Muranen et al. Breast Cancer Research (2016) 18:98
DOI 10.1186/5s13058-016-0758-5 Breast Cancer Research

RESEARCH ARTICLE Open Access

Patient survival and tumor characteristics ~ ®*
associated with CHEK2:p.1157T - findings

from the Breast Cancer Association

Consortium

Taru A. Muranen', Carl Blomgqvist?, Thilo Dérk”, Anna Jakubowska®, Paivi Heikkild*, Rainer Fagerholm', Dario Greco’,
Kristiina Aittomaki®, Stig E. Bojesen®®'° Mitul Shah'', Alison M. Dunning'", Valerie Rhenius'', Per Hall'?,

Kamila Czene'?, Judith S. Brand'®, Hatef Darabi'®, Jenny Chang-Claude''®, Anja Rudolph'>,

Borge G. Nordestgaard®'®, Fergus J. Couch'’, Steven N. Hart'® Jonine Figueroa'®, Montserrat Garcfa-Closas' *%°,
Peter A. Fasching®"*, Matthias W. Beckmann?', Jingmei Li'?, Jianjun Liu, Irene L. Andrulis***,

Robert Winqvist*®#’, Katri Pylkds®®?’, Arto Mannermaa®®**°, Vesa Kataja?®*', Annika Lindblom'?, Sara Margolin',
Jan Lubinski®, Natalia Dubrowinskaja>, Manjeet K. Bolla'?, Joe Dennis'?, Kyriaki Michailidou'**? Qin Wang'?,

Douglas F. Easton' "2, Paul D. P. Pharoah'"'?, Marjanka K. Schmidt® and Heli Nevanlinna'"

Abstract

Background: P.I157T is a CHEK2 missense mutation associated with a modest increase in breast cancer risk. Previously,
another CHEK2 mutation, the protein truncating c.1100delC has been associated with poor prognosis of breast
cancer patients. Here, we have investigated patient survival and characteristics of breast tumors of germ line
p.I157T carriers.

Methods: We included in the analyses 26,801 European female breast cancer patients from 15 studies participating in
the Breast Cancer Association Consortium. We analyzed the association between p.I157T and the clinico-pathological
breast cancer characteristics by comparing the p.I157T carrier tumors to non-carrier and ¢.1100delC carrier tumors.
Similarly, we investigated the p.157T associated risk of early death, breast cancer-associated death, distant metastasis,
locoregional relapse and second breast cancer using Cox proportional hazards models.

Additionally, we explored the p.I157T-associated genomic gene expression profile using data from breast tumors of
183 Finnish female breast cancer patients (ten p.157T carriers) (GEO: GSE24450). Differential gene expression analysis
was performed using a moderated t test. Functional enrichment was investigated using the DAVID functional annotation
tool and gene set enrichment analysis (GSEA). The tumors were classified into molecular subtypes according to the St
Gallen 2013 criteria and the PAM50 gene expression signature.
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Results: P.I1157T was not associated with increased risk of early death, breast cancer-associated death or distant metastasis
relapse, and there was a significant difference in prognosis associated with the two CHEK2 mutations, p157T and c.
1100delC. Furthermore, p.l157T was associated with lobular histological type and clinico-pathological markers of good
prognosis, such as ER and PR expression, low TP53 expression and low grade. Gene expression analysis suggested luminal
A to be the most common subtype for p.l157T carriers and CDH1 (cadherin 1) target genes to be significantly enriched
among genes, whose expression differed between pl157T and non-carrier tumors.

Conclusions: Our analyses suggest that there are fundamental differences in breast tumors of CHEK2:pl157T and c.
1100delC carriers. The poor prognosis associated with ¢.1100delC cannot be generalized to other CHEK2 mutations.
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Background
Checkpoint kinase 2 (CHEK?2) is a moderate penetrance
breast cancer risk gene. The two most frequent CHEK2
mutations in European populations are p.I157T and
¢.1100delC. Truncating CHEK2 founder mutations
(c.1100delC, IVS2+1G>A, del5395) confer a higher
than twofold increase in the risk of breast cancer [1-3],
whereas p.I157T (c470 T >C, rs17879961), a CHEK2
missense mutation is associated with a milder, 1.4-fold
elevation in the risk [4]. The ¢.1100delC carrier fre-
quency is highest in the Netherlands and in Finland
(over 1 %), the other two truncating founder mutations
are found mainly in Poland [3], and p.I157T is most
frequent in Finland and in Poland (around 5 %) [5].
Additionally, dozens of rare CHEK2 missense mutations
have been found in breast cancer patients, but their
contribution to disease risk is minor on a population
level and causative role in disease development probably
varies greatly [6-8].

The consequences of ¢.1100delC and p.I157T differ on
a molecular level, but both have been shown to severely
interfere with the CHEK2 protein activity. C.1100delC is
a loss-of-function mutation that induces a premature
termination codon in the kinase domain in exon 10
(ter381) leading to a nonsense-mediated mRNA decay,
which reduces both mutated and overall CHEK2 mRNA
level [9, 10]. C.1100delC truncates CHEK2 protein’s C-
terminal kinase domain. The truncated protein is un-
stable and practically undetectable in mutation carrier
cells [9]. Isoleucine 157 (p.I157T) is required for several
van der Waals interactions at the interface of forkhead-
associated (FHA) and kinase domains of dimerizing
CHEK2 peptide chains. Its replacement to threonine
(p.I157T) has been shown to interfere with these interac-
tions and to severely impede the CHEK2 homodimeriza-
tion required for its activation [11]. Furthermore, ectopic
expression of human CHEK2:p.1157T failed a rad53/sml
complementation assay in yeast suggesting an impaired
protein function [6]. Thus, p.I157T possibly disturbs
CHEK?2 function by competing with the wild-type protein

in dimer formation in heterozygous cells in a dominant
negative manner [4].

Since both p.I157T and ¢.1100delC cause increased
risk of breast cancer and compromise the activity of the
CHEK?2 protein, the question remains whether their ef-
fects on patient prognosis would be proportional to their
risk effects and how similar the breast cancer phenotypes
associated with the mutations would be. C.1100delC is
associated with bilateral disease and estrogen receptor
(ER)-positive tumors [12—14]. However, although tumors
from p.I157T carriers are also predominantly ER-positive
[15], tumors from p.I157T and c.1100delC carriers are
associated with phenotypically different types of breast
cancer. The lobular histological type is overrepresented
among p.1157T mutation carrier tumors [16], whereas the
¢.1100delC carrier tumors are typically ductal [13, 14].

We have previously reported CHEK2:c.1100delC het-
erozygosity to be associated with reduced overall and
disease-free survival as well as with increased risk of
breast cancer-specific death in a Breast Cancer Associ-
ation Consortium (BCAC) data set combining mutation
carriers from multiple European populations [17]. Here,
we report a study investigating thoroughly the prognos-
tic associations of CHEK2:p.I157T as well as pathologic
characteristics and genomic gene expression profiles of
breast tumors from carriers of germ line p.I157T.

Methods

Study subjects for survival and pathology analyses

We included in the analyses female invasive breast
cancer patients of European ancestry with a first inva-
sive primary breast cancer enrolled in 15 studies
participating in the Breast Cancer Association Consor-
tium (BCAC) (Additional file 1: Table S1). In order to
be able to stratify the analyses by study, only BCAC
studies providing genotype and survival data of about
ten CHEK2:p.I157T carriers were included in the analyses
(Additional file 1: Table S2). Altogether, the data set con-
sisted of 26,801 study subjects, of which 590 carried germ
line p.I157T and 271 carried ¢.1100delC mutations (Table 1).
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Table 1 Tumor characteristics of the BCAC study subjects
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Non-carriers  p.l157T carriers  ¢.1100delC carriers  p value p value p value
(1157T/nc)  (1157T/1100delC)  (1100delC/nc)
ER Negative 4595 85 26
202 % 15.5 % 11.2 %
0.00046 061 0.0015
Positive 18,179 462 207
79.8 % 84.5 % 88.8 %
Missing 3166 43 38
122 % 7.3 % 14.0 %
PR Negative 6397 147 44
32.7 % 285 % 233 %
0.0034 0.90 0.0045
Positive 13,173 368 145
67.3 % 71.5 % 76.7 %
Missing 6370 75 82
24.6 % 12.7 % 303 %
Her2 Negative 8220 231 95
84.7 % 83.7 % 81.9 %
0.68 0.10 0.24
Positive 1483 45 21
153 % 16.3 % 18.1 %
Missing 16,237 314 155
62.6 % 532 % 572 %
EGFR Negative 3841 122 62
89.6 % 904 % 96.9 %
0.21 0.26 0.034
Positive 448 13 2
104 % 9.6 % 3.1%
Missing 21,651 455 207
83.5 % 77.1 % 764 %
CK5/6 Negative 4734 143 80
87.9 % 88.3 % 92.0 %
0.30 0.29 0.19
Positive 652 19 7
12.1 % 11.7 % 8.0 %
Missing 20,554 428 184
79.2 % 72.5 % 67.9 %
TP53 Negative 3755 144 88
81.6 % 90.6 % 86.3 %
0.00048 0.21 0.16
Positive 847 15 14
184 % 94 % 13.7 %
Missing 21,338 431 169
82.3 % 73.1 % 624 %
Tumor size (ordinal) <20 mm 14,949 340 149
65.6 % 656 % 62.6 %
20-50 mm 6953 162 82
0.29 033 083
30.5 % 31.3 % 34.5 %
>50 mm 876 16 7
38 % 319% 29%
Missing 3162 72 33
122 % 122 % 122 %
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Table 1 Tumor characteristics of the BCAC study subjects (Continued)

Lymph node status ~ Negative 13,144 320 125
62.0 % 60.4 % 57.6 %
Positive 8070 210 92 0ot 09! 0ot
380 % 396 % 424 %
Missing 4726 60 54
18.2 % 10.2 % 19.9 %
Grade (ordinal) 1 4916 132 38
22.5 % 26.7 % 174 %
5 10817 66 157 0.00023 0.0030 038
49.6 % 53.7 % 580 %
3 6089 97 54
27.9 % 19.6 % 24.7 %
Missing 4118 95 52
15.9 % 16.1 % 19.2 %
Histological type Ductal 14,133 273 193
72.7 % 60.0 % 76.9 %
Lobular 2966 100 36
15.3 % 22.0 % 14.3 %
Mixed (ductal and lobular) 455 26 4
2.5 % 6.0 % 1.7 %
Tubular 271 17 2 . . .
15 0% 40% 07 % 0.0044 0.0010 0.67
Medullary 177 4 3
1.0 % 0.9 % 1.7 %
Mucinous 213 9 3
1.2 % 2.1 % 1.4 %
Papillary 55 1 1
0.3 % 02 % 1.8 %
Missingt 7670 160 29
29.6 % 27.1 % 10.7 %
Subtype# LumA (ER+, PR+, Her2-) 5415 164 72
589 % 63.6 % 65.5 %
LumB (ER+, PR-, 1939 62 30
Her2- or ER+, Her2+) 211 % 240 % 273 %
Basal (ER-, PR-, Her2-) 1306 16 4 00008s 0 00087
142 % 6.2 % 36 %
Her2-positive 536 16 4
(ER- PR- Her2+) 58 % 62 % 36%
Missing 16,744 332 161
64.5 % 56.3 % 594 %
AGE cat (ordinal) 50 or younger 6932 162 101
27.0 % 278 % 373 %
Older than 50 and 16,083 344 151
not more than 70 626 % 00 9 570 0.99 0.0037 0.0029
Older than 70 2674 77 19

104 % 13.2 % 7.0 %
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Table 1 Tumor characteristics of the BCAC study subjects (Continued)

Missing 251 7
1.0 % 1.2 %
AGE Mean 571
Stdev. 0.024 108 11.1
Total 25,940 590

0

0.0 %

579 543 041
11.0

271

0.028

BCAC Breast Cancer Association Consortium, ER estrogen receptor, PR progesterone receptor, Her2 human epidermal growth factor receptor 2, EGFR epidermal
growth factor receptor, CK5/6 cytokeratin 5/6, TP53 tumor protein 53, LumA luminal A, LumB luminal B

“Categories Medullary, Mucinous and Papillary were combined for the Cochran-Mantel-Haenszel test

#Categories Mixed, Tubular, Medullary, Mucinous and Papillary were combined for the Cochran-Mantel-Haenszel test

"The “missing” category included also rare forms of breast cancer, which did not belong to the named categories: 1179 non-carriers, 25 p.1157T carriers and 9

¢.1100delC carriers

*Tumor subtypes are defined according to ER, PR and Her2 expression following the St Gallen 2013 guidelines [34]
Italics is used to indicate the proportion of study subjects in each category. E.G. 'ER-positive/all with known ER-status' or 'missing/all study subjects'

Individuals carrying both mutations were excluded from
the analyses (1 = 4).

Genotyping

CHEK?2:p.I157T was first genotyped by independent studies
using various methods including MassARRAY iPLEX Gold
(Sequenom, San Diego, CA, USA), TagMan (Applied
Biosystems, Life Technologies, Carlsbad, CA, USA) and
Fluidigm (Fluidigm, San Francisco, CA, USA) as listed in
Additional file 1: Table S1. Quality control was imple-
mented as follows: each study performed duplicate mea-
surements of at least two samples from each sample plate
and genotyped 93 CEPH control DNAs (HAPMAPPTO1,
Coriell Institute for Medical Research, Cambden, NJ, USA).
If a study reported more than two discordant genotyping
results of the CEPH DNAs, all genotype data from that
study was excluded. Later, p.I157T was genotyped
centrally using a custom Illumina iSelect genotyping array
for the Collaborative Oncological Gene-environment
Study (COGS) [18]. Discordant genotyping results were
clarified with Sanger sequencing. CHEK2:c.1100delC was
genotyped by independent studies using mainly TagMan
(Additional file 1: Table S1), as described earlier [17].

Pathology analysis

Pathology data was collected from hospital records or
from scientific projects within the individual studies, as
described previously [19]. Additionally, the TP53 protein
expression was measured by individual studies using
immunohistochemical staining as described in Additional
file 1: Table S3. The pathology data availability and muta-
tion carrier frequencies varied between independent BCAC
studies and therefore all analyses were stratified by study.
Pathology analyses were performed using R environment
for statistical computing version 3.0.2 [20] including pack-
ages vedExtra [21] and meta [22]. Comparisons were made
between CHEK2 mutations carriers (heterozygous or homo-
zygous) and non-carriers, for both p.I157T and ¢.1100delC,
as well as between carriers of pI157T and c¢.1100delC
(Table 1). Associations between the mutations and clinico-

pathological characteristics were tested with study-stratified
Cochran-Mantel-Haenszel test (mantelhaen.test for categor-
ical characteristics and CMHtest for ordinal characteristics).
The category of missing data was not included in these
comparisons. Differences in age at diagnosis were tested by
meta-analysis of age distribution in independent studies
using a random effects model (metacont).

Survival analysis

Survival analyses were performed using the Cox regression
[23] as implemented in Stata (Stata/SE 10.1 for Windows,
StataCorp LP, College Station, TX, USA) comparing
CHEK2 mutation carriers and non-carriers, as de-
scribed above. Study subjects were considered to be-
come at risk at the time of their first invasive breast
cancer diagnosis. The data did not consist entirely of
incident cases. Therefore, in order to avoid bias caused
by late enrollment, we implemented a method called
left censoring, which has been proven to provide robust
survival estimates for data, which includes also preva-
lent cases [24]. Survival analysis endpoints included
death of any cause, breast cancer-associated death, dis-
tant metastasis relapse, locoregional relapse and second
breast cancer. Patients were censored at the end of
their follow-up period or at the latest 15 years after the
initial breast cancer diagnosis in analyses of overall sur-
vival and second breast cancer, but at the latest 10 years in
analyses of locoregional or distant relapse-free survival as
well as in analyses of breast cancer-specific survival. Pa-
tients presenting with distant metastases at diagnosis were
excluded from the analyses of locoregional relapse-free
survival. All analyses were stratified by study.

In addition to univariate analyses, we performed multi-
variate analyses, which were stratified by study and age
category (<50 years; >50 and <70; >70), and adjusted for
tumor grade (1, 2 or 3, ordinal), tumor size (1: max-
imum diameter less than or equal to 20 mm; 2: more
than 20 mm and less than or equal to 50 mm; 3 over
50 mm, ordinal), tumor spread in axillary lymph nodes
(0 = negative, 1 = positive) and progesterone receptor (PR)
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status (0 = negative, 1 = positive). ER was not included in
the model, because of the non-linear relationship between
tumor ER status and patient survival during the 10 years
following the diagnosis; patients with ER-negative tumors
have a higher risk of dying from breast cancer during the
first 5 years after the diagnosis, but the difference in risk
between ER-positive and ER-negative tumors levels out
after that period [17, 25]. However, since several studies
have reported an association between the two CHEK2
mutations and ER-positive disease [12—14] (Table 1), we
performed the survival analyses in a subgroup of patients
with ER-positive tumors. Only cases with complete data on
the pathological markers were included in the multivariate
analyses. Univariate survival analyses were performed also
in a subgroup of breast cancer patients with lobular tu-
mors, because of the association between p.I1157T and lobu-
lar breast cancer [15] (Table 1).

Study subjects for gene expression analysis

Gene expression analyses were performed using a data
set of 183 breast tumors from the Helsinki University
Hospital (GEO: GSE24450). As described previously, the
data set consisted of total RNA samples from 151 tumors
from unselected cohorts of breast cancer patients and 32
tumors from additional familial cases hybridized on Illu-
mina HumanHT-12 v3 Expression BeadChips (Illumina
Inc., San Diego, CA, USA) [10, 26]. The p.I157T carrier sta-
tus was defined from peripheral blood samples as described
earlier for the BCAC study ‘HEBCS' (Additional file 1:
Table S1). Ten patients were germ line p.I157T carriers and
162 were non-carriers, of which six carried germ line
¢.1100delC. The ¢.1100delC carrier tumors were included
in the analyses as non-1157T carriers. The p.I[157T genotype
information was not available for 11 study subjects. These
were included in the molecular subtype analysis, but not in
differential gene expression or gene set enrichment analysis.
The clinico-pathologic characteristics of the 183 tumors are
provided in Additional file 1: Table S4.

Gene expression analysis

Gene expression data quality control and quantile
normalization was performed in the Bioconductor [27]
as described earlier [26]. Data analyses were per-
formed in R version 3.0.2 and Bioconductor packages
genefu [28], limma [29, 30] and geneplotter [31]. Probes not
mapping to any current Entrez Gene entities (GRCh38.p2)
were excluded, resulting in a filtered data set of
20,145 genes.

For determining the intrinsic molecular subtypes, expres-
sion data of the fifty PAM50 signature genes was extracted
from the filtered data set, median centered and standard-
ized per gene by dividing with the standard deviation of the
gene’s expression values. Intrinsic subtypes were defined by
Pearson correlation between tumors and the luminal A,
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luminal B, human epidermal growth factor receptor 2
(Her2)-enriched, basal-like and normal-like centroids as
implemented in the genefu package [28, 32]. Hierarchical
clustering was performed using the Ward’s method [33]. As
a comparison to the subtype classification by gene expres-
sion, we used the surrogate clinico-pathologic markers to
define the subtypes following the St Gallen 2013 criteria
(luminal A: ER+, PR+, Her2-, Ki-67-; luminal B (three
marker combinations): ER+, PR-, Her2- or ER+, Her2-,
Ki-67+ or ER+, Her2+; basal: ER-, PR-, Her2-; Her2
overexpressing: ER-, PR-, Her2+) [34].

For analysis of differential gene expression the data was
filtered by including only genes with highest variation in
expression levels over the entire data set (st. dev. > 0.75,
1852 genes). The samples from p.I157T carriers were
compared to samples from non-carriers with a moderated
¢ test adjusting for ER, tumor protein 53 (TP53) and Ki-67
protein expression (positive/negative), tumor grade (1, 2,
3, ordinal) as well as histological type (lobular/other). The
adjusting covariates were selected from features tabulated
in Additional file 1: Table S4 as the most significant fac-
tors (p <0.001) explaining variation in the expression of
the 1852 genes as summarized by the first four principal
components. Additionally, lobular histologic type was
included to avoid bias caused by the association
between the p.I157T and lobular type. Data on at
least one of the adjusting variables was missing for
12 tumor samples and thus the differential gene ex-
pression and gene set enrichment analyses were
performed with a set of 160 (ten p.I157T and 150
non-carrier) tumor samples and 1852 genes. Genes
with p values below 0.01 were considered to be asso-
ciated with p.I157T. These were included in a func-
tional enrichment analysis performed using the
DAVID functional annotation tool [35]. Functional
annotations with Benjamini-Hochberg [36] corrected
p values below 0.01 were considered to be signifi-
cantly enriched.

Gene set enrichment analysis (GSEA) was per-
formed using a java application available at http://
software.broadinstitute.org/gsea following the instruc-
tions of the user guide [37]. For the GSEA analysis,
the 1852 genes were ranked according to a score calculated
as the product of log,(fold change) and log;o(p value) from
comparisons of p.I157T carrier and non-carrier tumors as
described above. All gene sets available at the Molecular
Signatures Database (MSigDB) v5.0 [38] were included in
the analyses. The p values were corrected for false discovery
rate for all other gene sets but the gene sets originating
from single publications (‘CGP: chemical and genetic
perturbations’ database), which were corrected for the
family-wise error rate. Gene sets with corrected p value
below 0.05 were considered to be significantly enriched in
the p.I157T carrier tumors.
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Results and discussion

Our findings from extensive analyses of breast tumor
phenotypes and patient survival underline a fundamental
difference in breast cancers of the carriers of two CHEK2
mutations, p.I157T and ¢.1100delC. Significant differences
were found in tumor grade and histopathological type as
well as in patient survival of p.I157T and ¢.1100delC car-
riers, whereas no difference was seen in tumor subtypes:
ER+, PR+, Her2- disease was the most common type for
carriers of both mutations.

Association of p.I157T with clinico-pathological markers
In our analyses p.I157T was associated with low grade as
well as several other markers, which have previously
been associated with good prognosis (Table 1). Our ana-
lyses confirmed the previously reported associations be-
tween p.I157T and ER-positive or lobular breast cancer
[15]. Also mixed (ductal and lobular) and tubular histo-
logical types were more frequent in p.I157T carrier
tumors. Both of ER-positive and lobular tumor types are
associated with good short-term prognosis, but increased
risk of disease progression in the long run [25, 39]. Fur-
thermore, p.I157T was associated with PR-positive and
TP53-negative breast cancer. PR expression is a marker
for good prognosis for ER-positive breast cancer and it
has been suggested as a surrogate marker separating lu-
minal A and luminal B subtypes according to immunohis-
tochemical data [34, 40, 41]. TP53 immunohistochemical
staining is considered to be indicative of somatic TP53
mutations. Strong TP53 staining suggests the presence of
stabilizing mutations (primarily missense), whereas ab-
sence of staining indicates typically a protein-truncating
mutation (nonsense or frameshift), and weak staining a
wild-type functional TP53. Both strong and completely
negative TP53 staining have been associated with poor
prognosis in comparison to weak staining [42-44]. The
sensitivity of the assays used in this study did not enable
differentiation between normal, low or absent TP53 ex-
pression. Therefore, we used binary classification of TP53
immunohistochemical data, the positive category corre-
sponding to high expression (strong staining) and negative
category to low expression (Additional file 1: Table S3).
Noteworthy, the loss-of-function mutations associated
with absent TP53 staining are relatively rare in breast can-
cer: these are seen in less than 5 % of all tumors [45, 46].
Therefore, it is likely that most of the tumors in the cat-
egory ‘negative’ (Table 1) represented tumors with wild-
type TP53. However, compromised CHEK2 function as a
result of the p.I157T mutation could be another way for
TP53 silencing as CHEK?2 is among the key upstream acti-
vators of TP53 [5].

Like p.I157T, also ¢.1100delC was associated with ER-
positive and PR-positive disease in our data set (Table 1).
Furthermore, TP53-positive tumors were slightly less
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often observed in ¢.1100delC carriers than in non-carriers,
even though the difference was not statistically significant.
Significant differences in clinico-pathological features as-
sociated with the two CHEK2 mutations were seen in
grade and histological type, as the ¢.1100delC carrier tu-
mors resembled more non-carrier tumors (Table 1).

Breast cancer subtypes

We investigated the 11157T-associated molecular breast
cancer subtypes by applying the St Gallen 2013 criteria
for immunohistochemical markers [34] on the BCAC
data set as well as St Gallen 2013 and the PAM50 classi-
fier [32] on the gene expression data set of 183 breast
tumors. The subtype classification of the BCAC study
subjects relied on the available immunohistochemical
markers, ER, PR and Her2. We found both p.I157T and
€.1100delC carrier tumors to be predominantly ER+, ER+,
Her2-, suggestive of good prognosis ER+ tumors or the
luminal A subtype (Table 1) [34]. Also the frequency of
ER+ subtypes linked to poor prognosis (ER+, PR-,
Her2-; ER+, Her2+), referred to as luminal B [34], were
more common for CHEK2 mutation carriers than for
non-carriers. This confirmed previous reports with re-
gard to p.I157T [15], but was not consistent with previ-
ous reports on c.1100delC-associated tumor subtypes
[47, 48]. However, the difference between our findings
and these reports may have arisen from different overall co-
hort compositions or from differing classification methods,
as the guidelines for subtype classification have changed
over the years.

Subtype classifications of the 183 tumors according to
gene expression data and immunohistochemical markers
were partly contradictory (Table 2). Similar inconsisten-
cies between gene expression-based classification and
the surrogate immunohistochemical markers have been
reported previously for other data sets [40, 49]. Overall,
the division between basal and luminal appeared rather
consistent: only 17 (9 %) of the 183 tumors were classi-
fied differentially across the luminal-basal axis. PAM50
[32] classified three of the p.I157T carrier tumors as
luminal A, two as luminal B and two as basal. Three
lobular tumors were classified as normal-like (Table 2).
This kind of a misclassification has been reported to be
typical for lobular tumors due to their infiltrating growth
pattern, which causes the tumor sample to consist of un-
usually high proportion of non-cancerous stromal cells
[39]. St Gallen 2013 criteria classified these normal-like
tumors as luminal (ER+). Furthermore, in unsupervised
hierarchical clustering of the 183 tumor samples based on
expression of the PAM50 signature genes (Fig. 1), two of
the normal-like p.I157T tumors (HEL_045 and HEL_174)
clustered within the luminal A branch suggesting that lu-
minal A could be their true molecular subtype. In sum-
mary, luminal A appeared to be the most common
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Table 2 Phenotypic classification of breast tumors from ten
carriers of p.l157T

Intrinsic subtype IHC subtype Histological type
PAM50 St Gallen 2013
criteria

HEL_045 Normal LumA Lobular
HEL_055 LumB LumB Ductal
HEL_086 LumA LumA Lobular
HEL_126 LumA Basal Ductal
HEL_128 LumA LumB Ductal
HEL_131 Basal Her2pos In situ
HEL_144 Normal LumB Lobular
HEL_150 Basal LumB Ductal
HEL_163 LumB LumB Ductal
HEL_174 Normal LumA Lobular

IHC immunohistochemistry, LumB luminal B, LumA luminal A, Her2 human
epidermal growth factor receptor 2

subtype for p.I157T carrier tumors in the gene expression
data concordantly with the findings in the BCAC data.

Patient survival

P.I157T carriers had better prognosis than the c.1100delC
carriers with regard to overall or breast cancer-specific sur-
vival (Table 3a and b). This difference was possibly due to
the poor survival associated with ¢.1100delC as reported
previously by several studies [13, 14, 17, 50]. No statistically
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significant difference in overall or breast cancer-specific
survival was seen between p.I157T carriers and non-
carriers. Hazard ratios in the analyses of subgroups of pa-
tients with ER-positive or lobular tumors were comparable
to those of the main analyses (Table 3b and c).

Noteworthy, the ¢.1100delC carriers included here
were only a subset of the study subjects included in the
previous report by Weischer and colleagues on survival
of ¢.1100delC carriers of the BCAC studies [17]. This
was because the individual BCAC studies, which did not
provide sufficient number of p.I157T carriers, were ex-
cluded from these analyses. Thus, the lack of statistical
significance in some comparisons of survival difference
between ¢.1100delC carriers and non-carriers (Table 3a
and b) probably only reflected limited power due to low
number of ¢.1100delC carriers, since the hazard ratios
were always consistent with the previous report.

The different prognoses associated with p.I157T and
¢.1100delC possibly reflect their difference in molecular
level severity of functional consequences. Therefore, it
would be tempting to assume that the prognosis of all
carriers of the truncating mutations would be similar to
the prognosis of ¢.1100delC carriers. However, a recent
Polish study combining three truncating CHEK2 founder
mutations found no difference between mutation carrier
and non-carrier survival [51]. Some part of the conflicting
findings could be explained by different patient selection:
in the Polish study all patients had been diagnosed before

o
3 -4
©

-

£ o

o O -

2 2

I
o _]
Irs)
o -

u 157T = Normal
® Non-carrier = LumA
= LumB

Basal

Her2

Fig. 1 Hierarchical clustering of 183 tumor samples based on expression of the PAM50 signature genes. The dashed lines indicate the branch boundaries
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Table 3 Risk of death or disease recurrence associated with CHEK2:p.1157T
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(@) All breast cancer patients

Early death

Breast cancer-specific death

Distant metastasis relapse

Locoregional relapse

Second breast cancer

(b) Patients with ER+ breast cancer

Early death

Breast cancer-specific death

Distant metastasis relapse

Locoregional relapse

Second breast cancer

(c) Patients with lobular breast cancer

Early death

Breast cancer-specific death

Distant metastasis relapse

Locoregional relapse

Second breast cancer

Univariate analysis

1157T/nc

0.85 [0.68 - 1.07]
0.16

0.85 [0.60 - 1.20]
0.36

1.04 [0.79 - 1.37]
0.79

143092 - 2.23]
0.11

1.54 [0.85 - 2.78]
0.15

Univariate analysis

1157T/nc
0.81[0.61 - 1.07]
0.14

0.80 [0.51 - 1.23]
0.30

1.00 [0.71 - 1.40]
0.98

146 [0.86 - 2.47]
0.16
1.33 [0.64 - 2.75]
044

Univariate analysis

1157T/nc

067 [0.39 - 1.15]
0.14

091 [0.46 - 1.80]
0.79

0.87 [0.48 - 1.57]
0.64

245[0.95 - 6.34]
0.065

1.92 [0.57 - 649]
0.29

11577/1100delC
0.74 [0.50 - 1.09]
0.12

064 [037-1.12]
0.12

0.66 [0.38 - 1.14]
0.13

0.81 [0.58 - 1.13]
021

0.69 [047 - 1.03]
0.070

1157T/1100delC
0.62 [0.39 - 0.99]
0.044

047 [0.23 - 0.96]
0.038

0.55[0.29 - 1.02]
0.057

0.77 [052 - 1.14]
0.19

0.58 [0.37 - 0.92]
0.019

1100delc/nc
1.28 [1.00 - 1.64]
0.054

144 [1.04 - 2.00]
0.030

1.38 [0.90 - 2.11]
0.14

207 [1.16 - 3.69]
0.014

2.88 [1.68 - 4.98]
0.00015

1100delc/nc
1321098 - 1.78]
0.067

146 [0.96 - 2.22]
0.074

1.58 [0.99 - 2.54]
0.056

233 [1.19-457]
0.014

4.09 [2.31 - 7.26]
1.4E-06

Adjusted analysis
1157T/nc

0.80 [0.60 - 1.07]
0.13

093 [062 - 140]
0.73

1.05 [0.75 - 147]
0.76

1.62 [0.99 - 2.66]
0.056

203 [1.05-3.92]
0.035

Adjusted analysis
1157T/nc

0.77 [0.55 - 1.07]
0.12

0.80 [049 - 1.32]
0.39

1.03 [0.70 - 1.51]
0.88

1.58 [0.90 - 2.79]
0.11

1.81 [0.82 - 3.96]
0.14

[157T/1100delC
0.51 [0.29 - 0.90]
0.0190

046 [0.21 - 1.03]
0.058

0.62[0.31 - 1.23]
0.17

091 [0.33 - 2.52]
0.85

0.69[042 - 1.13]
0.14

1157T/1100delC
046 [0.25 - 0.85]
0.013

0.33 [0.13 - 0.84]
0.019

0.56 [0.26 -1.19]
0.13

0.93 [0.29 - 2.98]
0.90

0.61 [0.36 - 1.04]
0.067

1100delC/nc
1.32 [0.94 - 1.86]
0.11

1.25 [0.78 - 2.00]
0.36

1.37 [0.83 - 2.26]
022

1.26 [0.59 - 2.70]
0.55

362 [1.82-7.21]
0.00026

1100delC/nc
1.52 [1.06 - 2.17]
0.022

1.50 [0.92 - 2.45]
0.10

161 [0.94 - 2.77]
0.083

1.08 [0.44 - 2.66]
087

439 [2.17 - 887]
3.8E-05

Hazard ratios with 95 % confidence intervals (in parenthesis) and p values (italics) are reported from comparisons of p.I157T carriers and non-carriers (nc) as well
as comparisons of p.1157T carriers and ¢.1100delC carriers. All analyses were stratified by study. Multivariate analyses were stratified by study and age category,
and adjusted for tumor grade, size, progesterone receptor and nodal status. Analyses were performed also in subgroups of (b) patients with estrogen receptor-positive

tumors and (c) patients with lobular tumors
ER estrogen receptor

50 years of age, whereas here and in Weischer et al. [17]
also postmenopausal patients were included in the ana-
lyses. Another potential explanation could be mutation-
specific survival effects. As the Polish study combined in
the analyses three different truncating mutations, the
¢.1100delC specific effects could have been masked, since

it is the least common of the three truncating CHEK2 mu-
tations in Polish population [52]. Similarly as here, the
Polish study reported no significant difference in survival

of the p.I157T carriers and non-carriers [51].

The hazard ratios for locoregional relapse and second
breast cancer (91 % contralateral, 9 % ipsilateral)
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associated with p.I157T and c.1100delC were close to
the mutations’ relative risk estimates of primary breast
cancer (Table 3) [5, 17, 53]. The marginally significant
increased risk of locoregional relapse associated with
p.I157T in the adjusted analyses (hazard ratio 1.62
[0.99 - 2.66], p value 0.056) warrants further studies, but
could merely reflect the baseline risk associated with
pI157T: some of the local recurrences could represent
new cancers arising during the 10-year follow-up. The risk
of locoregional relapse for c.1100delC carriers was ele-
vated in the univariate analysis but leveled out in the ad-
justed analysis.

P.1157T associated differentially expressed genes

In order to investigate the molecular biology of p.I157T
carrier tumors and to identify potential tumor-driving
events and pathways, we performed an analysis of differ-
ential gene expression and subsequent functional enrich-
ment analysis comparing ten p.I157T to 150 non-carrier
tumors. We found 21 genes to be differentially expressed
between p.I157T and non-carrier tumors. All of these
had higher expression in the p.I157T carrier tumors
(Table 4). When the 160 tumor samples were clustered
according to expression of these 21 genes, the p.I157T
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tumors did not form a distinct cluster (Fig. 2), suggesting
that high expression of these genes is not exclusive of
the p.I157T mutation carrier tumors, but typical for a
subgroup of breast tumors including the mutation car-
rier tumors. Tumors with different intrinsic subtypes
appeared to be dispersed across all branches, similarly as
the ¢.1100delC carriers suggesting that in this data set
the ¢.1100delC carrier tumors would not be similar to
the p.I157T tumors.

Enrichment of features associated with lobular breast
cancer

The list of 21 differentially expressed genes contained
seven collagen genes (Table 4), which were a major driver
in the functional enrichment analysis. The enriched anno-
tations from DAVID [54] analysis included characteristics
of the collagen family and their related functions such as
‘focal adhesion, ‘extracellular matrix (ECM) organization’
and ‘ECM-receptor interaction’ (Additional file 1: Table
S5). Similar results were obtained from the GSEA analysis
(Additional file 1: Table S6, Additional file 2: Figure S1).
Since collagens are usually expressed by stromal fibro-
blasts, the findings may suggest that infiltrating growth
pattern, typical for lobular tumors [39], could be more

Table 4 Differentially expressed genes in breast tumors of p.l157T carriers when compared to non-carrier tumors

Gene ID Symbol Description logFC p value
11283 CYP4F8 Cytochrome P450, family 4, subfamily F, polypeptide 8 1.10 0.00026
1289 COL5A1 Collagen, type V, alpha 1 1.24 0.00049
1292 COL6A2 Collagen, type VI, alpha 2 0.90 0.00056
56265 CPXM1 Carboxypeptidase X (M14 family), member 1 1.04 0.00063
1277 COL1A1 Collagen, type |, alpha 1 1.25 0.0011
23452 ANGPTL2 Angiopoietin-like 2 0.85 0.0020
5118 PCOLCE Procollagen C-endopeptidase enhancer 0.90 0.0021
284297 SSC5D Scavenger receptor cysteine rich family, 5 domains 084 0.0025
25903 OLFML2B Olfactomedin-like 2B 0.88 0.0026
27239 GPR162 G protein-coupled receptor 162 0.73 0.0026
5654 HTRA1 HtrA serine peptidase 1 0.96 0.0027
9315 NREP Neuronal regeneration-related protein 078 0.0028
1278 COLTA2 Collagen, type |, alpha 2 1.02 0.0046
8510 MMP23B Matrix metallopeptidase 238 0.73 0.0055
114902 C1QTNF5 Cl1g and tumor necrosis factor-related protein 5 0.77 0.0057
6678 SPARC Secreted protein, acidic, cysteine-rich (osteonectin) 0.88 0.0073
9622 KLK4 Kallikrein-related peptidase 4 1.03 0.0082
1291 COL6A1 Collagen, type VI, alpha 1 092 0.0084
1307 COL16A1 Collagen, type XVI, alpha 1 0.73 0.0090
1290 COL5A2 Collagen, type V, alpha 2 093 0.0095
7070 THY1 Thy-1 cell surface antigen 088 0.0098

logFC logarithm of fold change
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Fig. 2 Heatmap of 21 genes expressed differentially in p.1157T carrier and non-carrier breast tumors

common also for non-lobular p.I157T carrier tumors than
for the non-carrier tumors. Further support for this hy-
pothesis came from the GSEA, which showed cadherin 1
(CDH1) target genes to be significantly enriched among
genes, whose expression was lower in p.I157T than in
non-carrier tumors (Additional file 1: Table S6). CDH1 si-
lencing is generally considered as a defining characteristic
of lobular tumors and it is often caused by somatic muta-
tions targeting the CDH1 gene itself [39]. However, since
the differential gene expression analysis, which was also
the basis for the ranked gene list used as an input to
GSEA, was adjusted for the lobular tumor type, the im-
pact of the diagnosed lobular cancers on these findings
should have been minimal. CDHI gene expression was
lower in p.I157T carriers tumors in the adjusted analysis
(log, fold change -1.12, p value 0.03, Fig. 3), but it did not
exceed the preset threshold for significance. Previously,
we have reported CDHI mRNA expression to be higher
in ¢.1100delC carrier than in non-carriers tumors [10].
Therefore, CDH1 expression appears to be yet another fac-
tor, which is not shared by breast tumors from carriers of
the two CHEK2 mutations, p.157 T and ¢.1100delC, and
possibly reflects somatic changes, which have taken place
during the clonal evolution of the p.I157T carrier tumors
[39]. Taken together, these results suggest that besides the
fact that the lobular tumors are more common among
pI157T carriers and non-carriers, the association between

p.J157T and lobular features could be even stronger than
what is suggested by the diagnosed histological types.

Enrichment of cancer associated gene signatures
In the GSEA analysis, several independent MSigDB [38]

gene signatures related to epithelial-to-mesenchymal
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Fig. 3 CDH1 gene expression in p.157T carrier and non-carrier tumors
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transition (EMT) [55-57], stromal stem cells [58] or inva-
sive behavior [59, 60] were enriched at the top of the gene
list with higher expression in p.I157T carrier tumors than
in non-carrier tumors (Additional file 1: Table S6). These
observations may reflect higher stromal content of the
p.I157T carrier tumor samples, as the samples were not
prepared at a single cell level. However, to prevent such
confounding effects the tumor sample sections were se-
lected by an experienced breast cancer pathologist. Fur-
thermore, the above mentioned MSigDB signatures
originated from carefully designed experiments tailored
to detect the true signal from cancerous epithelial cells
and to escape the effects of non-cancerous stromal
cells. The enrichment of these signatures may suggest
that the p.I157T carrier tumors have an intrinsically in-
vasive nature. However, this should have been reflected
into poor prognosis for the p.I157T carriers, which we
did not see in the survival analyses. On the other hand,
it is possible that higher state of differentiation of the
tumor cells suggested by low grade accompanied with
the invasive nature can be seen in the prognosis only in
the long run, and within the 10-year follow-up period is
only reflected in the slightly elevated risk of local recur-
rence. All in all, these observations deserve further
studies before any definitive conclusions can be made.

In addition to CDH1, tumor suppressor retinoblast-
oma 1 (RB1) appeared as a potential gene expression
regulator, whose activity was reduced in p.I157T car-
rier tumors in comparison to non-carrier tumors
(Additional file 1: Table S6, Additional file 1: Figure S1).
RB1 and its direct downstream target E2F-1 are both
targets of the CHEK2 protein [61, 62]. Thus, the dif-
ferential expression of the RB1 target genes possibly
reflects compromised CHEK2 function in the p.I157T
carrier tumors.

Noteworthy, the two differential gene expression
studies on ¢.1100delC carrier tumors have reported en-
richment of genes of WNT and FGF pathways [10, 47],
which regulate the growth and differentiation of normal
breast epithelium [63-66]. Among the p.I[157T-associ-
ated differentially expressed genes we did not see en-
richment of any growth factor pathway. These notions
on differences in gene expression signatures are more
descriptive than definitive by nature, but they further
emphasize intrinsic biological differences between
p.I157T and 1100deC carrier tumors.

Conclusions

Based on our analyses, breast cancers of p.I157T and
¢.1100delC CHEK2 mutation carriers differ in disease
severity as seen especially in differences in tumor grade
and patient survival, as well as in intrinsic biological
features as seen in differences in histological type and
gene expression profiles. Thus, it appears that even
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though both mutations have been proven to compromise
the protein function [6, 9, 11], they have different conse-
quences on the disease phenotype, and prognostic find-
ings based on one mutation cannot be generalized to the
other. Furthermore, our results raise a hypothesis that
the increased risk of locoregional relapse for p.I157T car-
riers could be caused by intrinsically invasive nature of
the tumor cells. Future studies with longer follow-up are
needed to test this hypothesis.
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