatomic potential (EDIP) for car-
bon,33 which employed properties calculated from ab initio simu-
lation in its parameterization, the introduction of a dynamic cut-
off to bond-order potentials,34 and a recent reparameterization of
a carbon ReaxFF potential.35 Notwithstanding the long-standing
success of these potential models, there are inherent limitations to
even the most advanced of them. Such issues are particularly rel-
evant when one departs from the idealized structures (diamond,
graphite, etc.), as shown in two detailed benchmark studies by de
Tomas et al.36,37

Machine learning (ML) has recently arisen as a way of address-
ing some of these limitations. A number of practical approaches
for modeling the potential energy surface (PES) using ML have
been developed in recent years, employing algorithms including
artificial neural networks, Gaussian process regression, and com-
pressed sensing.38–45 The demonstrated ability of ML algorithms
to fit arbitrary functions with an extremely high accuracy46 com-
bined with recent developments in high-dimensional descriptors
for atomic systems makes ML approaches for the development
of interatomic potentials an increasingly popular approach.42,47–50

Indeed, the use of machine learning methodologies to model car-
bon has a significant precedent. Some of the first examples of
ML potentials, using both Gaussian process regression and artifi-
cial neural networks, were fitted for graphite and diamond, and
these were tested with regard to the properties of the crystalline
phases and the graphite-diamond phase coexistence line.38,39,51 One
of the first neural-network potentials was used for large-scale sim-
ulations of the diamond nucleation mechanism.52 We recently
introduced a machine learning potential for pristine graphene con-
structed using the Gaussian approximation potential (GAP) frame-
work, which achieved excellent accuracy when benchmarked against
density functional theory (DFT) and experiment for a wide range
of lattice and dynamical properties, including the phonon disper-
sion relations, thermal expansion, and Raman spectra at different
temperatures.53

While achieving good accuracy in a specific region of con-
figuration space is not trivial, the problem of the transferabil-
ity of a potential is much more challenging to solve from a
ML perspective. In 2017, some of us reported a highly transfer-
able GAP model trained primarily on the amorphous and liq-
uid phases of carbon (henceforth termed GAP-17) based on DFT-
local-density approximation (LDA) reference data. The focus there
was somewhat complementary—to be able to describe very diverse
structural environments, albeit accepting a degree of numerical
error. As an example, the in-plane force errors for a pristine
graphene sheet are 0.03 eV Å−1 with the graphene-only GAP men-
tioned above, as compared to 0.27 eV Å−1 with GAP-17. For
comparison, these errors for a range of commonly used empir-
ically fitted potentials range from 0.6 eV Å−1 to 3.1 eV Å−1

(for more details, see Ref. 53). In return, owing to the flexibility
and transferability ensuing from its choice of reference database,
GAP-17 enabled the study of a number of scientific problems that
involve diverse structural environments, including understanding
the mechanism of growth of sp3 hybridized amorphous carbon by
ion deposition,54 extensive studies of the surface properties (and
chemical reactivity) of tetrahedral amorphous carbon,54–56 the struc-
ture of “porous” carbonaceous materials that are relevant to appli-
cations in batteries and supercapacitors,57,58 and crystal-structure
prediction.5

The model we present here, GAP-20, builds on all of the pre-
vious work applying the GAP machine learning methodology to the
development of carbon potentials to achieve the accuracy required
for capturing subtle differences in formation energies of nanostruc-
tures or in defect formation energies and for describing phonon
dispersions to within meV accuracy—while maintaining the flexibil-
ity and transferability of GAP-17. Importantly, all data are generated
using a dispersion-corrected DFT method, which properly accounts
for longer-range interactions in low-dimensional carbon structures,
and the fitting architecture is adapted to account for those. Our tests
suggest GAP-20 to be suitable as a “general-purpose” carbon ML
potential for diverse areas of study.

The detailed discussions of the construction and testing of the
potential are given in Secs. II–VIII, but we take a moment to high-
light the main points here. The composition of the training dataset
and performance of this potential are summarized in Fig. 1. GAP-
20 correctly predicts the formation energies of diamond, graphite,
fullerenes, and nanotubes, to an accuracy of a few meV, and achieves
comparable accuracy for a number of crystalline and amorphous
surfaces. The computed formation energies of defects are also accu-
rate, with overall errors significantly lower than those obtained from
comparable empirical models. At the same time, GAP-20 can accu-
rately predict the behavior of high temperature liquid carbon over
a wide range of temperatures and densities, which will be shown
below. We believe that these features make GAP-20 a useful tool
for the accurate modeling of nanostructured carbons: nanotubes,
graphitized carbon, and materials with varying degrees of defects
and disorder.

The rest of this paper is organized as follows: We first describe
our process for the construction of a training set suitable for devel-
oping such a potential. We then give details on the construction
and training of the model itself, with discussion of particular aspects
that required special attention or optimization. Subsequently, we
present an extensive and rigorous testing of our model for a wide
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FIG. 1. Overview of some of the key structures included in the training shown through a sketch-map representation (top) as well as selected information on the performance
of the potential for a variety of properties. (a) Sketch-map representation of the total dataset for carbon generated as part of this work. Select structures are identified for
graphite, diamond, hexagonal diamond (lonsdaleite), amorphous carbon, and fullerenes. Points are colored according to their energy, while contours indicate the density of
the database population in a particular region. (Bottom) A summary of the (b) predicted crystalline formation energies, (c) defect formation energies, and (d) surface energies,
comparing the DFT (optB88-vdW) reference (black circles), GAP-20 (red crosses), and all other models (blue crosses).
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range of properties. We also compare the results of our model to
a selection of commonly used empirical potentials that model the
interatomic interactions in carbon with differing degrees of simpli-
fication. Specifically, we choose the Tersoff, REBO-II, AIREBO, and
LCBOP models. The selection of potentials considered here is by no
means exhaustive and is only intended to give some basis for com-
parison between previous work and the model we introduce, as well
as illustrating how the inclusion or exclusion of different interac-
tions (e.g., dispersion interactions) may affect the performance of
a model. A more detailed benchmarking across a wider range of
potentials, complementing the existing detailed tests for amorphous
and “graphitized” carbons,36 may be the subject of future work.

II. GENERATION AND SELECTION OF TRAINING DATA
One of the challenges inherent in constructing a generalized

potential for carbon is the enormous variety of structures that must
be considered. In addition to its more commonly encountered crys-
talline phases, diamond and graphite, carbon may be found in forms
of differing dimensionality from zero-dimensional fullerenes to
one-dimensional nanotubes, two-dimensional graphene, and three-
dimensional amorphous forms.6

Specifically, in the case of ML, one is drawn to the problem
of the composition of the large database of example configurations,
known as the training dataset. For a potential to be both accurate
and transferable, its training dataset ought to include representa-
tive configurations from all of the thermally accessible chemical
space. One might initially suggest that the problem is therefore
intractable, if in order to produce a potential, which is capable of
accurately modeling all of the relevant phases of carbon, we must
explore the entirety of the vast 3N-dimensional chemical space. It
is an empirical observation, however, that the thermally accessi-
ble and physically relevant regions of this chemical space constitute
a vastly reduced subset of all of the available configurations.59–61

Furthermore, rather than an exploration of the 3N-dimensional
space, in fitting the parameters of a ML algorithm, we are primar-
ily concerned with an exploration of the reduced dimensionality
descriptor space.59,62–64 In the case of atom centered descriptors such
as the smooth overlap of atomic positions (SOAP), this represents
the local environment around a particular atom rather than the
global structure.63 While the structural variability of carbon is glob-
ally almost infinite, many of these structures are constructed from
similar local motifs, for example, the tetrahedral building blocks
of diamond.65,66 Similar logic may be applied to more complex
structures.

The reference configurations that comprise our structural
database are drawn from a wide variety of sources. Regardless
of the origin of the configuration itself (e.g., from the GAP-17
database), its properties, those being the total energy, atomic forces,
and virial stresses, which comprise the actual training data, are
always computed using the same level of tightly converged plane-
wave DFT including dispersion corrections. We use the Vienna
ab initio simulation program (VASP) plane-wave DFT code, and
we perform spin-polarized calculations with the optB88-vdW dis-
persion inclusive exchange–correlation functional,67–70 a plane-
wave cutoff of 600 eV, and a projector augmented wave pseu-
dopotential.71–73 A Gaussian smearing of 0.1 eV is applied to the
energy levels, and dense reciprocal space Monkhorst–Pack grids

are used.74 In the case of the reduced dimensionality allotropes,
graphene and nanotube structures, the reciprocal space sampling is
only performed in the directions in which the allotrope is periodic.
The properties of fullerene structures are calculated at the gamma
point. For this potential, we choose the optB88-vdW functional as
it has already been demonstrated to provide an excellent descrip-
tion of carbonaceous materials, in particular, graphitic carbon—for
which its prediction of the binding energy and interlayer spacing is
in good agreement with experimental values.75

The database of configurations presented here uses as its foun-
dation a combination of the training datasets for the two car-
bon potentials previously published primarily for liquid and amor-
phous carbon (GAP-17) and for pristine graphene, respectively.53,62

A large number of new configurations are considered in addi-
tion to these existing ML datasets.5,6,76 We endeavor to compre-
hensively cover all the possible crystalline phases of carbon found
at moderate temperatures and pressures, including more exotic
allotropes. To this end, DFT optimized structures for graphite,
graphene, and cubic and hexagonal diamond are included, as well
as the structures of a library of fullerenes comprised of fewer
than 240 atoms and all nanotube structures with chiral indices
3 ≤ n, m ≤ 10 with fewer than 240 atoms in their unit cell. The opti-
mized structures are also included for the samara carbon allotrope
database (SACADA) of exotic carbon allotropes76 and the results of a
GAP-17 driven random structure search (RSS).5 In addition to bulk
or pristine phases, the structures of relevant low Miller-index faces
of the crystalline phases are included, along with a large number of
important defect structures.77–84

For all of these structures, we have performed some ab initio
and some iteratively improved GAP driven molecular dynamics
simulations at a number of temperatures so as to also sample the
region of phase space close to these local minima.53,62 The result-
ing database is comprised of ∼17 000 configurations, each containing
from 1 to 240 atoms/cell.

The choice of which structures might be important for training
a potential requires for the most part chemical or physical intuition
on the part of the researcher.42,59,85 Some of these choices may be
clear, for example, the need to include configurations representing
the bulk structures of diamond and graphite. Others, however, such
as the inclusion or exclusion of particular defect or surface struc-
tures, will depend on the desired application of the potential (and,
to some extent, on personal choice). To maximize the transferabil-
ity of our model, we have produced as comprehensive a database as
possible—too large to train on with current computational facilities.
Rather than using the full database for sparsification, as commonly
done in GAP fitting (including in the development of GAP-17), we
instead allow the bulk of our training configurations to be chosen
from the total dataset using a sampling method known as farthest
point sampling (FPS).42,86 Within this set, we then carefully check
the data saturation of our training with respect to the number of
sparse points, which is discussed in Sec. III.

This method allows us to start with a much more comprehen-
sive database than previously, while still keeping the computational
effort at the fitting stage tractable. We wish for our training dataset to
have the widest possible sampling of descriptors and forces—leaving
no physically relevant configurations unsampled, while avoid-
ing over-representation of particular regions of phase space. FPS
facilitates this by allowing a selection of frames to be made based
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on a measure of the global similarity (in descriptor space) between
possible configurations.42,86 Given a set of n descriptors of type d
for a number of frames, Q = {qd, avg

i=1,...,n}, which are themselves the
average of the individual descriptors of the atoms in a particular
frame qd

i , the FPS algorithm selects configurations so that at each
step, the kernel distance between previously selected configurations
Qselected = {q

d, avg
1 . . .qd, avg

m } and the new configuration qd, avg
m+1 is

maximized. That is,

qd, avg
m+1 = argmaxqd, avg[D(Qselected,qd, avg

)], (1)

where D is the kernel distance between the selected descriptors (and
associated frames) Qselected and the candidate descriptor qd,avg. In
our case, we use the SOAP descriptor as a structural fingerprint of
a configuration and the dot product between two SOAP descriptors
as our kernel similarity measure.63 As has previously been shown
for molecular systems, we find that this method of selection enables
the training of a potential, which demonstrates good transferabil-
ity.59 However, due to the nature of the sampling, it lacks the dense
population of configurations around particular local minima which
we find are important for achieving very high accuracy on particular
crystalline properties. We therefore choose to augment the training
dataset selected through FPS with a number of mandatory configu-
rations chosen using chemical intuition, focused on the bulk crys-
talline phases and certain defect and surface structures. Specifically,
we note that the optimized geometries for structures used in the val-
idation sections of this paper are included in the training. The final
database is comprised of the union of the 4000 FPS-selected points
and the existing GAP-17 dataset, while further ∼1000 configurations
are manually added to target specific properties.

The selected configurations, as well as a representation of their
position in phase space, are illustrated in Fig. 1. This sketch-map86,87

representation of the total training dataset uses the same measure of
kernel similarity as discussed above to position points in a reduced
dimensionality such that points that are similar in the full high-
dimensional descriptor space are closer together and those that are
dissimilar are further apart.

This sketch-map representation also serves as a qualitative
overview of the type of structure to which we fit our model. Struc-
tures with carbon atoms of highly varied coordination environ-
ments from sp1 to sp2 and sp3 can be seen. Those allotropes that
are sp2 hybridized, such as graphene, graphite, and carbon nan-
otubes, are clustered together toward the right of the map. Amor-
phous structures can be seen as a large region in the center, with
low density (sp1 and sp2 rich) amorphous carbon at the far right and
high density sp3 rich amorphous carbon toward the left, eventually
approaching crystalline diamond at the very far left of the map. The
more exotic, sometimes hypothetical structures collected from the
SACADA database are often found separated from bulk crystalline
or amorphous configurations. In the far top right of the map, the
isolated gas phase dimer configurations are found.

III. TRAINING OF THE POTENTIAL
We choose to construct GAP-20 to represent the PES as the

combination of contributions from a two body (2b), a three body
(3b), and a high-dimensional many-body (MB) component. It is an
empirical observation that a large proportion of the interaction in
an atomistic system may be satisfactorily captured by considering 2b
interactions. In particular, this is the case for the exchange repulsion
experienced as interatomic distances become very small. Represent-
ing this exchange repulsion in its full high-dimensional form would
be expensive from the perspective of training data generation, poten-
tial generation, and the ultimate evaluation of the potential. The

FIG. 2. Construction of the long-range 2b component of the GAP model. An analytical spline is fitted to a function, which decays as r−6, designed to recover the long-range
attraction between graphene layers. (a) The predicted energies for each component for the interaction of two graphene layers at different distances. The long range attraction
is well characterized by the r−6 component of the r−6 potential, which is, in turn, well recovered by the analytical spline. The GAP fit using a 2b (Vshort), 3b, and SOAP
descriptor provides the appropriate repulsive potential at short distances but is too short ranged to describe the attractive tail. GAP-20 reproduces the whole curve with good
accuracy across a range of distances. (b) The same decomposition for the gas phase dimer. In this case, the strong bonding interactions are dominated by the GAP 2b
(Vshort), 3b, and SOAP descriptor components. The energy of the r−6 component becomes large and negative for short distances. [(b), inset] A closer view how the 2b spline
fit to the r−6 component is brought smoothly to 0 at a distance of 3 Å.
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nature of bonding interactions for carbon may also be captured in an
approximate way, being generally attractive between 1.2 Å and 1.6 Å,
with an attractive tail at long distances. We design the 2b part of our
model as a GAP fitted 2b component (Vshort) r < 4.0 Å. For larger
separations (10 ≥ r > 4.0 Å), this smoothly transitions to an analytical
spline potential (Vlong), which decays as r−6. This long range com-
ponent is fitted to correctly reproduce (albeit without many-body
contributions) the long-range attraction due to van der Waals inter-
actions of graphitic layers. A smooth transition is achieved by first
fitting the analytical form of Vlong to the graphene bilayer interaction
curve from 3.0 Å to 10.0 Å. Vshort is then trained by first subtracting
Vlong from the total energy and fitting to the difference. The resultant
2b potential (Fig. 2) simply has the final form Vshort + Vlong.

The true subtleties of interatomic bonding are inherently
many-body in character, however. We represent these higher-order
contributions to the potential energy using a combination of a 3b
descriptor and the aforementioned SOAP descriptor. The full details
of the construction of the 3b and SOAP descriptors are given in
detail elsewhere.53,62,63,88–91

In short, the 3b term is a symmetrized transformation of the
Cartesian coordinates of triplets of atoms, which is designed to be
permutationally invariant to the swapping of the atomic indices.53,62

In the construction of the SOAP descriptor, the local environment
around a target atom is represented by a “local neighbor density,”
constructed by placing a Gaussian basis function on each neigh-
boring atom within a certain cutoff, which we choose to be 4.5 Å.
The Gaussian basis functions are scaled by a factor of 1/r0.5 to reflect
the greater contribution to the material properties of atoms that are
closer together.92–94 Other functional forms for the radial scaling
exist, and the introduction of this scaling was performed indepen-
dently of the optimization of the SOAP descriptor cutoff, the choice
of which is motivated below. As a result, there may still be scope
for further optimization of these parameter sets beyond what is per-
formed here. The local neighbor density is expanded in a basis set
of spherical harmonics, the coefficients of which form a “SOAP vec-
tor.” In our case, we use a basis set up to order l = 4 and n = 12,
our motivation for which is discussed in the following paragraph.
This SOAP vector constitutes a unique representation of the local
environment, which satisfies the requirements of being translation-
ally, rotationally, and permutationally invariant. The SOAP kernel,
used for regression, is constructed as the scalar product of individual
SOAP vectors. Such a kernel is physically interpretable, as it cor-
responds directly to the integral of two neighbor densities for all
possible 3D rotations. Details for the specific choices for a num-
ber of associated hyper-parameters are given in the supplementary
material, while further details on their significance are given else-
where.39,53,62,63,88–91

We now provide the details of select convergence tests for the
optimization of our GAP model. These tests consider the indepen-
dent optimization of the SOAP descriptor cutoff, the number of
sparse points, and the order of the radial basis set expansion. In
general, we begin with a SOAP descriptor with an expansion of
the neighbor density up to lmax = 8, nmax = 8, a cutoff of 4.2 Å,
σforce = 0.01 eV Å−1, σenergy = 0.001 eV, and ζ = 4. We modify one
parameter at a time in isolation while keeping the remainder fixed.
We calculate the force error for the resulting models on a randomly
selected independent set of test configurations, which is not included
in the training.

Figure 3(a) shows the behavior of the force errors as a function
of the SOAP descriptor cutoff. The force error has a minimum for a
cutoff of 2.9 Å after which it begins to rise again as the increased
size of the descriptor space expands beyond what can be popu-
lated with the number of available training configurations. A naïve
optimization of these parameters based purely on the force errors
would therefore select a cutoff radius of 2.9 Å. However, the selec-
tion of these parameters cannot be performed in isolation from the
intended application of the potential but must also be motivated by
the knowledge of the behavior of the material of interest. In this
regard, the force (or energy) error alone may be regarded as an
imperfect or incomplete target property for optimization. Specifi-
cally, we find that although the minimum in the force error is found
at much shorter distances, a longer cutoff of 4.5 Å must be used in
order to correctly describe graphitic structures, a feature which we

FIG. 3. Mean absolute force errors calculated for an independent test set of con-
figurations for different SOAP descriptors. (a) Force error behavior and cost of
evaluation (relative to the fastest GAP) of the resultant model as a function of
the SOAP descriptor cutoff, the selected value of 4.5 Å is indicated by the red
dashed line. (b) Force error convergence and relative cost as a function of the
number of sparse points included in the training. (c) Dependence of the force error
and model evaluation cost on the order of the SOAP neighbor density basis set
expansion. Force errors are indicated by the color bar, while relative costs are
shown by contour lines, and our choice lmax = 4, nmax = 12 is highlighted by the red
square.
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consider to be mandatory for this potential. The inter-layer spac-
ing of graphitic structures is typically large (∼3.3 Å), and a potential
must incorporate enough of the structure of both layers to correctly
model properties such as the binding curve of graphene layers or
the energy difference between AA and AB stacked graphite. The
effect of these short cutoffs can be seen in the unsatisfactory behav-
ior of the Tersoff and REBO-II models when modeling the inter-
layer spacing of graphite (Table I) or graphene bilayers (see Fig. 6
of the supplementary material). However, the problem of produc-
ing a single analytical metric for optimization, which satisfactorily
includes properties such as the lattice parameters, defect formation
energies, and phonon errors as well as the force errors themselves,
is a challenging one. In this instance, the design choice of select-
ing an appropriate descriptor cutoff remains partly qualitative in
nature.

Figure 3(b) shows the convergence of the mean absolute force
errors as a function of the number of sparse points used in the train-
ing, and this may be considered as a measure of the data saturation of
GAP-20. The force errors decrease rapidly up to ∼1500 sparse points
at which point they begin to level off, although we note that a fur-
ther increase in the number of sparse points has a negligible impact
on the cost of evaluating the model. Our choice of 9000 sparse points
is therefore very tightly converged.

In Fig. 3(c), we show how the force error for our model con-
verges as a function of the order of the basis set of radial functions
used to expand the SOAP neighbor density. The relative computa-
tional cost of each basis set is indicated on the same plot by labeled
contour lines. We find that the radial (n) component of the expan-
sion typically has a greater impact on the rate of convergence than
the angular (l) component. While previously in the construction
of GAP models, band limits nmax = lmax were used for the SOAP
descriptor, we find that, surprisingly, an improvement in accuracy
can be achieved with essentially no additional cost by making a
selection for the basis set expansion, which is strongly biased to the
radial (nmax) component. Of course, the cost must also be taken into
account, and the use of a larger radial component is more expen-
sive than an identical increase in the angular component due to

the greater number of basis functions introduced. Our selection of
lmax = 4, nmax = 12 is chosen as a compromise between accuracy and
efficiency. Although a small improvement in the force errors can be
achieved by selecting nmax = 12, lmax > 4, the resultant increase in the
cost of training restricts both the size of the training dataset, which
can be used, and the size and length scales to which the resultant
potential can be applied.

IV. CRYSTALLINE CARBON
Among the most important material properties for any poten-

tial to predict accurately are those of the bulk crystalline phases.
Table I compares the lattice parameters and bond lengths as pre-
dicted by GAP-20 to those from the reference DFT method, in
addition to a number of empirical models. In Fig. 4, we also pro-
vide both the atomization energies and the formation energies of
the crystalline phases relative to the thermodynamically stable state
of carbon (at standard temperature and pressure), i.e., graphite. We
define the atomization energy of a phase relative to the isolated gas
phase carbon atom Eat as

Ef = Ebulk − nEat, (2)

where Ebulk is the energy of the bulk phase and n is the number
of atoms in the bulk. Lattice parameters are calculated by indepen-
dently optimizing the cell vectors for each allotrope, until the total
energy is converged to less than 10−4 eV. GAP-20 accurately predicts
the lattice parameters and bond lengths of all of the tested crystalline
allotropes with an average error of 0.2% and their formation energy
to within 0.5%.

Accurately modeling the graphite c lattice parameter, corre-
sponding to the spacing between graphitic layers, proved particu-
larly challenging for candidate GAP models, as did the formation
energy. This is, in large part, due to the shallow nature of the ener-
getic minimum characterizing the graphite inter-layer interactions
and the long range of the atomic descriptor required to capture
it. As discussed above, the choice of SOAP cutoff was specifically

TABLE I. Lattice parameters and bond lengths of the crystalline carbon phases. In the case of fullerenes, bond lengths are
given in lieu of lattice parameters. Absolute values for the lattice parameters are given, with percentage errors relative to DFT
in brackets. The Tersoff and REBO-II potentials have no interaction between graphite layers for any physically reasonable
lattice parameters and as such these values are omitted.

Lattice parameter(s) (Å) (% error)

DFT GAP-20 Tersoff LCBOP REBO-II AIREBO

Graphite (a) 2.46 2.47 (0.4) 2.53 (2.4) 2.46 (0.4) 2.46 (0.4) 2.42 (2.0)
Graphite (c) 6.65 6.71 (0.9) . . . 6.36 (4.4) . . . 6.72 (1.1)
Graphene 2.46 2.46 (0.0) 2.53 (2.8) 2.46 (0.0) 2.46 (0.0) 2.42 (1.6)
Diamond 3.58 3.59 (0.3) 3.57 (0.3) 3.57 (0.3) 3.57 (0.3) 3.56 (0.6)
Hexagonal diamond 2.52 2.53 (0.4) 2.52 (0.0) 2.52 (0.0) 2.52 (0.0) 2.52 (0.0)
Nanotube-(9, 9) 4.26 4.25 (0.2) 4.35 (2.1) 4.24 (0.5) 4.26 (0.0) 4.18 (1.9)
Nanotube-(9, 0) 2.41 2.39 (0.8) 2.53 (5.0) 2.47 (2.5) 2.47 (2.5) 2.43 (0.8)
C60 fullerene 1.40 1.40 (0.0) 1.46 (4.5) 1.41 (0.7) 1.42 (1.4) 1.40 (0.0)
C100 fullerene 1.39 1.39 (0.0) 1.39 (0.0) 1.39 (0.0) 1.39 (0.0) 1.39 (0.0)
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FIG. 4. Formation energies of the crystalline phases of carbon, comparing results
from DFT (optB88-vdW and LDA) to those from GAP-20 and the other models
tested. (a) Atomization energies using the isolated gas phase carbon atom as a
reference, differences are dominated by overstabilization of the gas phase atom by
empirical models. (b) Formation energies given relative to the graphite formation
energy of each particular model.

informed by a desire to capture this property correctly. We consider
this, in particular, to be a mandatory characteristic of a general car-
bon potential, which would be absent for any model with a shorter
cutoff.

It is useful here to make a brief comparison to the selected
empirical potentials. While we do include DFT reference data for all
properties, in Secs. V–VIII, these reference values are only computed
using the same level of DFT used to train GAP-20. For benchmark-
ing GAP-20, which is our primary purpose, this is not problematic;
however, we do not fully account for the potential impact of func-
tional dependence or the errors of DFT with respect to experiment,
when making comparisons to empirical models. Many of the empir-
ical models considered are fitted to experimental data or contain
values from other DFT functionals, typically LDA, which should be
taken into account when comparing different model predictions to
our optB88-vdW reference values. To give some indication of the
functional dependence, reference values for the formation energies

in Fig. 4 are given using both the optB88-vdW and LDA functionals.
We also re-iterate that the GAP-17 model was fitted to LDA data, so
it would be expected to accurately reproduce DFT values at this level
only.

On average, GAP-20 predicts the lattice parameters of the
tested crystalline phases with an error of 0.2%, while the Tersoff,
LCBOP, REBO-II, and AIREBO potentials have errors averaging
5%, 0.3%, 4%, and 1%, respectively (Table I). What the Tersoff and
REBO-II potentials gain in efficiency by using short cutoffs, they
lose in accuracy, notably by predicting dramatically incorrect inter-
layer spacings (c lattice parameters) for graphite. This error is fixed
by the inclusion of medium and long-range terms to account for
van der Waals interactions in the LCBOP and AIREBO models,
however. Despite its inaccuracy for graphene, the REBO-II poten-
tial does achieve good accuracy on the remaining lattice parameters;
the additional terms included in the bond-order potential consti-
tute a dramatic improvement over the Tersoff potential. Due to
its complete reparameterization to account for the effects of long-
range interactions in the bond-order part of the potential, LCBOP
does outperform the other empirical potentials tested here in most
cases.

In absolute terms, the atomization energies [Fig. 4(a)] from the
tested empirical potentials differ significantly from those predicted
by both reference DFT methods due to the very different energies of
the isolated gas phase atom. In the case of GAP-17, the small offset
between the LDA reference and the model prediction is the result of
the isolated atom not being included in the training dataset. When
using the formation energy of graphite as a reference state however
[Fig. 4(b)], this offset is removed and the agreement between the
empirical models and DFT improves considerably. When using both
the gas phase atom and graphite as a reference, there is an excellent
agreement between GAP-20 and the optB88-vdW DFT reference for
all of the phases considered here. GAP-20 uniformly predicts the
atomization energies of the tested allotropes to within an error of 1%,
including the relatively subtle difference in energetics between nor-
mal cubic and hexagonal diamond and the energetics of nanotubes
and fullerenes. The inclusion of the gas-phase atom in the train-
ing is vital to accurately predict these atomization energies. There
is surprisingly little difference between the formation energies pre-
dicted by the different many-body potentials tested here, though
there are a few points of note. First, due to their short cutoffs, the
Tersoff and REBO-II potentials do not distinguish between graphite
and graphene as the thermodynamically stable phase and as such
their formation energies are predicted to be equal. Similarly, only the
GAP-20, LCBOP, and AIREBO models correctly favor cubic over
hexagonal diamond, although the AIREBO model overestimates the
difference in energy by a factor of 5, while the other models consid-
ered do not distinguish between the two diamond phases. A more
complete evaluation of the formation energies for different chirali-
ties of nanotubes is given in the supplementary material; for GAP-
20, the energy errors for a significantly wider range of structure types
are also given.

In addition to the static properties of the crystalline allotropes,
it is an important characteristic of any potential that it accurately
models the lattice dynamics of bulk crystals, i.e., their behavior at
finite temperature. The phonon spectrum of a material is a direct
probe of this which is experimentally measurable. In addition, a
number of thermodynamically relevant properties, including the
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thermal expansion coefficient and the constant volume heat capacity
of a material, may be calculated directly from the phonon dispersion
relation by the calculation of the free energy. It is clear therefore,
why a correct prediction of the phonon dispersion relation is a highly
desirable feature of an interatomic potential.

Figure 5 shows the comparison between the phonon dispersion
curves calculated using the reference DFT method and those calcu-
lated using the carbon GAP model for graphene, diamond, a zig-zag
(9, 9), and an armchair (9, 0) carbon nanotube. Phonon disper-
sion curves were computed using the finite displacement method as
implemented in the Phonopy Python package.95 Equivalent curves
for the other models tested are provided in the supplementary
material.

We have previously reported results comparing the phonon
dispersion relation for a purely graphene GAP model to those from
experimental x-ray scattering data and a number of reference DFT
methods.53 It is useful to make a comparison between the highly tar-
geted model previously published and the much more general GAP-
20 introduced here. A particular concern might be that significantly
expanding the configurational space on which we wish to train, as
we have done here, would necessarily damage the quality of the pre-
dictions for graphene compared to the previous model—particularly
for a property as sensitive as the phonon dispersion curves. It is
demonstrated in Fig. 5(b) that this is not the case; the dispersion
relation of the phonon curves for graphene from GAP-20 is com-
parable to that of the previously published graphene GAP model.53

The energies of the phonon bands are correctly predicted across
all of the high symmetry directions plotted, while the frequencies

(in particular at the high symmetry points) are found to be correct
to within 4 meV, which may be compared to a value of 1 meV for the
pristine graphene model.53 The quality of the GAP-20 model predic-
tion is comparable for diamond (which cannot be modeled at all with
the pristine graphene model), though with marginally larger errors
for the prediction of the energies of certain bands, up to 7 meV for
the higher frequency modes. GAP-20 also captures the difference
in vibrational behavior between armchair and zig-zag nanotubes
remarkably well. There are some differences in the energy of certain
splittings for some bands, but the magnitude of these errors is small,
typically on the order of 2 meV–3 meV. In particular, Fig. 5 shows
that the vibrational density of states for the two nanotube systems
agrees well with the DFT reference.

V. SURFACES OF CARBON
From the point of view of atomistic simulation, surfaces present

a major challenge, as their correct description requires a treatment
of a number of competing physical interactions.81–84,96

We compute the surface energy for each model by first opti-
mizing the bulk structure for the parent crystal until the total energy
is converged to 10−3 eV. We then cut the surface along the desired
direction and compute the specific surface energy γs at T = 0 K as

γs = (En − nEbulk)/2A, (3)

where En is the energy of the n slab layer containing two surfaces,
which may be as-cut (unrelaxed) or allowed to relax, Ebulk is the

FIG. 5. (a) Phonon dispersion relation
for diamond as predicted by GAP-20
(black) with comparison to DFT (optB88-
vdW) reference data (red). (b) Graphene
phonon dispersion relation comparing
GAP-20 and DFT (optB88-vdW) refer-
ence data. The blue dashed line shows
the predicted phonon dispersion curve
for the graphene-only model previously
published.53 (c) (9, 0)-Nanotube phonon
dispersion and vibrational density of
states. (d) (9, 9)-Nanotube phonon dis-
persion relation and vibrational density
of states. Equivalent comparisons for the
other models tested are given in the
supplementary material.
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energy of a single atom in the bulk structure, and A is the area of the
surface structure. In the case of the amorphous surfaces, due to the
extent of the surface relaxation observed, we report only the as-cut
surface energies.

Graphite may be readily cleaved to expose its (0001) surface,
which is remarkably stable and is by far the predominant face of
graphite, while in diamond, the (100), (111), and (110) surfaces are
of particular interest.97 We also compute the as-cut surface energies
for an ensemble of amorphous structures by cutting bulk amorphous
systems along different directions.

The energies of several important surface cuts and their recon-
structions are given in Table II. GAP-20 typically predicts the dia-
mond surface energies correctly to within 7%, the exception being
the case of the relaxed diamond (111) surface, where the error is
slightly larger at 15%. The structures of the relaxed surfaces were
also found to be in excellent agreement, with the average error in
the positions of individual surface atoms being 10−3 Å. The graphite
(0001) surface energy is extremely small, and it thus proved chal-
lenging to produce a model, which could correctly characterize
this; however, GAP-20 predicts the unrelaxed and relaxed surface
energies correctly to within an error of 3 meV Å−2 (20%). With
the inclusion of vdW interactions considered in their construc-
tion, both the LCBOP and AIREBO potentials predict the graphite
(0001) surface energy rather well, with errors of 67% and 27%,
respectively.

While GAP-20 achieves low errors for the surface energies of
all the diamond surfaces considered, the other models generally per-
form well for at least one diamond surface, though none exhibit
uniformly low errors. The Tersoff, REBO-II, and AIREBO models
predict the energies of the diamond (110) surfaces to within 10%
of the reference value. Conversely, of the empirical models, only
the LCBOP potential correctly predicts the energy of the diamond
(100) surface; errors for the Tersoff, REBO-II, and AIREBO poten-
tials were 22%, 28%, and 33%, respectively. None of the empirical
potentials performed well for the (111) surface of diamond. The

Tersoff and REBO-II models do not show any binding between
graphitic layers for any reasonable initial geometry. This would lead
to the spontaneous exfoliation of graphite layers and the eventual
disintegration of graphite crystals in simulations employing these
models.

VI. DEFECTIVE CARBON
A certain concentration of defects is a guarantee in any exper-

imental material sample. Such imperfections may have a strong
impact on the structural, optical, and thermal properties of a mate-
rial and may be introduced into a crystal structure to induce or
modify properties. The engineering of defects is of great techno-
logical importance, and consequently, their accurate modeling by
an interatomic potential is highly desirable. The possibility of rehy-
bridization, which allows carbon atoms to reconstruct with differing
numbers of bonds to stabilize particular structures, allows carbon to
have a wider variety of defects than most other elements.

To the best of our knowledge, there is not a set of defect for-
mation energies for a wide range of carbon defects computed at
precisely the same level of theory. Therefore, we here assemble such
a reference set for which we compute defect formation energies in
large supercells to avoid defect self-interaction in the computation
of energies. For graphite, a (6 × 6 × 2) supercell with 288 atoms
and four graphite layers was used.77,98 In the case of graphene, a
(10 × 10) supercell with 200 atoms was employed, and for dia-
mond, a (3 × 3 × 3) supercell with 216 atoms was used.53,78 Defect
formation energies are calculated for the representative (9, 9) and
(9, 0) index carbon nanotubes, which had 174 and 180 atoms in the
supercells used, respectively.79 For each structure, the lattice param-
eters and ionic positions of the pristine structures were optimized,
as discussed previously. The ionic positions of the defective struc-
tures were then optimized until the energy was converged to within
10−5 eV while keeping the lattice parameters fixed. We compute the

TABLE II. Surface energies of low Miller index surfaces for common carbon allotropes. Reference energies are calculated using DFT, and absolute values from each model are
given, with their percentage error in brackets. Note that for the amorphous surfaces, the surface energy is averaged over a large number of different surfaces. In the amorphous
case, the error provided is the average of the individual point-wise errors, rather than the error between the average surface energies.

Surface energy (eV Å−2) (% error)

DFT GAP-20 Tersoff LCBOP REBO-II AIREBO

Diamond (100) (as cut) 0.56 0.60 (7) 0.47 (16) 0.61 (9) 0.69 (23) 0.73 (30)
Diamond (100) (relaxed) 0.54 0.56 (4) 0.42 (22) 0.59 (9) 0.69 (28) 0.72 (33)

Diamond (111) (as cut) 0.64 0.73 (14) 0.88 (38) 1.07 (67) 1.00 (56) 1.03 (61)
Diamond (111) (relaxed) 0.62 0.66 (6) 0.88 (42) 1.07 (73) 1.00 (61) 1.03 (66)

Diamond (110) (as cut) 0.68 0.70 (3) 0.70 (3) 0.89 (31) 0.74 (9) 0.74 (9)
Diamond (110) (relaxed) 0.68 0.67 (1) 0.63 (7) 0.83 (22) 0.69 (1) 0.69 (1)

Graphite (0001) (as cut) 0.015 0.013 (13) 0 (100) 0.005 (67) 0 (100) 0.011 (27)
Graphite (0001) (relaxed) 0.015 0.012 (20) 0 (100) 0.005 (67) 0 (100) 0.011 (27)

Amorphous surfaces (as cut) 0.26 0.27 (4) 0.25 (4) 0.25 (4) 0.25 (4) 0.25 (4)
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formation energy Ef of a vacancy defect relative to the energy of an
atom in an ideal parent structure,

Ef = Ed − (nEat + Ebulk), (4)

where Ed is the energy of the defective supercell structure, Ebulk is
the energy of the undefective bulk structure, and Eat is the energy of
a single atom in the bulk structure, while n is the number of carbon
atoms added (positive n) or removed (negative n) to form the defect.

The simplest of defects involves the absence of one or two
atoms from their regular position in the lattice, forming monova-
cancy and divacancy defects (Fig. 6). Monovacancy defects often
result in unsaturated bonds at the defect site, while divacancy struc-
tures, particularly in sp2 hybridized systems, can reconstruct to
produce saturated configurations. In graphene, graphite, and car-
bon nanotubes, the 14-membered ring formed by the removal of
two adjacent atoms from the structure reconstructs to form a satu-
rated sp2 structure with two 5-membered rings and one 8-membered
ring—a more stable structure known as a 5-8-5 divacancy. In
graphene, this defect may further reconstruct to remove the unfavor-
able 8-membered ring to form a 555-777 or 5555-6-7777 divacancy
reconstruction. Monovacancy coalescence is also observed in dia-
mond, whereupon annealing at high temperature, monovacancies
migrate to form divacancy defects, with fewer unsaturated bonds per
absent carbon atom.

Graphite is the only allotrope of carbon in which true inter-
stitial defects are known wherein interstitial atoms may be found
between graphite layers.77 The most stable arrangement of this is in
a “dumbbell” configuration, where the adatom displaces an atom in
the graphite structure to form a symmetric arrangement of trigonally
bonded carbon atoms above and below the sheet. The isolated inter-
stitial atoms are not known either experimentally or from theory to
be stable in diamond, rather a split interstitial is found, where a lat-
tice site is shared by two carbon atoms, which are displaced along
the [100] and [1̄00] directions.99

FIG. 6. Images of the selected carbon defect structures with atoms in the imme-
diate vicinity of the defect highlighted in red. (a) Graphene divacancy defect, (b)
graphene Stone–Wales defect, (c) graphene monovacancy, (d) (9, 9)-nanotube
Stone–Wales defect (transverse orientation), (e) (9, 9)-nanotube Stone–Wales
defect (parallel orientation), and (f) diamond split interstitial defect.

In sp2 bonded allotropes of carbon, the rotation of a single
C–C bond transforms four 6-membered rings into a cluster of two
7-membered and two 5-membered rings, forming a Stone–Wales
type defect.100–102

Table III compares the energies of a number of defects as com-
puted with DFT, GAP-20, and the other models considered. In
most cases, GAP-20 correctly predicts the defect formation energy
to within an error of 10%. Typically, the prediction of the forma-
tion energies of Stone–Wales type defects was found to be extremely
accurate, with no error (to within the precision of the values given)
in either the graphite or graphene cases and only small errors for
nanotubes. The errors for the formation energies of diamond defects
tend to be larger, ranging from 25% to 35%, while those for defec-
tive nanotubes range from 0% to 11%. Anecdotally, we note that
although relevant training data for the defects considered are rep-
resented in the training data, it proved challenging to achieve defect
formation energies, which were universally accurate. In particular,
this is due to the sensitivity of the formation energies to aspects such
as the SOAP descriptor cutoff, specific training data included, and
the number of sparse points used in the training.

Considering the empirical potentials, we find that the modi-
fications to the Tersoff potential included in the REBO-II model
dramatically improve the quality of the predicted defect formation
energies; percentage errors are often decreased by an order of mag-
nitude or more when comparing these two potentials. Surprisingly,
these results show that the inclusion of the long-range Lennard-
Jones term in the AIREBO model often has a negative impact on
the accuracy of its predicted defect formation energies, indicating
that the addition of a long-range term without reparameterization of
the short-range components has adversely impacted the energetics
of the model. Indeed, in the case of LCBOP, where this reparameter-
ization of the short range bond-order potential has been performed,
we find that the errors are significantly reduced and are in many
cases comparable with the performance of GAP-20. The exception
to this being the case of defective nanotubes, where LCBOP exhibits
errors ranging from 11% to 52%. In fact, the prediction of nanotube
defect formation energies proved challenging for all of the empiri-
cal models considered. In a number of cases, defect formation was
found to be an energetically favorable process and was associated
with a strong relaxation of the nanotube structure after defects were
induced.

As well as accurately predicting the energetic cost of inducing
defects in carbon structures, GAP-20 was also found to accurately
predict the structures of these defects. We quantify this accuracy
by calculating the structural similarity between the defect structures
optimized with our GAP model and those from DFT in the form
of the root mean square error (RMSE) between the two optimally
overlapped structures. In all but a handful of cases, the RMSE for
these defects is vanishingly small, with atoms having an error in
their position of less than 10−2 Å, when comparing identical atoms
from GAP-20 and DFT structures. In particular, the presence and
height of the characteristic buckling of the Stone–Wales defect in
graphene was well described, as was the structural distortion result-
ing from the presence of defects in both (9, 9) and (9, 0) index
carbon nanotubes. Similarly, the rehybridization and reconstruction
of (5-8-5), (555-777), and (5555-6-7777) graphene divacancy defects
were accurately reproduced, as were the geometries of all of the
diamond defects considered. Situations in which GAP-20 showed
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TABLE III. Formation energies of common defects in carbon structures for GAP-20 and the other models considered, with DFT (optB88-vdW) values given as a reference.
Data are given in eV, with percentage errors relative to DFT given in brackets. In each case, the value given is for the optimal geometry of the defect found with that particular
model.

Formation energy (eV) (% error)

DFT GAP-20 Tersoff LCBOP REBO-II AIREBO

Graphene Stone–Wales 4.9 4.8 (2) 1.9 (61) 4.5 (8) 5.3 (8) 5.4 (10)
Graphene monovacancy 7.7 7.0 (8) 2.5 (68) 6.9 (10) 7.5 (3) 7.2 (6)
Graphene divacancy (5-8-5) 7.4 7.9 (7) 5.1 (31) 7.5 (1) 7.5 (1) 9.2 (24)
Graphene divacancy (555-777) 6.6 6.9 (5) 5.2 (21) 6.6 (0) 6.8 (3) 8.7 (32)
Graphene divacancy (5555-6-7777) 6.9 7.4 (7) 7.9 (14) 7.2 (4) 7.6 (10) 9.5 (38)
Graphene adatom 6.4 5.9 (8) 6.7 (5) 6.8 (6) 7.4 (16) 7.8 (22)

Graphite monovacancy 7.8 7.3 (6) 7.1 (9) 7.8 (0) 7.9 (1) 7.6 (3)
Graphite divacancy (5-8-5) 9.6 9.2 (4) 12.6 (31) 8.2 (15) 8.0 (17) 9.7 (1)
Graphite Stone–Wales 5.4 5.6 (4) 12.8 (137) 5.7 (6) 6.0 (11) 6.0 (11)
Graphite interstitial 7.4 7.9 (7) 9.7 (31) 7.2 (3) 7.1 (4) 6.8 (8)

Diamond monovacancy 6.6 4.3 (35) 5.2 (36) 7.2 (11) 7.1 (4) 6.8 (8)
Diamond divacancy 9.1 6.6 (27) 5.1 (44) 10.6 (16) 10.7 (18) 10.1 (16)
Diamond split interstitial 11.4 8.3 (27) 12.4 (9) 9.8 (14) 11.0 (4) 11.4 (0)

Nanotube-(9, 9) monovacancy 6.4 5.8 (9) −5.1 (180) 3.8 (41) −1.6 (125) −2.5 (139)
Nanotube-(9, 9) divacancy 4.7 4.8 (2) −5.5 (217) 2.9 (38) −0.9 (119) −2.3 (149)
Nanotube-(9, 9) Stone–Wales (parallel) 4.4 4.5 (2) −4.5 (202) 2.1 (52) −2.1 (148) −3.9 (189)
Nanotube-(9, 9) Stone–Wales (transverse) 3.5 3.5 (0) −5.8 (261) 2.0 (44) −3.3 (192) −2.00 (156)

Nanotube-(9, 0) monovacancy 5.3 4.9 (8) −0.9 (117) 4.4 (17) 4.7 (11) 3.4 (36)
Nanotube-(9, 0) divacancy 3.6 3.5 (3) −1.0 (128) 3.0 (17) 4.1 (14) 2.8 (22)
Nanotube-(9, 0) Stone–Wales (parallel) 2.7 3.1 (15) −1.3 (148) 3.2 (19) 3.4 (26) 3.6 (33)
Nanotube-(9, 0) Stone–Wales (transverse) 3.5 3.2 (9) −1.1 (131) 3.1 (11) 4.2 (20) 2.6 (26)

structural inaccuracies were the nanotube monovacancy structures
and the parallel Stone–Wales defect in the (9, 9) index nanotube for
which the GAP model predicted a larger distortion of the bulk nan-
otube structure due to the presence of the defects. We also find that
as with all the models considered here, GAP-20 does not correctly
describe the asymmetry introduced through a Jahn–Teller distor-
tion of the graphene monovacancy defect—instead predicting the
monovacancy to have a symmetric geometry. This is perhaps unsur-
prising as the energy difference between the symmetric and asym-
metric geometries is typically small (∼350 meV). However, even in
the cases illustrated here, the typical error in the position of any atom
was found to be only 0.1 Å. This GAP-20 is capable of accurately
modeling both the energetics and structural characteristics of a wide
range of carbon defects, which indicates its potential usefulness in a
wide range of simulations in which defective structures may be rel-
evant, including fracture, atom bombardment, and simulations of
membrane characteristics.

VII. LIQUID CARBON
As discussed previously, the requirements of a potential for

the satisfactory modeling of crystalline and liquid or amorphous
phases are significantly different. In the case of crystalline materials,

a highly accurate description close to a local minimum for a sys-
tem is required.53 Conversely, in a liquid simulation, a vastly greater
number of local configurations are explored, requiring a high degree
of flexibility and transferability.62 As in the case of GAP-17, we
therefore use the liquid as a benchmark for the flexibility of our
potential,62 scanning over a wide range of densities and (here)
temperatures. The aim is to diagnose any possible issues, which
might be exposed by visiting a very diverse set of configurations
during the simulations. There is a strong precedent for the study
of high temperature liquids, including carbon, using DFT.103,104

A good agreement with DFT-MD data is therefore strong evi-
dence for the usefulness of the potential for further studies of liq-
uid carbon, which is present only under extreme conditions, but
is nonetheless vitally important, e.g., for understanding the nucle-
ation and formation of diamond and graphite under a wide range of
circumstances.105–108

The radial distribution function (RDF) of a liquid represents
a convenient measure of its local structuring, as does its angular
distribution function (ADF). Here, we compare the results of con-
stant volume ab initio molecular dynamics simulations to those of
GAP-20. We perform two sets of simulations, one for a range of
densities between 1.5 g cm−3 and 3.5 g cm−3 at 5000 K and the
other for a range of temperatures between 5000 K and 9500 K at a
fixed density of 2.5 g cm−3. These simulations were performed for
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216 atom systems using a chain of five Nosé–Hoover thermostats.
Ab initio trajectories were generated using VASP, simulations were
performed at the gamma point, and data were collected for 5 ps
at each temperature and pressure.71–73 We find that there is a very
good agreement between the ab initio data and the GAP-20 pre-
dictions for both RDF and ADF across the wide range of temper-
atures studied (see Fig. 7). GAP-20 correctly models the increased
structuring of the liquid carbon as the temperature is reduced from
9500 K to 4500 K. At temperatures below approximately 3500 K,
the GAP model predicts the liquid to form an amorphous glass that
slowly graphitizes (which is entirely expected because the tempera-
ture is now below the melting line). While a full discussion on the
mechanism of formation and resulting morphology of graphitized
amorphous carbons generated using GAP-20 is beyond the scope
of the current work, this process has previously been shown to be
an excellent method of differentiation between the numerous avail-
able carbon potentials.36,37 Figure 8 shows the RDF and ADF com-
puted with both GAP-20 and optB88-vdW across a wide range of

FIG. 7. Angular and radial distribution functions for liquid carbon at a fixed density
of 2.5 g cm−3 for temperatures between 5000 K and 9500 K. GAP-20 results are
shown in black, while reference DFT (optB88-vdW) data are given in red.

FIG. 8. Angular and radial distribution functions for liquid carbon at 5000 K for a
range of densities from 1.5 g cm−3 to 3.5 g cm−3. GAP-20 results are shown in
black, while reference DFT (optB88-vdW) data are given in red.

densities from 1.5 g cm−3 to 3.5 g cm−3 at 5000 K. This test is partic-
ularly important as it represents dynamical simulations of structures
from highly sp1 and sp2 hybridized (low density) to a predominantly
sp3 hybridized liquid at higher density. GAP-20 captures this change
in the bonding characteristics of liquid carbon, in particular the
increase in the sp1 hybridized fraction of the liquid at very low den-
sities (reflected in bond angles close to 180○), qualitatively similar to
GAP-17.62

That GAP-20 can model the atomistic structure of liquid car-
bon at a wide variety of temperatures and densities, while maintain-
ing the ability to accurately predict properties such as the phonon
relation and defect formation energies is a reflection of the flexibil-
ity of the GAP methodology. Such varied systems explore a range
of characteristic energies, where important fluctuations cover many
orders of magnitude; in carbon, this can be anywhere from the meV
range in the case of differences between graphite defect energies and
fluctuations on the order of tens of electron volts, as encountered
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in the liquid. Despite these very different energy ranges, it is not
unlikely that a potential may encounter all of them over the course
of a single simulation (for example, during the crystallization of a
solid phase directly from the liquid), and it is therefore important
that they be handled correctly.

VIII. TRANSFERABILITY OF THE POTENTIAL
Ultimately, the purpose of any interatomic potential is that it

may be used for the discovery of new and interesting phenomena.
Consequently, in its application, it may encounter structures that
were not explicitly considered in its construction, in this case mean-
ing that it must model structures that were not included in the train-
ing database. It has therefore been a criticism of ML potentials that
their poor performance in extrapolation might inhibit their use for
scientific discovery. As discussed earlier, the problem of extrapola-
tion is circumvented by the fact that we consider only the local envi-
ronment around a particular atom to be important for predicting
its atomic energy and the forces acting upon it. While the problem
of exploring the entirety of the 3N-dimensional chemical space is
indeed intractable, sufficiently sampling all of the physically relevant
local environments is not.59

We demonstrate this here by performing a diagnostic GAP
driven random structure search (GAP-RSS), similar in spirit to Refs.
109 and 5, and demonstrate that the predicted energies of these
structures agree well with those from DFT.5,60,85 We then calculate
a number of high energy pathways for specific transformations not
included in the training and compare these to DFT. Both of these
tests serve the purpose of exploring the high energy regions of the
potential energy surface, which may be explored during molecular
dynamics simulations or geometry optimization and which must be
well described for an ML model to be transferable. Importantly, they
are both explicitly designed to include configurations that are not
present in the training dataset of GAP-20.

To perform the first test, we generate a cubic unit cell with lat-
tice parameter a = 3 Å. In this cell, we randomly place eight carbon
atoms, avoiding any overlaps such that the distance between any
two carbon atoms is not less than 2 Å. This process is performed
to generate 1000 initial randomized geometries. The Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) pack-
age is then used to optimize lattice vectors of the cell independently
using conjugate gradient descent, while maintaining their orthog-
onality, until the total energy is converged to within 10−8 eV.110

Following this, the positions of the atoms in the unit cell are opti-
mized using a FIRE algorithm,111 until the total energy is again
converged to within 10−8 eV. This cycle is repeated twice more
before performing a final conjugate gradient optimization of the
atomic positions and cell vectors until the total energy is converged
to 10−10 eV.

To validate the results of our GAP-RSS, we recompute the ener-
gies of the structures found using the reference DFT method used
to train the model. We note that for across all 1000 structures, the
predicted energy agrees well with the energy predicted from DFT.
It has previously been shown that correctly identifying low energy
structures from a RSS is an extremely challenging task for empirical
models, which often predict qualitatively incorrect behavior and fail
to find physically relevant configurations due to their having many
more local minima than the DFT PES.112,113

Our GAP-RSS correctly identifies a range of important low-
energy carbon allotropes, as well as numerous more exotic species.
In particular, AB-stacked graphite was found as the lowest energy
allotrope of carbon. AA- and ABC-stacked graphite allotropes are
also identified in the search; their energy is correctly predicted to
be higher than that of the AB stacked graphite structure. Further-
more, both diamond and lonsdaleite are correctly identified. We also
identify a number of more exotic carbon allotropes, some of which
are known either from experiment or theory but were not included
in the training dataset, including cross-linked graphite structures,
porous carbon cages, and a variety of haeckelite structures. For the
vast majority of structures found during the GAP-20 driven random
structure search, the predicted energies from both DFT and GAP-20
agree well (Fig. 9).

We also return at this stage to the sketch-map representation
of the training dataset given in Fig. 1. In Fig. 9(b), we provide a
projection of the GAP-RSS structures onto this sketch-map repre-
sentation. GAP-RSS points are colored according to the GAP-20
energy error. The density of structures present in the original train-
ing dataset is indicated by black contour lines. It is clear that most
structures found are clustered in the region representing the bulk
amorphous and crystalline polymorphs, with very few structures
representative of fullerenes or nanotubes identified. This is a reflec-
tion of the fact that only eight atoms are included in the unit cell
used for the RSS. Additionally, the RSS procedure employed begins
with simulation cells that are fully periodic and with no symmetry
constraints imposed on the initial atomic positions. In the lower left
of the sketch-map is a cluster that is structurally distinct from those
present in the training data, as indicated by its large separation from
other points in the sketch-map. These structures are characterized
by their highly sp1 rich character. Although a significant number of
amorphous structures that are rich in sp1 hybridized carbon atoms
are included in the training data, there are indeed very few crystalline
sp1 rich structures. Despite being structurally distinct from anything
included in the training dataset, the error in the GAP-20 prediction
for the energy of these structures remains low. This indicates excel-
lent performance for GAP-20 in applications where transferability
to potentially novel structures is important.

We also test GAP-20 on a number of specific structural trans-
formations. Although our GAP model is not trained explicitly on
reaction barriers, it is useful to test how well the model performs
for the prediction of the types of barriers, which might be encoun-
tered in the studies of the reactivity of carbon nanostructures. To
this end, we compare the predictions of our GAP model to those
of DFT for two approximate transformations: a rigid bond rotation
in graphene and a C60 fullerene. Since these calculations are per-
formed on rigid structures, rather than, for example, using nudged
elastic band calculations, the barriers calculated here will not be true
defect formation barriers. They are, however, still representations of
physically reasonable points on the potential energy surface, which
are not included in the training dataset and so form a useful test of
the potential compared to other models.66,114

Figure 10(a) shows the barrier to rigid rotation of a C–C bond
within a graphene sheet, as predicted by GAP-20, and the tested
empirical potentials. The performance of GAP-20 on this test is reas-
suring for its wider application, and it achieves excellent accuracy
with respect to both the height of the local minimum in the rotation
and the height of the barrier. The AIREBO and REBO potentials
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FIG. 9. (a) A comparison of the his-
tograms of energies of structures iden-
tified by GAP-RSS, given in eV/atom,
showing good agreement for the predic-
tion of the energy of structures between
GAP-20 (shown in black) and DFT
(optB88-vdW) (shown in red). A num-
ber of examples of structures identi-
fied in GAP-20 driven random structure
search are shown. The position of each
of the example structures on the his-
togram is indicated by their numbering:
(1) AB stacked graphite and AA stacked
graphite, (2) cubic and hexagonal dia-
mond, (3) haeckelite, (4) cross-linked
graphitic structure, and (5) novel car-
bon structure with high proportion of sp1

hybridized carbon atoms. (b) The struc-
tures resulting from the GAP-RSS pro-
jected into the sketch-map representa-
tion from Fig. 1. The density of the struc-
tures present in the training data is indi-
cated by the contour lines, while the
structures identified from the GAP-RSS
are shown as individual points.

capture the general shape and height of the barrier but predict the
jagged curves for the rotation, as compared to the smooth varia-
tion from DFT. The LCBOP and Tersoff potentials perform poorly,
overestimating the energy of the rotation by more than 30 eV, and
erroneously situating a maximum in the potential energy where a

minimum is found from DFT. In the case of the Tersoff potential,
two additional spurious minima are located close to where the DFT
maxima are located.

A similar situation is observed for the behavior of the C60
rotational barrier in Fig. 10(b). Here, it is again seen that GAP-20
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FIG. 10. Energies for rigid transformations of a C–C bond in graphene (a) and a
C60 fullerene (b). Results from GAP-20, DFT (optB88-vdW), and a selection of
empirical potentials are shown.

performs well, providing a good estimation of the barrier height
and shape with respect to DFT. The REBO, AIREBO, and Tersoff
potentials all situate spurious minima in the potential energy close to
where the maxima in the reference DFT curve are located, although
they do also predict a minimum at the correct rotation. LCBOP
again overestimates the energy of the barrier by 20 eV and situates a
maximum in the potential energy surface where a minimum ought
to be located.

IX. CONCLUSION
The advantages conferred by the flexibility of the Gaussian

approximation potential framework are made clear by a wide vari-
ety of structures that are accurately treated by GAP-20. The vari-
able hybridization of carbon makes it an extremely challenging ele-
ment to model using empirical potentials; its structurally diverse
allotropes are energetically similar, and the properties of these
depend on a broad range of physical interactions from the weak
van der Waals forces binding graphite to the stiff covalent bonds
of diamond. We have demonstrated here a model that is equally
suited to modeling not just these two bulk structures, but defects,

surfaces, and liquid carbon as well. Wherever possible, we have vali-
dated the performance of GAP-20 against the reference DFT method
and shown it to perform well for a number of physical proper-
ties across the different phases. Included in these are a number of
processes involving bond breaking and formation, some of which
have been challenging for cheaper empirical potentials by construc-
tion. Tests for transferability, specifically by diagnostic GAP-RSS
runs and the study of transformations not included in the train-
ing, suggest that GAP-20 could readily be applied to more thorough
explorations of the carbon potential energy landscape, for exam-
ple, in the search for larger fullerenes61,115 or in crystal-structure
prediction by expanding on Refs. 5 and 109. Further applications
may include the more detailed study of non-graphitizing or “hard”
carbons,116–119 following on from earlier GAP-17 based studies in
Refs. 57 and 58.

Despite the many potential applications of GAP-20, the model
is not without its shortcomings. While it remains significantly more
computationally affordable than direct ab initio simulation (in par-
ticular for large systems), the cost of its evaluation is much greater
than that of empirical potentials (see Fig. 12 of the supplementary
material), and therefore, the latter will still give access to even larger-
scale systems.36 We also note that “real” carbon is rarely found in
isolation—hydrogenation and oxidation of carbon structures are not
considered here. The expansion of the scope of the potential to
treat hydrogenated or oxidized structures would complicate the pro-
cess of training both by requiring a larger training dataset and by
requiring the inclusion of a number of interactions not considered
here. In addition to long-ranged van der Waals interactions (which
are only considered approximately in the current work), the intro-
duction of other elements introduces the associated complexities of
substantial charge rearrangements: polar bonds and partial charges.
The long-ranged Coulomb interactions, dipole–dipole, and higher
order multipole interactions remain a challenge for ML potentials.
We note that the combination of pure carbon simulations (using
GAP-17) and subsequent density-functional analyses of hydrogena-
tion and oxidation36 or metal intercalation58 has proven fruitful,
and we expect that further studies of this type will be facilitated
by GAP-20, particularly when low-density, dispersion-dominated
nanostructures are concerned.

We believe that we have achieved an excellent compromise for
our potential in that it accurately models the wide range of struc-
tures required to make it broadly applicable. We do not claim perfect
accuracy for all properties; however, we accept that fitting to such a
wide range of structures will necessarily impact the accuracy in some
areas. Notably, a large number of structures that were generated as
part of the total training dataset are excluded from the final training.
Conversely, many have been included, which might be irrelevant for
a researcher’s intended purpose. With this in mind, we have made
freely available the total training dataset (structures, energies, forces,
and virial coefficients) produced as part of this work. While we do
not believe that this will typically be necessary, it is a further virtue
of the GAP framework that a potential may be readily retrained to
suit a particular purpose simply by modifying the composition of the
training configurations used; we believe that it is beneficial to offer
the opportunity for users to tune the model to target higher accuracy
in a particular region of interest.

In addition to the training dataset, the potential intro-
duced here is provided in the form of an XML file and
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has been made freely available along with the GAP code
(http://www.libatoms.org). The potential has the unique identi-
fier GAP_2020_4_27_60_2_50_5_436 and may be used within the
QUIP software package, which can be found at https://github.com/
libAtoms/QUIP. GAP-20 may be used for simulations directly in
LAMMPS, using the QUIP for LAMMPS plugin.110

SUPPLEMENTARY MATERIAL

See the supplementary material for full details of computed
formation energies and phonon dispersion curves for all models, fur-
ther information on GAP hyper-parameter selection and command
line argument used, graphene bilayer separation curves, and force
errors for various configurations. More information on the opti-
mization and computational cost of GAP-20 compared to DFT is
also given.
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