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Abstract We show that for a generic conformal metric perturbation of a com-
pact hyperbolic 3-manifold ¥ with Betti number b1, the order of vanishing of
the Ruelle zeta function at zero equals 4 — by, while in the hyperbolic case
itis equal to 4 — 2b;. This is in contrast to the 2-dimensional case where the
order of vanishing is a topological invariant. The proof uses the microlocal
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304 M. Cekié et al.

approach to dynamical zeta functions, giving a geometric description of gen-
eralized Pollicott—Ruelle resonant differential forms at 0 in the hyperbolic case
and using first variation for the perturbation. To show that the first variation
is generically nonzero we introduce a new identity relating pushforwards of
products of resonant and coresonant 2-forms on the sphere bundle S with
harmonic 1-forms on X.

Let (X, g) be a compact connected oriented 3-dimensional Riemannian
manifold of negative sectional curvature. The Ruelle zeta function

) =[]0 =€), Imi>1 (1.1)
Y

is a converging product for Im X large enough and continues meromorphically
to A € C as proved by Giulietti-Liverani—Pollicott [34] and Dyatlov—Zworski
[20]. Here the product is taken over all primitive closed geodesics y on (X, g)
and T, is the length of y.

In this paper we study the order of vanishing of ¢r at A = 0, defined as
the unique integer my (0) such that "R (©) ¢p (1) is holomorphic and nonzero
at 0. Our main result is

Theorem 1 Let (X, gy) be a compact connected oriented hyperbolic 3-
manifold and b (X) be the first Betti number of X. Then:

1. For (2, gg) we have mgr(0) =4 — 2b1(2).
2. There exists an open and dense set O C C*°(X; R) suchthat foranyb € O,
there exists ¢ > 0 such that for any t € (—¢, €)\{0} and g, = e gy,

the manifold (¥, g;) has mr(0) =4 — b1(2).

Part 1 of Theorem 1 was proved by Fried [25, Theorem 3] using the Selberg
trace formula. The novelty is part 2, which says that for generic conformal
perturbations of the hyperbolic metric the order of vanishing of (r equals
4—b1(X). In particular, when b1 (X) > 0 (fulfilled in many cases, in particular
for mapping tori over pseudo-Anosov maps [24, Theorem 13.4]), mg(0) is
not topologically invariant. Theorem 1 is the first result on instability of the
order of vanishing of {r at O for Riemannian metrics. It is in contrast to the 2-
dimensional case, where Dyatlov—Zworski [21] showed that mg (0) = b1(X)—
2 for any compact connected oriented negatively curved surface (X, g), and
is complementary to a recent breakthrough on the (acyclic) Fried conjecture
by Dang—Guillarmou—Riviere—Shen [16], see §1.3 below.

A result similar to Theorem 1 holds for contact perturbations of S, see
Theorem 4 in §4.

@ Springer



The Ruelle zeta function at zero for nearly hyperbolic 305

1.1 Outline of the proof

We now outline the proof of Theorem 1. We use the microlocal approach to
Pollicott—Ruelle resonances and dynamical zeta functions, which we review
here — see §2 for details and §1.3 for a historical overview. Let M = SX
be the sphere bundle of (X, g) and X € C®(M; T M) be the generator of
the geodesic flow. The geodesic flow is a contact flow, i.e. there exists a 1-
form o € C®(M; T*M) such that txya = 1, ixda = 0, and o A do A da
is a nonvanishing volume form. When g has negative curvature, the geodesic
flow is Anosov, i.e. the tangent spaces T, M decompose into a direct sum of the
flow, unstable, and stable subspaces. Denote by E¥, E; the dual unstable/stable
subbundles of the cotangent bundle 7* M, thatis, E;, E are the annihilators of
unstable/stable plus flow directions; these define closed conic subsets of 7% M.
Define the spaces of resonant k-forms at 0

Resy := {u € D'(M; Q") | ixu =0, Lxu =0, WEu) C EF}. (1.2)

Here QF is the (complexified) bundle of k-forms, Lx = dix + txd is the
Lie derivative with respect to X, and for any distribution u € D'(M; QF) we
denote by WF(u) C T*M\O the wavefront set of u, see for instance [38,
Chapter 8]. The wavefront set condition makes Res’(‘) into a finite dimensional
space, which is a consequence of the interpretation of Res’é as the eigenspace
at 0 of the operator Py o := —i Ly acting on certain anisotropic Sobolev spaces
tailored to the flow (see [29, Theorem 1.7] and [21, Lemma 2.2]). We similarly
define the spaces of generalized resonant k-forms at 0

Resg’ == {u € D'(M; Q%) | ixu =0, LSu =0, WEw) C E}},
k00 | k.0
Reso = U ResO .
>1

The semisimplicity condition for k-forms states that Res](;’Oo = Res’é, which
means that the operator Py o has no nontrivial Jordan blocks at 0. We also have
the dual spaces of generalized coresonant k-forms at 0, replacing E;; with E
in the wavefront set condition:

Resp’ i= {ux € D'(M; Q) | ixus =0, Lu, =0, WFu) C E¥).

Since E; N EY = {0}, wavefront set calculus makes it possible to define u A i,
as a distributional differential form as long as WF(u) C E}\, WF(u,) C E}.
The order of vanishing of the Ruelle zeta function at O can be expressed as
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306 M. Cekié et al.

the alternating sum of the dimensions of the spaces of generalized resonant
k-forms, see (2.59):

4
mg(0) = Y _(—1)* dim Resy™ .
k=0

Thus the problem reduces to understanding the spaces Res‘é’OO for k =
0,1, 2,3,4. The proof of Theorem 1 computes their dimensions, listed in
the table below, from which the formulas for mg (0) follow immediately. See
Theorem 2 in §3 for the hyperbolic case and Theorem 3 in §4, as well as §4.4,
for the case of generic perturbations.

Dimension of Hyperbolic Perturbation
Re58 = Resg’C>o 1 1

Res) = Resy ™ 261(%) b1 (D)

Res] bi(Z)+2 b1(Z) +2
Resg? = Resg™ 261(2) +2 b1(D) +2
Res = Resy ™ 261(3) b1 (D)

Resg = Resg’oo 1 1

Note that the semisimplicity condition holds for £k = 0, 1, 3, 4 in both the
hyperbolic case and for generic perturbations. However, semisimplicity fails
for k = 2 in the hyperbolic case (assuming b1 (%) > 0), and it is restored for
generic perturbations. Also, since bp(M) = b1(X) + 1 (see (2.28)), we may
interpret the dimension of Resg in the perturbed case as the ‘topological part’
coming from the bijection with the de Rham cohomology group H2(M; C)
and the extra invariant form do.

The cases k = 0, 4 of the above table are well-known: the semisimplicity
condition holds and Resg, Resg are spanned by 1, do A da, see Lemma 2.4.

One can also see that the map u +— da A u gives an isomorphism from Res(l)"lZ

to Resg’z. Thus it remains to understand the spaces Res](()’Oo for k = 1,2 and
this is where the situation gets more complicated.

The spaces Res](‘) N ker d of resonant states that are closed forms play a dis-
tinguished role in our argument. Similarly to [21] we introduce linear maps
from Res](‘) Nker d to the de Rham cohomology groups HX(M; C), see (2.61).
We show that the map 1 is an isomorphism, see Lemma 2.8. This gives the
dimension of the space of closed forms in Res(l): since by (M) = b1 (2),

dim(Res) Nkerd) = b1 ().
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The Ruelle zeta function at zero for nearly hyperbolic 307

In the hyperbolic case, the other b1 (2)-dimensional space of non-closed forms
in Res(l) is obtained by rotating the closed forms by /2 in the dual unstable
space, see §3.3. This rotation commutes with the geodesic flow because the
geodesic flow is conformal on the stable/unstable spaces, see (3.7). This addi-
tional symmetry, which is only present in the hyperbolic case, is related to
the presence of a closed 2-form ¢ € C*(M; Q%) which is invariant under
the geodesic flow and is not a multiple of do, see §3.2.3. The space Res(z) is
spanned by d«, v, and the differentials du where u are the non-closed forms
in Res(l), see §3.4. We also show in §3.4 that each du € d (Res(l)) lies in the
range of Ly, producing b1 (%) Jordan blocks for the operator P (.

In the case of the perturbation g, = ¢ 2"Pgy, we use first variation tech-
niques and make the following nondegeneracy assumption (see §4.4): for the
spaces Res(l), Res(l) .. and the contact form o defined using the hyperbolic met-
ric gg, and denoting by ny, : M = S¥ — X the projection map, we assume
that

(du, duy) — f (rxb)a A du A du,  defines a nondegenerate pairing
M

on d(Res)) x d(Res),). (1.3)

Under the assumption (1.3), we show that the non-closed 1-forms in Res(l) move
away once T becomes nonzero (i.e. they turn into generalized resonant states
for nonzero Pollicott—Ruelle resonances), see §4.1. Thus for 0 < |7| < ¢ all
the resonant 1-forms are closed and we getdim Res(l) = b1(X). Further analysis
shows that semisimplicity is restored for k = 2 and dim Res(z) =b1(X)+ 2.

It remains to show that the nondegeneracy assumption (1.3) holds for a
generic choice of the conformal factor b € C*°(Z; R). The difficulty here is
that b can only depend on the point in ¥ and not on elements of S¥ which
is where o A du A du, lives. We reduce (1.3) to the following statement
on nontriviality of pushforwards (see Proposition 4.10): for each real-valued
resonant 1-form for the hyperbolic metric u € Res(l) we have

du #0 = 75, (¢ Adu A T*(du)) #0. (1.4)

Here J : (x,v) = (x, —v) is the antipodal map on M = S¥ and 7y, is the
pushforward of differential k-forms on M to (k — 2)-forms on X obtained by
integrating along the fibers, see (2.19).

The statement (1.4) concerns resonant 1-forms for the hyperbolic metric g =
gH, which are relatively well-understood. However, it is complicated by the
fact that s, (@ Adu A J*(du)) is merely a distribution, so we cannot hope to
show it is nonzero by evaluating its value at some point. Instead we pair it with
functions in C°°(X) which have to be chosen carefully so that we can compute
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the pairing. More precisely, we prove the following identity (Theorem 5 in §5):
Q4F = —¢Aglo|2 where 7y (@ Adu A J*(du)) = Fdvolg. (1.5)

Here d voly is the volume formon (X, g), A, is the Laplace—Beltrami operator,
Q4 : D'(X) - C*(X) is a naturally defined smoothing operator, and

0 =7y, (doa Au) € CP(E; T*Y)

is proved to be a nonzero harmonic 1-formon (X, g). The identity (1.5) implies
the nontriviality statement (1.4): if F = O then |o |§ is constant, but hyperbolic
3-manifolds do not admit harmonic 1-forms of nonzero constant length as
shown in Appendix A. This finishes the proof of Theorem 1.

If one is interested instead in conformal perturbations of the contact form
o, then one needs to show that @ A du A du, is not identically 0 assuming that
u e Res(l), Uy € Res(l) . and du # 0, du, # 0. The latter follows from the full
support property for Pollicott—Ruelle resonant states proved by Weich [54].
See Theorem 4 in §4 for details.

We finally note that it would have been possible to introduce a flat unitary
twist in our discussion. Namely, we can consider a Hermitian vector bundle
over ¥ endowed with a unitary flat connection A. Resonant spaces can be
defined using the operator d4 and the holonomy of A provides a way to twist
the Ruelle zeta function as well, we refer to [12] for details. We do not pursue
this extension here in order to simplify the presentation.

1.2 A conjecture

Theorem 1 can be interpreted as follows: the hyperbolic metric has non-closed
resonant states due to the extra symmetries, and by destroying these symmetries
we make all resonant states closed. We thus make the following conjecture
about generic contact Anosov flows:

Conjecture 1 Let M be a compact 2n + 1 dimensional manifold and o a con-
tact 1-form on M such that the corresponding flow is Anosov with orientable
stable/unstable bundles. Define the spaces Resg, 0 <k <2n by (1.2) and
let y : Resg Nkerd — HX(M; C) be defined by (2.61). Then for a generic
choice of o we have:

(1) the semisimplicity condition holds in all degrees k =0, ..., 2n;
(2) d(Resg) =0forallk =0,...,2n;
(3) for k = 0,...,n the map my is onto, kermy = da A RCSS_Z, and

dim ker 7 = dim Resl(c)fz.
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The Ruelle zeta function at zero for nearly hyperbolic 309

Denoting by by (M) the k-th Betti number of M, we then have

/2]
dimResg = Y by2j(M), 0=k <n; dimResy'" = dim Res}
j=0
(1.6)

and the order of vanishing of the Ruelle zeta function at 0 is given by (see [20,
(2.5)])

2n n
mr(0) = Y (=D dimResf = Y (=D (n + 1 — be(M). (1.7)
k=0 k=0

The proof of part 2 of Theorem 1 (see Theorem 3 in §4, as well as §4.4)
shows that Conjecture 1 holds for n = 2 and geodesic flows of generic nearly
hyperbolic metrics (while the conjecture is stated for generic metrics that do
not have to be nearly hyperbolic). Moreover, [21] shows that Conjecture 1
holds for n = 1 and any contact Anosov flow.

Note that the conditions (1) and (2) of Conjecture 1 imply (3). Indeed, by
the work of Dang—Riviere [18, Theorem 2.1] the cohomology of the complex
(Res | d), with Res® > defined in (2.38) below with Ag := 0, is isomorphic
to the de Rham cohomology of M (with the isomorphism mapping each closed
form in Res® > to its cohomology class). By (2.43) and the semisimplicity
condition (1), we have Resk:® = Res](‘) Do A Res](‘)_l). By condition (2), we
have d(u + a A v) = da A v for all u € Resg, v € Res’é_l. If k < n,
then dan : Resg_1 — Res]é+1 is injective, so Res®® Nkerd = Res’é and
d(Resk—1:%) = da A Resg_z. This gives condition (3).

Note also that for n = 2 the set of contact forms satisfying Conjec-
ture 1 is open in C°°(M; T*M). Indeed, by the perturbation theory discussed
in §4.1, more specifically (4.18), if we take a sufficiently small perturbation

of a contact form satisfying Conjecture 1, then dim Res(l)’oo < b1 (M) and
o

dim Res(z)’ < br(M) + 1. By Lemma 2.8 we see that semisimplicity holds
fork =1andd (Res(])) = 0. Then Lemma 2.11 together with Lemma 2.4 give
all the conclusions of Conjecture 1. A similar argument might work in the case
of higher n. Thus the main task in proving the conjecture is to show that (1)
and (2) hold on a dense set of contact forms.

One can make a similar conjecture for geodesic flows of generic negatively
curved compact orientable n 4+ 1-dimensional Riemannian manifolds (X, g),
with M = SX. In particular, if n = 2m is even, then X is odd dimensional
and thus has Euler characteristic 0. By the Gysin exact sequence we have
br(M) = bp(X) for 0 < k < n and b,(M) = b,(X) + bo(X). Moreover, by
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310 M. Cekié et al.

Poincaré duality we have by (X) = by 41-x(X). Thus (1.7) becomes

mr(0) = bo(X) + Z(—l)k(2m + 1 =2k)bi(X2).
k=0

This is in contrast to the hyperbolic case, where by [25, Theorem 3]

mg(0) =Y " (=DF@m +2 = 20)bi ().
k=0

Note that we only expect Conjecture 1 to hold for generic flows/metrics rather
than, say, all non-hyperbolic metrics: for n = 2 the proof of Theorem 1 uses
first variation which by the Implicit Function Theorem suggests that there is
a ‘singular submanifold’ of metrics passing through the hyperbolic metric on
which Conjecture 1 fails.

1.3 Previous work

The treatment of Pollicott—Ruelle resonances of an Anosov flow as eigenval-
ues of the generator of the flow on anisotropic Banach and Hilbert spaces
has been developed by many authors, including Baladi [3], Baladi-Tsujii [9],
Blank—Keller—Liverani [5], Butterley—Liverani [6], Gou&zel-Liverani [33],
and Liverani [46,47] (some of the above papers considered the related setting
of Anosov maps). In this paper we use the microlocal approach to dynam-
ical resonances, introduced by Faure-Sjostrand [29] and developed further
by Dyatlov—Zworski [20]; see also Faure—Roy-Sjostrand [28], Dyatlov—
Guillarmou [15], as well as Dang—Riviere [17] and Meddane [48] for the
treatment of Morse—Smale and Axiom A flows.

The study of the relation of the vanishing order mg (0) to the topology of
the underlying manifold M has a long history, going back to the works of
Fried [25,26] for geodesic flows on hyperbolic manifolds. The paper [25] also
related the leading coefficient of {r at 0 to Reidemeister torsion, which is a
topological invariant of M. It considered the more general setting of a twisted
zeta function corresponding to a unitary representation. One advantage of such
twists is that one can choose the representation so that the twisted de Rham
complex is acyclic, i.e. has no cohomology, and then one expects ¢r to be
holomorphic and nonvanishing at 0.

In [27, p. 66] Fried conjectured a formula relating the Reidemeister torsion
with the value ¢r (0) for geodesic flows on all compact locally homogeneous
manifolds with acyclic representations. Fried’s conjecture was proved by Shen
[53] for compact locally symmetric reductive manifolds, following earlier
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The Ruelle zeta function at zero for nearly hyperbolic 311

contributions by Bismut [4] and Moscovici—Stanton [49]. The abovementioned
works [4,25,26,49,53] used representation theory and Selberg trace formulas,
which do not extend beyond the class of locally symmetric manifolds.

In recent years much progress has been made on understanding the relation
between the behavior of (g at 0, as well as the dimensions of Res](;’e, with
topological invariants for general (not locally symmetric) negatively curved
Riemannian manifolds and Anosov flows:

e Dyatlov—Zworski [21] computed mg (0) for any contact Anosov flow in
dimension 3 with orientable stable/unstable bundles, including geodesic
flows on compact oriented negatively curved surfaces;

e Dang—Riviere [18, Theorem 2.1] showed that the chain complex
(Res®®, d), where Resk*® = Resk*>(0) is defined in (2.39) below, is
homotopy equivalent to the usual de Rham complex and hence their coho-
mologies agree. One can see that Conjecture 1 is compatible with this
result, using (2.43) and the fact that (daA)F : Qg_k — Qg+k is a bundle
isomorphism for 0 < k < n;

e Hadfield [35] showed a result similar to [21] for geodesic flows on nega-
tively curved surfaces with boundary;

e Dang—Guillarmou—Riviere—Shen [16] computed dim Res/(;’Oo for hyper-
bolic 3-manifolds and proved Fried’s formula relating ¢g (0) to Reidemeis-
ter torsion for nearly hyperbolic 3-manifolds in the acyclic case; see also
Chaubet-Dang [11];

o Kiister—Weich [44] obtained several results on geodesic flows on compact
hyperbolic manifolds and their perturbations, in particular showing that
dim Resé = b1 (X) when dim X # 3;

e Ceki¢—Paternain [12] studied volume preserving Anosov flows in dimen-
sion 3, giving the first example of a situation where mg (0) jumps under
perturbations of the flow and thus is not topologically invariant;

e Borns-Weil-Shen [10] proved a result similar to [21] for nonorientable
stable/unstable bundles.

Our Theorem 1 gives a jump in mg (0) for geodesic flows on 3-manifolds and
indicates that the situation for the hyperbolic case is different from that in the
case of generic metrics. We stress that it is more difficult to obtain results for
generic metric perturbations (such as Theorem 1) than for generic perturbations
of contact forms (such as Theorem 4 in §4) due to the more restricted nature
of metric perturbations.

One of our main technical results (Theorem 5) bears (limited) similari-
ties to known pairing formulas for Patterson—Sullivan distributions such as
those established by Anantharaman—Zelditch [2], Hansen—Hilgert—Schroder
[37], Dyatlov—Faure—Guillarmou [14], and Guillarmou—Hilgert—Weich [32].
We briefly discuss this in the Remark after Theorem 5.
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1.4 Structure of the paper

e §2 discusses contact Anosov flows on 5-manifolds and sets up the scene for
the rest of the paper. In particular, it introduces Pollicott—Ruelle resonances,
(co-)resonant states, dynamical zeta functions, de Rham cohomology, and
geodesic flows. It also proves various general lemmas about the maps 7y
and semisimplicity.

e §3 gives a complete description of generalized resonant states at O for
hyperbolic 3-manifolds, proving part 1 of Theorem 1. The approach in this
section is geometric, as opposed to the algebraic route taken in [25] and
[16].

e §4 discusses contact perturbations of geodesic flows on hyperbolic 3-
manifolds. It proves Theorem 3 which is a general perturbation statement
using the nondegeneracy condition (1.3), as well as Theorem 4 on generic
contact perturbations. It also gives the proof of part 2 of Theorem 1, relying
on the key identity (1.5).

e §5 contains the proof of the identity (1.5) (stated in Theorem 5), using a
change of variables, a regularization procedure, and the results of §3.

e Finally, Appendix A gives a proof of the fact that hyperbolic 3-manifolds
have no nonzero harmonic 1-forms of constant length.

2 Contact 5-dimensional flows

In this section we study general contact Anosov flows on 5-dimensional mani-
folds. Some of the statements below apply to non-contact Anosov flows and to
other dimensions, however we use the setting of 5-dimensional contact flows
for uniformity of presentation.

2.1 Contact Anosov flows

Assume that M is a compact connected 5-dimensional C* manifold and « €
C®(M; T*M) is a contact 1-form on M, namely

dvoly :=a Ada ANda =0 everywhere.

We fix the orientation on M by requiring that d vol, be positively oriented.
Let X € C®°(M; T M) be the associated Reeb field, that is the unique vector
field satisfying

ixa =1, ixda =0. 2.1)
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The Ruelle zeta function at zero for nearly hyperbolic 313

Note that this immediately implies (where Ly denotes the Lie derivative)
Lxoa =dixa +1xda = 0.
We assume that the flow generated by X,
o =X M- M,

is an Anosov flow, namely there exists a continuous flow/unstable/stable
decomposition of the tangent spaces to M,

TyM = Eo(p) ® Eu(p) ® Es(p), p €M, Eo(p) :=RX(p) (2.2)

and there exist constants C,0 > 0 and a smooth norm | e | on the fibers of
TM such that forall p € M, & € T,M, and ¢t

—6lt] . t<0, €€ E,(p) or
ldei(p)§] < Ce &) if (>0, £eEp). (2.3)

The flow/unstable/stable decomposition gives rise to the dual decomposition
of the cotangent spaces to M,

TyM = E§(p) ® E;j(p) ® Ef (p), Ej:=(E.®Ey)", o
E}:=(Eo® E,)". E}:=(E)®E,)".
Since Lya = 0, we see from (2.3) that «|g, £, = 0 and thus
E; = Ra.

Since « is a contact form and da vanishes on £, x E,, and on E x E (as follows
from (2.3) and the fact that Lyda = 0), we have dim E,, = dim E; = 2.

2.1.1 Bundles of differential forms
We define the vector bundles over M
Q= AN(T*M), QF = {we Q" |ixw =0}~ ANE}®E). (2.5)

Note that smooth sections of QF are differential k-forms on M.
We use the de Rham cohomology groups

{u e C®M; Q5 | du =0}

keoag. —
B O = S o e eon @1y

(2.6)

@ Springer



314 M. Cekié et al.

Unless otherwise stated, we will always take F to be complexified. We define
the Betti numbers

bi(M) := dim H*(M; C).
Since M is connected and by Poincaré duality we have
bo(M) =1, bi(M) = bs_;(M).
The bundles Q* and Q’(‘) are related as follows:
k ~ Ok k—1
QF ~ Qp @ Q
with the canonical isomorphism and its inverse given by
ur> (u—oANixu,txu), v,w)—v+aoAw. 2.7)
Denote by da A the map u — da Au and by daA? the map u — da Ada Au,
then we have linear isomorphisms (as both maps are injective and image and
domain have the same dimension)
dan: Q) — @3, dan?: Q) — Qf. (2.8)
We also have a nondegenerate bilinear pairing between sections of Q’(‘) and
Qg_k given by
ue COM; Qb), uy € COM; Q5 > (u,uy) = /Ma AU A Uy
(2.9)
which in particular identifies the dual space to L*(M; 5215) with L2(M; Qg_k).
IfA:C®(M,; Q’é) — D'(M; Qg) is a continuous operator, where D’ denotes
the space of distributions, then its transpose operator is the unique operator

AT . c*wMm; Qg_k) — D'(M; Qg_k) satisfying

(Au, ) = (u, ATuy)) forall ue C®(M;Qb), u. e C(M; Q75).
(2.10)

2.2 Geodesic flows

A large class of examples of contact Anosov flows is given by geodesic flows
on negatively curved manifolds, which is the setting of the main results of this
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The Ruelle zeta function at zero for nearly hyperbolic 315

paper. More precisely, assume that (X, g) is a compact connected oriented
3-dimensional Riemannian manifold. Define M to be the sphere bundle of X
and let Ty, be the canonical projection:

M:=8SE={x,v)eTZ: |vlg=1}, g M —> Z.

Define the canonical, or tautological, 1-form « on M as follows: for all £ €
T(x,v) M »

(a(x,v),§) = (v, drs(x, v)§),. (2.11)
Then « is a contact form, the corresponding flow ¢ is the geodesic flow, and
d voly, is the standard Liouville volume form up to a constant, see for instance
[52, §1.3.3]. If the metric g has negative sectional curvature, then the flow ¢,

is Anosov, see for instance [42, Theorem 3.9.1].
We have the time reversal involution

J: M- M, Jx,v)=(x,—v) (2.12)

which is an orientation reversing diffeomorphism satisfying
Ja=—a, T'X=-X, go=To¢p_, (2.13)

and the differential of 7 maps Eyg, E,, E; into Ey, E;, E,,.

2.2.1 Horizontal and vertical spaces

Recall from (2.2) that an Anosov flow induces a splitting of the tangent bundle
T M into the flow, unstable, and stable subbundles. For geodesic flows there
is another splitting, into horizontal and vertical subbundles, which we briefly
review here. See [52, §1.3.1] for more details.

Let (x,v) € M = SX. The vertical space at (x, v) is the tangent space to
the fiber S, X:

V(x,v) :=kerdns(x,v) C T, M.

To define a complementary horizontal subspace of 7, )M, we use the metric.
The connection map of the metric is the unique bundle homomorphism I :
TM — T X covering the map my such that for any curve on M written as

p() = (x(®),v@), x@)eX, v()eSink
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we have
Kp@)pt) =Do(@) € Ty X, (2.14)

where D;v () denotes the Levi—Civita covariant derivative of the vector field

v(t) along the curve x () (see e.g. [ 13, Proposition 2.2] for a precise definition).

Note that since d;(v(t), v(t)), = 0, the range of K(x, v) is g-orthogonal to v.
We now define the horizontal space as

H(x,v) :=ker C(x,v) C Tx,nM.
We have the splitting
Tx,wM =H(x,v) ® V(x,v), dimH(x,v) =3, dimV(x,v)=2
and the isomorphisms (here {v}* is the g-orthogonal complement of v in 7, X))
drys(x,v) :H(x,v) > T2, K(x,v):V(x,v) —> {v}J‘
which together give the following isomorphism T, /WM — T, X @ {v}*:
§—> (Gn.8v), §m=dns(x,v)§, &y =K(x, v)é. (2.15)

We use the map (2.15) to identify 7, ,yM with T, X & (v}+.
Under the identification (2.15), the contact form « and its differential satisfy
(see [52, Proposition 1.24])

a(x,v)(§) = (En. v)g,

(2.16)
do(x,v)(&,n) = Ev.nu)g — EH.nv)g-

Using the splitting (2.15), we define the Sasaki metric (e, ®)s on M as follows:

&, ms:=En,nu)g + Ev.nv)e. (2.17)

We finally remark that the generator X of the geodesic flow has the following
form under the isomorphism (2.15):

X(x,v)y =v, X(x,v)y =0. (2.18)
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2.2.2 De Rham cohomology of the sphere bundle

We now describe the de Rham cohomology of M = S¥ in terms of the
cohomology of X. To relate the two, we use the pullback operators

g CO(E QN - C®M; @5, 0<k<3
and the pushforward operators defined by integrating along the fibers of SX
Ts, : C¥(M; Q5 — C®(z; @2), 2<k<5. (2.19)

Here the orientation on each fiber S, ¥ is induced by the orientation on X: if
v, V1, V2 is a positively oriented orthonormal basis of 7 2, then the vertical
vectors corresponding to vy, v2 form a positively oriented basis of 75, (S, X).
The pushforward operation | can be characterized as follows: if X1, ..., Xx_2
are vector fields on ¥ and X1, ..., Xy_o are vector fields on M projecting to
X1, ..., Xk—o under dmry, then for any w € C*(M, QY andx e

nz*a)(x)(Xl,...,ng):/ UKy - LK, @
s

Another characterization of my,, is that for any € C*(M; Q%) and any
compact k — 2 dimensional oriented submanifold with boundary ¥ C X, we

have
f w=/n2*a). (2.20)
g (V) Y

Here the orientation on 7y, ! (Y) is induced by the orientationon Y. If Y = X
is the entire base manifold, then the orientation on 7y, 1(E) = §¥ featured
in (2.20) is opposite to the usual orientation on M = S%, induced by d vol, =
o Ada A da. In fact, using (2.16) we can compute that

Ts4d voly = —8md volg, (2.21)

where d volg is the volume form on ¥ induced by g and the choice of
orientation, by applying d vol, to the vectors X = (v, 0), (v, 0), (v2,0),
(0, v1), (0, vp) written using the horizontal/vertical decomposition (2.15),
where v, vy, v2 is a positively oriented g-orthonormal basis on X.
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The pushforward map has the following properties (see for instance [8,
Propositions 6.14.1 and 6.15] for the related case of vector bundles):

Ty (01 A (TEw))) = (T5,01) A ). (2.23)

Note that the maps 7., 75 can also be defined on distributional forms. For
7y, this follows from the fact that pushforward is always well-defined on
distributions as long as the fibers are compact and for the pullback 75, this
follows from the fact that 7y, is a submersion [38, Theorem 6.1.2].

Since the map J defined in (2.12) is an orientation reversing diffeomor-
phism of the fibers of S, we also have

Ty (T w) = —n5, 0. (2.24)

Since pullbacks commute with the differential d, and by (2.22), the opera-
tions 5., ., induce maps on de Rham cohomology, which we denote by the
same letters:

nf HY(Z;C) - HY(M; C), ny, : HY(M;C) » H*2(3; ©).

From the Gysin exact sequence (see for instance [8, Proposition 14.33], where
the Euler class is zero since ¥ is three-dimensional; alternatively one can use
Kiinneth formulas and the fact that every compact orientable 3-manifold is
parallelizable) we have isomorphisms

ni:HY(Z;C) - H'(M;C), ny,: H*(M;C) - H*(Z;C) (2.25)
and the exact sequences
2 > 2 Ty 0
0—-> H(X;C) = H"M;C) — H'(X;C) — 0, (2.26)
3 > 3 Ty 1
00— H (Z;C)— H'M;C)— H (X;C) — 0. (2.27)
In particular, we get formulas for the Betti numbers of the sphere bundle M:

bo(M) = bs(M) =1, b1(M) = bs(M) = b1(%),
by(M) = b3(M) = bi(Z) + 1. (2.28)
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2.3 Pollicott—Ruelle resonances

We now review the theory of Pollicott—Ruelle resonances in the present setting.
Define the first order differential operators

Pr = —ily : C®(M; Q5 — C®M; QY),
Pio = —iLy : C®(M; Q) — C®(M; Q).
Note that Py o is the restriction of P to C*° (M, Q’(‘)) which is the space of all

u € C®(M; QF) which satisfy txu = 0.
For A € C with Im X large enough, the integral

OO . .
R (1) ::i/ eMeT P qr - L2(M; Q5 — L2(M; Q6 (2.29)
0

converges and defines a bounded operator on L_2 which is holomorphic in A.
Here the evolution group e~ is given by e~/ Py = @*,u. It is straightfor-
ward to check that Ry (}) is the L2-resolvent of Py:

Ri(W) = (P — )71 LA(M: Q5 — L2(M: Q5), Imar > 1, (2.30)

where we treat Py as an unbounded operator on L? with domain {u e
L*(M; Q%) | Pru € L*(M; QF)} and Pru is defined in the sense of distri-
butions.

2.3.1 Meromorphic continuation

Since ¢; is an Anosov flow, the resolvent Ry (A) admits a meromorphic con-
tinuation

Ri(A) : C®(M; QY - D'(M; @5, A eC,

see for instance [20, §3.2] and [29, Theorems 1.4, 1.5]. The proof of this con-
tinuation shows that Ry (1) acts on certain anisotropic Sobolev spaces adapted
to the stable/unstable decompositions, see e.g. [20, §3.1]; this makes it pos-
sible to compose the operator Ry (A) with itself. Instead of introducing these
spaces here, we use the spaces of distributions

(M Q5 = {u e D'(M; QF) | WF(u) C T}, (2.31)

where I' € T*M\O0 is a closed conic set and WF (1) denotes the wavefront set
of a distribution u. These spaces come with a natural sequential topology, see
[38, Definition 8.2.2].
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We have the wavefront set property of Ry () proved in [20, (3.7)]:
WF' (Rr(A) C # = A(T*M)U YL U(E} x EY), (2.32)

where A(T*M) C T*M x T*M is the diagonal and Y = {(¢; (x), dg; (x)~T
E,x,&) |t >0,&(X(x)) = 0}; for an operator B : C*°(M) — D'(M) with
Schwartz kernel Kz € D'(M x M), we denote WF'(B) = {(x,&,y, —n) |
(x,&,v,n) € WE(Kp)} € T*(M x M). The Schwartz kernel of R;(})
is meromorphic in A with values in D), where #' = {(x,&,y,—n) |
(x,&,y,n) € #}. By the wavefront set calculus [38, Theorem 8.2.13] and
since E; N EY = 0, Ri(A) defines a meromorphic family of continuous oper-
ators

Ry () : D (M; Q5 - D, (M Qr, (2.33)

where we view E)' C T*M as a closed conic subset and define D%* by (2.31).

Note that differential operators (in particular, d, tx, Lx) define continuous
maps on the regularity classes D’... We have

Re() (P — Mu = (P — R (G)u = u forallu € Dy, (M; Q).
(2.34)

ForIm A > 1 and u € C®(M; Q) this follows from (2.30); the general case
follows from here by analytic continuation and since C* is dense in D/.
We also have the commutation relations

dRr(Mu = Rkr1(Mdu, txRy(Mu = Rre—1(M)ixu forall u e D};;(M; Qk).
(2.35)

As with (2.34) it suffices to consider the case Im A > 1 and u € C®(M; ),
in which (2.35) follows from (2.29) and the fact that d and ty commute with
9L,

The poles of the family of operators Ry (A) are called Pollicott—Ruelle res-
onances on k-forms. At each pole 1o € C we have an expansion (see for
instance [20, (3.6)])

Jk (ho) i—1
(P — 20)’ ™ Tk (1o)
Re() = R (s ho) = ) e (2.36)
= (A — 20)/

where RH (A; Ao) : D’E* (M; Q5 - D, *(M Q) is a family of operators
holomorphlc ina nelghborhood of Ao, J (Ao) > 1 is an integer, and [T (Xg) :
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DY.(M; Qk — DY (M; Q¥) is a finite rank operator commuting with Py

and such that (Py — Ag)*?0TT; (Ag) = 0.
Taking the expansions of (2.35) at Ao we see that

dTli(Ao) = g1 (Mo)d, 1xTg(ho) = Tli—1(Ro)tx. (2.37)

2.3.2 Resonant states

The range of the operator I (Ag) is equal to the space of generalised resonant
states (see for instance [20, Proposition 3.3])

Res®(h) := U Res"“ (%), (2.38)
>1
where we define
Res"“(00) = {u € D (M; QF) | (P — 1o)'u = 0}. (2.39)

We define the algebraic multiplicity of Ao as a resonance on k-forms by
my(Ag) ;= rank [Ty (Lg) = dim Resk’oo(ko). (2.40)
The geometric multiplicity is the dimension of the space of resonant states
Res¥(1o) := Res® ' (Ag) = {u € D, (M Q5 | (P — Ao)u = 0.

We say aresonance Ag of Py is semisimple if the algebraic and geometric multi-

plicities coincide, that is Res®* (19) = Resk(1¢). This is equivalent to saying

that J; (Ag) = 1in (2.36). Another equivalent definition of semisimplicity is
u € Dipy(M; 5, (Ph—20)u=0 = (Pr—rou=0. (241)

We note that the operators I (1) are idempotent. In fact, applying the Laurent

expansion (2.36) at Ag to u € Resk’e(kl) and using the identity Ry(M)u =
— Zf.;})(k — A1) /N (P — A1) u we see that

I, (A ifA1 = A
(o) Ty (o) = | E(0) T4 = 2o, (2.42)
0 if A1 # Ag.
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2.3.3 Operators on the bundles Qg

The above constructions apply equally as well to the operators Pk ¢ (except
that the operator d does not preserve sections of X, so the first commutation
relation in (2.37) does not hold, and the second one is trivial); we denote the
resulting objects by

R 0(A), Ji,0(ro), R;fo()»;?»o), Ty 0(A0), RGSS’Z(KO), mp.0(Ao).

Under the isomorphism (2.7) the operator Py is conjugated to Py o @ Pr—_1.0.
Therefore (2.7) gives an isomorphism

Res"‘ (1) ~ Resy (o) ® Resy " (ho). (2.43)
Moreover, we get for all u € D/.. (M, Qk)
I (Lo)u = Tro(ho) (e —a Atxu) +a ATl—10(ko)txu. (2.44)
Since Lxda = 0, the operations (2.8) give rise to linear isomorphisms

dan : Res(l)’z()»o) — Resg’z(ko), dan® Resg’e(ko) — Resg’e()\o)

(2.45)
which in particular give the equalities
mi,0(ro) = m3,0(ro), mo,0(ro) = ma4,0(Ro). (2.46)
2.3.4 Transposes and coresonant states
Since Lxa = 0 and fM Lxw = 0 for any 5-form w, we have
(Peo)l = —Py_jo, k=0,1,2,3,4, (2.47)

where the transpose is defined using the pairing ((e, o)), see (2.10). Thus the
transpose of the resolvent (Rk,o()n))T is the meromorphic continuation of the
resolvent corresponding to the vector field — X ; the latter generates an Anosov
flow with the unstable and stable spaces switching roles compared to the ones
for X. Similarly to (2.33) we have

(R, 0O = D (M; 47F) — Dl (M; 2575, (2.48)

where D', is the space of distributional sections with wavefront set contained
s

in E. Same applies to the transposes of the operators ngo (X5 Ap) and ITx o (o)
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appearing in (2.36). The range of (l'[k,o()»o))T is the space of generalised

4—k,00
coresonant states Res, (Ao) where

k, k.l
Reso*oo(ko) = U Res, (10),
=1

Resgy (o) := (uy € Dppe (M: 20) | (Pro + 20) us = 0).
The space of coresonant states is defined as
Resg, (ho) := Resp, (h0) = {uts € Dipe (M3 2§) | (Peo + Ao)us = O},
Similarly to (2.45) we have the isomorphisms

dan : Res(l)f (Ag) — Resé;f3 (o), dan®: Resgf()\o) — Resgf()\o).
(2.49)

In the special case when ¢ is a geodesic flow with the time reversal map J
defined in (2.12), the pullback operator J* gives an isomorphism between
D%Zf (M, 916) and D%j (M, 8215). Moreover, J*Piro = —Pr,0J*. This gives
rise to isomorphisms between the spaces of generalised resonant and coreso-
nant states

J* i Resg  (0) — Resg.’ (o). (2.50)
2.3.5 Coresonant states and pairing

Since E;; and E7 intersect only at the zero section, we can define the product
uAnu, €D(M,; Qg) and thus the pairing ((u, u)) for any u € D) ;(M; QS),
Uy € D%f (M; Qg_k), see [38, Theorem 8.2.10]. Note that this pairing is
nondegenérate since both D', and D, contain C*°, and the transpose for-
mula (2.10) still holds since Clé’o is densse in D%; and in D%zﬁ. In particular, we
have a pairing

u € Resy ™ (ho), us € Resg, " (ko) > (u,us) € C.  (2.51)

This pairing is nondegenerate. Indeed, assume that u € Resg’oo(ko) and
(u,u) = 0 for all u, € Resg;k’oo(ko). Since Resg;k’oo(ko) is the range
of (Hk,o(Xo))T, we have

0= (u. (Mro(o)’ @) = (Mro(o)u. ¢)
(u, ) forall p € C®(M; 25,
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where the last equality follows from the fact that l'Ik,o(ko)2 = Ik 0(Xo) and u
is in the range of ITg o(Xo). It follows that u = 0. Similarly one can show that
if (u, uy) = 0 for some u, € Resg;k’oo(ko) and all u € Resg’oo(ko), then
Uy, = 0.

Consider the operators on finite dimensional spaces

Pro — 1o : Resg™(ho) — Resy ™ (%), (2.52)
— P40 — Ao : Resg. ™ (1) — Resg, “®(R0), (2.53)
which are transposes of each other with respect to the pairing (2.51). The

kernels of £-th powers of these operators are Res’é’e(ko) and Resg;k’e()no),
thus (using the isomorphisms (2.49))

dim Resé’g (Ap) = dim Resg;k’e (Ap) = dim Res](;f (o). (2.54)

We now give a solvability result for the operators Py ¢. It follows from the
Fredholm property of these operators on anisotropic Sobolev spaces but we
present instead a proof using the Laurent expansion (2.36).

Lemma 2.1 Assume that w € D%* (M, Qlé). Then the equation

(Po—rou=w, ueDp(M; Qb (2.55)
has a solution if and only if w satisfies the condition
(w,u) =0 forall u, € Resg,"*(ro). (2.56)

Proof First of all, if (2.55) has a solution u, then for each u, € Resg;k (Ag)
we have

(w, us) = ((Pr,o — 2o)u, us)) = —{u, (Pa—r,0 + Ao)us) = 0,

that is the condition (2.56) is satisfied.

Now, assume that w satisfies the condition (2.56); we show that (2.55) has
a solution. We start with the special case when w € Resé’oo(ko). We use the
pairi