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Abstract

Steroid receptor coactivator 1 (SRC-1) interacts with nuclear receptors and other transcription factors (TFs) to initiate
transcriptional networks and regulate downstream genes which enable the cancer cell to evade therapy and metastasise. Here
we took a top—down discovery approach to map out the SRC-1 transcriptional network in endocrine resistant breast cancer.
First, rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) was employed to uncover new SRC-1
TF partners. Next, RNA sequencing (RNAseq) was undertaken to investigate SRC-1 TF target genes. Molecular and patient-
derived xenograft studies confirmed STAT1 as a new SRC-1 TF partner, important in the regulation of a cadre of four SRC-1
transcription targets, NFIA, SMAD2, E2F7 and ASCLI. Extended network analysis identified a downstream 79 gene
network, the clinical relevance of which was investigated in RNAseq studies from matched primary and local-recurrence
tumours from endocrine resistant patients. We propose that SRC-1 can partner with STAT1 independently of the estrogen

receptor to initiate a transcriptional cascade and control regulation of key endocrine resistant genes.

Introduction

Ligand bound estrogen receptor (ER) along with its coac-
tivator proteins is a key driver of endocrine sensitive breast
cancer [1]. Treatment induced alterations in the steroid
environment however can alter the steroid receptor coacti-
vator dynamic. Enhanced growth factor signalling, follow-
ing prolonged treatment with tamoxifen and aromatase
inhibitors (Als), can lead to an initial ligand independent
activity of ER and a subsequent complete loss of ER
function in the advanced setting [2]. Conversely, gain of
HER?2 has been reported at both protein and transcript
levels, particularly in metastatic brain tumours [3]. This
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phenotype discordance between the primary and metastatic
tumour in a subset of advanced cancers has been associated
with worse post recurrence and overall survival [4].

The coactivator protein SRC-1 (NCOAL1) is a master
regulator with a distinct role in endocrine therapy resistance
and the development of metastatic disease [5]. SRC-1 can
interact with p300/CBP, CARMI1 and PRMTI1 [6-9] and
co-activate several nuclear receptors including ER, pro-
gesterone receptor (PR), glucocorticoid receptor, thyroid
receptor, retinoid X receptor, hepatocyte nuclear factor 4
and peroxisome proliferator-activated receptor y [10]. In
addition, SRC-1 can also co-activate other TFs to execute
its function. In vitro interactions between SRC-1 and AP-1,
serum response factor and NF-kB have been described [11-
13]. Importantly, SRC-1 interactions with ETS2, PEA3 and
HOXCI1 in clinical ex vivo and mouse in vivo studies have
been associated with endocrine resistance and breast disease
progression [14—16].

SRC-1 aberrant activity is one of many mechanisms of
endocrine resistance, it mediates its role in tumour pro-
gression and metastasis through transcriptional activation of
key genes [17]. SRC-1 interacts with the HER2-MAPkinase
activated TF ETS2 to regulate MMP9 and cMyc, with AP-1
to regulate integrin o5 and with PEA3 to activate the
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Fig. 1 Combining RIME and RNAseq analysis to discover the SRC-1
regulatory network. a RIME was conducted in three replicates of
endocrine resistant breast cancer LY?2 cells that were steroid depleted
for 72 h and treated with tamoxifen 10~7 mol/L for 45 min to identify
SRC-1 interacting proteins. Non-specific interactions (identified from
two IgG control replicates) have been removed. A protein was only
included if present in all three replicates with a threshold greater than
two unique peptides. SRC-1-associated proteins were clustered based
on molecular function with the length of the line for each protein
indicating its Mascot Score in the MS-arc plot. SRC-1 and the 9 TFs
with PWMs are highlighted. b Volcano plot displaying differentially
expressed genes identified from RNAseq of four replicates of LY2-
shSRC-1 and LY2-shNT cells that were steroid depleted for 72 h and
treated with tamoxifen 1077 mol/L for 8h, with genes positively
regulated by SRC-1 highlighted in blue. Flow diagram of the filters
used to identify SRC-1 regulated TFs. ¢ ChIP qPCR confirmation of
SRC-1 recruitment to the promoter of E2F7, NFIA, DEK, SMAD2,
SMARCAI1, ASCL1 and TRPS1 in LY?2 cells that were steroid
depleted for 72h and treated with tamoxifen 10~ mol/L for 45 min.
Results normalised to IgG and are expressed as mean + SEM, n =3, p
< 0.05. d Immunoprecipitation (IP) experiments confirmed STAT1 as
an SRC-1 interactor (n=4). e ChIP assays demonstrated STATI
recruitment to the promoter region of RNA-seq identified TFs in
tamoxifen treated LY2 cells. Results are expressed as mean + SEM, n
=4, p <0.05, normalised to IgG. £ ChIP re-ChIP assay confirming co-
occupancy of SRC-1 and STAT] at the promoter of TFs in LY?2 cells
that were steroid depleted for 72h and treated with tamoxifen 1077
mol/L for 45 min. Results normalised to IgG and are expressed as
mean + SEM, n =3, p<0.05. g Recruitment of SRC-1 to TF pro-
moters following STAT1 knockdown in LY2 cells that had been
steroid depleted for 72 h and treated with tamoxifen 10~" mol/L for 45
min. Results normalised to IgG and are expressed as mean + SEM, n
=4, p<0.05. P-values for ‘n.s’ results are displayed. h Confirmation
of STAT1 nuclear protein knockdown for ChIP experiments assessed
by western blot (n=3). i Occupancy of STATI1 at TF promoters
following SRC-1 knockdown in LY2 cells that had been steroid
depleted for 72h and treated with tamoxifen 10”7 mol/L for 45 min.
Results normalised to IgG and are expressed as mean + SEM, n =4, p
< 0.05. j Confirmation of SRC-1 nuclear protein knockdown for ChIP
experiments assessed by western blot (n = 3). k qPCR analysis of
relative  mRNA expression of E2F7, NFIA, DEK, SMAD2,
SMARCAL1, ASCL1 and TRPSI in LY2 cells following 8 h treatment
with 17p-estradiol 10~® M following siRNA gene silencing of SRC-1
and STAT1. Results normalised to vehicle and are expressed as mean
+SEM, n=3, p<0.05. 1 Schematic representation of SRC-1 inter-
action with STATI to transcriptionally activate TFs; E2F7, NFIA,
SMAD?2, ASCLI, TRPS1 and chromatin remodellers; DEK and
SMARCAI1

epithelial mesenchymal transition (EMT) TF TWIST
[18-20]. In essence SRC-1 can act as a master initiating
regulator of a transcriptional network to control executor
genes that enable the cancer cell to evade therapy and
ultimately to metastasise to distant organs. To date impor-
tant information has been reported regarding new tran-
scriptional partners and target genes of the coactivator
family. These however do not address the full potential of
these regulatory proteins and their downstream effectors.
Full network analysis is required to understand the com-
plexity and power of the SRC family.

TFs are the key regulatory nodes of the cancer cell [21].
In this study we took a top down discovery approach in
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order to map out the SRC-1 transcriptional network perti-
nent to endocrine resistant breast cancer. In the first instance
we used RIME to uncover new SRC-1 TF partners. Sub-
sequently, we undertook RNAseq to investigate SRC-1 TF
target genes and finally we took a bioinformatic approach to
model second generation downstream executioner targets.
Our data suggest that SRC-1 can partner with STAT1 to
regulate TFs and chromatin remodellers independently of
ER to initiate a transcriptional cascade and control key
genes, including cell cycle regulators, to promote endocrine
resistant disease progression.

Results

SRC-1 partners with STAT1 to activate TF/chromatin
remodeller target genes

Endogenous SRC-1 was immunoprecipitated from cross
linked endocrine resistant LY2 cells following 45 min of
tamoxifen treatment using RIME. 148 SRC-1 associated
proteins were identified in each of the three replicates (Fig.
la), including SRC-1 (NCOA1) which was one of the most
confident proteins identified. Of the 148 SRC-1 interacting
proteins, 27 have been described as TF or chromatin
remodellers, 9 of which have defined motifs (Supplemen-
tary Table 1). Among those identified several were known
SRC-1 binding partners including PARP1, NONO and
PRMT1 [22-24]. A full list of interacting proteins is pro-
vided in Extended Data 1.

RNAseq of tamoxifen treated endocrine resistant LY2
cells following SRC-1 gene silencing was used to define the
SRC-1 transcriptome. 1731 genes were identified as SRC-1
positively regulated genes. The FANTOM database was
used to identify TF and/or chromatin remodelers. In total
153 genes were found. To select out the known TFs from
this list we used HOCOMOCO, Jaspar Core and cisBP
databases to identify genes with defined position weight
matrices (PWMs) (Fig. 1b) [25-28]. In total 37 TFs were
found with PWMs and a further three genes were included
in the analysis as they are considered tumorigenic TF/
chromatin remodellers (DEK, SMARCA1 and TRPS1) [29—-
31]. Of the 40 putative SRC-1 TFs/chromatin remodellers
identified from the RNAseq and bioinformatic analysis, 14
were taken forward for molecular validation based on their
described role in tumour progression (Supplementary Table
2). In SRC-1 silencing studies 7 of 14 genes (TFs, ASCLI,
E2F7, NFIA, SMAD2 and TRPS1 and the chromatin
remodellers, including DEK and SMARCAL1) were con-
firmed as SRC-1 positive regulons (Supplementary Fig. 1a).
To determine if SRC-1 directly regulates these genes we
used SRC-1 ChIPseq data from tamoxifen treated LY2 cells
and looked at SRC-1 occupancy 10kb upstream of the
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transcriptional start site (TSS). Significant recruitment of
SRC-1 to the promoter region of each of these genes was
observed on the UCSC Genome Browser from SRC-1 ChIP
studies [32] (Supplementary Fig. 1b), which was confirmed
by ChIP gPCR (Fig. 1c). Of interest, though ER recruitment
to the promoter regions of the 7 target genes was also
observed (Supplementary Fig. 1c), transcript levels of the
genes was independent of estrogen treatment (Supplemen-
tary Fig. 1d) and of ER transcriptional activity as demon-
strated by ESR1 knockdown and ICI 182, 780 microarray
datasets (Supplementary Fig. le and f, Extended Data 2)
[33].

From the RIME experiment we had identified 9 potential
SRC-1 TF partners with PWMs. We used the BioMART
database and FIMO motif based sequence analysis to look
for potential recruitment of the SRC-1 partners 10kb
upstream of the TSS of the 7 target genes. HIFX, H2AF2
and STAT1 binding regions were identified in the enhancer/
promoter region of several of the target genes, however only
STATI response elements were present upstream of all of
the defined SRC-1 direct targets (Supplementary Fig. 1g)
[34, 35]. SRC-1-STATI1 interactions were confirmed by
immunoprecipitation (Fig. 1d) and recruitment of STATI
alone and in combination with SRC-1 to the promoter
region of each of the target genes was confirmed by ChIP
and ChIP-re-ChIP qPCR respectively, in endocrine resistant
LY2 cells (Fig. le, f). A full list of SRC-1-STAT]1 target
genes is given in Extended Data 3. Full recruitment of SRC-
1 to the promoter of each of target gene was found to be
dependent on STAT1, though this did not reach statistical
significance (Fig. 1g, h). Moreover, silencing SRC-1
expression significantly impaired occupancy of STATI1 at
TF promoters (Fig. 1i, j). Furthermore, silencing of both
SRC-1 and STAT1 reduced transcript levels of these genes
(Supplementary Fig. 1h). Of note, silencing of either SRC-1
or STAT1 induced estrogen sensitivity and enabled steroid
dependent increases in transcript levels of the 7 genes
(Fig. 1k). These data suggest that in the endocrine resistant
setting SRC-1 can partner with STAT]I, in an ER inde-
pendent manner, to activate target genes ASCLI1, DEK,
E2F7, NFIA, SMAD2, TRPS1 and SMARCATL1 (Fig. 11).
Furthermore, in the absence of SRC-1 or STATI, the reg-
ulation of the 7 genes can be resensitised to estrogen.

The functional role of SRC-1 transcriptional targets
in endocrine treatment resistance

To understand the contribution of the SRC-1 transcriptional
targets to tumour progression we looked at the role of each
of the individual target genes in classic mechanisms of
tumour aggression including cell viability, mammosphere
formation, de-differentiation and migration. Expression
levels of each of the 7 target genes are elevated in models of

tamoxifen resistance (LY2 cells and/or TamR cells) in
comparison to endocrine sensitive parent cells (MCF7
cells). Moreover, expression of E2F7, NFIA and DEK were
also elevated in a model of AI resistance (LetR cells)
relative to sensitive cells (Supplementary Fig. 2a).

The SRC-1 target genes have varying roles in tumour
cell viability and anchorage independent growth. From
transient gene silencing studies, E2F7 and NFIA were
observed to play a substantial role in cell viability, whereas
SMAD2, SMARCAI1, ASCL1 and TRPS1 contributed to
anchorage independence (Fig. 2a, b, Supplementary Fig.
2b). In contrast, each of the SRC-1 regulated genes had a
significant impact on mammosphere generation, cellular
depolarisation and CD24 /44" (stem like) population (Fig.
2c, d, e) supportive of a role for this cadre of transcriptional
regulators in cellular de-differentiation. Moreover each of
the SRC-1 target genes was shown to significantly con-
tribute to the migratory capacity of endocrine resistant
breast cancer cells (Fig. 2f).

Expression of SRC-1 transcriptional network in
endocrine sensitive and resistant tumours

To investigate the clinical relevance of the SRC-1 tran-
scriptional regulators we employed a patient derived
xenograft (PDX) model of ER positive breast cancer. Pri-
mary and metastatic tumours from an endocrine sensitive
and two endocrine resistant patients respectively were
expanded in NOD SCID mice (Fig. 3a). ER expression was
detected in each of the tumour models, whereas PR was
expressed in the primary and lung metastatic tumours, but
not the liver metastatic tissue. Elevated levels of the pro-
liferation marker Ki67 were observed in the cancer cells of
the resistant tumours in comparison to the sensitive tumour
(Fig. 3b).

SRC-1 was found to be elevated in metastatic endocrine
resistant PDX models in comparison to the primary endo-
crine sensitive PDX and STAT1 was observed in both the
primary and metastatic tumours (Fig. 3c). Expression of
SRC-1 TF targets with defined PWM (NFIA, SMAD?2,
E2F7 and ASCL1) (Supplementary Table 2) was also
assessed. SMAD2 was upregulated in liver metastatic
resistant tumour tissue whereas E2F7, NFIA and ASCL1
were elevated in both the lung and the liver metastatic
resistant tumours in comparison to the sensitive primary
tumour model (Fig. 3c).

Extended SRC-1 regulatory networks

In order to understand the greater SRC-1 regulatory network
we investigated the regulons of the SRC-1 TF target genes
with PWM (NFIA, SMAD2, E2F7 and ASCL1). Regulons

were obtained from large scale co-expression signature

SPRINGERNATURE
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datasets using iRegulon [36]. 79 genes were found to be  centromere protein F is positively regulated by SRC-1,
regulated by two or more of the SRC-1 TFs with PWM  whereas CDKN1A which encodes the cell cycle inhibitor,
which includes SMAD2, E2F7, ASCL1, NFIA (Fig. 4a). p21, is negatively regulated by SRC-1 (Fig. 4a). Consistent

At the core of the TF hub two key cell cycle regulators, with SRC-1’s role in endocrine resistance in breast cancer,
CENPF and CDKNI1A were found to be co-regulated by all ~ CENPF positively associated with poor disease free survival
four TFs (Fig. 4a). The CENPF gene which encodes in endocrine treated patients (p=0.00075), whereas
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« Fig. 2 E2F7, NFIA, DEK, SMAD2, SMARCA1, ASCL1 and TRPS1 -

roles in endocrine resistance. a Cellular viability is significantly
reduced after siRNA knockdown of E2F7, NFIA, DEK, SMAD?2,
ASCL1 and TRPS1 in endocrine resistant LY2 cells with no sig-
nificant changes observed with siSMARCA1. b Anchorage indepen-
dent growth of LY2 cells was reduced following siRNA transfection
with NFIA, SMAD2, SMARCAI1, ASCLI and TRPS1. Growth was
increased with siDEK transfection and no significant changes were
observed with siE2F7. Representative images of cells’ anchorage
independent growth. ¢ Mammosphere forming efficiency in first and
second generation of mammospheres was significantly reduced fol-
lowing knockdown of E2F7, NFIA, DEK, SMAD2, SMARCAI,
ASCL1 and TRPS1. d Representative images of acini formation from
LY2 cells following siRNA transfection with E2F7, NFIA, DEK,
SMAD2, SMARCAI, ASCL1 and TRPS1 showed more organised
acini with superior apico-basolateral structure compared to siScramble
cells. e Flow cytometry analysis of CD44 and CD24 expression in
LY2 cells transfected with siRNA against E2F7, NFIA, DEK,
SMAD2, SMARCAI1, ASCL1 and TRPS1. The results showed a
significant reduction in CD24 CD44" (stem cell-like). f Migratory
ability of the LY?2 cells was significantly reduced following siRNA
transfection with E2F7, NFIA, DEK, SMAD2, SMARCA1 ASCL1
and TRPS1. Representative images of cellular migration shown. All
results are expressed as mean + SEM, n =3, p <0.05, normalised to
siScramble

CDKNI1A associated with good response to treatment (p =
0.046) (Supplementary Fig. 3a and b). When modelled
together, (CENPF positively/CDKN1A inversely) these cell
cycle regulators strongly associated with reduced disease
free survival times in patients on endocrine treatment
(Supplementary Fig. 3¢ and d).

Expression of the 79 genes of the SRC-1 network ana-
lysed in RNAseq data from ER positive primary tumours
from patients with good response to endocrine therapy (n =
3) and primary tumours from those with disease recurrence
on therapy and the matched local recurrence tissue (n = 3)
(Supplementary Table 3). Elevations in a number of meta-
static genes including, CXCR4, PDGFp, RARA and
IGF2R, were observed in the primary and matched recurrent
tumours from endocrine resistant patients, in comparison to
the primary tumours from endocrine sensitive patients.
Whereas, a number of genes which were observed to be
elevated in endocrine resistant primary tumours, were lost
on local disease recurrence these include known proto-
oncogenes, NF-xkB, JUN and EGR1 (Fig. 4b).

Pathway analysis of the SRC-1 regulated 79 genes using
ClueGo identified cell cycle regulation, cellular differ-
entiation and pathways in cancer as key functions of the
SRC-1 TF regulon in endocrine resistant breast cancer
(Supplementary Fig. 4). We looked at the genes from these
pathways in RNAseq data from our matched primary and
recurrent tumours. Genes involved in cell differentiation
were lost including TGFB3 and SMAD3, in the endocrine
resistant tumours, whereas cell cycle genes including
CENPF were enhanced (Fig. 4c). An overview of the SRC-
1 signalling cascade described here is illustrated in Fig. 5.

Discussion

The extent of molecular phenotype discordance between ER
positive primary and metastatic tumours following endo-
crine treatment has been described in several clinical studies
[4]. There is now considerable evidence to support a role for
SRC-1 in coordinating the necessary changes to bring about
ER independence in a significant subset of endocrine
resistant tumours. Individual mechanistic studies have
shown that, the SRC-1/AP1/M-CSF1 regulatory axis can
enhance circulating tumour cells and lung metastasis, SRC-
1 can also partner with PEA3 to regulate TWIST to drive
epithelial-mesenchymal transition [37, 38]. In this study we
took a high level view of SRC-1 transcriptional networks to
map out SRC-1’s greater regulatory cascade which con-
tributes to enhanced aggression of the cancer cell.

In previous work using MALDI-TOF and LC mass
spectrometry screens we identified the TF HOXC11 and the
chromatin remodellers, HMGB2 and Jumonji domain con-
taining 2C as interacting partners for SRC-1 [16, 33, 39]. To
specifically understand chromatin and TF/ SRC-1 com-
plexes here we employed RIME in endocrine resistant cells.
Using this technique, we identified 148 endogenous new
and previously described SRC-1 complex proteins. Though
this method is a powerful tool to identify new transcrip-
tional interacting partners it is by no means comprehensive;
one such caveat is that RIME of a co-activator, unlike than
RIME of a TF, may fail to detect other functional co-
coactivators including CBP/p300 or CARM1. Nevertheless,
of the interactors identified, 27 are known TFs or chromatin
remodellers, one of which is the signal transducer and
activator of transcription STATI1. STATI1 is one of the 7
STAT family members which function as signal messengers
and TFs participating in cellular responses to cytokines and
growth factors [40]. Though interactions between SRC-1
and STAT3, STATS, and STAT6 have previously been
reported, this is the first description of a STAT1/SRC-1
interaction [41—-43]. In tumour initiation processes STAT3
and STATS are thought to be oncogenic, whereas STAT]1
has been described as a tumour suppressor [44]. In terms of
endocrine resistance, both STAT3 and STATS5 have a
defined role in growth factor mediated tumour progression
[45]. Recently, expression and activation of STATI has
been shown to be enhanced in endocrine resistance, leading
to suggestions that STATI could represent a viable target in
treatment resistant breast cancer [46].

SRC-1 is a metastatic oncogene with a distinct role in
endocrine resistance [20]. Through interactions with key
TFs, including PEA3 and MYB, it can reduce breast cancer
cell differentiation and enhance tumour progression [15,
32]. To investigate first line SRC-1 mediated transcriptional
regulation we combined SRC-1 RNAseq and ChIPseq,
followed by bioinformatics filters which uncovered a
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d
PDX Sensitive 1
Patient age at primary diagnosis 49 years
Primary tumour diagnosis IDC Stage 3
Primary ER status Positive
Primary PR status Positive
Primary Her2 status Negative
Recurrence No
Time to recurrence N/A
Primary endocrine therapy
received Tamoxifen
cyclophosphamide,
Other treatment history doxorubicin
Clinical Patient Metastases None
Source of PDX tissue Primary
Time to grow to 1cm in NODSCID 6 months
PDX ER status Positive
PDX PR status Positive
PDX HER2 status Negative

Fig. 3 SRC-1 transcriptional network is expressed in endocrine
resistant patient derived xenograft models compared to endocrine
sensitive. a Table of characteristics and receptor status of patient breast
tumours and their corresponding patient derived xenografts (PDXs). b
ER, PR and ki67 expression in established PDXs showing retained

SPRINGER NATURE

doxorubicin, paclitaxel

Resistant 1 Resistant 2
44 years 42 years
IDC Stage 3 IDC Stage 3
Positive Positive
Positive Negative
Negative Negative
Yes Yes
81 months 60 months
Tamoxifen Tamoxifen

cyclophosphamide, doxorubicin, taxol,
radiotherapy, fulvestrant

Lung Liver and Bone
Metastatic Lung Metastatic Liver
6 months 4 months
Positve Positive
Positive Negative
Negative Negative

SRC-1

STAT1

E2F7

NFIA

SMAD2

ASCL1

biomarker status. The original clinical diagnosis for ER and PR is
shown in the table. ¢ Sections of tumour were stained by IHC for SRC-
1, STATI, E2F7, NFIA, SMAD2 and ASCLI. Representative image
of 5 taken at 20X, scale bars in red correspond to 50 pm. Zoomed
images at 40X
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refined list of SRC-1 regulated TFs and chromatin remo-
dellers. Seven SRC-1 target genes, five TFs; ASCL1, E2F7,
NFIA, SMAD?2 and TRPS1 and two chromatin remodellers
including DEK and SMARCA1 were subsequently vali-
dated in molecular studies as direct SRC-1 target genes. In
this study, though each of the SRC-1 regulated TFs had
varying roles in tumour cell viability and anchorage

independent growth, all were found to be essential for full
cellular de-differentiation and migration. These observa-
tions are consistent with the supposition that SRC-1 can
manage its pro-metastatic activity though this network of
TFs.

Four of the five TFs have well defined response ele-
ments, ASCL1, E2F7, NFIA, SMAD?2 enabling robust
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Fig. 4 The transcriptional regulon of ASCLI1, E2F7, NFIA and
SMAD?2. a A representative regulatory network using iRegulon in
Cytoscape. The large nodes represent the genes regulated by E2F7,
NFIA, SMAD2 and ASCLI. The target genes for each TF are por-
trayed in red if they are up regulated with SRC-1 or dark blue if they
are down regulated with SRC-1 and light blue, yellow or orange for
pathways in cancer, cell differentiation or cell cycle respectively. The
shared targets between the 4 TFs are CDKNI1A and CENPF. b From
the regulatory network, 79 genes were found to be regulated by two or

more of the SRC-1 regulated TFs. The expression of these genes was
profiled in primary breast tumours of patients that responded well to
therapy (n=3) and in matched primary (n=3) vs. local recurrence
samples (n = 3) from patients who had disease recurrence on endocrine
treatment (from left to right). ¢ Functional annotation of a subset of
these genes in primary tumours from patients that recurred on endo-
crine treatment and their matched local recurrence. “*’ denotes those
genes highlighted in the text
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Fig. 4 continued

modelling of extended SRC-1 regulatory networks. In PDX
models of endocrine sensitivity and resistance, each of the
four TFs in the hub were elevated in the endocrine resistant
metastatic tumours (liver and/or lung) in comparison to the
primary tumour expanded from an endocrine sensitive
patient. A role for each of these TFs in endocrine cancer
disease progression has previously been reported. NFIA and
ASCLI regulate FOXA1/AR and neuroendocrine differ-
entiation, respectively in prostate cancer, whereas roles for
SMAD?2 and E2F7 in breast cancer disease progression and
endocrine resistance have been well described [47-50].
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On modelling the extended regulatory network of the
clinically relevant SRC-1 TF hub, we found a pre-
ponderance of genes relevant to altered cell differentiation,
pathways in cancer and cell cycle regulation. At the core of
the hub key cell cycle proteins, CENPF and CDKNIA,
were found to be co-regulated by all four TFs. Of interest,
NFIA has previously been reported to negatively regulate
cyclin-dependent kinase inhibitor p21 (CDKNI1A) [51].
Either singularly or together expression of these cell cycle
regulators associate with poor disease free survival in
endocrine treated breast cancer patients. Of note, clinical
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Fig. 5 Schematic representation
of SRC-1 signalling cascade.
SRC-1 interacts with STATI1 at
the promoter region of E2F7,
NFIA, SMAD2, and ASCLI.
Expression of these TFs pro-
motes an endocrine resistant
phenotype in breast cancer.
Downstream network analysis
revealed perturbations in several
pathways involved in cancer
progression including, cell dif-
ferentiation, cell cycle and
pathways in cancer

trials targeting cell cycle have shown promise in the treat-
ment of endocrine resistant breast cancer [52].

Differential expression of the SRC-1 network genes was
observed in tumours from endocrine sensitive and resistant
patients. Loss of genes pertinent to cell differentiation and
gain of cell cycle genes was observed in resistant tumours
relative to their matched primaries. This analysis is con-
sistent with the observed role of the SRC-1 target TFs
described here and the well-defined role of SRC-1 in cell
de-differentiation and tumour progression [32].

TFs and their associated regulatory proteins respond to
environmental cues to control cell fate. Due to functional
redundancy and discordance between expression levels and
activity, transcriptional proteins are often poor markers of
cell health. Uncovering downstream networks can help us
understand how these master regulators execute their
function. These analyses have the potential to provide more
robust prognostic markers and effective therapeutic targets
to treat metastatic cancer. Here, using discovery tools,
molecular and clinical studies, as well as bioinformatic
modelling we describe a clinically relevant cadre of 4 TFs
which execute SRC-1’s role in disease progression in a
subset of endocrine resistant breast cancer. At the core of
this signalling cascade are genes central to cell differentia-
tion, pathways in cancer and cell cycle. This extended
analysis has uncovered a regulatory network which pro-
vides potential new drug targets and insights into the
mechanism of recent cell cycle inhibitors in the treatment of
this class of breast cancer patient.

Materials and methods
Cell culture

Endocrine resistant L'Y?2 breast cancer cells were a kind gift
from Robert Clarke (Georgetown, USA). LY2 cells were
derived from MCF-7 cells by selection in increasing con-
centrations of LY 117018 [53]. LY2 cells are also cross-
resistant to tamoxifen and are ER positive with ER protein

Cell
% R e

expression lower than MCF-7 cells [16, 39, 53]. LY2 cells
were maintained in phenol red free Minimum Essential
Medium Eagle (PRF-MEM, Sigma, Darmstadt, Germany)
supplemented with 10% charcoal dextran stripped fetal calf
serum (CDS-FCS, Sigma), 1% L-glutamine (LG, Sigma),
1% penicillin-streptomycin ~ (PS, Sigma) and 4-
hydroxytamoxifen (4-OHT, Sigma) 10 ®mol/L. A stable
SRC-1 knock-down cell line was created, as previously
described [39]. LY2 shSRC-1 and LY2 shNT cells were
maintained in LY?2 cell culture media containing puromycin
(500 ng/mL, Sigma) to maintain stable knockdown
expression. All cell lines were tested for Mycoplasma
(LT07-118, Lonza, Basel, Switzerland), genotyped (Source
BioSciences, Nottingham, UK) and authenticated according
to ATCC guidelines.

RIME

The rapid immunoprecipitation mass spectrometry of
endogenous proteins (RIME) method, mass spectrometry
and data analysis were performed, as previously described
[54]. LY2 cells were steroid depleted for 72 h, treated with
4-OHT 10" mol/L for 45 min and harvested for RIME.
SRC-1 antibody (anti-human, 10 pg; SC-8995; Santa Cruz
Biotechnology, Texas, USA), and IgG (10 pg; C15410206
Diagenode) as negative control, were used. Raw data were
pre-processed, analysed and results visualised as per
Mohammed et al. methodology [55]. RIME data will be
deposited in the Gene Expression Omnibus (GEO)
database.

RNA Sequencing and bioinformatics analyses

LY?2 shSRC-1 and shNT cells were steroid depleted for 72-
h then treated with 4-OHT 10~" mol/L for 8 h. RNA iso-
lation was performed using the RNeasy kit (ID-74104,
Qiagen, Hilden, Germany). True-seq RNA-sequencing and
library construction was performed by BGI (Hong Kong)
using the Illumina HiSeq 2000 with >40 million reads
(100PE) (Extended RNASeq analysis can be found in
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Supplementary Information). RNASeq data are available
from GEO database under series entry code GSE99649.
ChIP-seq as per McCartan et al. was used to identify direct
SRC-1 targets. ChIP-seq data are available from the GEO
database under series entry code GSE28987 [32]. Eligible
breast cancer patient cases had formalin-fixed paraffin-
embedded (FFPE) tissue from primary and recurrent
tumours. Informed consent was received from all eligible
patients and the study was reviewed and approved by
Institutional Review Boards from Royal College of Sur-
geons in Ireland (13/09 CTRIAL-IE Protocol 09-07). FFPE
sections (5 x 10 um) were used to extract RNA using Qia-
gen FFPE kit according to manufacturer’s instructions. Tru-
seq RNA sequencing was carried out, as previously
described [56]. Heatmaps were generated using pHeatmap
in R [57].

Chromatin immunoprecipitation and ChiIP-reChIP

Chromatin immunoprecipitation (ChIP) was performed, as
previously described [58]. LY2 cells were steroid depleted
for 72 h and treated with 4-OHT 10~" mol/L for 45 min and
lysed using a Bioruptor sonicator (B01060001, Diagenode,
Belgium). SRC-1 antibody (6 pg; SC-8995; Santa Cruz
Biotechnology) STAT1 (1 pg, 91728, Cell Signalling, MA,
USA), ER (6 pg, SC-543, Santa Cruz Biotechnology) and
IgG (6 pg; C15410206 Diagenode), as negative control,
were used. ChIP primers were designed around the pro-
moter region of each gene of interest (Supplementary Table
5). Enrichment of the DNA to E2F7, NFIA, DEK, SMAD?2,
SMARCAI1, ASCL1 and TRPS1 promoters was carried out
using qPCR with Sybr green technology (Qiagen) on a
Roche Lightcycler 2.0 (Roche, Basel, Switzerland). The
AACt comparative method was used for analysis [59].

ChIP-reChIP was performed, as described above, with
the exception of an additional immunoprecipitation prior to
reverse cross linking.

For ChIP experiments with siRNA knockdown, cells
were transfected in 15 cm? dishes followed by 72 h steroid
depletion. Cells were then treated with 4-OHT 10~ mol/L
for 45 min and ChIP protocol was carried out, as described
above.

Co-Immunoprecipitation, protein extraction and
western blot

LY?2 cells were steroid depleted for 72 h then treated with 4-
OHT 10~ mol/L for 45 min. Cells were collected and then
lysed in 80 puL of lysis buffer supplemented with protease
inhibitors (Roche). In total 400 ug of total protein was
immunoprecipitated with SRC-1 (6 ug, SC-8995; Santa
Cruz Biotechnology), STAT1 (1 pg, 9172S, Cell Signalling)
and IgG (6 pg, C15410206 Diagenode) pre-bound to protein
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A Dynabeads (10002D, Life Technologies, CA, USA).
Nuclear protein was extracted from LY2 cells using the NE-
PER extraction kit (ThermoFisher) as per manufacturer’s
instructions. In total 25 ug of nuclear protein was electro-
phoresed and immunoblotted with antibodies against SRC-
1, STATI1 (as above) and TBP (8515, Cell Signalling).

Transfection

siRNA directed against SRC-1, E2F7, NFIA, ER (Ambion,
MA, USA), STATI1, DEK, SMAD2, SMARCA1, ASCLI
and TRPS1 (Dharmacon, CO, USA) were used to tran-
siently knockdown gene expression. Transfection was per-
formed using Lipofectamine 2000 (Invitrogen, CA, USA)
according to manufacturer’s protocol siRNA. siRNA details
can be found in Supplementary Table 4. For mRNA
expression analysis, 24 h following transfection, cells were
treated with tamoxifen 10~'M for 8h then analysed by
gPCR. mRNA primer sequences can be found in Supple-
mentary Table 6. For functional experiments, 24—48 h post
transfection, cells were input into the relevant assays, as
detailed below.

Cell viability

Cell viability was assessed using MTS Cell Proliferation
Assay kit (Promega, WI, USA). Cells were seeded in tri-
plicate into a 96 well plate at a density of 1 x 10° cells per
well. On day 5, cells were incubated with MTS reagent and
absorbance was read at 495 nM using a PerkinElmer (MA,
USA) plate reader.

Anchorage independent growth

In total 2 x 10* cells suspended in PRE-MEM with 0.3%
agarose (Promega) and 4-OHT 10~ mol/L were seeded in
duplicate into a 6 well plate containing a layer of solid 0.6%
agarose in PRF-MEM and 4-OHT 10~ mol/L. The agarose
was allowed to solidify and was topped with 300 uL. of
PRF-MEM with 4-OHT 10~’ mol/L. Samples were incu-
bated at 37 °C with 5% CO, for 14 days. On day 15,
colonies were stained with 400 pL of p-lodoinitrote-
trazolium chloride (1 mg/mL, Sigma Aldrich) and wrapped
in aluminium foil for 24h at 37 °C with 5% CO,, then
stored in the fridge for 24 h prior to counting. Using a
graticule, colonies over 100 uM in diameter were counted at
8 different points per well under a light microscope
(Olympus, Tokyo, Japan).

Mammospheres

In total 5 x 10 cells were seeded in duplicate into a 6 well
ultra-low adherence plate (Corning, MA, USA) containing
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2 mL of mammosphere media (DMEM F12 (Sigma) sup-
plemented with 1% PS, EGF (20 ng/mL, Sigma) and 1x
B27 (Sigma)). Mammosphere culture and analysis was
performed, as previously described [60].

3D acini

24 h post siRNA transfection, 5 x 10° cells were suspended
in 400puL of PRF-MEM containing 2% Matrigel (BD,
Biosciences, CA, USA) and were seeded in duplicate into a
Matrigel coated 8-well chamber slide (BD Biosciences).
Cells were cultured for 21 days then fixed and stained as per
Debnath et al. [61]. Phalloidin 594 (A12381, Life Tech-
nologies) was used to stain F-actin and 4', 6-diamidino-2-
phenylindole (DAPI, 0.5 pg/ml, Sigma) stained the nucleus.
Acini were examined on a confocal microscope (Carl Zeiss
LSM 710 NLO, Oberkochen, Germany).

Flow cytometry

After 48 h of siRNA transfection, 2 X 10° cells were stained
with CD24 (1:20, 555428; BD Biosciences, CA, USA) and
CD44 (1:6.6, 555478; BD Biosciences) before analysis on
BD FACS Canto II (BD Biosciences). Results were ana-
lysed using FlowJo Software (FlowJo, OR, USA).

Migration

Cellomics Cell Motility Kit (KO800011, Thermo Scientific,
MA, USA) was used to assess individual cell movement as
per manufacturer’s instructions. Briefly, cells were seeded in
triplicate with 500 cells per well and treated with PRF-
MEM supplemented with 4OHT 10~ mol/L. Following 24
h of culture, cells were fixed, stained and migration was
analysed by examining the average track areas. A minimum
of 100 tracks per sample was examined on an Olympus
light microscope using DAPI and TRITC filters and Cell-
Sens Entry software.

Patient derived xenograft

All mouse experiments were performed in accordance with
the European Communities Council Directive 2010/63/EU
and were reviewed and approved by Research Ethics
Committee under license from the Health Products Reg-
ulatory Authority of Ireland. PDX models were generated
from three individual patients (T060_1, T638_1 and
T1233_3) and were maintained, as previously described
[62]. Sensitive and resistant PDXs were established using
orthotopic implantation in Nod-SCID mice (Charles Rivers,
MA, USA) supplemented with E, pellets (Innovative
Research of America) from three ER positive tamoxifen-
treated patient tumours. One primary sample from an

endocrine sensitive patient tumour and two metastatic
samples (liver and lung) from resistant tumours were
included in the study (also see Fig. 3a). Upon tumour har-
vesting, tumours were formalin fixed and paraffin embed-
ded (FFPE).

Immunohistochemistry

Immunohistochemistry was performed on 5 pM sections of
PDX samples using DAKO EnVison + HRP kit (Agilent,
CA, USA) according to manufacturer’s instructions. Pri-
mary antibodies to detect ER (rabbit, 1:50, Ventana 790-
4324), PR (rabbit, 1:50, Ventana 790-2223), ki67 (M7240,
DAKO), SRC-1 (rabbit; 1:30 SC-8995; Santa Cruz Bio-
technology), E2F7 (rabbit, 1:50, sc66870, SantaCruz Bio-
technology), NFIA (anti-human, 1:100, 41,851, Abcam)
were incubated at 25 °C for 1 h, ASCL1 (anti-human, 10 pg,
556,604, BD Biosciences) at 37 °C for 2h and STATI
(anti-human, 1:750, 9172 S, Cell Signalling) and pSMAD2
(anti-human, 1:250, 3108, Cell Signalling) at 4°C
overnight.

Network analysis

The iRegulon (Version: 1.3 Build ID: 1024) Cytoscape
(v.3.4.0) plugin was used to query the cisTargetDB for
direct downstream targets of candidate TFs (meta-regulon)
[63]. The cisTargetDB integrates cancer related gene sig-
natures from GeneSigDB(v.4), MSigDB(v3.2) and from
gene modules generated across 91 cancer microarray data
sets [64]. The meta-regulon is defined in iRegulon as the
genes which are directly targeted by a given TF sig-
nificantly enriched across the cisTargetDB gene signatures.
Meta-regulons for each TF were obtained using an occur-
rence count threshold of 5 and number of nodes of 200 and
then merged using firstly set union to remove duplicate
genes and secondarily set intersection in Cytoscape to find
those genes common to all TFs relevant to this study.

Statistical analysis

Statistical analyses performed using GraphPad Prism Ver-
sion 5 software (La Jolla, CA, USA). Data are shown as
mean + standard error of the mean (SEM), with a minimum
three replicates per experiment. Exact n numbers for each
graph are reported in the Figure Legends. Significance was
determined using unpaired, two-tailed, Students r-test. P
values < 0.05 were considered significant and are denoted
by “*’ while no significance is denoted n.s.
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