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Abstract 27 

Mantle oxygen fugacity (fO2) governs the physico-chemical evolution of the Earth, however current 28 

estimates from commonly used basalt redox proxies are often in disagreement. In this study we 29 

compare three different potential basalt fO2 proxies: Fe3+/Fetot, V/Sc and V isotopes, determined on 30 

the same submarine lavas from a 700 km section of the Reykjanes Ridge, near Iceland. These 31 

samples provide a valuable test of the sensitivities of fO2 proxies to basalt petrogenesis, as they 32 

formed at different melting conditions and from a mantle that towards Iceland exhibits increasing 33 

long-term enrichment of incompatible elements. New trace element data were determined for 63 34 

basalts with known Fe3+/Fetot. A subset of 19 lavas, covering the geographical spread of the ridge 35 

transect, was selected for vanadium isotope analyses.  36 

 37 

Vanadium is a multi-valence element whose isotopic fractionation is theoretically susceptible to 38 

redox conditions. Yet, the δ51VAA composition of basaltic glasses along the Reykjanes Ridge covers 39 

only a narrow range (δ51VAA= -1.09 to -0.86‰; 1SD= 0.02-0.09) and does not co-vary with 40 

fractionation-corrected Fe3+/Fetot (0.134-0.151; 1SD= 0.005) or V/Sc (6.6-8.5; 1SD= 0.1-1.3) ratios. 41 

However, on a global scale, basaltic δ51VAA may be controlled by the extent of melting. The V/Sc 42 

compositions of primitive (MgO > 7.5 wt%) basalts show no systematic change along the entire 43 

length of the Reykjanes Ridge. Typical peridotite melting models in which source Fe3+/Fetot is 44 

constant at 5% and that account for the increased mantle potential temperature nearer the plume 45 

center and the fO2 dependent partitioning of V, can reproduce the V/Sc data. However, while these 46 

melting models predict that basalt Fe3+/Fetot ratios should decrease with increasing mantle potential 47 

temperature towards Iceland, fractionation-corrected Fe3+/Fetot of Reykjanes Ridge lavas remain 48 

nearly constant over the ridge length. This discrepancy is explained by source heterogeneity, where 49 

an oxidized mantle pyroxenite component contributes to melting with increasing proximity to 50 

Iceland. 51 

 52 
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Comparison of observed and modeled Fe3+/Fetot indicate that source variation in fO2 is present under 53 

the Reykjanes Ridge, with higher Fe3+/Fetot closer to Iceland. This source variability in fO2 cannot 54 

be resolved by V isotopes and redox-sensitive trace element ratios, which instead appear to record 55 

magmatic processes. 56 

 57 
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Introduction 79 

Oxygen fugacity is an intensive thermodynamic property that dictates the oxidizing potential of a 80 

system (e.g., Frost, 1991). In the Earth’s mantle, fO2 controls phase relations, elemental 81 

distributions and magma genesis. As magmas rise, they retain an fO2 inherited from their source, 82 

which controls the speciation and solubility of volatile elements and thereby the composition and 83 

volume of gasses they release to Earth’s atmosphere (e.g., Frost and McCammon, 2008; Gaillard et 84 

al., 2011). Knowledge of mantle fO2 is thus fundamental for interpretation and understanding of the 85 

physico-chemical processes that control the solid-Earth’s interaction with the oceans and 86 

atmosphere. 87 

 88 

One way to determine mantle fO2 is through the study of mantle peridotites that are either 89 

tectonically emplaced into the crust or magmatically delivered to the surface as xenoliths. Oxygen 90 

fugacity can be quantitatively estimated from such rocks by application of a mineral oxybarometer, 91 

which quantifies the thermodynamics of redox reactions between mineral phases present (e.g., 92 

olivine-orthopyroxene-spinel, O'Neill & Wall, 1987). This approach has been used to demonstrate 93 

that in the continental lithosphere, fO2 decreases with depth, from ±2 log units relative to the FMQ 94 

(fayalite-magnetite-quartz) buffer in the spinel peridotite field to -5 ΔFMQ in the deeper garnet 95 

peridotite field (Frost and McCammon, 2008 and references therein). However, the results from 96 

these studies are primarily representative of the cratonic lithospheric mantle, from which most 97 

xenoliths derive. In contrast to the cratons, the convecting mantle is poorly sampled by xenoliths, 98 

and its distinct chemical and thermal regime means that its fO2 may not be well described by 99 

observations of cratonic xenoliths. 100 

 101 

Basalts are more ubiquitous samples of the convecting mantle than xenoliths. Basalts that form in 102 

equilibrium with their mantle source and subsequently remain a closed system during ascent and 103 

surface emplacement will have an eruptive fO2 related to their mantle fO2 (Kress and Carmichael, 104 



5 
 

1991). A commonly used fO2 proxy in basalts is their ferric iron content (Fe3+/Fetot), which can be 105 

precisely determined by micro-scale techniques such as X-ray absorption near edge structure 106 

(XANES) spectroscopy (e.g., Berry et al., 2018; Cottrell et al., 2009). Through the determination of 107 

the ferric content of basalts, mantle fO2 can be estimated following empirical thermodynamic 108 

calibrations and accounting for differentiation and degassing (e.g., Brounce et al., 2014, 2017; Helz 109 

et al., 2017; Kelley and Cottrell, 2012; Kress and Carmichael, 1991; Moussallam et al., 2014, 2016; 110 

Shorttle et al., 2015). Previous studies (see e.g., Brounce et al., 2014, 2015, 2017; Cottrell and 111 

Kelley, 2011, 2013; Hartley et al., 2017; Helz et al., 2017; Kelley and Cottrell, 2009; Moussallam et 112 

al., 2014, 2016; O’Neill et al., 2018; Shorttle et al., 2015) have indicated that the upper mantle is 113 

heterogeneous in terms of Fe3+/Fetot, with more oxidized conditions found at arc settings (fO2 ≥ 114 

FMQ+1) compared to mid ocean ridges (FMQ ≤ fO2 ≤ FMQ+0.5). Despite the prominence of using 115 

Fe3+/Fetot in basalts as a tool for estimating convecting mantle fO2, some work has also returned to 116 

the abyssal peridotite record to investigate its preservation of mantle fO2. Birner et al. (2018) 117 

showed that peridotites and basalts from mid-ocean ridge settings have good agreement in their 118 

estimates of mantle fO2, while new experimental work also supports this conclusion (Davis and 119 

Cottrell, 2018). 120 

 121 

Importantly, different groups’ XANES-derived estimates of Fe3+/Fetot in mid ocean ridge basaltic 122 

glasses have recently shown offsets from each other (e.g., Berry et al., 2018; Zhang et al., 2018; see 123 

Results for a discussion of our data in this context). These differences reflect underlying decisions 124 

in the interpretation of the Mössbauer spectra of glasses, in particular whether at highly reducing 125 

conditions the spectra record the presence of ferric iron (Berry et al., 2018). As a result, the Berry et 126 

al. (2018) XANES calibration, for a given sample, estimates lower ferric iron contents than the 127 

Zhang et al. (2018) calibration. Debate continues around the correct choice of calibration (Berry et 128 

al., 2018; Cottrell et al., 2009; Zhang et al., 2018; see Results). However, what is more significant 129 

for this study is simply the thermodynamic basis for relating ferric iron abundances to fO2 – i.e., that 130 
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changes in Fe3+/Fetot within a sample suite of relatively constant major element chemistry relate to 131 

variation in fO2, something which the question of XANES calibration does not directly affect. 132 

 133 

Another potential tracer of mantle fO2 in basalts is their V/Sc ratio, which uses the oxygen fugacity 134 

dependence of the partition coefficients of V between minerals and melts Dv
min/melt (e.g., Canil, 135 

1997, 1999). Vanadium and Sc are mildly incompatible trace elements that behave similarly during 136 

melting, but while Sc is homovalent in igneous systems (Sc3+), V is multivalent (V2+, V3+, V4+, 137 

V5+).  This creates an fO2 dependence to V partitioning during melting as the different valence 138 

states of V have different partition coefficients: Dv
min/melt decreases with increasing fO2 whereas 139 

DSc
min/melt remains constant (e.g., Canil, 1997, 1999; Mallmann & O’Neill, 2009), resulting in higher 140 

V/Sc in basalts that form at more oxidizing conditions (Lee et al., 2003, 2005; Li and Lee, 2004). 141 

Employing V/Sc to estimate mantle fO2 requires a correction for fractional crystallization, and 142 

therefore alternative ratios, such as V/Yb, have been proposed (Laubier et al., 2014). Importantly, in 143 

contrast to Fe3+/Fetot, V/Sc ratios of MORBs and arc basalts have similar values, an observation 144 

which has been used to argue that the convecting mantle, whether beneath arcs or ridges, has a 145 

relatively uniform fO2 at ~FMQ-0.5 (Lee et al., 2005). Thus, current estimates of mantle fO2 146 

determined by these two commonly used proxies are in significant disagreement. 147 

 148 

Mantle fO2 might also be investigated by studying the stable isotopic composition of multivalent 149 

transition metals in basaltic magmas (see review in Teng et al., 2017). This is because stable isotope 150 

fractionation depends on valence state and coordination number. Vanadium is an element of interest 151 

in this respect because of its multiple valence states. Also, V isotopic compositions are not 152 

disturbed by secondary processes such as weathering or hydrothermal alteration (Prytulak et al., 153 

2013; Wu et al., 2018), which can affect other isotopic systems (e.g., Fe; Rouxel et al., 2003). 154 

However, the effects of fO2, magmatic differentiation, partial melting and source heterogeneity need 155 



7 
 

to be understood before applying V isotopes as a mantle fO2 proxy (Prytulak et al., 2013, 2017; 156 

Sossi et al., 2018; Wu et al., 2018). 157 

 158 

In this study, a suite of mantle-derived basalts from a ~700 km long segment of the Reykjanes 159 

Ridge near Iceland was selected to investigate the behaviour of Fe3+/Fetot, V/Sc and V isotopes to 160 

assess their co-variation and suitability as fO2 proxies. Fe3+/Fetot data from Shorttle et al. (2015) 161 

were recalibrated using the most recent values for the XANES reference standards (Zhang et al., 162 

2018) and combined with new trace element concentrations on 63 basalt glasses and V isotopic 163 

compositions on a representative subset of 19 lavas (Fig. 1). The Reykjanes Ridge samples are well 164 

characterized in terms of major and minor element concentration and display systematic variations 165 

of trace element ratios and radiogenic isotopic composition with distance from Iceland (e.g., Murton 166 

et al., 2002; Schilling, 1973). Pyroxenitic sources are inferred to be an important component feeding 167 

magmatism on subaerial Iceland (e.g., Stapafell on the Reykjanes Peninsula where the ridge comes 168 

ashore; Fig. 1), and may also extend down the ridge and affect the genesis of Reykjanes Ridge 169 

basalts (Shorttle and Maclennan, 2011; Shorttle et al., 2010). In addition, the crustal thickness along 170 

the Reykjanes Ridge is well determined (e.g., Jones et al., 2014 and references therein) enabling 171 

precise constraints on mantle melting conditions and potential temperature (Tp), which gradually 172 

rises by 60 °C towards Iceland (see e.g., Matthews et al., 2016). The degree of basalt differentiation 173 

also increases along-ridge, as the crust thickens. Thus, the Reykjanes Ridge is an excellent locality 174 

to evaluate the co-variation of potential fO2 proxies during mantle melting and the influence of both 175 

low-pressure differentiation and lithological heterogeneity. In addition to comparison of potential 176 

proxies, thermodynamic melting models were employed to further disentangle the interplay 177 

between source fO2, melting, and lithological heterogeneity. 178 

 179 

2. Methods 180 

2.1 Vanadium isotopes 181 
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Chemical isolation of vanadium was conducted in the MAGIC laboratories at the Department of 182 

Earth Sciences and Engineering, Imperial College London. Clean glass shards without visible 183 

minerals, air/fluid inclusions or weathering features were hand-picked under an optical microscope 184 

and ground in an agate mortar to obtain a homogeneous, fine powder. Approximately 30 mg of each 185 

sample was weighed to provide between 5 and 10 µg of total V. The samples were digested in a 2:1 186 

mixture of 28M HF:15 M HNO3 at 160 °C for at least 1 day. The samples were then evaporated and 187 

re-dissolved in 15M HNO3. This step was repeated 3-5 times in order to ensure the complete 188 

destruction of the fluorides that form during digestion. The dissolved basalts were processed 189 

through ion exchange chromatography following the protocol of Nielsen et al. (2011). This 190 

technique describes a 7-column procedure that allows for complete separation of V from the matrix 191 

and, in particular, quantitative removal of Cr and Ti that can cause isobaric interferences on the 192 

minor isotope 50V. 193 

 194 

Vanadium isotopic compositions were measured with a Nu Plasma II multi collector inductively 195 

coupled plasma mass spectrometer (MC-ICPMS) at Imperial College London following the 196 

procedure outlined in Hopkins et al. (2019). Vanadium isotopic compositions were determined by 197 

standard-sample bracketing, and are reported as permil variations relative to the Alpha Aesar (AA) 198 

V standard solution (Nielsen et al., 2011) using the standard delta notation: 199 

 200 

 δ51VAA = 1000 × [(51V/50Vsample / 51V/50VAA) – 1]. 201 

 202 

A secondary standard solution from BDH chemicals and the NIST 3165 solution were measured 203 

during each session to monitor instrument stability. Samples and standards were diluted to a V 204 

concentration of 600 ppb. Total procedural blanks were insignificant (< 2ng) compared to the 205 

amount of V processed. Analysis of USGS reference materials (BIR-1a, BCR-2 and AGV-2) and 206 

the BDH and NIST 3165 solution standards are in agreement with published literature (Table S1). 207 
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 208 

2.2 Laser ablation inductively coupled plasma mass spectrometry 209 

Trace and rare earth element (REE) concentrations were measured by laser ablation inductively 210 

coupled plasma mass spectrometry (LA-ICPMS) at the Department of Earth Sciences, the 211 

University of Cambridge. This analytical setup combines a NWR193 excimer laser ablation systems 212 

with a Perkin Elmer NexION 350D ICP mass spectrometer. The list of the trace elements analyzed 213 

and their concentrations are reported in Table S2. Measurements were conducted on 63 polished 214 

glasses that were previously analyzed by XANES to determine Fe3+/Fetot (Shorttle et al., 2015). Spot 215 

analyses of 100 µm diameter were conducted on clean portions of the glasses, avoiding potential 216 

sources of contamination such as cracks or inclusions, using a laser power of 8 J/cm2 and 10 Hz 217 

repetition rate. These ablating conditions were optimized after testing international reference glass 218 

standards NIST-612, BCR-2G, BIR-1G and ML3B-G and comparing with the preferred values from 219 

the GEOREM database (available at http://georem.mpch-mainz.gwdg.de). The data were collected 220 

by the ICP-MS using 1 sweep per reading, 50 readings and 1 replicate conditions. ICP-MS dwell 221 

time varied for the different elements and it was typically between 10-20 ms for most trace 222 

elements, but this value was increased up to 60 ms for some low concentrations REE. The Glitter 223 

Software (GEMOC, Australia) was used to process raw data (signal intensity vs time), which allows 224 

to the user to select backgrounds and signals and precisely calculate sample concentrations. The 225 

SiO2 content of the glasses, previously determined by electron microprobe analyses (Shorttle et al., 226 

2015), was used as internal standard for the normalization of trace element signals. BCR-2G was 227 

chosen as an external standard as it provided, overall, better precision (RSD% generally <10%, 228 

1SD) and accuracy (average percent error within ±15%) compared to other standards. These values 229 

of precision and accuracy were calculated considering all individual analyses collected on a 230 

particular standard at the beginning, middle and end of the session.  231 

 232 

2.3 Modelling rationale 233 
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Two types of mantle melting scenarios were explored to reproduce the Fe3+/Fetot and trace element 234 

variation along the Reykjanes Ridge. The first approach was adopted to simulate adiabatic melting 235 

of ambient mantle peridotite. The second was conducted to investigate the melting behavior of 236 

pyroxenite and in particular the formation of enriched lavas, using the Stapafell eruption from 237 

subaerial Iceland as an endmember (Fig. 1). Thermodynamic modelling was performed with the 238 

pMELTS software operated through the alphaMELTS frontend (Ghiorso et al., 2002; Smith and 239 

Asimow, 2005). pMELTS was used to predict the equilibrium phase assemblage of a mantle 240 

composition at given conditions (P, T and fO2). The chemical composition of the modelled 241 

instantaneous melts was calculated from the phase equilibria and melting reactions. A general 242 

description of the modelling rationale is provided below, while more details are reported in Table 243 

S3.  244 

 245 

(1) DMM melting: Depleted MORB mantle (DMM) major element composition from Workman and 246 

Hart (2005) was used as a starting composition, with varying initial Fe3+/Fetot ratios (4-6%) 247 

calculated maintaining constant total FeOT. These Fe3+ contents are chosen such that the model 248 

produces melts with a range of Fe3+/Fetot close to that observed. A mantle Fe3+/Fetot of 4-6% is 249 

slightly higher than values predicted based on mantle xenolith studies (Fe3+/Fetot = 2%; e.g., Canil 250 

and O’Neill, 1996). There may be two reasons for this: (1) model-based effects, whereby the 251 

treatment of ferric iron in pMELTS is not accurately capturing its behavior in natural systems (e.g., 252 

the lack of ferric iron in garnet in pMELTS, despite its presence in garnet solid solution as 253 

andradite); (2) the possibility that cratonic xenoliths underestimate convecting mantle fO2 values.  254 

However, this study is focused on the relative changes in Fe3+/Fetot rather than absolute values, so 255 

our choice of mantle Fe3+/Fetot is less important than how it translates to basalt Fe3+/Fetot, given 256 

changing conditions of melt generation along ridge. 257 

 258 
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Model simulations of decompression fractional melting were conducted for changing mantle 259 

potential temperatures along the Reykjanes Ridge to account for the influence of the Icelandic 260 

plume on the sub-ridge thermal structure. Potential temperatures increasing from 1404 qC at ~1100 261 

km to 1468 qC at ~400 km (Table S2), were constrained by matching the melt thickness produced 262 

by decompression melting models of DMM with the crustal thickness reported by seismological 263 

surveys (e.g., Jones et al., 2014 and references therein). Mantle fO2 was not imposed in the models 264 

and was calculated using the Fe3+/Fetot ratio of the melts (Kress and Carmichael, 1991) with 265 

pMELTS considering that Fe3+ is not incorporated in olivine and garnet. It is recognized, however, 266 

that in pMELTS fO2 can be also calculated based on solid phase equilibria (Asimow and Ghiorso, 267 

1998) and that this method provides systematically less oxidized values compared with the above 268 

calibration. The fO2 determined with the Kress and Carmichael (1991) calibration was used here for 269 

consistency with data from natural samples.  270 

 271 

Adiabatic decompression models were used to calculate the major element compositions (SiO2-272 

TiO2-Al2O3-Fe2O3-Cr2O3-FeO-MgO-CaO-NaO) of progressive aggregate melts in a 2D triangular 273 

melting region. Even though pMELTS allows for the direct calculation of trace element 274 

concentrations, their behavior here was treated separately so that the effect of fO2 on the distribution 275 

of V between minerals and melts could be incorporated (e.g., Canil, 1997). Partition coefficients of 276 

V were calculated following the parameterization of Mallmann and O’Neill (2009, 2013) while 277 

those for selected trace elements (Sc, Ba, La, Nb, Zr, K) used the values of MᶜKenzie & O’Nions 278 

(1991, 1995) and Mallmann & O’Neill (2009). These particular elements were chosen to monitor 279 

the behavior of trace element ratios in the models and track enrichment along the ridge (see 280 

discussion). The trace element compositions of the melts were calculated assuming a depleted 281 

mantle source of Salters & Stracke (2004), which provide concentrations for all elements of interest, 282 

and the phase compositions, modal abundances and P, T and fO2 from the pMELTS calculations. 283 

  284 
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(2) Pyroxenite melting: Modelling the composition of melts produced by melting of a bi-lithological 285 

mantle, containing a mechanical mixture of peridotite and pyroxenite, is challenging due to the 286 

variety of melt-rock reactions that can occur. pMELTS does not currently allow for direct 287 

calculation of melting of a bi-lithological mantle and instead a multi-step approach, where the 288 

lithologies are modelled separately and combined, needs to be followed (Rudge et al., 2013). A 289 

further complexity for modelling pyroxenite melting is that its low solidus temperature means that 290 

melting begins above 4 GPa at the potential temperatures investigated here, which is outside the 291 

calibrated pressure range of pMELTS. We therefore made a first-order investigation of pyroxenite’s 292 

effect on the composition of aggregate melts, discounting the full chemical and physical complexity 293 

a more complete model would need to incorporate. Only an initial stage of isobaric melting of 294 

mantle pyroxenite was modelled here, as described by Rudge et al. (2013). This approximates 295 

adiabatic decompression melting by instead conducting isobaric melting calculations in the 296 

calibrated pressure range of pMELTS. Assuming that the melt productivity (i.e., dF/dP) is known 297 

for the pyroxenite, the isobaric calculations can be approximately related to a decompression 298 

interval. Low-degree model melts are finally compared to Stapafell lavas in order to assess trace 299 

element enrichment of Reykjanes Ridge basalts. 300 

 301 

The pyroxenite chosen for modelling was KG1 from Kogiso et al. (1998), which compositionally 302 

corresponds to a 1:1 peridotite:basalt mixture. The Fe3+/Fetot of this lithology was set at 16% 303 

assuming KG1 represents a peridotite with 5% Fe3+/Fetot (DMM models) mixed with a Proterozoic 304 

basalt with 27% Fe3+/Fetot ratio (e.g., Stolper and Keller, 2018). Proterozoic basalts can be 305 

envisaged as remnant subducted slab in the mantle that were oxidized during seafloor weathering 306 

(Stolper and Keller, 2018).  The trace element concentrations of KG1 were also calculated by 307 

mixing peridotite from Salters and Stracke (2004) with recycled oceanic crust from Stracke et al. 308 

(2003). If not reported in Stracke et al. (2003), the concentration of certain elements of the recycled 309 

oceanic crust were calculated using the N-MORB mean of Gale et al. (2013) and the 310 
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supercomposite altered MORB composition from Bach et al. (2003). Concentrations of elements 311 

with high mobility were recalculated using the dehydration model of Stracke et al. (2003). Model 312 

calculations were performed for a pressure of 3 GPa, which corresponds to the onset of melt 313 

extraction of DMM source at the highest Tp (approaching Iceland). Partition coefficients varying 314 

with P, T and composition were used and no fixed fO2 was imposed (Table S3).  315 

 316 

3. Results 317 

3.1 Vanadium isotopic compositions 318 

The V isotopic composition of the Reykjanes Ridge basalts ranges between -1.09 and -0.86‰ 319 

(Table S2), and extends towards lighter values from the global average for MORB (-0.84‰ ± 0.10 320 

2SD, n= 22; Wu et al., 2018). No systematic variation is observed along the 700 km transect of the 321 

ridge (Fig. 2), with Fe3+/Fetot (Fig. 3a) or with V/Sc ratio (Fig. 3b). The average of all Reykjanes 322 

Ridge basalts is -0.97‰ ±0.17 2SD (n=19) and overlaps with the MORB average value of Wu et al. 323 

(2018). In detail, the Reykjanes Ridge basalts are the light isotope end-member in the positive 324 

global correlation between Na8 and δ 51V determined by Wu et al. (2018) (Fig. 4). 325 

 326 

3.2 Trace elements 327 

Trace element concentrations are summarized in Table S2. The V/Sc ratios range between 6.5 and 328 

10 and are displayed in Fig. 5 as a function of distance from Iceland and MgO content. The V/Sc 329 

ratio increases approaching Iceland, however, this signal negatively correlates with MgO contents 330 

indicating the strong effect of fractional crystallization (e.g., Li and Lee, 2004). Specifically, Fig. 6 331 

shows that samples with V/Sc > 8.5 have CaO <11.9 wt% and MgO <7.3 wt%, demonstrating that 332 

low pressure clinopyroxene fractionation is responsible for fractionating V from Sc (Fig. S1). 333 

Primitive Reykjanes Ridge basalts with MgO >7.5 wt%, however, are not affected by 334 

clinopyroxene crystallization (Fig. 6 and S1) and show no systematic changes in V/Sc along the 335 
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ridge ranging between 6.5 and 8.5, in agreement with the average MORB value of 6.7 (Lee et al., 336 

2005). 337 

 338 

The incompatible trace element ratio Nb/Zr increases from 0.02 at 1100 km to 0.11 at 400 km 339 

distance along the Reykjanes Ridge (Table S2), which has been interpreted to reflect a greater 340 

proportion of plume-fed enriched material closer to Iceland (e.g., Murton et al., 2002; Schilling, 341 

1973; Shorttle and Maclennan, 2011). Short length scale heterogeneity along the Reykjanes Ridge 342 

is also shown by the chemically anomalous seamount 14D, which has Nb/Zr =0.08 at ~1100 km 343 

from the Icelandic plume center (Table S2). This is 4 times above local background values and 344 

closer to the average crustal composition of subaerial Iceland (Shorttle et al., 2015).  345 

 346 

3.3 Fe3+/Fetot ratios revisited from Shorttle et al. (2015) 347 

Shorttle et al. (2015) performed micro XANES on the same Reykjanes Ridge basalts that were 348 

investigated in this study. Their work determined their Fe3+/Fetot ratios using the standards from the 349 

Smithsonian NMNH (catalog #117393) described in Cottrell et al. (2009). By evaluating time-350 

resolved XANES spectra, Shorttle et al. (2015) ruled out beam damage causing oxidation effects.  351 

 352 

However, since the work of Shorttle et al. (2015), cryogenic Mössbauer analyses were used to re-353 

determine the Fe3+/Fetot ratios of the standards developed by Cottrell et al. (2009), with the original  354 

Mössbauer work having been performed at room temperature (Zhang et al., 2018). Zhang et al.'s 355 

(2018) re-analysis of the standards provides lower Fe3+/Fetot estimates, with their work suggesting a 356 

differential temperature-dependent response of the Fe3+ and Fe2+ Mössbauer doublets that has 357 

compromised previous room-temperature Mössbauer work. As such, when the raw XANES spectra 358 

of Shorttle et al. (2015) were reprocessed in this study using the Zhang et al. (2018) calibration, 359 

their Fe3+/Fetot decreased (Table S2). Additionally, a more conservative measure of how to relate 360 

spectral shape to Fe3+/Fetot was used in the quantifying of the XANES spectra here than had 361 
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originally been used by Shorttle et al. (2015) (who employed a principal component regression of 362 

the entire pre-edge region). The peak area ratio was used in this study to form a calibration 363 

following Zhang et al. (2016), as it showed the least compositional sensitivity. Although there is 364 

limited major element variability in this sample suite, what variation there is co-varies with distance 365 

along ridge (via igneous differentiation), so the peak area ratio approach minimizes that chance that 366 

this is aliased into Fe3+/Fetot estimates. 367 

 368 

Berry et al. (2018) and O’Neill et al. (2018) have recently argued for a different interpretation of the 369 

Mössbauer spectra underpinning the Fe3+/Fetot of the XANES standards of Cottrell et al. (2009). 370 

This interpretation would suggest that the recalibrated Shorttle et al. (2015) Fe3+/Fetot should be 371 

systematically lowered by a further 2-3% (absolute). However, the differences between the Berry et 372 

al. (2018) and the Zhang et al. (2018) calibrations do not translate to significant differences in 373 

inferred fO2, because the Berry et al. (2018) calibration has been linked to a re-parameterization of 374 

how basalt Fe3+/Fetot is related to fO2 (O’Neill et al., 2018). The result is that either using Zhang et 375 

al. (2018) with Kress and Carmichael (1991), or Berry et al. (2018) with O’Neill et al. (2018), the 376 

inferred mantle fO2 from basalts is nearly constant at ~FMQ. 377 

 378 

Importantly, it is emphasized that this study is focused on understanding relative fO2 variation along 379 

the Reykjanes Ridge and how this is reflected in changes in the various fO2 proxies. As such, 380 

further comments on the cause of absolute discrepancies in Mössbauer-based XANES calibrations 381 

are not developed. 382 

 383 

The recalibrated Fe3+/Fetot data of the Reykjanes Ridge basalts are reported in Table S2 and 384 

displayed in Fig. 7a. The raw Fe3+/Fetot ratios range between 0.141 and 0.162, which is lower than 385 

the range of 0.155 to 0.175 previously reported by Shorttle et al. (2015). The highest values are 386 

observed in the seamount samples 17D1 (0.158) and 14D (0.162) that are recognized as local 387 
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heterogeneities (Murton et al., 2002; Shorttle et al., 2015), with the rest of the Reykjanes Ridge 388 

basalts reaching a maximum Fe3+/Fetot ratio of 0.157. An error on Fe3+/Fetot of 0.5% (absolute) is 389 

estimated from the long term reproducibility of the standards used during the XANES sessions of 390 

Shorttle et al. (2015). 391 

 392 

The effect of crystallization on the ferric iron content of the lavas (e.g., Cottrell and Kelley, 2011) 393 

can be seen in Fig. 7a, where more evolved basalts with lower MgO have higher Fe3+/Fetot ratios. 394 

The raw data calculated here were corrected for crystallization using the two-stage approach of 395 

Shorttle et al. (2015), which combines a an empirical correction to 8 wt% MgO with olivine 396 

addition to 10 wt% MgO. Results are shown in Fig. 7b, where Fe3+/Fetot ratios corrected to 10 wt% 397 

MgO (MgO10) are now shifted to lower values between 0.131 and 0.151. These Fe3+/Fetot ratios are 398 

in agreement with recent MORB averages (0.143) determined by Zhang et al. (2018) using 399 

XANES. The fractionation-corrected Fe3+/Fetot (Fig. 7b) are used in the discussion that follows and 400 

for comparison with model results. Oxygen fugacities calculated using the Fe3+/Fetot MgO10 ratios 401 

and the calibration of Kress and Carmichael (1991) at 2 kbar range between QFM+0.06 to QFM-402 

0.32 (Fig. 7c). However, it is remarked again that rather than absolute Fe3+/Fetot ratios, this study 403 

focuses on the differences between natural and modelled observations.  404 

 405 

3.4 Melting models  406 

Given the restricted range of δ51V, the lack of systematic co-variation with other chemical 407 

parameters (Fig. 2, 3) and the scarcity of isotopic mineral-melt fractionation factors, modelling 408 

focused on reproducing the Fe3+/Fetot, V/Sc and Nb/Zr ratio of the melts along the Reykjanes Ridge 409 

(Fig. 8, Table S4).  410 

 411 

In all DMM melting models, garnet is the first phase to disappear from the mantle residue during 412 

decompression melting, followed by clinopyroxene. For example, for the DMM composition with 413 
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5% bulk Fe3+/Fetot and at the lowest Tp investigated (1404 °C), garnet disappears at approximately 414 

2.2 GPa and clinopyroxene at 0.8 GPa. The same behavior is observed at higher Tp, with phases 415 

being consumed in the solid assemblage at slightly higher pressures. At Tp = 1404 °C, melt is first 416 

produced at approximately 1.9 GPa and is first extracted from the peridotite at slightly shallower 417 

depths, 1.8 GPa, when minimum porosity values of 0.5% (vol.) are reached (see constrains from 418 

e.g., Sims et al., 1999). At the highest Tp investigated (1468 °C), melts begin to form at higher 419 

pressure, 3.4 GPa, and begin separating from the residue at 3.0 GPa. Aggregate melt calculations 420 

stop at the base of the crust (determined by pressure of the overlying melt-derived crust) at a 421 

particular Tp along the Reykjanes Ridge. These pressures at the base of the crust range from 0.21 422 

GPa in the south to 0.32 GPa at the northern most section of the ridge, corresponding to crustal 423 

thicknesses of ~7 and 11 km, respectively (assuming 2900 kg/m3 as an average crustal density). 424 

Over the 1404 °C to 1468 °C Tp range considered, maximum extents of melting (F) increase from 425 

25% to 29%. 426 

 427 

Modelled Fe3+/Fetot ratios of the aggregate melts decrease towards Iceland as higher potential 428 

temperatures are encountered (Fig. 8a; Table S4). Depending on source Fe3+/Fetot, decreases of 429 

between 0.02 and 0.03 Fe3+/Fetot in the modelled aggregate melt compositions are observed as Tp 430 

increases by 64 qC (i.e., from 1404 °C to 1468 °C), with associated decrease in melt absolute fO2 431 

between 0.78 and 0.83. This result is consistent with the findings of Gaetani (2016), who also 432 

showed that higher mantle temperatures produce more reduced aggregate melts. The calculated 433 

V/Sc ratio of partial melts produced also reflects changes in fO2 (Fig. 8b), indicating an increased 434 

average Dv/DSc during melting towards Iceland (Table S4). However, V/Sc only exhibits a low 435 

amplitude response to these changing melting conditions, varying by only 0.7-0.9 at a given 436 

Fe3+/Fetot source concentration over the investigated range of Tp (Fig. 8b). As expected for highly 437 

incompatible and fO2 insensitive elements, the calculated Nb/Zr ratio in the melts are near constant 438 

at ~0.03 along the Reykjanes Ridge (Fig. 8c), regardless of the initial bulk Fe3+/Fetot (Table S4).  439 
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  440 

The pyroxenite modelling focused on calculating Fe3+/Fetot and trace element ratios, where 441 

disparities between the melt concentrations from the DMM models and the Reykjanes Ridge basalts 442 

are observed at distances < 700 km to Iceland (Fig. 8a, c). The low-degree (F%= 0.2 to ~20%) melt 443 

compositions formed in the KG1 pyroxenite melting models are reported in Table S5. In the 444 

isobaric melting model at 3 GPa, pyroxenite starts melting at 1384 °C and melts are extracted from 445 

the solid assemblage (consisting of olivine + garnet + clinopyroxene + spinel) at 1394 °C, when the 446 

porosity is higher than 0.5% (vol.). With increasing temperature, orthopyroxene becomes a stable 447 

phase in the solid assemblage with abundances increasing as melting proceeds. This is contrary to 448 

clinopyroxene abundances, which decrease as it is consumed on melting. Spinel is the least 449 

abundant phase in the solid assemblage and its abundance also slightly decreases with increasing 450 

temperature. As a result of these melting reactions, the liquid’s Fe3+/Fetot increases with increasing 451 

extent of melting as clinopyroxene (the dominant phase in the solid assemblage and major host of 452 

Fe3+) and spinel (another reservoir of Fe3+ in its magnetite component) are progressively consumed. 453 

Trace element ratios used to indicate enrichment towards Iceland (e.g., Nb/Zr, La/Yb) are high in 454 

these melts (Table S5). For example, the calculated Nb/Zr ratio of the isobaric melts produced by 455 

melting KG1 pyroxenite ranges between 0.12 and 0.04 at melt fractions 0.2 and 20%, respectively, 456 

which are higher than the ratios produced in the DMM models at any Tp (Table S4). 457 

  458 

Discussion 459 

4.1 Vanadium isotopes as an fO2 proxy 460 

The δ51V measured thus far in basaltic lavas with >4 wt% MgO have limited variation (Prytulak et 461 

al., 2013, 2017; Wu et al., 2018). However, an increase of ~2‰ in δ51V towards heavier δ51V values 462 

during progressive closed-system fractional crystallization of genetically related magmas has been 463 

ascribed mainly to the crystallization of isotopically light iron oxides (Prytulak et al., 2017; Sossi et 464 

al., 2018). The Reykjanes Ridge basalts investigated in this study all have MgO contents >6.3 wt% 465 
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(Shorttle et al., 2015), and thus fractional crystallization is not expected to influence their V isotopic 466 

signatures. The Reykjanes Ridge basalts display coherent and significant variation in trace element 467 

(e.g. Nb/Zr) and radiogenic isotopic compositions (e.g., 87Sr/86Sr and 143Nd/144Nd; Murton et al., 468 

2002). Increasing enrichment along the Reykjanes Ridge on approach to Iceland is commonly 469 

interpreted as the influence of the Icelandic mantle plume (e.g., Murton et al., 2002; Schilling, 470 

1973). Murton et al. (2002) explained the geochemical variations of the Reykjanes Ridge basalts by 471 

mixing of six differently enriched mantle components. Thus, the data presented here suggest that V 472 

isotopes are not sensitive to the chemical heterogeneities in the mantle source below the Reykjanes 473 

Ridge documented by trace element and radiogenic isotope systems. This point is emphasized by 474 

the unremarkable V isotopic composition of sample 14D of δ51V = -1.09 (Fig. 2), which in terms of 475 

its trace elements and radiogenic isotopes clearly samples a local mantle compositional 476 

heterogeneity. 477 

 478 

Wu et al. (2018) recently proposed that V isotope fractionation may be sensitive to the extent of 479 

melting by demonstrating a positive correlation between δ51V and Na8, an indicator of the degree of 480 

melting (Klein and Langmuir, 1987). The Reykjanes Ridge basalts have Na8 between 1.83 and 2.19, 481 

and are displaced to isotopically lighter values compared with higher Na8 MORB (Fig. 4). The 482 

Reykjanes Ridge basalts follow the general trend established by Wu et al. (2018), supporting the 483 

notion that the extent of melting may influence the V isotopic composition of MORBs on a global 484 

scale. 485 

 486 

Importantly, the V isotopic compositions of the Reykjanes Ridge basalts do not correlate with 487 

Fe3+/Fetot or V/Sc (Fig. 3). This observation indicates that V isotopes of primitive basalts are not 488 

sensitive to an fO2 difference of ~0.3 log unit along the Reykjanes Ridge. However, primitive 489 

samples not affected by fractional crystallization and equilibrated at more extreme fO2 conditions, 490 
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need to be analyzed to further assess the sensitivity of V isotopes to redox conditions for their use as 491 

an fO2 sensor. 492 

 493 

4.2 V/Sc as an fO2 proxy 494 

The V/Sc ratio of the partial melts calculated by pMELTS are compared to the Reykjanes Ridge 495 

compositions in Fig. 8b. The Dperidotite/melt of trace elements is calculated based on Dmin/melt and the 496 

modal abundances of the minerals in the solid residue, which change as a function of Tp and P 497 

during decompression. The average V partition coefficients increase towards Iceland, where higher 498 

potential temperatures are met and resultingly lower fO2’s are calculated; the average Sc partition 499 

coefficient only slightly increases towards Iceland due to the deeper onset of melting, meaning that 500 

garnet is residual in the phase assemblage during proportionally more of the melting interval, and 501 

garnet has the highest DSc (Table S4). The net effect of these processes is for DV/DSc to increase 502 

towards Iceland, resulting in the gently decreasing V/Sc ratio observed in the accumulated partial 503 

melts generated by pMELTS (Fig. 8b). The melting model of DMM with initial 5% Fe3+/Fetot 504 

reproduces, within error, the V/Sc ratios of the primitive (>7.5 wt% MgO) Reykjanes Ridge basalts 505 

along the entire extent of the ridge between 1100 and 400 km (Fig. 8b). The V/Sc of primitive 506 

basalts translates into fO2’s ranging between ΔFMQ = 0 to -0.5 following the model of Lee et al. 507 

(2005). These fO2 values are consistent with those calculated from the Fe3+/Fetot (Fig. 7c). However, 508 

interpretations of mantle fO2 values determined by V/Sc proxy are model-dependent, as the V/Sc 509 

concentration of basalts depends on both Dv
min/melt and DSc

min/melt, the source concentrations and the 510 

fO2 conditions. For example, Prytulak et al. (2017) used batch melting calculations to illustrate that 511 

a less oxidized, fertile mantle and a more oxidized, depleted mantle, with respectively higher and 512 

lower Dv
pdt/melt, can produce similar V/Sc ratios in MORB and arc lavas, highlighting the limitations 513 

of V/Sc as a direct redox proxy (see also Bucholz and Kelemen (2019) for this discussion in an arc 514 

context). 515 

 516 
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4.3 Fe3+/Fetot as an fO2 proxy 517 

The ferric iron content of partial melts formed during adiabatic decompression of mantle peridotite 518 

reflects both source Fe3+/Fetot and Tp. At a fixed source Fe3+/Fetot, the upwelling mantle peridotite 519 

crosses fO2 isopleths that become slightly more oxidized through the spinel stability field (Gaetani, 520 

2016). Instantaneous melts may therefore become more oxidized as decompression proceeds. 521 

However, aggregate melts are also sensitive to the onset of melting, and when melting begins in the 522 

garnet field, at Tp > 1447 °C, the Fe3+/Fetot of the aggregate melts decreases until garnet is 523 

exhausted from the solid assemblage. The net effect is that the Fe3+/Fetot of aggregate melts 524 

decreases with increasing potential temperatures (Gaetani, 2016), as observed in the model runs as 525 

Iceland is approached (Fig. 8a). 526 

 527 

Melting models of DMM composition with 5% initial Fe3+/Fetot reproduce the Reykjanes Ridge 528 

basalt compositions between ~700 and 1100 km from the plume, in agreement with the V/Sc data 529 

(Fig. 8a-b). The highest Fe3+/Fetot ratios of seamounts 14D and 17D, which formed from 530 

particularly enriched sources far from Iceland (Murton et al., 2002), are in agreement with the 531 

model, given the 0.01 2SD uncertainty of XANES analyses of Fe3+/Fetot. Notably, within ~700 km 532 

of the Icelandic plume, the Fe3+/Fetot ratio of natural samples clearly deviate from that of modelled 533 

partial melts. While Fe3+/Fetot ratio in modelled partial melts decreases monotonically by 0.02-0.03 534 

towards Iceland, the Reykjanes Ridge basalts remain nearly constant (Fig. 7a-b). The Fe3+/Fetot ratio 535 

of the Reykjanes Ridge basalts at 400 km distance can be reproduced by melting DMM with a 536 

higher initial Fe3+/Fetot content (6%, Fig. 8a). However, deviations from the models in both 537 

Fe3+/Fetot and trace element ratios at approximately 700 km from Iceland require the mantle source 538 

heterogeneity, as is documented by radiogenic isotopes (e.g., Murton et al., 2002). For example, a 539 

difference of 0.02 Fe3+/Fetot between natural and modelled melts is reached at 400 km distance (Fig. 540 

8a), which is twice the conservative uncertainty of the XANES analyses (0.01 2SD). Shorttle et al. 541 

(2015) suggested that the presence of recycled, oxidized oceanic crust in the mantle sampled by the 542 
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Icelandic plume may explain the trace element and Fe3+/Fetot signatures. The Fe3+/Fetot ratios of the 543 

Reykjanes Ridge basalts are therefore sensitive to the melting conditions and, importantly, to the 544 

presence of chemical heterogeneities in the mantle source as observed in the northern part of the 545 

ridge segment (Fig. 8a). The higher Fe3+/Fetot signal observed in the Reykjanes Ridge basalts near 546 

Iceland, compared to modelled concentrations of DMM with 5% Fe3+/Fetot, can be explained by the 547 

presence of pyroxenite in the source. Calculated partial melts of KG1 pyroxenite have high 548 

Fe3+/Fetot (up to 0.187, Table S5), which if mixed with melts produced from a nominal DMM 549 

peridotite will counterbalance the Fe3+/Fetot decrease predicted from Tp effects alone. Notably, the 550 

more oxidized signature towards Iceland recognized by the Fe3+/Fetot difference between the 551 

Reykjanes Ridge basalts and the DMM model prediction is not recorded in the V/Sc ratios (Fig. 552 

8b). 553 

 554 

4.4 The influence of a more oxidized and enriched source on the geochemistry of Reykjanes 555 

Ridge basalts near Iceland 556 

The Nb/Zr concentrations of partial melts produced by DMM melting models (~0.03) are similar to 557 

the Reykjanes Ridge basalts between 1100-700 km (Fig. 8c). However, Nb/Zr deviates from model 558 

predictions at approximately 700 km and a ten-fold difference between the Reykjanes Ridge basalts 559 

and the partial melts produced by DMM models is reached at 400 km (Fig. 8c). The deviation of 560 

Nb/Zr ratios between the RR basalts and DMM models coincides with Fe3+/Fetot mismatches (Fig. 561 

S2), indicating the combined oxidized and enriched nature of the mantle source sampled by the 562 

Reykjanes Ridge basalt close to Iceland.  563 

 564 

In order to investigate the effect of lithological heterogeneity on Fe3+/Fetot and trace elements used 565 

as an indicator of enrichment, lavas from Stapafell were considered as a proxy for enriched melts. 566 

Stapafell is one of the most enriched basalts on the Icelandic rift zone (Fig. 1) with high trace 567 

element ratios (e.g., Nb/Zr= 0.157), high 87Sr/86Sr and low 143Nd/144Nd (e.g., Peate et al., 2009). 568 
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Importantly, Stapafell continues the geochemical trends towards Iceland set by the Reykjanes Ridge 569 

basalts in the direction of progressively enriched compositions. Trace element concentrations of the 570 

Reykjanes Ridge basalts range between partial melts produced by DMM melting models and 571 

Stapafell lavas (Fig. 9), indicating that the apparent influence of an enriched source on approach to 572 

Iceland is possibly the same that supplies Stapafell. 573 

 574 

The composition of one of the Reykjanes Ridge basalts closest to Iceland at ~400 km (185D4, 575 

Table S2), displays one of the highest deviations of Fe3+/Fetot and Nb/Zr from the predictions of the 576 

DMM melting models. The chemistry of 185D4 glass can be envisaged as a mixture of two melts, 577 

one produced from ambient DMM and one from the enriched source of Stapafell lavas. This 578 

simplification allows the composition of the enriched melt portion for sample 185D4 to be 579 

calculated through mass balance, using the chemical composition of a Reykjanes Ridge basalt not 580 

influenced by the plume (e.g., sample 12aD1 at ~1100 km; Table S2) as the melt produced by 581 

melting DMM and normalizing the contributions from each melt to the crustal thickness. The 582 

enriched melt composition calculated following this approach has a REE pattern that is similar to 583 

Stapafell basalt (Fig. 10), also validating the choice of Stapafell to investigate enrichment along the 584 

Reykjanes Ridge. 585 

 586 

Pyroxenite melting models conducted here can reproduce some of the trace element contents of 587 

Stapafell lavas (Table S5), suggesting that KG1 pyroxenite or similar lithologies may cause the 588 

trace element enrichment towards Iceland, in agreement with Shorttle and Maclennan (2011). Low-589 

degree melts (F= 4-10 %) have Fe3+/Fetot= 0.159-0.176, which if mixed with melts produced by 590 

melting DMM, in a 1:1 ratio, replicate the Fe3+/Fetot of the Reykjanes Ridge basalts at 400 km from 591 

Iceland. The models developed in this study confirm the increasing contribution from a pyroxenitic 592 

rich source towards Iceland along the Reykjanes Ridge, which increases incompatible trace element 593 
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concentrations and is required to counterbalance the modelled decreasing Fe3+/Fetot of the basalts 594 

from a DMM source. 595 

 596 

5. Conclusions 597 

The behavior of V isotopes, V/Sc and Fe3+/Fetot in the Reykjanes Ridge basalts can be summarized 598 

as follow: 599 

 600 

1. Vanadium isotopic compositions do not systematically vary along the Reykjanes Ridge (δ51V= -601 

0.97‰ ±0.17, n=19). δ51V is not sensitive to the small fO2 differences observed along the 602 

Reykjanes Ridge but may be controlled by the extent of melting when compared with global 603 

decompression melts (Wu et al., 2018). More studies on pristine basalts equilibrated at more 604 

extreme fO2 conditions than those recorded along the Reykjanes Ridge are required to investigate 605 

the sensitivity of V isotopes to mantle fO2. Vanadium isotopes appear insensitive to the presence 606 

of pyroxenite in the Reykjanes Ridge mantle source. 607 

 608 

2. V/Sc ratios show a general increase towards Iceland due to fractional crystallization of 609 

clinopyroxene. High MgO basalts (> 7.5 wt%) not altered by crystallization show a minor 610 

decrease of V/Sc ratios along the Reykjanes Ridge towards Iceland that agree with melts 611 

produced by DMM melting models. However, V/Sc in the Reykjanes Ridge basalts does not 612 

increase towards Iceland where enriched and more oxidized mantle source is sampled by the 613 

basalts, suggesting that this proxy is not responsive to the presence of mantle chemical 614 

heterogeneities in these samples. The use of V/Sc as a fO2 proxy is highly model-dependent, 615 

requiring independent constraints on source mineralogy, trace element abundance, extent of 616 

melting, and Tp. These parameters for Reykjanes Ridge lavas are sufficiently uncertain at this 617 

time to permit non-unique fO2 determinations from measured V/Sc ratios. 618 

 619 
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3. Recalibrated Fe3+/Fetot ratios, corrected for fractionation (MgO10), remain virtually constant along 620 

the Reykjanes Ridge. Thermodynamic melting models of DMM can reproduce Reykjanes Ridge 621 

Fe3+ contents between 1100 and 700 km from the plume. However, melts produced upon melting 622 

DMM need to be mixed with melts formed from an enriched source close to the plume, such as 623 

pyroxenite, to replicate the Fe3+/Fetot ratios observed between 400 and 700 km, which would 624 

otherwise decrease under the influence of increased mantle potential temperature. Basalt 625 

Fe3+/Fetot both depends on melting conditions (Tp) and is responsive to bulk oxidation state 626 

alterations associated with the presence of chemical heterogeneities in the mantle.  627 

 628 

Acknowledgments 629 

This study was funded by the Natural Environment Research Council NERC grant NE/N009568/1 630 

to J.M. and J.P. Katharina Kreissig and Barry Coles are thanked for their help in conducting the V 631 

isotopes work. Thanks also to Jason Day for the support in performing the LA-ICPMS analyses. OS 632 

acknowledges Diamond Light Source for time on beamline I18 under proposals SP9446, SP9456 633 

and SP12130 and the support during our analytical sessions from beamline scientist Konstantin 634 

Ignatyev and principal beamline scientist Fred Mosselmans. This manuscript greatly benefitted 635 

from comments of an anonymous reviewer and a very careful revision of Maryjo Brounce 636 

especially with regards to the XANES and Fe3+/Fetot calibration debate. 637 

 638 

References 639 

Asimow, P.D., Ghiorso, M.S., 1998. Algorithmic modifications extending MELTS to calculate 640 

subsolidus phase relations. Am. Mineral. 83, 1127–1132. https://doi.org/10.2138/am-1998-9-641 

1022 642 

Bach, W., Bernhard, P.E., Hart, S.R., Blusztajn, J.S., 2003. Geochemistry of hydrothermally altered 643 

oceanic crust: DSDP/ODP Hole 504B-Implications for seawater-crust exchange budgets and 644 

Sr-and Pb-isotopic evolution of the mantle. Geochemistry, Geophys. Geosystems 4, 40–55. 645 



26 
 

https://doi.org/10.1029/2002GC000419 646 

Berry, A.J., Stewart, G.A., O’Neill, H.S.C., Mallmann, G., Mosselmans, J.F.W., 2018. A re-647 

assessment of the oxidation state of iron in MORB glasses. Earth Planet. Sci. Lett. 483, 114–648 

123. https://doi.org/10.1016/j.epsl.2017.11.032 649 

Birner, S.K., Cottrell, E., Warren, J.M., Kelley, K.A., Davis, F.A., 2018. Peridotites and basalts 650 

reveal broad congruence between two independent records of mantle fO2 despite local redox 651 

heterogeneity. Earth Planet. Sci. Lett. 494, 172–189. https://doi.org/10.1016/j.epsl.2018.04.035 652 

Brounce, M., Kelley, K.A., Cottrell, E., Reagan, M.K., 2015. Temporal evolution of mantle wedge 653 

oxygen fugacity during subduction initiation. Geology 43, 775–778. 654 

https://doi.org/10.1130/G36742.1 655 

Brounce, M., Stolper, E., Eiler, J., 2017. Redox variations in Mauna Kea lavas, the oxygen fugacity 656 

of the Hawaiian plume, and the role of volcanic gases in Earth’s oxygenation. Proc. Natl. 657 

Acad. Sci. 114, 8997–9002. https://doi.org/10.1073/pnas.1619527114 658 

Brounce, M.N., Kelley, K.A., Cottrell, E., 2014. Variations in Fe3+/PFe of Mariana Arc Basalts and 659 

MantleWedge fO2. J. Petrol. 55, 2514–2536. https://doi.org/10.1093/petrology/egu065 660 

Bucholz, C.E., Kelemen, P.B., 2019. Oxygen fugacity at the base of the Talkeetna arc, Alaska. 661 

Contrib. to Mineral. Petrol. 174, 1–27. https://doi.org/10.1007/s00410-019-1609-z 662 

Canil, D., 1999. Vanadium partitioning between orthopyroxene, spinel and silicate melt and the 663 

redox states of mantle source regions for primary magmas. Geochim. Cosmochim. Acta 63, 664 

557–572. https://doi.org/10.1016/S0016-7037(98)00287-7 665 

Canil, D., 1997. Vanadium partitioning and the oxidation state of Archaean komatiite magmas. 666 

Nature 389, 842–845. 667 

Canil D., O’Neill H. C., 1996. Distribution of Ferric Iron in some Upper-Mantle Assemblages . J. 668 

Petrol. 37, 609–635. 669 

Cottrell, E., Kelley, K.A., 2013. Redox heterogeneity in mid-ocean ridge basalts as a function of 670 

mantle source. Science 340, 1314–1317. https://doi.org/10.1126/science.1233299 671 



27 
 

Cottrell, E., Kelley, K.A., 2011. The oxidation state of Fe in MORB glasses and the oxygen 672 

fugacity of the upper mantle. Earth Planet. Sci. Lett. 305, 270–282. 673 

https://doi.org/10.1016/j.epsl.2011.03.014 674 

Cottrell, E., Kelley, K.A., Lanzirotti, A., Fischer, R.A., 2009. High-precision determination of iron 675 

oxidation state in silicate glasses using XANES. Chem. Geol. 268, 167–179. 676 

https://doi.org/10.1016/j.chemgeo.2009.08.008 677 

Davis, F.A., Cottrell, E., 2018. Experimental investigation of basalt and peridotite oxybarometers: 678 

Implications for spinel thermodynamic models and Fe3+ compatibility during generation of 679 

upper mantle melts. Am. Mineral. 103, 1056–1067. https://doi.org/10.2138/am-2018-6280 680 

Frost, D.J., McCammon, C.A., 2008. The Redox State of Earth’s Mantle. Annu. Rev. Earth Planet. 681 

Sci. 36, 389–420. https://doi.org/10.1146/annurev.earth.36.031207.124322 682 

Frost, R.B., 1991. Introduction to oxygen fugacity and its petrologic importance, in: Reviews in 683 

Mineralogy & Geochemistry 25. pp. 1–10. 684 

Gaetani, G.A., 2016. The behavior of Fe 3+ /∑Fe during partial melting of spinel lherzolite. 685 

Geochim. Cosmochim. Acta 185, 64–77. https://doi.org/10.1016/j.gca.2016.03.019 686 

Gaillard, F., Scaillet, B., Arndt, N.T., 2011. Atmospheric oxygenation caused by a change in 687 

volcanic degassing pressure. Nature 478, 229–232. https://doi.org/10.1038/nature10460 688 

Gale, A., Dalton, C.A., Langmuir, C.H., Su, Y., Schilling, J.G., 2013. The mean composition of 689 

ocean ridge basalts, Geochemistry, Geophysics, Geosystems. 690 

https://doi.org/10.1029/2012GC004334 691 

Ghiorso, M.S., Hirschmann, M.M., Reiners, P.W., Kress, V.C., 2002. The pMELTS: A revision of 692 

MELTS for improved calculation of phase relations and major element partitioning related to 693 

partial melting of the mantle to 3 GPa. Geochemistry, Geophys. Geosystems 3, 1–35. 694 

https://doi.org/10.1029/2001GC000217 695 

Hartley, M.E., Shorttle, O., Maclennan, J., Moussallam, Y., Edmonds, M., 2017. Olivine-hosted 696 

melt inclusions as an archive of redox heterogeneity in magmatic systems. Earth Planet. Sci. 697 



28 
 

Lett. 479, 192–205. https://doi.org/10.1016/j.epsl.2017.09.029 698 

Helz, R.T., Cottrell, E., Brounce, M.N., Kelley, K.A., 2017. Olivine-melt relationships and 699 

syneruptive redox variations in the 1959 eruption of Kīlauea Volcano as revealed by XANES. 700 

J. Volcanol. Geotherm. Res. 333–334, 1–14. https://doi.org/10.1016/j.jvolgeores.2016.12.006 701 

Hopkins, S.S., Prytulak, J., Barling, J., Russell, S.S., Coles, B.J., Halliday, A.N., 2019. The 702 

vanadium isotopic composition of lunar basalts. Earth Planet. Sci. Lett. 511, 12–24. 703 

https://doi.org/10.1016/j.epsl.2019.01.008 704 

Jones, S.M., Murton, B.J., Fitton, J.G., White, N.J., Maclennan, J., Walters, R.L., 2014. A joint 705 

geochemical-geophysical record of time-dependent mantle convection south of Iceland. Earth 706 

Planet. Sci. Lett. 386, 86–97. https://doi.org/10.1016/j.epsl.2013.09.029 707 

Kelley, K.A., Cottrell, E., 2012. The influence of magmatic differentiation on the oxidation state of 708 

Fe in a basaltic arc magma. Earth Planet. Sci. Lett. 329–330, 109–121. 709 

https://doi.org/10.1016/j.epsl.2012.02.010 710 

Kelley, K.A., Cottrell, E., 2009. Water and the oxidation state of subduction zone magmas. Science 711 

325, 605–607. 712 

Klein, E.M., Langmuir, C.H., 1987. Global Correlations of Ocean Ridge Basalt Chemistry with 713 

Axial Depth and Crustal Thickness. J. Geophys. Res. 92, 8089–8115. 714 

Kogiso, T., Hirose, K., Takahashi, E., 1998. Melting experiments on homogeneous mixtures of 715 

peridotite and basalt: Application to the genesis of ocean island basalts. Earth Planet. Sci. Lett. 716 

162, 45–61. https://doi.org/10.1016/S0012-821X(98)00156-3 717 

Kress, V.C., Carmichael, I.S.E., 1991. The compressibility of silicate liquids containing Fe2O3 and 718 

the effect of composition, temperature, oxygen fugacity and pressure on their redox state. 719 

Contrib. to Mineral. Petrol. 108, 82–92. 720 

Laubier, M., Grove, T.L., Langmuir, C.H., 2014. Trace element mineral/melt partitioning for 721 

basaltic and basaltic andesitic melts: An experimental and laser ICP-MS study with application 722 

to the oxidation state of mantle source regions. Earth Planet. Sci. Lett. 392, 265–278. 723 



29 
 

https://doi.org/10.1016/j.epsl.2014.01.053 724 

Lee, C.T.A., Brandon, A.D., Norman, M., 2003. Vanadium in peridotites as a proxy for paleo-fO2 725 

during partial melting: Prospects, limitations, and implications. Geochim. Cosmochim. Acta 726 

67, 3045–3064. https://doi.org/10.1016/S0016-7037(00)00268-0 727 

Lee, C.T.A., Leeman, W.P., Canil, D., Li, Z.X.A., 2005. Similar V/Sc systematics in MORB and 728 

arc basalts: Implications for the oxygen fugacities of their mantle source regions. J. Petrol. 46, 729 

2313–2336. https://doi.org/10.1093/petrology/egi056 730 

Li, Z.X.A., Lee, C.T.A., 2004. The constancy of upper mantle fO 2 through time inferred from V/Sc 731 

ratios in basalts. Earth Planet. Sci. Lett. 228, 483–493. 732 

https://doi.org/10.1016/j.epsl.2004.10.006 733 

Mallmann, G., O’Neill, H.S.C., 2013. Calibration of an empiricalthermometer and oxybarometer 734 

based on the partitioning of sc, Y and V between olivine and silicate melt. J. Petrol. 54, 933–735 

949. https://doi.org/10.1093/petrology/egt001 736 

Mallmann, G., O’Neill, H.S.C., 2009. The crystal/melt partitioning of V during mantle melting as a 737 

function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, 738 

Y, Zr and Nb). J. Petrol. 50, 1765–1794. https://doi.org/10.1093/petrology/egp053 739 

Matthews, S., Shorttle, O., Maclennan, J., 2016. The temperature of the Icelandic mantle from 740 

olivine-spinel aluminum exchange thermometry. Geochemistry Geophys. Geosystems 17, 741 

4725–4752. https://doi.org/10.1002/ 2016GC006497 742 

Mᶜkenzie, D., O’nions, R.K., 1995. The source regions of ocean island basalts. J. Petrol. 36, 133–743 

159. https://doi.org/10.1093/petrology/36.1.133 744 

MᶜKenzie, D., O’Nions, R.K., 1991. Partial melt coefficients from inversion of rare earth element 745 

concentrations. J. Petrol. 23, 1021–1091. 746 

https://doi.org/http://dx.doi.org/10.1093/petrology/32.5.1021 747 

Moussallam, Y., Edmonds, M., Scaillet, B., Peters, N., Gennaro, E., Sides, I., Oppenheimer, C., 748 

2016. The impact of degassing on the oxidation state of basaltic magmas: A case study of 749 



30 
 

Kīlauea volcano. Earth Planet. Sci. Lett. 450, 317–325. 750 

https://doi.org/10.1016/j.epsl.2016.06.031 751 

Moussallam, Y., Oppenheimer, C., Scaillet, B., Gaillard, F., Kyle, P., Peters, N., Hartley, M., Berlo, 752 

K., Donovan, A., 2014. Tracking the changing oxidation state of Erebus magmas, from mantle 753 

to surface, driven by magma ascent and degassing. Earth Planet. Sci. Lett. 393, 200–209. 754 

https://doi.org/10.1016/j.epsl.2014.02.055 755 

Murton, B.J., Taylor, R.N., Thirlwall, M.F., 2002. Plume-Ridge Interaction: a Geochemical 756 

Perspective from the Reykjanes Ridge. J. Petrol. 43, 1987–2012. 757 

https://doi.org/10.1093/petrology/43.11.1987 758 

Nielsen, S.G., Prytulak, J., Halliday, A.N., 2011. Determination of Precise and Accurate 51V/50V 759 

Isotope Ratios by MC-ICP-MS, Part 1: Chemical Separation of Vanadium and Mass 760 

Spectrometric Protocols. Geostand. Geoanalytical Res. 35, 293–306. 761 

https://doi.org/10.1111/j.1751-908x.2011.00106.x 762 

O’Neill, H.S.C., Berry, A.J., Mallmann, G., 2018. The oxidation state of iron in Mid-Ocean Ridge 763 

Basaltic (MORB) glasses: Implications for their petrogenesis and oxygen fugacities. Earth 764 

Planet. Sci. Lett. 504, 152–162. https://doi.org/10.1016/j.epsl.2018.10.002 765 

O’Neill, H.S.C., Wall, V.J., 1987. The olivine-orthopyroxene-spinel oxygen geobarometer, the 766 

nickel precipitation curve, and the oxygen fugacity of the earth’s upper mantle. J. Petrol. 28, 767 

1169–1191. 768 

Peate, D.W., Baker, J.A., Jakobsson, S.P., Waight, T.E., Kent, A.J.R., Grassineau, N. V., 769 

Skovgaard, A.C., 2009. Historic magmatism on the Reykjanes Peninsula, Iceland: A snap-shot 770 

of melt generation at a ridge segment. Contrib. to Mineral. Petrol. 157, 359–382. 771 

https://doi.org/10.1007/s00410-008-0339-4 772 

Prytulak, J., Nielsen, S.G., Ionov, D.A., Halliday, A.N., Harvey, J., Kelley, K.A., Niu, Y.L., Peate, 773 

D.W., Shimizu, K., Sims, K.W.W., 2013. The stable vanadium isotope composition of the 774 

mantle and mafic lavas. Earth Planet. Sci. Lett. 365, 177–189. 775 



31 
 

https://doi.org/10.1016/j.epsl.2013.01.010 776 

Prytulak, J., Sossi, P.A., Halliday, A.N., Plank, T., Savage, P.S., Woodhead, J.D., 2017. Stable 777 

vanadium isotopes as a redox proxy in magmatic systems? Geochemical Perspect. Lett. 75–84. 778 

https://doi.org/10.7185/geochemlet.1708 779 

Rouxel, O., Dobbek, N., Ludden, J., Fouquet, Y., 2003. Iron isotope fractionation during oceanic 780 

crust alteration. Chem. Geol. 202, 155–182. https://doi.org/10.1016/j.chemgeo.2003.08.011 781 

Rudge, J.F., Maclennan, J., Stracke, A., 2013. The geochemical consequences of mixing melts from 782 

a heterogeneous mantle. Geochim. Cosmochim. Acta 114, 112–143. 783 

https://doi.org/10.1016/j.gca.2013.03.042 784 

Salters, V.J.M., Stracke, A., 2004. Composition of the depleted mantle. Geochemistry, Geophys. 785 

Geosystems 5. https://doi.org/10.1029/2003GC000597 786 

Schilling, JG, 1973. Iceland Mantle Plume: Geochemical study of Reykjanes Ridge. Nature 242, 787 

565–571. 788 

Shorttle, O., Maclennan, J., 2011. Compositional trends of Icelandic basalts: Implications for short-789 

length scale lithological heterogeneity in mantle plumes. Geochemistry, Geophys. Geosystems 790 

12. https://doi.org/10.1029/2011GC003748 791 

Shorttle, O., MacLennan, J., Jones, S.M., 2010. Control of the symmetry of plume-ridge interaction 792 

by spreading ridge geometry. Geochemistry, Geophys. Geosystems 11, 1–27. 793 

https://doi.org/10.1029/2009GC002986 794 

Shorttle, O., Moussallam, Y., Hartley, M.E., Maclennan, J., Edmonds, M., Murton, B.J., 2015. Fe-795 

XANES analyses of Reykjanes Ridge basalts: Implications for oceanic crust’s role in the solid 796 

Earth oxygen cycle. Earth Planet. Sci. Lett. 427, 272–285. 797 

https://doi.org/10.1016/j.epsl.2015.07.017 798 

Sims, K.W.W., Depaolo, D.J., Murrell, M.T., Baldridge, W.S., Goldstein, S., Clague, D., Jull, M., 799 

1999. Porosity of the melting zone and variations in the solid mantle upwelling rate beneath 800 

Hawaii: Inferences from 238U-230Th-226Ra and 235U-231Pa disequilibria. Geochim. 801 



32 
 

Cosmochim. Acta 63, 4119–4138. 802 

Smith, P.M., Asimow, P.D., 2005. Adiabat-1ph: A new public front-end to the MELTS, pMELTS, 803 

and pHMELTS models. Geochemistry, Geophys. Geosystems 6, 1–8. 804 

https://doi.org/10.1029/2004GC000816 805 

Sossi, P.A., Prytulak, J., O’Neill, H.S.C., 2018. Experimental calibration of vanadium partitioning 806 

and stable isotope fractionation between hydrous granitic melt and magnetite at 800 °C and 807 

0.5 GPa. Contrib. to Mineral. Petrol. 173, 0. https://doi.org/10.1007/s00410-018-1451-8 808 

Stolper, D.A., Keller, C.B., 2018. A record of deep-ocean dissolved O2 from the oxidation state of 809 

iron in submarine basalts. Nature 553, 323–327. https://doi.org/10.1038/nature25009 810 

Stracke, A., Bizimis, M., Salters, V.J.M., 2003. Recycling oceanic crust: Quantitative constraints. 811 

Geochemistry, Geophys. Geosystems 4. https://doi.org/10.1029/2001GC000223 812 

Teng, F.-Z., Dauphas, N., Watkins, J.M., 2017. Non-Traditional Stable Isotopes: Retrospective and 813 

Prospective, in: Reviews in Mineralogy & Geochemistry. pp. 1–26. 814 

https://doi.org/10.2138/rmg.2017.82.1 815 

Workman, R.K., Hart, S.R., 2005. Major and trace element composition of the depleted MORB 816 

mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72. https://doi.org/10.1016/j.epsl.2004.12.005 817 

Wu, F., Qi, Y., Perfit, M.R., Gao, Y., Langmuir, C.H., Wanless, V.D., Yu, H., Huang, F., 2018. 818 

Vanadium isotope compositions of mid-ocean ridge lavas and altered oceanic crust. Earth 819 

Planet. Sci. Lett. 493, 128–139. https://doi.org/10.1016/j.epsl.2018.04.009 820 

Zhang, H.L., Cottrell, E., Solheid, P.A., Kelley, K.A., Hirschmann, M.M., 2018. Determination of 821 

Fe3 +/ΣFe of XANES basaltic glass standards by Mössbauer spectroscopy and its application 822 

to the oxidation state of iron in MORB. Chem. Geol. 479, 166–175. 823 

https://doi.org/10.1016/j.chemgeo.2018.01.006 824 

Zhang, H.L., Hirschmann, M.M., Cottrell, E., Newville, M., Lanzirotti, A., 2016. Structural 825 

environment of iron and accurate determination of Fe3+/σFe ratios in andesitic glasses by 826 

XANES and Mössbauer spectroscopy. Chem. Geol. 428, 48–58. 827 



33 
 

https://doi.org/10.1016/j.chemgeo.2016.02.022 828 

 829 

Figure captions 830 

Fig. 1: Map showing the location of the Reykjanes Ridge basalts investigated in this study (dark 831 

blue circles indicating samples with Fe3+/Fetot and V/Sc data, light blue circles showing those with 832 

additional V isotopic compositions). Stapafell eruption on the Reykjanes Peninsula (coral circle) 833 

and the plume center location (white star) proposed by Shorttle et al. (2010) are also shown. The 834 

map was prepared with the software GeoMapApp (www.geomapapp.org). 835 

 836 

Fig. 2: Vanadium isotopes along the investigated spread of the Reykjanes Ridge, reported as δ51V, 837 

plotted as a function of MgO content (Shorttle et al., 2015). The grey horizontal bar indicates the 838 

average MORB value of Wu et al. (2018) with calculated 2SD. 839 

 840 

Fig.3: Vanadium isotopic composition plotted against (a) Fe3+/Fetot (corrected to MgO10, see text) 841 

and (b) V/Sc. Circles are color coded as a function of MgO content measured by electron 842 

microprobe (Shorttle et al., 2015). 843 

 844 

Fig. 4: Na8 vs δ51V of the Reykjanes Ridge lavas investigated in this study (circles). Ridge 845 

segments data from Wu et al. (2018) and Prytulak et al. (2013) are also plotted as diamonds (Na8 846 

data reported in Wu et al., 2018). Na8 values for the Reykjanes Ridge samples were calculated from 847 

the regressed melt compositions at ~8 wt% MgO (see text) using the formula of Shorttle et al. 848 

(2010). The grey horizontal bar indicates the average MORB value of Wu et al. (2018) with 849 

calculated 2SD. 850 

 851 

Fig. 5: The V/Sc ratio of the Reykjanes Ridge basalts as a function of distance from the Icelandic 852 

plume. Samples are color coded with the MgO content (Shorttle et al., 2015), highlighting the effect 853 
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of fractional crystallization. Errors of the V/Sc ratios were calculated from the errors on V and Sc 854 

(LA-ICPMS analyses; Supplementary Table S2) and range between 0.11 and 1.29 1SD. 855 

 856 

Fig. 6: CaO vs MgO content of the Reykjanes Ridge basalts as a function of V/Sc ratio. 857 

 858 

Fig. 7: Fe3+/Fetot ratio and oxygen fugacity along the Reykjanes Ridge. (a) Raw Fe3+/Fetot ratios 859 

recalculated from the study of Shorttle et al. (2015) using the new calibration of the XANES 860 

standards (Zhang et al., 2018; see text). Data are plotted as a function of MgO content of the glasses 861 

(Shorttle et al., 2015). (b) Fe3+/Fetot ratios of the same samples in (a) but now corrected for 862 

fractional crystallization to MgO10 (see text), as a function of Nb/Zr. (c) Oxygen fugacity, as log fO2 863 

relative to the FMQ buffer (Frost, 1991), calculated from the data in (b) using the calibration of 864 

Kress and Carmichael (1991) at 2 kb and 1200 °C. Data are plotted as a function of Nb/Zr of the 865 

glasses. 866 

 867 

Fig. 8: Reykjanes Ridge basalt (blue circles) plotted as a function of distance from the Icelandic 868 

plume along with partial melt compositions produced by the thermodynamic melting models of 869 

DMM with 4, 5 and 6% Fe3+/Fetot in the source (grey circles). (a) Fe3+/Fetot ratios of basalt corrected 870 

to MgO10. (b) V/Sc ratios, where light blue circles indicate more evolved basalts (< 7.5 wt% MgO) 871 

and dark blue circles indicate more primitive compositions (> 7.5 wt% MgO). (c) Nb/Zr ratios, with 872 

concentrations of the different models overlapping and being indistinguishable at the scale of the 873 

plot. Pale red arrows in panel (a) and (c) highlight the disparity between Reykjanes Ridge basalts 874 

and DMM modelled compositions near Iceland. 875 

 876 

Fig. 9: Ba and La compositional trend of Reykjanes Ridge basalts (blue) between partial melts 877 

produced by DMM melting model with 5% initial Fe3+/Fetot (grey) and Stapafell basalt from the 878 

Reykjanes Peninsula (coral). 879 
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 880 

Fig. 10: Spider diagram reporting the trace element composition of Stapafell basaltic glass (Peate et 881 

al., 2009), in coral, and the enriched melt forming at the point closest to the Icelandic plume along 882 

the Reykjanes Ridge, in blue. In grey and yellow are also represented the compositions of 883 

Reykjanes Ridge basalts 12aD1 (~1100 from Iceland) and 185D4 (~ 400 km from Iceland), 884 

respectively, used to mass balance the enriched melt composition. See text for more details. 885 

 886 

Fig. S1: Fractional crystallization model for Reykjanes Ridge basalt 153D3. The melt concentration 887 

was calculated at an arbitrary low pressure of 0.6 kb using MELTS (Ghiorso et al., 2002; Smith and 888 

Asimow, 2005). The model shows that V/Sc ratios in melts with MgO >7.5 wt% are not affected by 889 

crystallization. Calculations employed DV and DSc at FMQ from Mallmann and O’Neill (2009, 890 

2013). Between 9 and 7.5 wt% MgO only olivine crystallizes, while clinopyroxene (cpx) and 891 

plagioclase (plag) start to crystallize at ~7.5 and ~6 wt% MgO, respectively. 892 

 893 

Fig. S2: Difference in Fe3+/Fetot between the Reykjanes Ridge basalt and the partial melt 894 

composition produced by DMM melting model with 5% initial Fe3+/Fetot (ΔFe3+/Fetot), calculated at 895 

a particular distance, against the Nb/Zr ratio of the Reykjanes Ridge basalts. 896 
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