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A  building  energy  simulation  relies  on accurate  parameterisation  of  occupant-related  internal  loads  to
simulate a realistic  energy  balance  within  a building.  The  internal  loads  are  inextricably  linked  to occupant
behaviour,  both  directly  through  the contribution  of occupant  heat  output  to  thermal  energy  balance  and
indirectly  via  the  interactions  between  occupants,  appliances  and  building  services.  While  occupancy
itself  is difficult  to measure  directly,  most  buildings  possess  a wealth  of  data  in the form  of  monitored
electricity  consumption  in varying  degrees  of  resolution.  These  data,  particularly  plug  loads,  may  be  used
to inform  the  model  of  occupant-related  internal  loads.  Different  approaches  to  parameterisation  of  plug
uilding energy simulation
ccupancy-related internal loads
lectricity consumption
lug loads
ncertainty quantification
on-domestic buildings

loads  have  been  investigated,  with  the  purpose  of  exploring  the conditions  that  might  lead  to  preference
of one  approach  over another.  The  models  have  been  tested  through  a  case  study  and  simulation  results
have  been  compared  against  a range  of response  variables.  Conclusions  have  been  drawn  as  to the most
important features  of  plug  load parameterisation  for a model  to  be  used  for  forecasting  future  demand.

©  2016  The  Authors.  Published  by Elsevier  B.V. This  is  an open  access  article  under  the  CC BY  license

tochastic analysis

. Introduction

In the UK the buildings sector accounts for 37% of the total
nnual greenhouse gas emissions, with non-domestic buildings
eing responsible for 36% of the sector emissions [1]. Progress
as been slow in improving this performance and building energy
imulation has a role to play in assessing the impact of poten-
ial changes to building fabric and operation on building energy
onsumption for all types of non-domestic building [2–4].

A building energy simulation relies on accurate input of inter-
al loads to facilitate a realistic simulation of the energy balance
ithin a building. It is well known that building energy consump-

ion simulated at the design stage rarely agrees with observed data
ost-design, and with increasing deployment of energy monitoring
ystems this so-called ‘performance gap’ is becoming increasingly
isible [5]. One would expect that forecast consumption for an
lready existing building would be in closer agreement with real-

ty, yet it is still notoriously difficult to match the simulation to the
bserved data [6].

∗ Corresponding author.
E-mail address: rmw61@cam.ac.uk (R. Ward).

ttp://dx.doi.org/10.1016/j.enbuild.2016.04.050
378-7788/© 2016 The Authors. Published by Elsevier B.V. This is an open access article u
(http://creativecommons.org/licenses/by/4.0/).

One fundamental cause of the gap is the inadequacy of current
approaches to definition of occupancy-related loads, even in fully
operational buildings [7]. The internal loads in a building are inex-
tricably linked to occupant behaviour, both directly through the
contribution of occupant heat output to thermal energy balance
and indirectly via the interactions between occupants, appliances
and building energy services. Occupant-related services are a prin-
cipal component of building electricity consumption and must be
understood if accurate estimations are to be made. However, occu-
pancy and occupant-related internal loads are difficult to specify as
occupant behaviour is inherently stochastic; hence these loads rep-
resent a significant source of uncertainty in the simulation results
[8]. A comprehensive review of the state of the art in occupant
behaviour modelling has been performed [9], and many issues are
being addressed under the auspices of the International Energy
Agency Energy in Buildings and Communities Program (IEA EBC)
Annex 66: Definition and Simulation of Occupant Behaviour in
Buildings.

Not only is occupant behaviour inherently stochastic, occu-
pant presence is also difficult to measure directly. An alternative
approach to simulating occupancy is to infer building occupancy

from a measurable quantity; the feasibility of such an ‘implicit
occupancy’ approach has been demonstrated using monitored
computer status to infer occupancy using existing IT infrastruc-
ture [10]. One must bear in mind though that occupant presence

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ay  not be the best or a complete indicator of energy demand
s many devices, e.g. lights, air-conditioning, are controlled cen-
rally — especially in the case of non-domestic buildings. Indeed,
ecent studies have indicated a greater correlation in device state
etween one hour and the next, rather than between occupancy
nd device state in any hour [11]. Nonetheless for an operational
uilding a wealth of data exists in the form of monitored electricity
onsumption and many non-domestic buildings are now routinely
ub-metered by end-use e.g. plug loads, lights and air condition-
ng. Accessing these data is relatively straightforward and gives an
mmediate insight into actual electricity consumption, and hence
uilding operation, that can be further augmented by an under-
tanding of the building control settings.

This paper examines the different ways by which sub-
etered electricity consumption data may  be used to define the

ccupancy-related internal loads, specifically small power electric-
ty consumption or ‘plug loads’, in a non-domestic building. Focus
as been placed on plug loads alone as the demand is measur-
ble and more closely related to occupancy than lighting, which
ay  be centrally controlled. Small power equipment is diverse

nd highly dependent on the building function, but for a typi-
al office building comprises primarily computers and peripheral
quipment, together with catering equipment. Plug loads were
ound to account for 23% of total electricity consumption in Cal-
fornia’s commercial office buildings [12] but [13] suggest that this
ould increase to as high as 50% for a high-efficiency office. In the
K, the Energy Consumption Guide 19 [14] provides data for the
nergy consumption of typical and ‘good practice’ offices which
uggest that plug loads account for between 28 and 58% of the total
lectricity consumption of an office building, and give a range of
alues varying between 1.9 and 19.1 W/m2.

Different approaches have been identified for quantifying plug
oads comprising both the accepted methodology used in the UK
nd possible alternatives; top down data-driven, bottom-up deter-
inistic and bottom-up stochastic models. Each approach has its

dvantages, and the aims of this paper are threefold:

) To explore the conditions which might lead to preference of one
model over another for the quantification of plug loads.

) To explore the extent to which the different sources of uncer-
tainty identified in the models are adequately represented, and

) To identify the most important features of plug load quantifica-
tion for forecasting of future demand.

Recognizing that the ‘adequate’ level of complexity may  be gov-
rned by the nature of the design problem, or ‘context’, the different
odels have been applied to an existing building. Model outputs

ave been compared against a range of standard Key Performance
ndicators (KPIs), such as the mean weekday and weekend demand
rofiles, peak hourly, daily total and the timing of the peak hourly
lectricity consumption. A particular KPI may  be more relevant
han another depending on the design problem. For example, peak
emand may  be more important from the point of view of electric-

ty tariffs, and mean weekday profiles become more relevant for
uantifying associated heat gains to size cooling systems.

The models have been applied both with and without making
se of monitored plug-load data to tune model inputs for the build-

ng in question. An implicit question posed through this exercise is
hether the availability of sub-metered data from the same build-

ng is necessary for a sufficiently accurate quantification of plug
oads. The top-down models of course require some kind of rel-

vant and applicable data set, and we use plug-loads monitored
n another very similar building to train the top-down models. At
he same time, bottom-up models also greatly benefit from using
ub-metered data to tune model inputs.
ings 123 (2016) 92–105 93

A brief review of the current methods for characterisation of
occupancy-related internal loads in building energy simulation is
presented in the next section of this paper, together with an outline
of the desirable qualities for such a model. This is followed by a
description of the models selected for use in the comparative study
and the results of the case study are presented and discussed in
Sections 4 and 5. The paper concludes with a consideration of the
models’ performance against the desirable criteria based on the
case study results.

2. Parameterisation of occupant related internal loads

In a typical computational building energy simulation plug loads
are characterised by the user-defined peak power demand associ-
ated with devices. These are multiplied by (user-defined) schedules
of diversity factors that simulate the typical daily change in use. For
an existing building a detailed energy audit may  be undertaken to
understand how the building operates, but it can be prohibitively
time consuming to observe schedules and peak power demand for
every end-use and building zone. To reduce the effort required by
audit-based studies, a number of alternative approaches have been
proposed in the literature.

The approaches identified for use here range from simple aggre-
gation of demand to fully stochastic simulation. Within the simplest
models it is assumed that there is different weekday/weekend
power demand that fluctuates between peak and off-peak values
(estimated from benchmarks, literature, or measured) according
to the weekday or weekend time schedule [15]. More complexity
may  be added by assigning different schedules of use and power
demand to different device types and hence building up an aggre-
gate power demand; this is the ‘bottom-up’ deterministic approach
[16]. Aggregating the demand like this may  misrepresent an essen-
tially stochastic load, however [7]; whether this is significant may
depend on the purpose of the simulation and the key parameters
of interest. The DELORES model [17] accounts for the stochastic
nature of the power demand by generating a fully stochastic 365
day/24 h demand profile based on the probability of each individual
device changing state in each hour. An alternative way to generate a
stochastic demand is by using a top-down approach; synthetic time
histories may  be generated via a statistical analysis of monitored
data [6] or a time series analysis [11]. Both of these approaches use
the mean monitored daily profile, but differ in the way in which
the variability about that mean is simulated.

The ‘best’ model may  be different according to the context and
the key parameters of interest [18]. If the purpose of the simula-
tion is to extract aggregate consumption, as might be the case for an
analysis of the impact of potential retrofit scenarios on the annual
electricity consumption of a building, then an aggregate model may
well be adequate. However if the key parameters of interest include
such quantities as peak daily power demand and the timing of that
peak, e.g. for demand scheduling purposes, then it is necessary to
use a model which encompasses the inherent stochasticity of the
power demand. Further desirable qualities include being able to
assimilate large quantities of data as data acquisition becomes more
prolific, and to be able to use those data to improve forecast accu-
racy. It is also important that a model is flexible in its ability to
simulate building operation; if aspects of that operation change,
for example if the building layout or occupancy are re-organised,
or if building use changes, a model should be able to simulate the

corresponding change in power demand.

The models are assessed against these desirable qualities in the
comparative study of the different types of model currently avail-
able detailed in the following sections.
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Table 1
Menezes model: operational parameters.

Switch-on time Strict 09:00
Extended 08:00

Switch-off time Strict 17:00
Extended 19:00

Lunchtime Start 12:00
End 13:00
4 R. Ward et al. / Energy an

. Description of internal load models

Dynamic simulation models are used routinely at the design
tage to predict the operational energy demand of a building. In
rder to define operational power demand, in the UK guidelines
uch as the National Calculation Methodology (NCM) [15] may  be
onsulted. In this approach, one standard activity is assigned to
ach building zone defining the small power demand profile in
erms of a nominal value and a daily schedule; electricity con-
umption may  then be summed over the year. For a typical office,
eak power demand is stated as 11.77 W/m2 and the peak time
eriod is from 7am until 7pm, weekdays only (off-peak power
emand is 0.63 W/m2). The value quoted lies within a range of
.64–27.31 W/m2 for all office types, with a mean of 12.36 and a
tandard deviation of 4.4 W/m2.

Recently, an alternative approach for annual power demand has
een proposed. Following CIBSE TM54 [19] a designer would esti-
ate annual total power demand based on the expected number of

evices, average device power demand and average annual oper-
tional hours. Disaggregation of annual operation would then be
equired to extract weekly and daily consumption. CIBSE TM54
ecommends that engineers ‘present the results as a range’, but
he extent of the range is unspecified; typical values for average
ower demand, together with ‘average’, ‘conservative’ and ‘highly
onservative’ heat gains from desktop computers and monitors are
iven in CIBSE Guide F [20]. However, typical operating hours for
quipment are omitted from CIBSE Guide F [21].

The advantage of these simple approaches is that they require
 small number of objective parameters and consequently allow
onsistency in simulation across a portfolio of buildings. However,
his strength is also their weakness; the results are applicable only
or the most ‘typical’ use profiles, and if use deviates significantly
rom the norm, the results may  be misleading.

.1. Bottom-up deterministic model

Menezes et al. [16] suggest two parameterisations for plug
oads:

) Using random sampling of monitored data.
) Bottom-up model.

In Model 1, daily electricity consumption profiles at 1-minute
ntervals are randomly selected from a general database of mon-
tored data for each equipment type. The process is repeated 30
imes and a Student’s t-distribution is used to calculate upper and
ower prediction limits. This model avoids the need for assump-
ions regarding the expected usage profile of individual items of
quipment provided that the monitored data set is applicable to
he building being modelled; however the approach relies heavily
n large amounts of good quality monitored data per device and
pace type that are not typically available, and this model is not
onsidered further in this study.

Model 2 is an alternative, bottom-up, approach that extends
IBSE TM54 by specifying operational power demand in more
etail, including an estimate of the uncertainty associated with
he calculation. Electricity consumption is estimated based on the
uantity, power demand and usage of each type of device. For
evices such as computers and screens in particular, which account

or a significant proportion of the plug loads in non-domestic build-
ngs [22], the device state is characterised as ‘off’, ‘low’ or ‘on’,
orresponding to a specified power demand for each state. Here ‘off’

orresponds to the lowest power demand while the equipment is
onnected to the mains, while ‘low’ corresponds to the low power
ode a device may  enter after a period of inactivity i.e. its ‘stand-by’

tate. Operation times are defined by ‘strict’ and ‘extended’ switch-
Usage diversity factor, d Weekday 75%
Weekend 15%

on and switch-off times, where ‘strict’ corresponds to a normal
office 9am–5pm day and ‘extended’ corresponds to a longer day,
as detailed in Table 1. Each device controlled by an individual user
is assigned to one of four possible usage profiles (see Table 2); the
four usage profiles relate directly to the operation times, and are
termed ‘strict’, ‘extended’, ‘always on’ or ‘transient’, where ‘tran-
sient’ equates to being in the ‘on’ state for 50% of the time period
corresponding to ‘strict’ switch-on and switch-off times. Estimates
of the number of devices of each type switched off at the end of
each day and the expected drop in power demand at lunchtime are
also specified. Finally, Menezes et al. specify a usage diversity factor
d per day type; one for a weekday and one for the weekend (see
Table 1). This usage diversity factor should not be confused with
the hourly diversity factors used by ASHRAE [23], which encom-
pass both the usage diversity factor and usage type specified in the
Menezes model.

The hourly electricity consumption, Qt , calculated using the
Menezes model can be summarised by the following equation;

Qt = Qbase + d

N∑
i=1

4∑
j=1

pi,j�qi,j,t (1)

where Qbase is the base load calculated from the proportion of
equipment switched off at the end of the day and assuming the
remaining devices are in the ‘low’ state. Of the remaining parame-
ters i is the device type (i.e. desktop, laptop, monitor etc.), N is the
number of different types of device, j is the usage profile (i.e. ‘tran-
sient’, ‘strict’ etc.), pi,j is the number of devices of type i assigned
to usage profile j and �qi,j,t is the power demand above the base
load of device type i assigned to usage profile j, according to that
usage profile for the hour of interest, t. The stochastic nature of the
demand is bounded by specifying a +/− 10% variation on the usage
diversity factor, d. Table 2 presents power demand values, distri-
bution of type and usage profile for computers in a typical office
[16]. Columns 2 (labelled proportion) and 4 (labelled usage pro-
file) are used to derive pi,j e.g. if there are 100 computers, typically
14 would be high end desktops, and of these 30%, or 4, would be
operated according to ‘strict’ hours.

The benefit of such a bottom-up approach is that there is no
need for high-resolution sub-metered data; the downside is that
expert judgement may  be required to define the model parameters
especially those associated with estimating the base load, the pro-
portion of power demand above the base load and the assignment
of usage profiles.

3.2. Bottom-up stochastic model

Another approach that uses a ‘bottom-up’ summation of equip-
ment power demand is DELORES [17]. In this model, device state is
again characterised by the power demand in the ‘on’, ‘low’ or ‘off’
states, but here the stochasticity is simulated directly; transition

probabilities are assigned to the state of each device in each hour,
dependent on its prior state and the time period of the day. Each
day is divided into three time periods, corresponding to ‘peak’, ‘off-
peak’ and ‘rest’ times; the three states and three daily time periods
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Table  2
Menezes model: device parameters.

Device type, i Proportion (% of total) Power Demand
(W)

Usage profile,
j (% of devices)

State: Off Low On Strict Extended Always on Transient

High-end desktop 13.6 1 80 150 30 30 25 15
Low-end desktop 15.7 1 30 41 70 10 10 10
Laptop 70.7 1 20 30 30 40 0 30

19”  screen 85.3 0 1 25 50 30 0 20
21”  screen 14.7 0 1 45 50 30 0 20

Table 3
DELORES: weekday transition probabilities P for office computer.

Time period of the day T Peak
08:00–17:00

Off-peak
17:00–21:00

Rest
21:00–08:00

Prior operating state s-1
On Low Off On Low Off On Low Off
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On 0.90 0.80 0.87
Next  operating state s Low 0.07 0.16 0.03

Off  0.03 0.04 0.10

herefore require 27 transition probabilities as illustrated in Table 3
.g. at peak time if a device is ‘off’ the probability of it switching ‘on’
n the next hour is 0.87. The state of each device is calculated in each
our of the year from its state in the previous hour and the prob-
bility of transition using a Markov Chain Monte-Carlo simulation.
he stochastic nature of the model results in different daily profiles
ach day, mimicking the typical variation in daily profile observed
ver time.

A nominal time schedule defines the hours that correspond to
he daily time periods, with a specified allowable potential devi-
tion from this nominal schedule. The transition probabilities and
ominal schedules are defined for weekdays, Saturdays and Sun-
ays and potential holidays are accounted for by estimating the
robability in a given month that any day will be a holiday. Exam-
le parameters for a desktop computer weekday operation are
etailed in Table 3; corresponding weekend transition probabilities
re given in Ref. [24].

The model can be summarised by Eq. (2):

t =
N∑
j=1

qj (s (T,  s − 1, P)) (2)

.e. the hourly electricity consumption, Qt is equal to the summation
ver N devices of the power demand of each device, qj in state s,
here s is a function of the time period of the day, T, the prior

tate, s-1, and the matrix of transition probabilities, P. For an office
omputer (including the monitor), the power demand q has been
ssumed to be 5 W in the ‘Off’ state, 65 W in the ‘Low’ state and
00 W in the ‘On’ state [17].

.3. Top-down data-driven models

A number of studies have investigated the use of metered elec-
ricity consumption data to derive models for quantifying future
lectricity demand [25]. The study by Sun [6] takes this approach
urther by also using the data to quantify uncertainty surround-
ng future predictions. The basic formulation of the Sun model is
imply:

= q D (3)
t P t

.e. the hourly electricity consumption, Qt is equal to the product
f the peak hourly electricity consumption across all hours, qP and
n hourly diversity factor, Dt , which takes values between 0 and 1.
0.50 0.25 0.05 0 0 0
0.25 0.50 0.05 1 1 0
0.25 0.25 0.90 0 0 1

This diversity factor is very different from the weekday/weekend
usage diversity factor, d, specified in the Menezes model.

Sun used empirical data from a series of 16 buildings analysed
under ASHRAE Research Project 1093-RP [23]. The annual peak
hourly electricity consumption, qP , was identified from the data
for each building and the values were collated as a normal distri-
bution. The electricity consumption data were also used to derive a
matrix of hourly diversity factors for the 16 buildings in the follow-
ing manner; for each building the mean electricity consumption
across the week and weekend were collated into a 48 h vector,
where the first 24 h represent a mean weekday and hours 25 – 48
represent a mean weekend day. The 16 vectors were then collated
into a 16 × 48 matrix, and the mean, � and covariance, ˙,  of this
matrix were used as input for the random generation of 48 h vector
profiles of diversity D, assuming that the distribution of D followed
a n-dimensional multivariate normal distribution, i.e.

p (D; �, �) = 1

(2�)n/2|�|1/2
exp

(
− 1

2
(D − �)T�−1 (D − �)

)
(4)

In generating a full covariance matrix it is inherently assumed
that there is correlation between the hourly electricity consump-
tion in one hour and in any other hour. Sun concluded that a reduced
covariance matrix was  more appropriate in which only the diagonal
and immediately adjacent terms are retained, implying correlation
only between the hourly electricity consumption in adjacent hours.
While this reduces the complexity of the problem, it is possible that
the reduction could be an over-simplification of the autocorrela-
tion.

In the Sun model, a sample diversity factor is generated from
a multivariate normal distribution with the covariance matrix
accounting for the temporal autocorrelation. Another method that
takes into account the autocorrelation between hourly values is
the time series modelling approach, as applied in the paper by
Wang et al. [11] to investigate the correlation between the variabil-
ity in occupancy and the variability in device state. Although this
approach has not been widely used in the simulation of building
energy consumption, we think that it potentially offers a facil-
ity to investigate the nature of the correlations in the monitored
data that may  be more easily interpretable than the covariance
matrix proposed by Sun. We  therefore evaluate this approach using

a well-known time series method; the Auto-Regressive Integrated
Moving Average (ARIMA) model. ARIMA models are applicable to
data that are stationary and independent of time; the variability
of electricity consumption about the mean typically fulfils these
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equirements (although additional pre-processing of the data such
s differencing, i.e. subtraction of the mean from the data, may  be
equired to achieve stationarity). It is possible, therefore, to use
he mean electricity consumption together with an ARIMA model
f the residual electricity consumption to simulate plug loads. The
orecasting equation is a linear equation in which the terms con-
ist of previous values of the dependent variable (Auto-Regressive)
nd the forecast errors (Moving Average). The number of previous
alues included in the model —termed the ‘order’ of the model— is
ependent on the autocorrelations observed in the data.

The ARIMA model may  be expressed as:

t = �t + Yt (5)

here

t =
p∑
i=1

˛iYt−i + Wt +
q∑
j=1

ˇjWt−j

.e. the total hourly electricity consumption, Qt , at time t is the
um of the mean electricity consumption at that hour, �t, plus the
esidual, Yt, which in turn is a combination of 3 terms:

an Auto-Regressive AR(p) model which is a weighted sum of the
Yt-i values at previous time steps with weightings �i, back to time
t-p,
a white noise term, Wt with zero mean and variance �w2, and
a Moving Average MA(q) model which is a weighted sum of the
noise terms, Wt-j , at previous time steps with weighting �j , back
to time t-q.

Periodic variation — termed ‘seasonality’ in the ARIMA literature
 such as a daily variation of electricity consumption, may  also be

ncorporated by using seasonal differencing i.e. incorporating terms
hich are functions of values in the previous period. For example,

or daily variation of electricity consumption, a season would be
ne day with a period of 24 h, hence while a non-seasonal model at
ime t may  include terms from t-1,  t-2 . . . hours, a seasonal model

ay  incorporate values from both t-1,  t-2 . . . hours and t-24, t-25
 . . hours.

Typical terminology is to refer to an ARIMA model as
RIMA(p,dif,q)(pS,difS,qS)[T] where p and q are the orders of the
on-seasonal autoregressive and moving average models respec-
ively and dif is the degree of non-seasonal differencing required to
chieve stationarity. The parameters, pS,  difS, and qS,  are the same
erms, but for the seasonal part of the model, and T represents the
eriod of the seasonality, i.e. 24 h for daily variation. Several tools
xist in software such as R [26] and MATLAB [27] to facilitate the
dentification of the ARIMA model that best fits a data set.

.4. Uncertainty

The models are fundamentally different in the ways in which
hey incorporate uncertainty. A useful way of classifying the
ources of uncertainty in a model, presented by Kennedy and
’Hagan [28], is to consider six different categories, namely:

) parameter uncertainty i.e. uncertainty in the model inputs, e.g.
computer peak power demand.

) parametric variability closely linked to parameter uncertainty
but reflecting the range of possible parameter values over a
range of scenarios, e.g. variations in peak power demand across

seven desktop computers.

) model inadequacy, i.e. the difference between the true mean
value of a real world process that the model is simulating and
the simulation output at the true value of the model input.
ings 123 (2016) 92–105

4) residual variability,  i.e. in this study taken to be the variability
associated with the process being stochastic.

5) observation error e.g. in measurement of electricity consump-
tion, and

6) code uncertainty, particularly important as code increases in
complexity.

Of these, the last two are the least significant in this comparative
study; observation error cancels out in a comparative study and the
models are numerically quite simple, rendering code uncertainty
less important. One of the purposes of this paper is to investigate
the degree of model inadequacy for each model; all models are sim-
plified representations of reality and comparisons such as this study
serve to illuminate which of the models may  better represent the
real world in the context of interest. However, it is important to
recognise that model inadequacy may  arise not only from an inap-
propriateness of context i.e. the model not being applicable for the
purpose of the simulation, but also from a failure of training or
calibration data to be sufficiently representative of the scenario of
interest.

For the models considered here, model inadequacy is also inextri-
cably linked with residual variability as the process being modelled
is inherently stochastic. All the models to a certain extent include
residual variability in some form, with the exception of the NCM
model. Indeed, even in the deterministic Menezes model, the vari-
ation about the mean electricity consumption is simulated by
including a variation of +/− 10% on the usage diversity factor in
order to generate the upper and lower bound electricity consump-
tion (see Section 3.1 and Table 1). By comparison, the stochastic
model, DELORES, explicitly incorporates inherent randomness into
the daily predictions and the variation in electricity consumption
is extracted from the simulation results over many days. The top-
down Sun and ARIMA models focus on simulating the variability
about the mean, and again, the simulations must be run for many
days in order to encompass all possible variation.

Parameter uncertainty, or uncertainty in the inputs into a model,
is the simplest to understand yet it is not quantified comprehen-
sively in any of the models considered here. Let us consider a
measurable parameter, the power demand of a device (a computer,
for example). The CIBSE TM54 approach suggests using a range
of possible power demand values to establish upper and lower
bounds per device type or end-use and thus very roughly incorpo-
rates both parameter uncertainty and parametric variability jointly.
For the Menezes and DELORES models, the simulation outcome is
directly proportional to the specified device power demand, hence
using a range as TM54 recommends would increase the uncer-
tainty in the simulation predictions. Power demand is also different
for different devices; for both the Menezes and DELORES models,
uncertainty in the proportion of different devices is only signifi-
cant if the power demand for each device under each usage type is
significantly different (see Table 2 and Section 3.2).

Parameter uncertainty and parametric variability in operational
parameters such as schedules are more difficult to quantify and are
not included in the Menezes model; in DELORES the specification
of possible deviation from the daily schedule simulates the possible
variations in transition times from one day to another (Section 3.2).
The impact of incorporating this uncertainty is to increase variabil-
ity in the timing of the transition between operational states; this
influences the aggregate electricity consumption and the timing of
the daily peak. In DELORES it is also necessary to consider parameter
uncertainty and parametric variability in the transition probabilities.

At present there are few data available to facilitate quantification
of these uncertainties, and the choice of transition probabilities can
have a variable impact dependent on where the simulation is oper-
ating within the distribution of power states i.e. the Markov chain
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onverges to a stationary distribution of states, but the route and
ate of convergence will depend on the starting conditions.

In the top-down models, uncertainties in model parameters are
irectly derived from the data; in the Sun model, for example, peak
ourly electricity consumption, qP , and diversity factor, D, are char-
cterised as normal distributions. The ARIMA model is derived from
tting the best-fit curve to the data, and the fitting process results

n an estimate of the standard error, or parameter uncertainty asso-
iated with the fitted parameters i.e. the weighting terms, � and
, and the magnitude of the variance of the white noise term, �ω2

see Section 3.3). The impact of this uncertainty is likely to be small
rovided the residual electricity consumption is of a smaller order
f magnitude than the mean. For the top-down models, parametric
ariability is only incorporated if more than one data set is used for
odel training in such a way that different model parameters are

erived for the different data sets.
The parameters associated with the models considered in this

aper may  be standardised across buildings or building-specific,
easurable or requiring expert input (‘subjective’), or derived

irectly from monitored data. A simple categorisation of the main
arameters for these models in terms of their applicability, measur-
bility and uncertainty is proposed in Table 4; in the table a scoring
ystem has been used where 0 indicates ‘No’ and 1 indicates ‘Yes’.
n some cases parameters may  be inferred from monitored data
ut are not directly measurable whereas conversely other parame-
ers cannot be inferred from aggregate data but must be measured
irectly.

As will be demonstrated in the following sections, with the
xception of the NCM model the simulation results exhibit upper
nd lower bounds; it must be stressed that these bounds do not
ncompass all uncertainties.

. Model application

The models have been applied to a case study of the Ashby
aboratory, at Cambridge University Engineering Department, UK.
his is a graduate student office, 916 m2 in area, comprising

 self-contained faculty offices together with a large open-plan
pace intended to accommodate up to 84 students. The space
s sub-metered for plug loads arising primarily from the use of
esk-top/laptop computers and associated monitors. Drawings are
vailable which indicate the notional floor layout, however the
ctual floor layout is somewhat different in terms of desk position-
ng and orientation. For the purposes of this analysis the term-time
lectricity consumption attributable to small power demand has
een analysed using data from October 2013 to December 2014.

The models have been applied under two different data avail-
bility scenarios; the first application considers the case where
here are no metered consumption data available for the space, as
ould be typically the case in an early design study. In this situation,

here are three options for specifying the small power loads:

) use a reference approach such as NCM,
) use a bottom-up approach such as DELORES or the Menezes

model, with a notional floor plan and model parameters taken
from the literature, or

) use a top-down data-driven approach with data from other sim-
ilar buildings.

The second application considers the case where monitored

ata are available, as would be the case in a retrofit or operational
nergy management study. In this situation, a data-driven model
ould be the natural choice, but it is also possible to ‘tune’ the

ottom-up models using monitored data in order to achieve a better
Fig. 1. Mean diversity factor, computing laboratory.

comparison between simulation and reality and thereby improve
confidence in model forecasts.

4.1. Early design stage simulation

The models have been used to ascertain whether using an alter-
native approach would give a better estimate of the plug loads than
the NCM model at an early design stage. CIBSE TM54 has not been
considered explicitly here as it relates primarily to annual loads. For
the bottom-up models of Menezes and DELORES, the model param-
eters given in the literature and detailed previously in this paper
have been used in conjunction with the notional floor/desk lay-
out to generate electricity consumption profiles. The notional floor
plan indicates that there are 93 computers in the space, represented
as desktop computers in DELORES, but distributed between ‘high-
end’ and ‘low-end’ desktops/laptops in the Menezes model. Small
power electricity consumption has been assumed to be entirely
attributable to computing as the proliferation of computers sub-
sumes all other consumption within this space.

In the absence of directly relevant monitored data, it is use-
ful to consider the electricity consumption of similar buildings or
similarly occupied spaces in order to define parameters for the
data-driven models. In this instance, monitored data from the Uni-
versity Computing Laboratory for the period October–December
2013 are used as the training data to derive parameters for the Sun
and ARIMA models. This building has three sub-metered spaces
which house a mix  of faculty and graduate studies offices, similar
to our case study. The sub-metered data have been normalised by
area to facilitate application to a different building space.

For the Sun model, analysis of the sub-metered data suggests
that the peak hourly demand, qP , is best represented by a normal
distribution with a mean of 8.6 Wh/m2 and a standard deviation of
3.1 Wh/m2. While in Sun’s original model the 48 h diversity factors
for 16 buildings were collated into a 16 × 48 matrix, in this instance
we have borrowed strength across weeks and meters rather than
buildings; the training data set consists of 8 weeks of data from
3 meters, giving rise to a total of 24 diversity factors. These have
been collated into a 24 × 48 matrix and the mean, � and covariance,
˙, of this matrix, as illustrated in Figs. 1 and 2, have then been
used in conjunction with Eq. (4) for the random generation of 48 h
vector profiles of diversity D. As one might expect, the variance, i.e.
the terms on the diagonal of the matrix, are greatest at the start
and end of the working day and during the weekend afternoons.
Using Eq. (3), each randomly generated diversity factor, D, has been
used in conjunction with the peak hourly demand, q , to generate
P

hourly electricity consumption values over an 8 week period for
comparison against the monitored data; the simulation has been
performed many times with a different diversity factor, D, in order
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Table 4
Characterisation of parameters.

Model Parameter Building specific Derived from
aggregate data

Derived from
individual device
monitoring

Uncertainty
included in model

NCM Power demand in each time period 0 n/a n/a 0
Daily  schedule 0 n/a n/a 0

CIBSE  TM54 Power demand in each time period 1 1 1 1
Daily  schedule 1 1 1 0

Menezes Power demand per state per device 0 0 1 0
Proportion of devices assigned to each usage type 1 0 1a 0
Proportion of devices switched off at night 1 1 1 0
Daily  schedule for each usage type 1 0 1b 0
Usage  diversity factor 1 1 1 1

DELORES Power demand per state per device 0 0 1 0
Daily  schedule 1 0 1 1
Transition probabilities 0 0 1 0

Sun  Peak hourly power demand 1 1 1 1
Diversity factor 1 1 1 1

ARIMA Model characterisation (p,d,q)(P,D,Q)[T] 1 1 0 0
Weighting factors 1 1 0 1
White  noise variance magnitude 1 1 0 0

0–No, 1–Yes.
a The usage profile demarcation can only ever be approximate but if individual device power demand is measured it may be possible to group devices by similar usage

profiles.
b If devices are assigned to a usage profile then a mean daily schedule could be derived from monitored data.
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sists of an autoregressive component of order p = 2 combined with
Fig. 2. Diagonal covariance matrix, computing laboratory.

o ensure that the full range of the potential response is adequately
odelled (Figs. 1 and 2).

Derivation of an ARIMA model requires first that the monitored
lectricity consumption be separated into the mean (base level)
nd the residual values (variability about the base level). This has
een performed for each of the three meters that comprise the
raining data set. We  then analyse the correlations in the residual
alues between the values in each hour and the preceding hours.
ig. 3(a) and (b) illustrate the auto-correlation (ACF) and partial
uto-correlation (PACF) functions respectively for time differences,
r ‘lags’, of up to 48 h, in the residual values derived from one of the
eters. Fig. 3(a) shows both a high degree of correlation between

onsecutive time steps (lag = 1, ACF of around 0.8), and between
onsecutive days at the same hour (lag = 24, ACF of around 0.5).
ig. 3(b) shows the correlation between values at different lags
ith the correlation due to smaller lags removed i.e. while Fig. 3(a)

ndicates that the correlation between hour t and hour t-3, or a lag
qual to 3, is approximately 0.6, Fig. 3(b) shows that the majority of
he correlation is accounted for by the correlation between values

eparated by 1 h (lag = 1, PACF = 0.8) and the correlation between
alues separated by 2 h (lag = 2, PACF = 0.15), while for lag = 3 the
ACF value is just 0.07.
Fig. 3. ACF and PACF for east 2nd floor meter. (a) Auto-correlation function. (b)
Partial auto-correlation function.

The tools provided in R statistical software [26] have been used
to identify the order of the ARIMA model that best fits the resid-
uals data. Using the terminology introduced in Section 3.3, the
order of the model that best fits the data for all three meters is
an ARIMA(2,0,2)(0,1,1)[24] model i.e. the non-seasonal model con-
a moving average component of order q = 2, and the seasonal model
comprises a single order seasonal differencing (pS = 1) with a period
of 24 h (T = 24) and a moving average component of order 1 (qS = 1).
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Fig. 4. ACF and PACF for E2 fitted ARIMA model. (a) Auto-correlation function. (b)
Partial auto-correlation function.

Table 5
ARIMA model parameters (see Eq. (5) for definition of these parameters).

Meter

E 2nd Floor E 1st Floor SE Ground

�1 1.5175 1.5525 1.6248
�2 −0.5365 −0.5598 −0.6304
�1 −0.8987 −1.2056 −0.8493
ˇ2 0.0405 0.2689 −0.0871
dS  1 1 1
qS  −0.8319 −0.9009 −0.8651
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Fig. 5. Mean electricity consumption 48 h profile.
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match the data well (Fig. 5).
• The interquartile range or ‘spread’ of the results is significant and
�ω2 1.041e-07 1.549e-07 1.060e-07

Fig. 4(a) and (b) illustrates the ACF and PACF for the residuals
f this fitted model. None of the values are significantly different
rom zero, indicating a good fit of our model. Furthermore, a formal
jung-Box test cannot reject the null hypothesis that the model is
dequate at a 0.05 level.

An ARIMA model has been fitted separately for data sets from
ach of the three metered spaces in the Computing Laboratory, and
sed to forecast the hourly electricity consumption residuals. The
odel parameters are listed in Table 5. See Section 3.3 and Eq. (5)

or explanation of these parameters.
Model outputs have been compared against the monitored elec-

ricity consumption data of the Ashby Laboratory from October –
ecember 2014. Fig. 5 illustrates the mean 48-h profile of elec-

ricity consumption output by the models compared against the
onitored data, where the first 24 h represent a mean weekday and

ours 25–48 represent a mean weekend day. Fig. 6 shows the pre-
icted interquartile range, or ‘spread’, of the results over the 48 h.
s discussed in Section 3.4, this value gives an indication of some of

he uncertainties in the model predictions. However, it is important

o note that not all uncertainties are included in all models, hence
he spread of the results does not equate to the total uncertainty
Hour

Fig. 6. Interquartile range (spread) of electricity consumption.

in the model forecasts. There are a number of points immediately
apparent from the figures.

• The NCM profile has a constant base load, constant weekday day-
time consumption and no increase over the base load at the
weekend (Fig. 5). In this case study, this model over-predicts
the electricity consumption (and associated heat gains) substan-
tially during the week. This may  be a potential problem as it
can lead to over-sizing of cooling equipment. The model also
underestimates weekend electricity consumption in this case,
illustrating the care that must be taken when choosing the appro-
priate benchmark consumption value; the comparison suggests
that a graduate studies office may  be used more at the weekends
than the assumed commercial office benchmark.

• The two  bottom-up models give quite different results. For this
case study, the parameters taken from the literature for DELORES
(Table 3) lead to an over-prediction of the mean hourly electric-
ity consumption whereas the Menezes model, with parameters
taken from the literature (Table 2), under-predicts the mean
hourly electricity consumption (Fig. 5). This is likely due in part
to differences in the mean power demand values for the devices
as the Menezes model assumes a high proportion of low power
laptops. It could also be an indicator that the transition probabil-
ities to the ‘On’ state assumed in DELORES should be reduced for
this case.

• Looking at the results from the two  top down data driven models,
a comparison of the predicted results and monitored data high-
lights the issues associated with using data from another similar
building to train the model; the base load and daily consump-
tion of the Ashby Laboratory predicted by these models does not
does appear to have a periodic variation, being at a minimum
during the nighttime period (Fig. 6).
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Fig. 7. Mean diversity profile Ashby laboratory.
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The +/−10% variation in usage diversity factor used in the
Menezes model results in low values for interquartile range
(Fig. 6) and if this is interpreted as the uncertainty in the fore-
cast it could potentially engender a false level of confidence in
the results, particularly when the consumption value is low.
The stochastic variability of the interquartile range is visible in the
results of DELORES and the data-driven models (Fig. 6); the drop
in interquartile range at night does not appear in the DELORES
results as much as observed in the monitored data, which sug-
gests that the transition probabilities need adjusting.
A higher variability in interquartile range is observed in the two
data-driven models than in the monitored data, particularly at the
weekend (Fig. 6). This is in part because the monitored data are for
an 8-week period only, whereas the stochastic models have been
run for a significantly larger number of days in order to ensure
the full range of response has been extracted. In addition, the
Computing Laboratory data encompasses three meters and hence
the variability incorporates the difference between the different
metered zones.

Considering the two data-driven models separately, the
nterquartile range is greater for the ARIMA model than the Sun

odel, reflecting the different ways in which monitored data from
he three meters have been assimilated i.e. In the Sun model, the

ean and covariance of the diversity factor have been calculated
cross the entire data set. For the ARIMA model, the time series can-
ot be compiled into a single data set, hence three separate models
re developed and the results extracted from each model before
ompilation into the results presented here.

.2. Operational simulation

If operational electricity consumption data are available for a
uilding, a data-driven model may  be the natural choice. How-
ver, it may  also be possible to ‘tune’ the bottom-up Menezes and
ELORES models to improve the simulation outcome depending
n the quantity of interest; here the electricity consumption data
or October–December 2013 were used as a basis for tuning the

odels, with the process comprising the following steps;

First the base load was quantified and the type/state of devices
were apportioned to match the base load.
Next the mean daily peak load was quantified and the type/state
of devices were apportioned to match the peak.
Finally the notional schedules were adjusted to match the
observed mean time schedule.

This is a straightforward process for the deterministic Menezes
odel. For the stochastic DELORES model, tuning requires adjust-
ent of the transition probabilities yet it is possible only to infer net

ransition probabilities from the monitored data. The nature of the
arkov Chain approach used in DELORES means that the distribu-

ion of operational states converges to a stationary distribution over
ime, dependent on the transition probabilities and the starting dis-
ribution. So for a given base load it is necessary to ensure that the

odel converges at night to a distribution that matches that base
oad. Tuning the peak necessitates ensuring convergence to the
ight distribution at the right time of day, whereas the ‘off-peak’
eriod corresponds to a transition from the state distribution at
eak electricity consumption to a satisfactory starting distribution

or the night period. In this study, only a single type of device has

een assumed and hence the process is simplified; tuning transition
robabilities for multiple device types could become increasingly
nmanageable as the number of device types increases. The ‘tuned’
arameters used for the Menezes and DELORES models are given
Fig. 8. Covariance matrix Ashby laboratory.

in Tables 6 and 7. The device power demand values are the same as
used in the blind simulation for each model.

The Sun model has been generated in a similar manner to
the early design stage simulation, but in this instance, we  use
metered data from the Ashby Laboratory for 8 weeks in the period
October–December 2013. Rather than borrowing strength from
data across different meters, in this case a single meter has been
used and the mean and covariance calculated using data from 8
different weeks, i.e. a data set consisting of 8 × 48 hourly diversity
factors has been used to derive a mean diversity factor and covari-
ance matrix as shown in Figs. 7 and 8. The peak hourly demand, qP , is
represented by a normal distribution with a mean of 6.5 Wh/m2 and
a standard deviation of 0.3 Wh/m2. Compared against Figs. 1 and 2,
this data set has a lower base load and higher daily range both in the
week and at the weekend. The variance is much lower than before,
and although a similar pattern is visible in the covariance matrix it
is much less marked.

An ARIMA model of the residuals has been fitted using the
same monitored Ashby Laboratory electricity consumption data for
the period October–December 2013. Consideration of the residuals
shows, perhaps surprisingly, a much lower degree of seasonal-
ity than observed in the Computing Laboratory data (Fig. 9(a)).
The ARIMA model that fits these data best is an ARIMA[1,0,1]
model with p1 = 0.7678 and q1 = − 0.3327, and it was not possible
to fit a seasonal model that satisfied the Ljung-Box test. The area-
normalised � 2 is estimated as 1.354 × 10−7, which is comparable
ω

with the mean value from our previous ARIMA model shown in
Table 5. Fig. 10 illustrates the ACF and PACF for the residuals of
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Table  6
Menezes model: tuned device parameters.

Device type, i Proportion
(% of total)

Usage profile, j
(% of devices)

State: Strict Extended Always on Transient

High-end desktop 30 20 35 15 30
Low-end desktop 20 70 10 0 20
Laptop 50 30 40 0 30

19”  screen 70 50 30 0 20
21”  screen 30 50 30 0 20

Table 7
DELORES: tuned weekday transition probabilities.

Time Period of the Day, T Peak Off-peak Rest
08:00–17:00 17:00–21:00 21:00–08:00

Prior operating state s-1
On Low Off On Low Off On Low Off

On 0.8 0.1 0.29 0.85 0.05 0.0 0.61 0.02 0
Next  operating state s Low 0.2 0.3 0.00 0.15 0.62 0.0 0.39 0.93 0

Off  0.0 0.6 0.71 0.0 0.33 1 0 0.05 1

F
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ig. 9. ACF and PACF for Ashby laboratory data. (a) Auto-correlation function. (b)
artial auto-correlation function.

he fitted model; again, the Ljung-Box test cannot reject the null
ypothesis that the model is adequate at a 0.05 level.

The results of the tuned models are compared against the moni-
ored data for October–December 2014 in Figs. 11 and 12. As shown
n Fig. 11, there is a much closer agreement with the monitored

ean electricity consumption data, suggesting that the training
ata used for tuning the models are reasonably representative of
he mean electricity consumption from October–December 2014.
The monitored data demonstrate a higher degree of variability
n the interquartile range than the model predictions (Fig. 12). As
n the early design stage simulation, the +/−  10% variation in usage
iversity factor incorporated in the Menezes model appears to give
Fig. 10. Autocorrelations for ARIMA(1,0,1) model. (a) Auto-correlation function. (b)
Partial auto-correlation function.

too low an interquartile range when compared against monitored
data.

The DELORES and Sun models demonstrate a periodic behaviour
that is comparable with the monitored data. It is not surprising that
the ARIMA model shows no seasonal variation in the interquartile
range, as there is no seasonal component to the fitted model. What
is surprising is that the Sun and ARIMA models, both being based on
the same data, do not show the same degree of seasonal variation

in the interquartile range i.e. while the Sun model exhibits lower
variability overnight (Fig. 12, 22–30 h), the ARIMA model exhibits
no such reduction. The difference lies in the way in which the data
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Fig. 11. Mean electricity consumption 48 h profile.
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Fig. 13. Daily peak electricity consumption: weekday.
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Fig. 12. Interquartile range of electricity consumption.

re processed; the Sun model requires the pre-processing of the
raining data into a mean 48-h diversity profile for each week, fol-
owed by calculation of the mean and covariance matrix of those 8

eekly profiles. By comparison, the ARIMA model uses a single time
eries over the 8 weeks of the training data. The different results for
hese two models suggest there is a greater correlation between the

ean weekly profiles, i.e. in the Sun model, than there is from one
our to the next on a daily basis i.e. in the ARIMA model. Whether
r not this is significant depends very much on the key parameters
f interest as discussed in the following section.

.3. Key performance indicators

While the mean electricity consumption profile and interquar-
ile range are interesting indicators of the comparability between
he simulated and monitored electricity consumption, it is com-
arison of the predicted Key Performance Indicators (KPIs) that
rovides a more useful insight. The KPIs considered here are: (a) the
aily peak, (b) the timing of the daily peak, (c) the daily total and, (d)
he weekly total electricity consumption values. The peak hourly
lectricity consumption is compared against the monitored data for
he early design stage and operational simulations in Figs. 13 and 14
or weekdays and weekend days. The early design stage simula-
ions echo Fig. 5 illustrating the under-prediction of the Menezes

odel and the over-prediction of all other models for this case. The
perational simulation results show much better agreement for all
odels.

The models that best simulate the timing of the peak are the
wo top-down data driven models and DELORES. Fig. 15 shows

he probability distribution of the timing of the peak hourly elec-
ricity consumption compared against monitored data. In the early
esign stage simulations the models predict that the peak will occur

ater in the day for a weekday than observed, reflecting the mean
M M D M M D

Fig. 14. Daily peak electricity consumption: weekend.

electricity consumption profile illustrated in Fig. 5; also a much
less defined peak is predicted at the weekend than observed. Once
tuned the model predictions are closer to the monitored data as
expected and all demonstrate a good indication of the timing of the
peak, particularly on a weekday. The total daily weekday and week-
end, and total weekly electricity consumption results are illustrated
in Figs. 16–18 showing that the tuned or the operational model pre-
dictions match the measurements better. The Sun and ARIMA early
design stage simulations predict a much wider spread in the data
than observed over the 8 weeks of monitored data, consistent with
the use of three different sets of metered data for the model devel-
opment. For the operational simulation the ARIMA model predicts
a lower spread than the Sun model, increasingly evident as the level
of aggregation increases.

5. Discussion

The purpose of the specific analysis described in this paper was
to investigate which, if any, model offers the best approach for sim-
ulating plug loads in order to generate power demand profiles for
input into a dynamic simulation model. To this end, it is necessary
to explore the conditions that might lead to preference of one model
over another; the models considered all differ in their approach and
all have potentially useful features depending on the context of the
simulation. The simplest model used here, namely the NCM model,
over-predicts weekday and under-predicts weekend demand for
our case study, reflecting the problems associated with applying a
standard electricity consumption profile to a specific building.

The early design stage simulations compared both the bottom-
up and top-down approaches, with the latter using monitored
electricity consumption data from a building thought by the

authors to be occupied by similar users, and hence to offer a similar
usage profile. The results illustrate the difficulty in predicting elec-
tricity consumption accurately when the data set does not belong



R. Ward et al. / Energy and Buildings 123 (2016) 92–105 103

0 6 12 18 24 30 36 42 48
0.0

0.5

1.0

Measured DE LORE S Sun AR IMA

0 6 12 18 24 30 36 42 48
0.0

0.5

1.0

Hour

P
ro

ba
bi

lit
y 

of
 ti

m
in

g 
of

 p
ea

k

Operational simul atio n

Early design stage simulation

Peak timing.

t
u
a
a
t
d

•

•

•

•

s
d
t
t
e
m
b
fi
t
i
M
fi

0

50

100

150

200

M
ea

su
re

d

M
en

ez
es

D
E L

O
R

ES

S
un

A
R

IM
A

Early des ign  stage simulatio n

To
ta

l d
ai

ly
 e

le
ct

ric
ity

co
n s

um
pt

io
n 

(k
W

h)

0

50

100

150

200

M
ea

su
re

d

M
en

ez
es

D
E

LO
R

E
S

S
un

A
R

IM
A

Ope rational  simula tio n

Fig. 16. Daily total electricity consumption: weekday.
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Fig. 15. 

o the exact same building. One could argue that increasing the vol-
me  of training data may  overcome this difficulty, however, it may
lso increase the interquartile range of the results beyond reason-
ble. While in this study all the models produce results closer to
he monitored data than the NCM approach, all have benefits and
isadvantages:

The Menezes model is simple to apply and in this case produces a
reasonable representation of the mean profile. However, the level
of variability assumed is too low, and the model is incapable of
predicting the timing of the daily peak.
The DELORES model results are directly dependent on the transi-
tion probabilities; in this early design stage simulation the values
used have been taken from the literature and have not been
subject to extensive validation for a wide range of cases. Fur-
ther investigation into the possible range of applicability of these
parameters would be useful.
The Sun and ARIMA models have been based on data from a sup-
posedly similar building, and serve to demonstrate the impact of
the data on the simulation results. It is clear that while there are
similarities, there are also fundamental differences between the
Computing Laboratory and the Ashby Laboratory; the ratio of the
peak load to the base load is lower and the base load is higher
in the Computing Laboratory. These differences translate to an
increase in all of the predicted KPIs.
The use of three different meters as a basis for the two data-driven
models is parallel to Sun’s use of different buildings, and in this
instance it increases the predicted range of the results substan-
tially. The applicability of these approaches is only as good as
the comparability between the data used and the real electricity
consumption.

The operational simulation used monitored data from the case
tudy building. The use of this monitored data in the top-down data
riven models or to ‘tune’ the bottom-up models should improve
he agreement between prediction and monitored data provided
he training data is representative. In this study all of the mod-
ls give a good estimate of mean consumption, suggesting that the
ean of the training data is representative and that the models have

een tuned adequately. The tuning process can be particularly dif-
cult as the number and type of devices increases. In particular, the
ransition probabilities which characterise DELORES are difficult to
nfer with certainty from monitored data; uncertainty analysis of

CMC  methods has been studied in some depth in the medical
eld [29,30], and a suggested approach is to identify the possibility
M M D
E A M M D
E A

Fig. 17. Daily total electricity consumption: weekend.

space for the transition probabilities from monitored data and to
perform sensitivity studies which explore this space; this would be
a necessary component of uncertainty analysis using the DELORES
model. The peak daily electricity consumption can only be simu-
lated using a model that embraces the stochasticity of the demand,
as other models predict a uniform daily maximum. This is signifi-
cant if prediction of the timing of the peak is of interest; DELORES
and the Sun and ARIMA models give a good estimate of the time of
day at which the peak occurs.

All of these observations help to inform the user as to which
parameterisation is the most appropriate; the answer to this

question is, however, context-specific. If no operational data are
available then a bottom-up approach, such as DELORES or that pro-
posed by Menezes, offers a better approach than the NCM model,
as it encourages the modeller to gain a better understanding of
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Fig. 18. Total weekly electricity consumption.

he space use and the potential system dynamics. If only aggre-
ate consumption is required then a deterministic model may  be
sed but it is important to ensure that the range of possible results

s fully understood; the +/−10% used here in the Menezes model
eems low when compared against monitored data. A bottom up
tochastic model such as DELORES is necessary to predict time-
ependent KPIs, and may  provide greater insight into the potential
ariability of the results. Where monitored data are available it
eems most appropriate to use those data to inform the analysis,
ither by tuning the bottom-up models or by using a top-down
ata driven model. This study has highlighted the difficulty in tun-

ng bottom-up models as the number of components increases and
as illustrated some of the potential pitfalls when using data which
re not sufficiently representative of the scenario to be modelled.

It is important to understand how uncertainty is represented
n the models and to explore the adequacy of that representa-
ion. With the exception of the NCM model all of the models give
ome indication of upper and lower bound electricity consump-
ion. These bounds are not necessarily comparable; the Menezes

odel solely incorporates variation on the usage diversity factor,
he DELORES bounds are generated from the stochasticity of the
evice state, while the Sun and ARIMA models use previous data
o generate a possibility space from within which random elec-
ricity consumption profiles are drawn, enabling upper and lower
ound results to be extracted. At present in the bottom-up models
here is no mechanism for incorporating the difference in parame-
er uncertainty between the early design and the operational stages
irectly into the simulations, yet evidence suggests that results at
he early design stage are likely to be further from reality than
he results of a simulation performed using operational data to
une the models. For the top-down models, uncertainty at the early
esign stage arises from the variability of the data used to derive
he model parameters and care must be taken to ensure that the
ata set used is sufficiently representative; if the data set is too
road then the bounds of uncertainty may  be too widely spread
o be useful, yet if it is too narrow the KPIs may  be significantly
nder- or over-estimated. For a model to be comprehensive in its
reatment of uncertainty, it would need to include uncertainty in
oth measurable parameters, such as device power demand, and
he more subjective operational parameters such as usage profile
nd time schedule. Uncertainty in the operational parameters is
ard to define but may  be as significant as measurable uncertainty
epending on the KPIs; it may  be best defined via a process of expert
licitation combined with inference from monitored data.

It is clear from the studies performed here that the most impor-
ant features of plug load parameterisation for a model to be used
or forecasting future demand are threefold:
. The ability to predict the key parameters of interest,

. The ability to assimilate data, and
ings 123 (2016) 92–105

3. Flexibility.

Not all models are capable of predicting all parameters e.g. the
Menezes model as it stands cannot predict the timing of the peak
daily power demand. Any model selected must be capable of pre-
dicting both the parameters of interest and the uncertainty around
these parameters. Assimilation of data, as we  have seen, is key to
predicting energy consumption in line with reality. The final fea-
ture, flexibility, relates to a model’s ability to simulate change in
building operation. The flexibility of a top down data-driven model
to change in operation of all or part of a building is low; the Sun and
ARIMA models are limited to prediction based on past history, and
offer no mechanism for disaggregation to component spaces. By
comparison, tuning of a bottom-up model offers the facility to sim-
ulate change in use and hence offers greater flexibility, provided it
is possible to quantify the impact of a change on the model parame-
ters e.g. DELORES is able to encompass operational change provided
there is sufficient understanding of the impact of that change on the
transition probabilities. In the authors’ opinion, what is needed is
a bottom-up stochastic model that may  be tuned using monitored
electricity consumption data with the minimum of effort.

6. Conclusions

Recent approaches for the parameterisation of plug loads suit-
able for input into a dynamic simulation model have been assessed
as regards their applicability to the prediction of electricity con-
sumption. It has been found that by using monitored electricity
consumption data it is possible to use any of the approaches to cre-
ate a tuned model capable of predicting future power demand to
a reasonable level of accuracy, provided the tuning of the model
is appropriate and robust and that the building is not subject to
change in operation. It is less clear which model is appropriate for
simulation when no directly relevant monitored data are available;
the difficulty of making predictions under this situation with any
degree of confidence has been demonstrated.

If the desire is to simulate the impact of changes to the operation
of an existing building, then the applicability of the models has to be
reviewed. Conclusions can be drawn as regards the requirements
for a model that will best suit the purposes in this instance. First,
the applicability of a model is dependent on the key parameters of
interest; an aggregated approach may  be sufficient for prediction
of annual electricity consumption, but to identify the associated
uncertainty, or to predict the variation in timing of the daily peak
demand, some measure of the stochasticity is required. Second, it
must be possible to use monitored data to characterise the model.
Finally, in order to simulate change in operation of all or part of a
building, the model must be sufficiently flexible; either a bottom-
up model is required, or a means of disaggregating top-down data
needs to be developed but it must be possible to quantify the impact
of the changes on the disaggregated data. Of all of the models con-
sidered here, DELORES is the best suited of the bottom-up models
but it is difficult to calibrate using aggregated data. Of the top-down
models, the Sun model is more straightforward to use and the added
complexity of an ARIMA model doesn’t appear to offer significant
benefits. However it is not clear how the parameterisation by the
mean and covariance matrix of the diversity factor lends itself to
disaggregation and thereby to simulation of operational change.
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