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1 Supplementary methods

In this supplementary section, we will first re-introduce the notation we use, then derive the
detailed computation of the lower bound of the variational distribution L(q) in Eq(7) in the
main text, and lastly derive the updates of each variational component in equations Eq(9-11) in
the main text. By leveraging the read counts of alternative alleles A and both alleles (namely
depth) D from N variants in M cells, Vireo aims to estimate the joint posterior distribution
of sample identity Z for each cell j from each sample k, the genotype G for variant i in each
sample k, and the corresponding alternative allele rate θ for each genotype t ∈ {0, 1, 2}. As
described in the main text, we used multinomial priors for the categorical variables Z and G with
hyper-parameters π and U , respectively, and by default both take uniform multinomial priors.
We used beta priors for the parameter of the alternative allele rate θ, and we took the hyper-
parameters (αt, βt), t ∈ {0, 1, 2} that generally fit well to highly expressed germline variants in
standard scRNA-seq data set (not multiplexed). Specifically, the default prior distribution are:
θ0 ∼ beta(0.3, 29.7), θ1 ∼ beta(3, 3), and θ2 ∼ beta(29.7, 0.3).

Next, the lower bound L(q) in Eq(7) can be written as follows

L(q) =
∑
Z

∑
G

∫
θ

q(Z,G,θ) log

{
p(A,D,Z,G,θ)

q(Z,G,θ)

}
dZdGdθ

=EG,Z,θ[log p(A,D,Z,G,θ)]− EG,Z,θ[log q(Z,G,θ)]

=EG,Z,θ[log p(A,D|Z,G,θ)] + EZ [log p(Z|π)] + EG[log p(G|U)]+

Eθ[log p(θ|α,β)]− EZ [log q(Z)] + EG[log q(G)] + Eθ[log q(θ)]

(S1)

where each part is expressed below.

EG,Z,θ[log p(A,D|Z,G,θ)] =
N∑
i=1

M∑
j=1

K∑
k=1

∑
t∈T

{
r̃j,kg̃i,k,t

(
di,j
ai,j

)
[ai,jϕ(α̃t) + bi,jϕ(β̃t)]

}
(S2)

Eθ[log p(θ|α,β)] =
∑
t∈T

(αt + βt − 2)ϕ(α̃t + β̃t)− (αt − 1)ϕ(α̃t)− (βt − 1)ϕ(β̃t)− log(B(αt, βt)) (S3)

Eθ[log q(θ|α̃, β̃)] =
∑
t∈T

(α̃t + β̃t − 2)ϕ(α̃t + β̃t)− (α̃t − 1)ϕ(α̃t)− (β̃t − 1)ϕ(β̃t)− log(B(α̃t, β̃t)) (S4)
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EZ [log p(Z|π)] =
M∑
j=1

K∑
k=1

{r̃j,k log(πk)} , EG[log p(G|U)] =

N∑
i=1

K∑
k=1

∑
t∈T

{g̃i,k,t log(ui,t)} (S5)

EZ [log q(Z)] =

M∑
j=1

K∑
k=1

{r̃j,k log(r̃j,k)} , EG[log q(G)] =

N∑
i=1

K∑
k=1

∑
t∈T

{g̃i,k,t log(g̃i,k,t)} (S6)

Note, the variables with tilde hat are the estimated parameters otherwise are fixed hyper pa-
rameters, including αt and βt. Same below.

Then, following the general updating rule in the mean-field variational inference (see main
text Eq(8)), we can update the parameters in each component alternately while fixing all other
components of the variational distributions and reach the finalized equations Eq(9-11) in the
main paper.

First, by using the distributions of genotypeG and alternative allele rate θ that are estimated
from a previous step in the iteration, we can analytically update the distribution of the sample
assignment Z by a categorical distribution.

log q∗(Z) = EG,θ[log p(A,D,Z,G,θ)] + const.

=
M∑
j=1

K∑
k=1

N∑
i=1

∑
t∈T

Zj,k

{
g̃i,k,t[ai,jϕ(α̃t) + bi,jϕ(β̃t)]

}
+ const.

(S7)

where ϕ(·) is the digamma function, the same below. As q(Zj) for any j follows a multinomial
distribution, we can therefore have the updated parameter rj,k, namely the probability of cell j
from component k as follows,

rj,k =
πk exp

∑N
i=1

∑
t∈T

{
g̃i,k,t[ai,jϕ(α̃t) + bi,jϕ(β̃t)]

}
∑K

h=1 πh exp
∑N

i=1

∑
t∈T

{
g̃i,h,t[ai,jϕ(α̃t) + bi,jϕ(β̃t)]

} (S8)

Second, with a similar procedure, the analytical updates for the genotype distribution can
be written in the form of a categorical distribution as follows,

log q∗(G) = EZ,θ[log p(A,D,Z,G,θ)] + const.

=
N∑
i=1

K∑
k=1

∑
t∈T

M∑
j=1

Gi,k,t

{
r̃j,k[ai,jϕ(α̃t) + bi,jϕ(β̃t)]

}
+ const.

(S9)

where the updated probability of variant i in component k equals to t can be expressed as
follows,

gi,k,t =
ui,k,t exp

∑M
j=1

{
r̃j,k[ai,jϕ(α̃t) + bi,jϕ(β̃t)]

}
∑

h∈T ui,k,h exp
∑M

j=1

{
r̃j,k[ai,jϕ(α̃h) + bi,jϕ(β̃h)]

} . (S10)

Lastly, the analytical updates of the distribution of the alternative allele rate θ can be
expressed in the form of a beta distribution as follows,

log q∗(θ) = EG,Z [log p(A,D,Z,G,θ)] + const.

=
∑
t∈T

N∑
i=1

M∑
j=1

K∑
k=1

{r̃j,kg̃i,k,t[ai,j log(θt) + (di,j − ai,j) log(1− θt)]}+ const.

= log(beta(θt|αt, βt))

(S11)
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where the parameters for this beta distribution are

αt =
N∑
i=1

M∑
j=1

K∑
k=1

{r̃j,kg̃i,k,tai,j} ;βt =
N∑
i=1

M∑
j=1

K∑
k=1

{r̃j,kg̃i,k,tdi,j} . (S12)

Now, by updating these parameters iteratively, we can achieve the maximized lower bound of
L(q), and equivalently the minimized KL divergence KL(q(Z,G,θ)||p(Z,G,θ|A,D)).
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2 Supplementary Figures

Figure S1: The distribution of number of cells assigned to individual samples when running Vireo
assuming a too large pool of size N=12. The true number of samples in the pool is N=8.

Figure S2: AUC for doublet detection (ROC curve) and singlet assignment (ARI-recall curve) when
varying the number of samples with known genotype. There are 8 samples in pool, with 1000 cells
per sample and 1,200 UMIs per cell, instead of the default 4,000 UMIs. The five small dots in each
category denote the five simulation replicates, and the big dot denotes the median value of the five.
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Figure S3: AUC for doublet detection (ROC curve) and singlet assignment (ARI-recall curve) when
varying the cell number of the one minor sample in the pool. There are 8 samples in the pool,
and the other 7 samples have 1000 cells each. The five small dots in each category denote the five
simulation replicates, and the big dot denotes the median value of the five.

Figure S4: Confusion matrix of genotype estimate for variants with different total UMIs per sample.
The estimated genotype is the one with highest probability.
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Figure S5: Cell type identification with clustering transcriptome and visualised with UMAP plot.
Initially, the stimulated and unstimulated cells were clustered into 16 groups, considering the con-
dition variation. Then, the 16 groups were manually merged into eight cell types by exploring the
cell-type marker genes. The final eight cell types are presented in the main Fig 4A.
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Figure S6: Example genes that are differentially expressed in B cells in part of the samples. The
distributions of expression levels in both conditions are shown, either considering each sample sep-
arately or considering aggregated data. FDR: adjusted P value (Benjamini-Hochberg) of each DE
test between conditions with likelihood-ratio test. CPM: count per million.

Figure S7: Differential expression analysis by aggregating multiple samples with three methods.
Method 1 (M1): fitting sample as a covariate when performing DE analysis with treating each cell
as a replicate; Method 2 (M2): ignoring sample covariate and treating each cell as a replicate;
Method 3 (M3): summarising cells in each sample and treating each sample as a replicate, namely
in a pseudo-bulk manner. (A) The scatter plot of -log10(FDR) between method 1 (M1) and method
2 (M2). Only genes with -log10(FDR) ≤50 are presented and genes with FDR differs ≥100 times
between M1 and M2 are labeled. (B) The number of DE genes detected by different methods
combinations, which again are categorized by the repeating times among the 8 samples. The
notation for the three different DE analysis strategies is shared for (A) and (B).
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Figure S8: Differential expression analysis on CD4 T cells. (A) The number of repeating DE genes
between stimulation and control, detected in one to eight individuals. The box plots in gray denote
the results expected by chance (using 200 permutations). (B) The number of DE genes in each of
the 8 samples, which are categorized by the repeating times, that is the number of individuals in
which the gene is found to be DE. (C) The scatter plot of -log10(FDR) between method 1 (M1)
with fitting sample as a covariate and method 2 (M2) with ignoring sample covariate. Only genes
with -log10(FDR) ≤ 50 are presented and genes with FDR differs ≥ 100 times between M1 and M2
are labelled. (D) The number of DE genes detected by different methods combinations, which again
are categorized by the repeating times among the 8 samples. M3 is the DE analysis in a pseudo-bulk
manner. The notation for the three different DE analysis strategies is shared for (C) and (D).
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Figure S9: Differential expression analysis on CD8 T cells. The figure format is the same as Supp
Fig S8.

Figure S10: Differential expression analysis on NK cells. The figure format is the same as Supp Fig
S8.
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Figure S11: Differential expression analysis on CD14+ monocytes. The figure format is the same
as Supp Fig S8.
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Figure S12: Sample alignment between pooled scRNA-seq data and bulk RNA-seq data from HipSci
Project (see Methods). Left panel: size of inferred samples from a six-sample pooled scRNA-seq
data based on 10x Genomics platform. Right panel: alignment between bulk RNA-seq samples
to inferred samples from scRNA-seq data with Vireo by comparing the estimated genotype. The
value of heatmap is the fraction SNPs with matched genotype between single-cell and bulk RNA-seq
samples.
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Figure S13: Identification of discriminatory variants from estimated genotype for the six pooled
samples as in Supp. Fig. S12. Upper panel: two variants with three genotype categories. 0:
homozygous reference allele; 1: heterozygous alleles; 2: homozygous alternative allele. Bottom
panel: three variants without homozygous alternative allele.
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