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1 Introduction

Black holes play a paramount role in gauge-gravity dualities. In particular, they are typi-

cally the dominant saddle points in the high temperature regime of the canonical ensemble.

One can thus gain insight into typical states of conformal field theories at high temperature

by studying novel black hole solutions that are asymptotically anti-de Sitter (AdS).

In this paper we will devote our attention to a particular conformal field theory (CFT)

living on the Einstein static universe Rt×S3, namely N = 4 SYM with gauge group SU(N).

There are many reasons to study this particular CFT, perhaps the most important being

that this is the theory for which AdS/CFT was first formulated in [1], and for which our

holographic dictionary is best understood [2–4].

In [1], the strong coupling limit of N = 4 SYM at large t’Hooft coupling and at infinite

gauge group rank N was conjectured to be IIB supergravity on AdS5 × S5. We are thus

led to consider black hole solutions of IIB supergravity with AdS5 × S5 asymptotics if we
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want to understand the thermodynamic saddle points of N = 4 SYM living on the Einstein

static universe. Since we will be working in the supergravity limit, we will be considering

states on the CFT at energies of order N2.

However, even studying black hole solutions in IIB supergravity is far from being an

easy task. For instance, small Schwarzschild-AdS black holes can be shown to be unstable

to a localisation on the S5 if their radius in AdS units is sufficiently small [5–8]. The

bumpy black holes in AdS5 × S5 that branch from the onset of this instability were only

recently constructed and necessarily require solving partial differential equations [9]. The

work developed in this paper ignores such instabilities and focuses on solutions of five-

dimensional N = 8 gauged supergravity, which is thought to be a consistent truncation of

IIB supergravity on AdS5×S5.1 This truncation is such that enough symmetry is assumed

so that the localisation phenomenon described above does not occur.

Even dealing with all the supergravity fields of five-dimensional N = 8 gauged super-

gravity proves to be a rather complicated task. In order to bypass this, we will focus on

a truncation of N = 8 supergravity which, to our knowledge, was first proposed in [11].

The spectrum of five-dimensional gauged N = 8 supergravity comprises one graviton, 42

scalars, 15 gauge fields and 12 form fields. The consistent truncation that we are going

to consider contains the graviton, a complex scalar field and a Maxwell field, under which

the scalar field is charged. For more details on this truncation we refer the reader to [11].

Once the dust settles, the action reads:

S =
1

16πG5

∫
d5x
√
g

{
R[g] + 12− 3

4
FµνF

µν − 3

8

[
(Dµφ)(Dµφ)† − ∇µλ∇

µλ

4(4 + λ)
− 4λ

]}
− 1

16πG5

∫
d5xF ∧ F ∧A, (1.1)

where Fµν = 2∂[µAν], Dµφ = ∇µφ − i eAµφ, e = 2, λ = φφ†, the radius of AdS5 is set to

unity and G5 = π/(2N2) is the five-dimensional Newton’s constant. We note that at this

stage we have already used AdS/CFT, in the sense that G5 is given in terms of the rank

of the gauge group of N = 4 SYM. The tachyonic scalar field φ has the charge e = 2 and

m2
φ = −4, which saturates the five-dimensional Breitenlöhner-Freedman (BF) bound [12].

The couplings and scalar field charges that come from this embedding in IIB have

very particular forms and values. Indeed, in [13, 14] a bottom up model that shares many

features with (1.1) was considered. There, the scalar field charge e was a free parameter

and the self-coupling potential of the scalar field was a simple mass term - the action was

that of the Abelian Higgs model in AdS. The details of the phase diagram will turn out

to depend rather nontrivially on the specific form of the action (1.1). Nevertheless, the

authors of [13, 14] concluded that small black holes in AdS are afflicted by an instability,

so long as the charged scalar field has sufficiently large e. The origin of this instability goes

back to the so-called superradiant scattering [15], which can only occur for charged scalar

field satisfying ω < eµ, where ω is the frequency used in the scattering process and µ the

chemical potential of the background solution.

1This has actually never been shown in full generality, partially because of the self dual condition imposed

on the Ramond-Ramond F5 form flux, even though interesting progress has been recently made in [10].
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Interestingly enough, from the analysis of [13, 14], it was not clear whether scalar fields

with charge e = 2 could be unstable to the superradiant instability. The reason for this is

worth emphasising: normal modes of scalar fields saturating the BF bound around pure

AdS have an energy gap given by ω = 2. Furthermore, we will see that charged black holes

maximise µ at fixed energy when they are extremal. Finally, if the black hole is small,

one can show that µ ' 1 for extremal holes. If we now use our condition for superradiant

scattering, one concludes that the system will be unstable if e > 2. We note that this does

not mean that other types of instabilities cannot exist even for small values of the scalar

field charge.2 We shall see that the superradiant instability is pervasive even for small

charged black hole solutions of (1.1).

There are a handful of solutions to the equations of motion derived from (1.1) that are

known to be analytic, the most general being the Kerr-Reissner-Nordström black hole [16–

26]. They all have one thing in common, namely that the charged scalar field vanishes.

Hairy solutions, i.e. solutions with a nontrivial scalar field profile φ, were first constructed in

a matched asymptotic expansion in [11], where the black holes were taken to be arbitrarily

small. In this paper we construct the novel hairy black hole solutions of (1.1) at the full

nonlinear level, i.e. our black holes are not necessarily small. As a test of our numerical

procedure, we give a detailed comparison with the analytic results of [11].

Our findings will be consistent with those of [11] for sufficiently small asymptotic

charges. We thus start by reviewing their conjectured phase diagram, which is depicted in

figure 1. The perturbative analysis carried by Bhattacharyya et al. shows that in the phase

diagram infinitesimally small hairy black holes smoothly join to a horizonless solitonic

solution saturating the five dimensional BPS bound (red solid line in figure 1). Note

that because of the unusual normalisation of the kinetic term for the photons in (1.1) the

supersymmetric bound occurs for solutions satisfying M = 3|Q|. This supersymmetric

soliton was then numerically constructed for large values of the charge |Q|, and was found

to become singular at a specific charge Qc. The approach to this critical charge revealed

an intricate spiralling behaviour. Bhattacharyya et al. went further, and constructed a

singular solitonic solution that extended to infinite values of Q, and approached the same

spiral as the regular soliton, but from values above Qc (wiggly black line in figure 1).

In [11] a number of possibilities were envisaged for the behaviour of large black holes

in this system. We aim to finally unravel the full nonlinear picture. This paper is organised

as follows: section 2 introduces in more detail the setup that we are considering, including

the equations of motion derived from (1.1). In section 3, we detail the numerical method

we used to solve this problem. In section 4, we present our main results; in section 5, we

compare the full nonlinear results to those obtained in [11] and section 6 concludes the

paper with a discussion and future directions.

2 Setup

The consistent truncation is described by the five-dimensional Einstein-Maxwell AdS grav-

ity coupled to a charged complex scalar field with action given as in (1.1). The equations

2For instance, large extremal black holes are known to be unstable against neutral scalar field pertur-

bations, but the triggering mechanism for this instability is not superradiance.
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Figure 1. The proposed microcanonical phase diagram by Bhattacharyya et al. (taken from [11],

not drawn to scale). The lower solid line is the BPS bound on which the supersymmetric soliton

resides. The straight red segment represents smooth branch and the wiggly black part represents

singular soliton. Hairy black holes were proposed to exist between the curve indicating the onset of

the superradiant instability (solid blue) and the BPS bound. The dotted black curve is the extremal

RNAdS black holes. The grey solid line shows a possible phase transition between two different

types of hairy black holes, with different zero size limits.

of motion derived from (1.1) are

Gµν − 6gµν =
3

2
TEMµν +

3

8
Tmat
µν (2.1a)

∇λFµλ =
1

4
εµνραλFµνFρα +

i

4

[
φ(Dµφ)† − φ†Dµφ

]
(2.1b)

DµD
µφ+ φ

[
(∇µλ)(∇µλ)

4(4 + λ)2
− ∇µ∇

µλ

2(4 + λ)
+ 4

]
= 0, (2.1c)

where

TEMµν = Fµ
λFνλ +

1

4
gµν F

2

Tmat
µν =

1

2

[
Dµφ (Dνφ)† +Dνφ (Dµφ)†

]
− 1

2
gµν(Dαφ)(Dαφ)† + 2gµν λ

− 1

4(4 + λ)

[
(∇µλ)(∇νλ)− 1

2
gµν(∇αλ)(∇αλ)

]
.

We look for static, spherically symmetric and asymptotically global AdS5 solutions and for

now we will not specify our gauge choice:3

ds2 = −f(r)dt2 + g(r)dr2 + Σ(r)2dΩ2
3, Aµdxµ = A(r)dt, φ = φ† = φ(r). (2.2)

Since our solutions are only electrically charged, the Chern-Simons term (first term on the

left hand side of eq. (2.1b)) plays no role. The Einstein equation, the Maxwell equation

3Note that we have fixed the U(1) gauge freedom by taking φ to be real.
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and and the scalar equation (2.1) yield a system of four equations [11]:

f ′ − f

2ΣΣ′

[
4g + gΣ2

(
8 + φ2

)
− 4Σ′2 +

Σ2φ′2

4 + φ2

]
− Σ

2Σ′
(
A2φ2g −A′2

)
= 0,

g′ + g2
(

4

ΣΣ′
+

8Σ

Σ′
+

Σφ2

Σ′

)
+ g

(
f ′

f
+

ΣA′2

fΣ′
+

4Σ′

Σ
+

2Σ′′

Σ′

)
= 0,

A′′ +
1

2

(
6Σ′

Σ
− f ′

f
− g′

g

)
A′ − g φ2A = 0,

φ′′ +
1

2

(
6Σ′

Σ
+
f ′

f
− g′

g

)
φ′ − φ

4 + φ2
φ′2 +

g

f

(
A2 + f

) (
4 + φ2

)
φ = 0.

(2.3)

The ′ denotes the derivative with respect to r.

At this point we pick a gauge where Σ(r) = r, so that r measures the radius of the

round S3 in AdS5. In this gauge, we require that our solutions are asymptotically AdS5,

i.e. at large r they must satisfy the following expansion [27–30]

f(r) = r2 + 1 +O(r−2), g(r) =
1

1 + r2
+O(r−6),

A(r) = µ+O(r−2), φ(r) =
ε

r2
+ V

log r

r2
+O(r−4) ,

(2.4)

where µ is the chemical potential and the constants V and ε will shortly be identified.

Using the AdS/CFT correspondence [2, 3], V is regarded as the source for the operator

dual to φ and ε is its expectation value, i.e. ε = 〈Oφ〉. This choice implicitly assumes

standard quantisation. The operator dual to φ has conformal scaling dimension ∆ = 2.

We will be interested in solutions representing states of the conformal field theory that

are not sourced, so we will set V = 0. These normalizable conditions give rise to a four

parameter set of asymptotically AdS5 solutions to (2.3) [11]. Further imposing suitable

regularity and normalisability conditions results in two parameter space of solutions which

may be taken to be the mass (M) and charge (Q) of the black hole, with ε and µ being

determined as a function of M and Q.

The frequency of the lowest normal mode of φ is ∆ = 2. In [13] it was shown that small

Reissner-Nordström AdS (RNAdS) black holes suffer from superradiant instability when-

ever eµ > ∆, where µ is a chemical potential of the black hole. For RNAdS black holes µ ≤
(1+2R2), where R is the Schwarzschild radius of the black hole,4 therefore, small black holes

satisfy µ ≤ 1 (saturating at extremality). Hence small charged black holes are always stable

when e < ec = ∆ and in our setup small near extremal black holes lie at the edge of the

instability. These small near extremal charged black holes are unstable to the superradiant

tachyon condensation and evolve towards a small black hole with the charged scalar hair.

2.1 Known solutions

All known solutions are found in the radial gauge where Σ(r) = r.

4Defined so that the entropy for the RNAdS BH is S = πR3.

– 5 –



J
H
E
P
0
6
(
2
0
1
6
)
0
9
6

2.1.1 The Reissner-Nordström black hole

If we switch off the scalar field we recover the familiar Reissner-Nordström two parameter

set of solutions to (2.3)

f(r) =
µ2R4

r4
− (R2 + µ2 + 1)R2

r2
+ r2 + 1,

g(r) =
1

f(r)
, A(r) = µ

(
1− R2

r2

)
, φ(r) = 0.

(2.5)

We record the thermodynamic formulae for later use (henceforth all the thermodynamic

quantities will be scaled by N2)

M =
3

4
R2
(
1 +R2 + µ2

)
Q =

1

2
µR2

S = πR3 T =
1

2πR

(
1 + 2R2 − µ2

)
.

(2.6)

Note that R is the outer horizon if the condition µ2 ≤ (1+2R2) is satisfied. This inequality

is saturated at extremality, where T = 0. The resulting extremal black hole is regular, and

has a degenerate bifurcating Killing horizon.

2.1.2 The BPS solitons

In this section we briefly outline the numerical study of the spherically symmetric smooth

and singular solitons given in [11]. We shall see later that these can be regarded as the BPS

limit of the hairy black hole configurations. Soliton solutions are easier to determine, since

they are known to be supersymmetric. Instead of solving the equations of motion (2.3)

directly one resorts to searching for nontrivial solutions of the Killing spinor equations,

which are first order in space. After some nontrivial manipulations, one can cast any

supersymmetric solution of the action (1.1) into the following form

f(r) =
1 + ρ2h3

h2
, g(r) =

4ρ2h2

(2ρh+ ρ2ḣ)2(1 + ρ2h3)

A(r) =
1

h(r)
, φ(r) = 2

(h+
ρḣ

2

)2

− 1

1/2

(2.7)

where the ˙ denotes the derivative with respect to the variable ρ, given by r2 = ρ2h, and h

has to satisfy the following second order differential equation

ρ
(
1 + ρ2h3

)
ḧ+

(
3 + 7ρ2h3 + ρ3h2ḣ

)
ḣ− 4ρ

(
1− h2

)
h2 = 0. (2.8)

This equation has a number of remarkable properties. Perhaps the most striking being that

at large ρ it demands h(ρ)|ρ→∞ = 1. This condition automatically ensures normalisability

of the physical fields f , g, A and φ. At the origin, r = 0 or equivalently ρ = 0, there are a

number of possibilities. Assuming that solutions to (2.8) behave as

lim
ρ→0

h =
hα
ρα

, (2.9)
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Figure 2. Left : charge of the solitonic solutions Q versus the vacuum expectation value of the dual

operator 〈Oφ〉. The black solid line from above is the singular soliton and the red line from below

is the smooth solution. The dotted gridlines show coordinates of the special solution with α = 2/3.

Right: the α = 2 soliton solutions. The wedges are for constant h2 which decreases from 1. These

solution curves appear to extend to |Q| → +∞. We also did not find any limiting value for 〈Oφ〉.

gives the following possible exponents α = 0, 1, 2/3, 2. Solutions with α = 0 are regular,

and the remaining are singular. For each of these exponents we can find solitonic solutions,

but the dimension of their moduli space strongly depends on α. For α = 0, 1 there is a

one parameter family of solutions, for α = 2/3 there is a unique solution and for α = 2 the

solution spans a two dimensional moduli space. In addition, in [11] it was shown that the

smooth soliton solutions with α = 0 exist for small values of the charge Q and that the

singular solitonic solution with α = 1 exists for large values of Q. The two families merge

precisely at a special point which is given by the singular soliton with α = 2/3.

We reproduce the results of [11]. The line of smooth solitons terminates at the singular

solution with the “critical” value Qc ' 0.2613 as the central density h0 → ∞; the family

of singular solitons with α = 1 branches out of this point at h1 → 0, extending to higher

charges. The critical charge Qc can also be obtained by solving for the solution with

α = 2/3 and h2/3 = 1, thus confirming the picture of [11]. In addition, Bhattacharyya et al.

analysed the asymptotic behaviour around the limiting solution analytically and proposed

that these two soliton branches exhibit damped (possibly periodic) oscillations around Qc
in the space parametrized by Q and 〈Oφ〉, resulting in an infinite discrete non-uniqueness

of the soliton solutions as Q→ Qc (see figure 2). Note that there exists a maximum charge

Qmax ' 0.2643 for the α = 0 family and a minimum charge Qmin ' 0.2605 for the α = 1

singular soliton. The limiting expectation value for the operator dual to the scalar field is

〈Oφ〉c ∼ 1.8710, and corresponds to the α = 2/3 singular solution.

We also compute the singular α = 2 case which provides a two parameter class of

solutions parametrized by h2 and ρ3∂ρh
∣∣
ρ→∞.5 The latter can be regarded as setting the

5In this case we use the same numerical method as for the hairy black holes, instead of solving (2.8)

directly. We will detail the numerical method shortly.
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charge Q, therefore, for any h2, solutions exist with any value of the charge. It appears that

these solutions are not connected to the other solutions studied in this paper (see figure 2).

3 Numerical construction of hairy black holes

We use the DeTurck method [31] (for an extensive review see [32]) which allows us to

instead solve the Einstein-DeTurck or harmonic Einstein equation

Gµν −∇(µξν) = 0, (3.1)

where ξµ = gνρ [Γµνρ(g)− Γµνρ(g̃)] is the DeTurck vector and g̃ is a reference metric of our

choice such that it possess the same causal structure of our desired solution g. This method

is very useful because as we solve (3.1) the gauge is automatically fixed by the condition

ξµ = 0. Static solutions to the harmonic Einstein equation under certain regularity assump-

tions will also satisfy the Einstein equation [33]. However, in this case we do not know

whether there exist solutions with ξµ 6= 0 (so called Ricci solitons). We check a posteriori

that the solutions presented in this paper satisfy ξµ = 0 at least to O(10−10) precision

and also demonstrate good convergence (see appendix A, figures 14–17). To solve (3.1)

we use Newton-Raphson method with pseudospectral collocation on a Chebyshev grid to

discretise the equations.

We make a compact coordinate change r =
y+√
1− y2

so that y = 1 corresponds to

r =∞ and y = 0 to r = y+. The first metric ansatz that we use is

ds21 =
1

1− y2

[
−y2∆(y)q1dt

2 +
y2+q2dy

2

(1− y2) ∆(y)
+ y2+q3dΩ2

3

]
(3.2)

together with

A(r) = y2q4(y) , φ(r) =
(
1− y2

)
q5(y)

and ∆(y) = 1 + 2y2+ − µ̃2 −
(
1 + y2+ − 2µ̃2

)
y2 − µ̃2y4 . (3.3)

Our reference metric g̃ used in the DeTurck method is obtained from (3.2) by setting

q1 = q2 = q3 = 1. This is simply the metric of a RNAdS when µ̃ = µ (2.5). The parameter

µ̃ is left to be specified freely as it just sets the reference metric and is in general different

from the chemical potential of the physical metric.

As we want to explore the solution space we start somewhere on the merger line, i.e.

on a solution with some parameter coordinates (µ, y+) for which φ is arbitrarily small. If

we want to probe low temperatures a natural choice is µ = 1 (as black holes with y+ < 1/2

are small and have µ ∼ 1). The physical chemical potential of the black hole is then given

by the gauge field on the boundary, µ = A(r)|r→∞ = q4(1) (see the expansion (2.4)).

At the conformal boundary, located at y = 1, we demand that q1(1) = q2(1) = q3(1) = 1,

q5(1) = ε and a Robin condition
[
y2+q

′
5 − 2q24q5

]
y=1

= 0 for the gauge field which ensures

that Newton’s method converges to the hairy solution if we specify nonzero ε. Note that ε

is related to ε via ε = y2+ε.

– 8 –
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Regularity at the horizon demands q1(0) = q2(0) and pure Neumann for the remaining

functions, i.e. q′i(0) = 0. In many regions of the parameter space, ε will not uniquely

parametrise a solution, however the strength of the scalar field at the horizon, q5(0) ≡ ε0,

will. Depending on which region of parameter space we want to probe, we might decide to

parametrise our solution with ε or ε0. Thus we are left with two parameters after we fix µ̃,

namely (y+, ε) or (y+, ε0).

However, the RNAdS-like ansatz (3.2) does not have good convergence properties

almost everywhere in moduli space. We found that the following ansatz has better conver-

gence properties (at least a few order of magnitudes better!) if we simply set ∆(y) = y2+
in (3.2), yielding:

ds22 =
1

1− y2

[
−y2y2+q1dt2 +

q2dy
2

(1− y2)
+ y2+q3dΩ2

3

]
. (3.4)

The trade off is that now the functions at high central field density ε0 are more peaked

at high temperatures, therefore we use the ansatz (3.2) to extend our solution curves

in the high ε0, high T regime. The boundary conditions remain the same except for

the gauge field, which in the new ansatz obeys to the following boundary condition[
y2+(q5 + q′5) + q5 − 2q24q5

]
y=1

= 0. This boundary condition can be obtained by solving

the Einstein-DeTurck equations near the boundary.

It is not always easy to find a reference metric for the DeTurck method, but here we

have the luxury of having two good reference metrics. The results obtained with the two

different reference metrics match at least to 0.1% numerical accuracy in all the physical

quantities such as energy (for the quantitative comparison of the two ansatz see figure 15,

appendix A).

We present thermodynamic formulae for the line element (3.4) since this was the

ansatz we used the most. The electric charge is obtained by computing the flux of the

electromagnetic field tensor at infinity

Q =
1

4
A′(r)|r→∞ =

y2+
4

(
2q4 +

dq4
dy

)∣∣∣∣
y=1

. (3.5)

We compute the Hawking temperature of the black hole by requiring smoothness of

the Euclidean spacetime and it is simply given by

T =
y+
2π

. (3.6)

The entropy of a BH is proportional to its horizon area and is given by

S = πy3+ q3(0)3/2 . (3.7)

To compute the mass of the black hole we use the Ashtekar-Das formalism [34]

M =
y2+
8

[
1 + 3y2+ + y4+

(
2− q25 − q′′1

)]
y=1

. (3.8)

We further checked that this matched the holographic renormalization technique of [29, 30,

35] up to the energy of the ground state of the global AdS5. Our mass is computed with

respect to pure AdS5.

We verified that these quantities obey the first law of black hole thermodynamics

dM = TdS + 3µdQ at least to 0.01%.
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4 Results

4.1 Phase diagram of hairy AdS5 × S5 black holes

In this subsection we present a comprehensive picture of the phase diagram of the hairy

black holes in the microcanonical ensemble and analyse its rich structure.

The black holes with a non-zero scalar condensate first start to exist where the RNAdS

black holes become superradiantly unstable. The RNAdS black holes are uniquely specified

by the two parameters (R, µ) and given the horizon radius we look for the value of the

chemical potential µ at which zero-mode of the scalar field first appears. We generate this

one parameter family of solutions separately by linearising the scalar equation (2.1c) in the

compact variable y around the RNAdS black hole. Let δq5 be an infinitesimal perturbation

of q5 defined in (3.3). Following [14, 36] we numerically solve the resulting generalised

eigenvalue problem

L(y)δq5(y) = µ2Λ(y)δq5(y) (4.1)

with boundary conditions δq′5(0) = 0 and 2µ2δq5(1)−R2δq′5(1) = 0 which follow from im-

posing regularity at the horizon and solving (2.1c) near the asymptotic infinity. The L(y)

and Λ(y) are both second order differential operators independent of µ. The chemical po-

tential of the corresponding marginally stable RNAdS black hole appears as the generalised

eigenvalue. The line of solutions representing the onset of the condensation is also obtained

by solving the full non-linear equations of motion (2.3) setting q5(0) = ε0 to be small. These

two methods to generate the merger line are found to be in very good agreement.

Our numerical results are presented in figure 3. We find that the hairy black holes

exist between the instability curve all the way down to the BPS bound and we verified it

for a wide range of charges. Numerically we did not find any upper bound on the charge

up to Q ∼ 100 and from the structure of the phase diagram it would be natural to infer

that the hairy black hole solutions exist between the merger line and the BPS bound for

every charge. At the lower bound the hairy black holes join the solitonic solution in the

phase diagram, in particular, in the limit T → 0, hairy black holes approach the smooth

soliton, just as predicted in [11].

In more detail, in figure 4 we plot the charge Q as a function of 〈Oφ〉 for constant values

of ε0. In order to parametrise each of these constant ε0 curves we dial the temperature

T . As we lower the temperature, we see that hairy solutions join smoothly to the smooth

soliton curve. Furthermore, the higher value of ε0 we choose, the closer the hairy solutions

get to Q = Qc. In particular, as ε0 → +∞ we see that the hairy black hole solution inherits

the spiralling behaviour of the smooth solitonic branch (see right panel of figure 4 where

we can see two arms of the spiral). Note that exactly for ε = 〈Oφ〉 = 1.8710 we expect even

the hairy black hole to have infinite non-uniqueness as we approach T → 0 from above.

The behaviour of the isothermal curves changes as a function of the temperature. In

particular, if we fix a temperature in the interval T1 < T < T2 while increasing ε0, with

T1 = 0.139+0.002
−0.002 and T2 = 0.23+0.01

0 , we find two solutions for the same value of the charge

Q (corresponding to two different values of ε0). This can be seen for instance on the left

– 10 –
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Figure 3. Left : phase diagram for the hairy black holes. The merger curve (solid black) indicates

the onset of the superradiant instability. The line of extremal RNAdS solutions is shown as a

dashed gray line. The BPS bound is given by MBPS(Q) = 3Q (dashed black). The gray dotted

gridlines indicate the position of the special soliton with α = 2/3. Right : for clarity, we plot the

mass difference ∆M = M −Mext, where Mext is the mass of an extremal RNAdS black hole with

the same charge Q.
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Figure 4. Left : the hairy black hole charge Q versus 〈Oφ〉 for constant central scalar field density

ε0 curves. Red line is the smooth soliton and the green line is the singular soliton. Right : mass

difference versus charge Q. The constant parameter ε0 curves extend down to T = 0.055. The inset

is a zoomed in plot around Q = Qc for some value of ε0.
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Figure 5. Left : zooming in around Q = Qc, and observing the transition between T < T2 and

T > T2. The color legend is the same as in figure 3. Right : an even closer look for Q near

Qc = 0.261. The hairy black hole isotherms terminate at charges above the special singular soliton.

panel of figure 5. We shall shortly see that this feature will give an intricate phase diagram

in the canonical ensemble, where the temperature and charge are held fixed.

One can finally ask what is the fate of the isothermal curves as we increase ε0. Accord-

ing to what we described above, these cannot be connected to the smooth soliton (except

for the special isothermal with T = 0). Indeed, we find numerical evidence that they con-

nect to the singular soliton with α = 1, see for instance the right panel of figure 5 where we

see constant temperature curves joining the BPS bound at M? = 3Q? > Qc, with the lim-

iting Q? increasing further away from Qc as we increase the temperature. This behaviour

can also be seen on the left panel of figure 6. Finally, we note that as the hairy black hole

isothermals approach the singular soliton, we find evidence for spiralling behaviour, which

is depicted on the right panel of figure 6.

In order to support the claim that T → 0 hairy black holes do not tend to some

configuration possessing irregular geometry we compute the Kretschmann invariant K2 =

RabcdR
abcd following [14]. Because for RNAdS K2 ∼ 1/R4 when T → 0, we normalise the

K2 by that of the corresponding RNAdS black hole with the same chemical potential and

temperature. In figure 7 (left) we show that the normalised curvature invariant remains

bounded as we approach the smooth soliton.

On the other hand, keeping the temperature fixed and increasing ε0 the normalised

Kretschmann invariant appears to blow up (see figure 7, right) as we approach the BPS

bound. For solutions with T > T2 we found the metric ansatz (3.2) to be more numeri-

cally stable.

As we increase ε0 the hairy black hole isotherms are approaching the BPS bound.

The chemical potential µ → 1 and the entropy S → 0 (see figure 20, appendix B). This

together with the fact that the Kretschmann invariant blows up as ε0 → +∞, even when

normalized by the Reissner-Nortström solution, suggests that the isothermals will merge

with the α = 1 soliton, for any value of T .
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Figure 6. Left : charge versus the vacuum expectation value of the operator dual to the scalar field

for constant temperature hairy black hole solutions. The black and red data points are singular

and smooth solitons respectively. Dotted gridlines show the point where these two merge. Right :

the charge of the hairy solutions as we approach the singular soliton with α = 1, exhibits damped

oscillations. This data was collected with n = 1000 grid points.
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Figure 7. Left : curvature invariants at the origin for a range of temperatures for constant ε0.

The Kretchmann scalar remains finite. For lower values of ε0 it takes longer for the hairy black

holes to approach the BPS bound, hence for larger values of the parameter the curves flatten out

quicker. Right : kretchmann invariant K2 for the range of temperatures scaled by the K2 of the

corresponding RNAdS black hole in the grand-canonical ensemble. As ε0 increases the invariant

increases without a bound.
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Figure 8. Microcanonical diagram for the hairy black branes. The red line is the family of planar

RNAdS black holes: hairy solutions always dominate over RNAdS black holes.

4.2 The planar limit

In this subsection we consider the planar horizon limit of our global AdS5 solutions. The

resulting black brane solutions were first studied in great detail in [37]. Our numerical

approach is similar to the one we used for the spherical black holes, so here we just quote

the final results. In the large charge limit the singular soliton branch admits an exact

analytical solution from which the planar limit solution can be recovered [11]

ds2 = −r2dt2 +
r2dr2

b2 + r4
+ r2dx2, φ(r) =

2b

r2
, A(r) = 0. (4.2)

Note that the choice of the constant b amounts to a coordinate transformation, therefore,

this is a single asymptotically Poincarè patch solution. The planar solution exhibits explicit

conformal invariance, since the field theory is suppose to live on Minkowski spacetime.

Thus, in order to have a well defined planar limit, we always look at conformal invariant

ratios, which should have a smooth limit as the black holes become infinitely large. For

instance, to measure temperature we introduce T̃ ≡ √ε0T . The planar hairy solutions are

thus a one parameter family of solutions, with the singular soliton solution (4.2) being a

point. We choose to parametrise the hairy branes by T̃ .

We have constructed planar hairy black holes, i.e. hairy black branes, and checked that

our spherical hairy black holes do approach the hairy branes in the limit S → +∞, i.e.

hairy black holes become infinitely large. Furthermore, the singular soliton solution (4.2) is

the zero M/T 4 and Q/T 3 limit of the hairy black branes, see figure 8, which is reached as

we take T̃ to be large. In order to test this, we have plotted the following gauge invariant

quantities gttφ and gxxφ and checked that they approach the same value at large T̃ , see

figure 9. This is what is predicted by the exact soliton solution (4.2).

4.3 Thermodynamics

In this section we analyse phase diagrams arising in different thermodynamic ensembles.

The planar limit of our results match the results of [37], which we reproduced using our

own code. For completeness we present in figure 21 of the appendix B, a complete analysis
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Figure 9. Gauge invariant quantities φgxx and φgrr for the hairy planar solutions, versus the

compact coordinate y. According to the exact solution, both these curves should approach the

same constant value when T̃ → +∞.

of the several ensembles in the planar limit. In particular, we find that the hairy black

branes are only dominant in the microcanonical ensemble, but never in the canonical or

grand-canonical ensembles.

4.3.1 Grand-canonical ensemble

In the grand-canonical ensemble the system is in equilibrium with a thermodynamic reser-

voir with a temperature T and chemical potential µ, but is allowed to exchange energy

and electric charge. The preferred phase of such a system minimises the Gibbs free energy

G = M −TS− 3µQ. The results are presented in the left panel of figure 10 as a difference

between hairy black holes and RNAdS potentials (absolute quantities for a few regions in

moduli space are shown in the appendix B, figure 19). We find that in the grand-canonical

ensemble RNAdS black holes have lower Gibbs free energy than the hairy black holes with

the same chemical potential µ and temperature T . Note that our hairy solutions all have

G < 0, so G > GRN and that the RNAdS black holes and the hairy black holes phases are

identical at the merger points. For RNAdS, G = 1
4R

2(1 − R2 − µ2) and as shown in the

figure 19 (appendix B) the Gibbs free energy for the hairy black holes is always negative

and approaching 0 as we increase ε0. Note that it would only be exactly zero if µ could

reach 1, but that can only happen at infinite ε0. Finally, so far we have only considered the

transition between the hairy black holes and RNAdS black holes. However, we note that

the RNAdS black holes can themselves become subdominant with respect to AdS [38]. As

all our energies are measured with respect to pure AdS, so that the energy of AdS sim-

ply corresponds to M = 0 and therefore zero thermodynamic potentials, black holes with

negative free energy are thermally favoured over pure AdS. The small RNAdS branch has

µ ≤ 1 and thus these black holes never compete with the hairy solutions.

We have also studied local thermodynamic stability of the hairy black holes in the

grand-canonical ensemble. We find that the specific heat at constant chemical potential is
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Figure 10. Left : the difference between the Gibbs free energies of hairy and RNAdS solutions

with the same chemical potential and temperature. Right : difference of the Helmoltz free energies

of the Reissner-Nortström and the hairy solution with the same temperature and charge.

always positive, but the isothermal capacitance, defined as:

CT =

(
∂Q

∂µ

)
T

,

exhibits an interesting behaviour. For T > T2 it is always positive and for T < T1 we find

CT < 0. In the interval T1 < T < T2, each isothermal has two solutions at fixed electric

charge. The most energetic of these solutions has CT > 0, whereas the least energetic

has CT < 0.

4.3.2 Canonical ensemble

In the canonical ensemble we restrict exchanges with the reservoir such that δQ = 0,

but δM 6= 0, while keeping the temperature constant. The dominant phase minimises the

Helmholtz free energy F = M−TS. The results are presented in the right panel of figure 10.

We see an interesting interplay between the RNAdS and the hairy solutions which shows

a phase transition in the constant temperature family of hairy solutions, occurring at T1
and ending at T2. The higher ε0 branch has lower F than the corresponding RNAdS black

hole, see figure 18 in appendix B. For T > T2 RNAdS has lower free energy than the hairy

black hole. Note however that in the region where the hairy solutions dominate over the

RNAdS black hole, F is positive indicating that thermal AdS is the dominant phase in

this region of moduli space. We have also studied the local thermodynamic stability of the

hairy solutions in the region where they dominate over the corresponding RNAdS black

holes. Local thermodynamic stability in the canonical ensemble is controlled by the sign

of the specific heat at constant charge, which turns out to be positive for this range of T

and Q. We summarise our results for these two ensembles in figure 11.
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Figure 11. Left : canonical ensemble: RNAdS black holes exist below the extremality curve (the

curve separating orange (top left) and light-orange (middle) regions) and the hairy black holes exist

above the merger curve (purple data points) and for µ > 1. RNAdS dominate over pure AdS only

in the yellow region (bottom right). The hairy black holes have a higher free energy than thermal

AdS and thus are not the preferred phase in the ensemble. Right : grand-canonical ensemble: when

both solutions coexist (again above the merger curve), the hairy black holes have a higher free

energy than the corresponding RNAdS with the same µ and T . The yellow region (middle) shows

the parameter space in which the RNAdS dominates over thermal AdS. The orange region (top

left) is the extremal RNAdS and light-orange region (bottom left) is the sector in which pure AdS

is preferred over the RNAdS black holes.

4.3.3 Microcanonical ensemble

Finally the system in which δQ = 0 and δM = 0 is described by the microcanonical

ensemble. The preferred phase in this case maximises the entropy. We find that hairy black

holes are only dominant in this ensemble, see figure 12 (and figure 20 in the appendix B).

Also in this ensemble T2 plays an important role. In figure 12 we plot S − SRN as a

function of M/Mmerger. Here, SRN corresponds to the entropy of a RNAdS black hole with

the same values of Q and M as the hairy solution we are considering, and Mmerger to the

mass of the RNAdS solution at the onset of the superradiant instability with the same T .

We see that S − SRN has maximum slope at M/Mmerger = 1, becoming the smallest at

T = T2, and increasing again for T > T2. This is a simple consequence of the first law of

thermodynamics.

5 Comparison with perturbative results

In this section we compare our numerical results with the perturbative expansion of the

hairy black hole solutions of [11], which are only valid at small asymptotic charges. In [11]

the mass and charge are given to sixth order in O(ε6, R6, ε2R4, ε4R2), however, the chemical

potential is only given to O(R4, ε2R2, ε4) and the temperature to O(R3, ε2R3, ε4R). In

figure 13 we present a detailed comparison between our numerical solutions, represented
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Figure 12. The entropy difference S−SRN of the hairy black holes and the corresponding RNAdS

with the same values of Q and M , as a function of the scaled mass M/Mmerger plotted for a range

of temperatures. Here Mmerger is the mass at the onset of the superradiant instability, where by

definition S − SRN = 0.

by the black disks, and the expansion of [11] represented by the red solid line. Since the

chemical potential and temperature are only determined up to a lower order than the

energy, we expect a worse agreement with the numerical data. This is indeed what we

observe in figure 13. Nevertheless, the observed agreement between the numerical data

and the analytic expansion of [11] is reassuring.

6 Summary and outlook

In this paper we have studied charged hairy black hole solutions in global AdS5 spacetime

using numerical methods. The action that yields these new black hole solutions arises from

a consistent truncation of IIB string theory on AdS5 × S5. We provided strong numerical

evidence that the black hole solutions with the scalar condensate exist between the onset of

the superradiant instability and the BPS limit for all values of the hairy black hole charge.

We obtain the smooth horizonless soliton with α = 0 in the limit T → 0, while the

singular soliton with α = 1 is reached for any isothermal with T 6= 0 in the limit where

ε0 (scalar field evaluated at the horizon) becomes infinitely large. The fact that these new

solutions extend all the way to the BPS limit makes them interesting from the field theory

perspective. In fact, from the field theory it is natural that solutions with mass and charge

arbitrarily close to the BPS bound should exist, and yet the RNAdS black hole does not

saturate such a bound. It is thus reassuring that we did find solutions that saturate the

BPS bound; that they turn out to be hairy solutions could have not been anticipated.

We identify the temperature range T1 < T < T2 for which (∂M/∂Q)|T diverges and

is marked by complex thermodynamic properties. Globally, we find that the hairy solu-

tions, when they exist, are the preferred phase in the microcanonical ensemble, however,

they are subdominant in the canonical and grand-canonical ensembles. In the canonical
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Figure 13. Comparison of the data to the small charge perturbative expansion for the four main

thermodynamic quantities. The black disks are the numerical data for the hairy black holes (with

ε = 0.1) and the red solid line shows the prediction of [11]. As expected, we observe larger deviations

in the temperature and chemical potential.

ensemble, the hairy black holes dominate over RNAdS black holes at low temperatures

and become subdominant at high temperatures, however, the hairy solutions are never

preferred over pure AdS. Finally, in the grand-canonical ensemble, the RNAdS black holes

always dominate over the hairy solutions. These results are recovered in the planar limit.

A natural extension of this work is the inclusion of rotation in our setup. Following [39]

we started with an equally-rotating Meyers-Perry-AdS5 [40, 41] ansatz and constructed a

sample of rotating, charged hairy black hole solutions. In this case the hairy black holes

moduli space is governed by three parameters ε0, y+ and ω where the latter is the black

hole angular velocity. For this system it is known that there exist a one parameter family

of supersymmetric asymptotically AdS5 black holes [24] with zero scalar field. However, we

were unable to obtain supersymmetric hairy black holes. We are exploring the hairy black

hole and soliton solution moduli space in greater detail and the results will be presented

in a follow up paper [42].

This setup can also be used to analyse other consistent truncations, for instance,

consistent truncations of the holographic dual on AdS4 × S7. In this case the existence of

hairy supersymmetric solutions is known (e.g. [43]) and it would be interesting to explore

how non extremal configurations approach these supersymmetric hairy solutions.
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A Numerical validity

We verify that our solutions satisfy ξµ = 0 to sufficient precision, i.e. that our Einstein-

DeTurck solutions are also Einstein (see figure 14). We find that low temperature hairy

black holes have the highest ξ norm. The pseudospectral methods guarantee exponential

convergence with an increasing grid size and we check that all our physical quantities and

the norm of the DeTurck vector have this property (figure 16, 17).
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Figure 14. The infinity norm of the DeTurck vector across a range temperatures with the number

of gridpoints n = 600. Lower temperature hairy global solutions have the highest norm.
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Figure 15. Comparison of the two ansatz. M1 is the (3.2) ansatz, M2 is the (3.4) ansatz. Left :

n = 400 data. Right : n = 600 data. The highest temperature solutions agree the best and the

agreement gets worse as we lower the temperature.
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Figure 16. Convergence for the hairy global solutions for different values of the central scalar field

density ε0 for one particular temperature. Convergence for the first ansatz is at least few orders of

magnitude worse. Left : the norm of the DeTurck vector versus the grid size. Right : hairy black

hole mass error versus the grid size. As the mass involves second derivatives other thermodynamical

quantities have at least two order of magnitude better convergence. For ε0 > 20 convergence falls

rapidly.
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Figure 17. Convergence for the hairy planar solutions for different values of the central scalar field

density ε0. As expected it is much better than for the hairy solutions.
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B Additional figures
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Figure 18. Canonical free energy versus charge for the hairy solutions for three different temper-

atures. Red solid line is the corresponding RNAdS solution. For T < T1, (left panel) the hairy

solutions dominate over the RNAdS black hole. For T1 < T < T2, the three solutions coexist: two

hairy black holes and RNAdS. One of the hairy solutions dominates over the RNAdS, while the

other is subdominant (middle panel). For T > T2, the RNAdS black hole is always dominant in

the canonical ensemble.
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Figure 19. Gibbs free energy versus chemical potential for the hairy global black holes. Red solid

line is the corresponding RNAdS solution. In the Gibbs ensemble, the hairy solutions are always

subdominant with respect to the RNAdS black hole with the same temperature and chemical

potential.
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Figure 20. Entropy versus mass for the hairy solutions for three different temperatures. Red

diamonds correspond to the RNAdS black hole with the same charge. The hairy solutions have

higher entropy than the corresponding RNAdS black hole.
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Figure 21. Scaled thermodynamic potentials for the planar hairy black holes. The red line in each

figure is the RNAdS solution in the corresponding ensemble (left to right: microcanonical, canonical

and grand-canonical ensembles). The hairy black branes are only dominant in the microcanonical

ensemble.
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