
Invent. math. (2022) 229:303–394
https://doi.org/10.1007/s00222-022-01108-x

The Ruelle zeta function at zero for nearly
hyperbolic 3-manifolds
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Abstract We show that for a generic conformal metric perturbation of a com-
pact hyperbolic 3-manifold � with Betti number b1, the order of vanishing of
the Ruelle zeta function at zero equals 4 − b1, while in the hyperbolic case
it is equal to 4− 2b1. This is in contrast to the 2-dimensional case where the
order of vanishing is a topological invariant. The proof uses the microlocal
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approach to dynamical zeta functions, giving a geometric description of gen-
eralized Pollicott–Ruelle resonant differential forms at 0 in the hyperbolic case
and using first variation for the perturbation. To show that the first variation
is generically nonzero we introduce a new identity relating pushforwards of
products of resonant and coresonant 2-forms on the sphere bundle S� with
harmonic 1-forms on �.

Let (�, g) be a compact connected oriented 3-dimensional Riemannian
manifold of negative sectional curvature. The Ruelle zeta function

ζR(λ) =
∏

γ

(
1− eiλTγ

)
, Im λ� 1 (1.1)

is a converging product for Im λ large enough and continues meromorphically
to λ ∈ C as proved by Giulietti–Liverani–Pollicott [34] and Dyatlov–Zworski
[20]. Here the product is taken over all primitive closed geodesics γ on (�, g)
and Tγ is the length of γ .

In this paper we study the order of vanishing of ζR at λ = 0, defined as
the unique integer mR(0) such that λ−mR(0)ζR(λ) is holomorphic and nonzero
at 0. Our main result is

Theorem 1 Let (�, gH ) be a compact connected oriented hyperbolic 3-
manifold and b1(�) be the first Betti number of �. Then:

1. For (�, gH ) we have mR(0) = 4− 2b1(�).
2. There exists an open anddense setO ⊂ C∞(�;R) such that for anyb ∈ O ,

there exists ε > 0 such that for any τ ∈ (−ε, ε)\{0} and gτ := e−2τbgH ,
the manifold (�, gτ ) has mR(0) = 4− b1(�).

Part 1 of Theorem 1 was proved by Fried [25, Theorem 3] using the Selberg
trace formula. The novelty is part 2, which says that for generic conformal
perturbations of the hyperbolic metric the order of vanishing of ζR equals
4−b1(�). In particular, when b1(�) > 0 (fulfilled inmany cases, in particular
for mapping tori over pseudo-Anosov maps [24, Theorem 13.4]), mR(0) is
not topologically invariant. Theorem 1 is the first result on instability of the
order of vanishing of ζR at 0 for Riemannian metrics. It is in contrast to the 2-
dimensional case,whereDyatlov–Zworski [21] showed thatmR(0) = b1(�)−
2 for any compact connected oriented negatively curved surface (�, g), and
is complementary to a recent breakthrough on the (acyclic) Fried conjecture
by Dang–Guillarmou–Rivière–Shen [16], see §1.3 below.

A result similar to Theorem 1 holds for contact perturbations of S�, see
Theorem 4 in §4.
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The Ruelle zeta function at zero for nearly hyperbolic 305

1.1 Outline of the proof

We now outline the proof of Theorem 1. We use the microlocal approach to
Pollicott–Ruelle resonances and dynamical zeta functions, which we review
here – see §2 for details and §1.3 for a historical overview. Let M = S�
be the sphere bundle of (�, g) and X ∈ C∞(M; T M) be the generator of
the geodesic flow. The geodesic flow is a contact flow, i.e. there exists a 1-
form α ∈ C∞(M; T ∗M) such that ιXα = 1, ιXdα = 0, and α ∧ dα ∧ dα
is a nonvanishing volume form. When g has negative curvature, the geodesic
flow is Anosov, i.e. the tangent spaces TρM decompose into a direct sum of the
flow, unstable, and stable subspaces. Denote by E∗u , E∗s the dual unstable/stable
subbundles of the cotangent bundle T ∗M , that is, E∗u , E∗s are the annihilators of
unstable/stable plus flow directions; these define closed conic subsets of T ∗M .

Define the spaces of resonant k-forms at 0

Resk0 := {u ∈ D′(M;�k) | ιXu = 0, LXu = 0, WF(u) ⊂ E∗u }. (1.2)

Here �k is the (complexified) bundle of k-forms, LX = dιX + ιXd is the
Lie derivative with respect to X , and for any distribution u ∈ D′(M;�k) we
denote by WF(u) ⊂ T ∗M\0 the wavefront set of u, see for instance [38,
Chapter 8]. The wavefront set condition makes Resk0 into a finite dimensional
space, which is a consequence of the interpretation of Resk0 as the eigenspace
at 0 of the operator Pk,0 := −iLX acting on certain anisotropic Sobolev spaces
tailored to the flow (see [29, Theorem 1.7] and [21, Lemma 2.2]). We similarly
define the spaces of generalized resonant k-forms at 0

Resk,�0 := {u ∈ D′(M;�k) | ιXu = 0, L�
Xu = 0, WF(u) ⊂ E∗u },

Resk,∞0 :=
⋃

�≥1
Resk,�0 .

The semisimplicity condition for k-forms states that Resk,∞0 = Resk0, which
means that the operator Pk,0 has no nontrivial Jordan blocks at 0. We also have
the dual spaces of generalized coresonant k-forms at 0, replacing E∗u with E∗s
in the wavefront set condition:

Resk,�0∗ := {u∗ ∈ D′(M;�k) | ιXu∗ = 0, L�
Xu∗ = 0, WF(u) ⊂ E∗s }.

Since E∗u ∩E∗s = {0}, wavefront set calculus makes it possible to define u∧u∗
as a distributional differential form as long as WF(u) ⊂ E∗u , WF(u∗) ⊂ E∗s .

The order of vanishing of the Ruelle zeta function at 0 can be expressed as
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306 M. Cekić et al.

the alternating sum of the dimensions of the spaces of generalized resonant
k-forms, see (2.59):

mR(0) =
4∑

k=0
(−1)k dim Resk,∞0 .

Thus the problem reduces to understanding the spaces Resk,∞0 for k =
0, 1, 2, 3, 4. The proof of Theorem 1 computes their dimensions, listed in
the table below, from which the formulas for mR(0) follow immediately. See
Theorem 2 in §3 for the hyperbolic case and Theorem 3 in §4, as well as §4.4,
for the case of generic perturbations.

Dimension of Hyperbolic Perturbation

Res00 = Res0,∞0 1 1

Res10 = Res1,∞0 2b1(�) b1(�)

Res20 b1(�)+ 2 b1(�)+ 2

Res2,20 = Res2,∞0 2b1(�)+ 2 b1(�)+ 2

Res30 = Res3,∞0 2b1(�) b1(�)

Res40 = Res4,∞0 1 1

Note that the semisimplicity condition holds for k = 0, 1, 3, 4 in both the
hyperbolic case and for generic perturbations. However, semisimplicity fails
for k = 2 in the hyperbolic case (assuming b1(�) > 0), and it is restored for
generic perturbations. Also, since b2(M) = b1(�) + 1 (see (2.28)), we may
interpret the dimension of Res20 in the perturbed case as the ‘topological part’
coming from the bijection with the de Rham cohomology group H2(M;C)
and the extra invariant form dα.

The cases k = 0, 4 of the above table are well-known: the semisimplicity
condition holds and Res00, Res

4
0 are spanned by 1, dα ∧ dα, see Lemma 2.4.

One can also see that the map u �→ dα∧ u gives an isomorphism from Res1,�0

to Res3,�0 . Thus it remains to understand the spaces Resk,∞0 for k = 1, 2 and
this is where the situation gets more complicated.

The spaces Resk0 ∩ ker d of resonant states that are closed forms play a dis-
tinguished role in our argument. Similarly to [21] we introduce linear maps πk
from Resk0 ∩ ker d to the de Rham cohomology groups Hk(M;C), see (2.61).
We show that the map π1 is an isomorphism, see Lemma 2.8. This gives the
dimension of the space of closed forms in Res10: since b1(M) = b1(�),

dim(Res10 ∩ ker d) = b1(�).
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The Ruelle zeta function at zero for nearly hyperbolic 307

In the hyperbolic case, the other b1(�)-dimensional space of non-closed forms
in Res10 is obtained by rotating the closed forms by π/2 in the dual unstable
space, see §3.3. This rotation commutes with the geodesic flow because the
geodesic flow is conformal on the stable/unstable spaces, see (3.7). This addi-
tional symmetry, which is only present in the hyperbolic case, is related to
the presence of a closed 2-form ψ ∈ C∞(M;�2) which is invariant under
the geodesic flow and is not a multiple of dα, see §3.2.3. The space Res20 is
spanned by dα, ψ , and the differentials du where u are the non-closed forms
in Res10, see §3.4. We also show in §3.4 that each du ∈ d(Res10) lies in the
range of LX , producing b1(�) Jordan blocks for the operator P2,0.

In the case of the perturbation gτ = e−2τbgH , we use first variation tech-
niques and make the following nondegeneracy assumption (see §4.4): for the
spaces Res10,Res

1
0∗ and the contact form α defined using the hyperbolic met-

ric gH , and denoting by π� : M = S� → � the projection map, we assume
that

(du, du∗) �→
∫

M
(π∗�b)α ∧ du ∧ du∗ defines a nondegenerate pairing

on d(Res10)× d(Res10∗). (1.3)

Under the assumption (1.3), we show that the non-closed 1-forms inRes10 move
away once τ becomes nonzero (i.e. they turn into generalized resonant states
for nonzero Pollicott–Ruelle resonances), see §4.1. Thus for 0 < |τ | < ε all
the resonant 1-forms are closed andweget dim Res10 = b1(�). Further analysis
shows that semisimplicity is restored for k = 2 and dim Res20 = b1(�)+ 2.

It remains to show that the nondegeneracy assumption (1.3) holds for a
generic choice of the conformal factor b ∈ C∞(�;R). The difficulty here is
that b can only depend on the point in � and not on elements of S� which
is where α ∧ du ∧ du∗ lives. We reduce (1.3) to the following statement
on nontriviality of pushforwards (see Proposition 4.10): for each real-valued
resonant 1-form for the hyperbolic metric u ∈ Res10 we have

du 
= 0 �⇒ π�∗(α ∧ du ∧ J ∗(du)) 
= 0. (1.4)

Here J : (x, v) �→ (x,−v) is the antipodal map on M = S� and π�∗ is the
pushforward of differential k-forms on M to (k − 2)-forms on � obtained by
integrating along the fibers, see (2.19).

The statement (1.4) concerns resonant 1-forms for the hyperbolicmetric g =
gH , which are relatively well-understood. However, it is complicated by the
fact that π�∗(α∧du∧J ∗(du)) is merely a distribution, so we cannot hope to
show it is nonzero by evaluating its value at some point. Instead we pair it with
functions inC∞(�)which have to be chosen carefully so that we can compute
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the pairing.More precisely, we prove the following identity (Theorem5 in §5):

Q4F = −1
6�g|σ |2g where π�∗(α ∧ du ∧ J ∗(du)) = F d volg . (1.5)

Here d volg is the volume formon (�, g),�g is theLaplace–Beltrami operator,
Q4 : D′(�)→ C∞(�) is a naturally defined smoothing operator, and

σ := π�∗(dα ∧ u) ∈ C∞(�; T ∗�)

is proved to be a nonzero harmonic 1-formon (�, g). The identity (1.5) implies
the nontriviality statement (1.4): if F = 0 then |σ |2g is constant, but hyperbolic
3-manifolds do not admit harmonic 1-forms of nonzero constant length as
shown in Appendix A. This finishes the proof of Theorem 1.

If one is interested instead in conformal perturbations of the contact form
α, then one needs to show that α∧ du∧ du∗ is not identically 0 assuming that
u ∈ Res10, u∗ ∈ Res10∗ and du 
= 0, du∗ 
= 0. The latter follows from the full
support property for Pollicott–Ruelle resonant states proved by Weich [54].
See Theorem 4 in §4 for details.

We finally note that it would have been possible to introduce a flat unitary
twist in our discussion. Namely, we can consider a Hermitian vector bundle
over � endowed with a unitary flat connection A. Resonant spaces can be
defined using the operator dA and the holonomy of A provides a way to twist
the Ruelle zeta function as well, we refer to [12] for details. We do not pursue
this extension here in order to simplify the presentation.

1.2 A conjecture

Theorem 1 can be interpreted as follows: the hyperbolic metric has non-closed
resonant states due to the extra symmetries, andbydestroying these symmetries
we make all resonant states closed. We thus make the following conjecture
about generic contact Anosov flows:

Conjecture 1 Let M be a compact 2n+1 dimensional manifold and α a con-
tact 1-form on M such that the corresponding flow is Anosov with orientable
stable/unstable bundles. Define the spaces Resk0, 0 ≤ k ≤ 2n, by (1.2) and
let πk : Resk0 ∩ ker d → Hk(M;C) be defined by (2.61). Then for a generic
choice of α we have:

(1) the semisimplicity condition holds in all degrees k = 0, . . . , 2n;
(2) d(Resk0) = 0 for all k = 0, . . . , 2n;
(3) for k = 0, . . . , n the map πk is onto, ker πk = dα ∧ Resk−20 , and

dim ker πk = dim Resk−20 .

123



The Ruelle zeta function at zero for nearly hyperbolic 309

Denoting by bk(M) the k-th Betti number of M, we then have

dim Resk0 =
�k/2�∑

j=0
bk−2 j (M), 0 ≤ k ≤ n; dim Res2n−k0 = dim Resk0

(1.6)

and the order of vanishing of the Ruelle zeta function at 0 is given by (see [20,
(2.5)])

mR(0) =
2n∑

k=0
(−1)k+n dim Resk0 =

n∑

k=0
(−1)k+n(n + 1− k)bk(M). (1.7)

The proof of part 2 of Theorem 1 (see Theorem 3 in §4, as well as §4.4)
shows that Conjecture 1 holds for n = 2 and geodesic flows of generic nearly
hyperbolic metrics (while the conjecture is stated for generic metrics that do
not have to be nearly hyperbolic). Moreover, [21] shows that Conjecture 1
holds for n = 1 and any contact Anosov flow.

Note that the conditions (1) and (2) of Conjecture 1 imply (3). Indeed, by
the work of Dang–Rivière [18, Theorem 2.1] the cohomology of the complex
(Resk,∞, d), with Resk,∞ defined in (2.38) below with λ0 := 0, is isomorphic
to the de Rham cohomology ofM (with the isomorphismmapping each closed
form in Resk,∞ to its cohomology class). By (2.43) and the semisimplicity
condition (1), we have Resk,∞ = Resk0⊕(α ∧ Resk−10 ). By condition (2), we
have d(u + α ∧ v) = dα ∧ v for all u ∈ Resk0, v ∈ Resk−10 . If k ≤ n,
then dα∧ : Resk−10 → Resk+10 is injective, so Resk,∞∩ ker d = Resk0 and
d(Resk−1,∞) = dα ∧ Resk−20 . This gives condition (3).

Note also that for n = 2 the set of contact forms satisfying Conjec-
ture 1 is open in C∞(M; T ∗M). Indeed, by the perturbation theory discussed
in §4.1, more specifically (4.18), if we take a sufficiently small perturbation
of a contact form satisfying Conjecture 1, then dim Res1,∞0 ≤ b1(M) and
dim Res2,∞0 ≤ b2(M) + 1. By Lemma 2.8 we see that semisimplicity holds
for k = 1 and d(Res10) = 0. Then Lemma 2.11 together with Lemma 2.4 give
all the conclusions of Conjecture 1. A similar argument might work in the case
of higher n. Thus the main task in proving the conjecture is to show that (1)
and (2) hold on a dense set of contact forms.

One can make a similar conjecture for geodesic flows of generic negatively
curved compact orientable n + 1-dimensional Riemannian manifolds (�, g),
with M = S�. In particular, if n = 2m is even, then � is odd dimensional
and thus has Euler characteristic 0. By the Gysin exact sequence we have
bk(M) = bk(�) for 0 ≤ k < n and bn(M) = bn(�)+ b0(�). Moreover, by
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Poincaré duality we have bk(�) = bn+1−k(�). Thus (1.7) becomes

mR(0) = b0(�)+
m∑

k=0
(−1)k(2m + 1− 2k)bk(�).

This is in contrast to the hyperbolic case, where by [25, Theorem 3]

mR(0) =
m∑

k=0
(−1)k(2m + 2− 2k)bk(�).

Note that we only expect Conjecture 1 to hold for generic flows/metrics rather
than, say, all non-hyperbolic metrics: for n = 2 the proof of Theorem 1 uses
first variation which by the Implicit Function Theorem suggests that there is
a ‘singular submanifold’ of metrics passing through the hyperbolic metric on
which Conjecture 1 fails.

1.3 Previous work

The treatment of Pollicott–Ruelle resonances of an Anosov flow as eigenval-
ues of the generator of the flow on anisotropic Banach and Hilbert spaces
has been developed by many authors, including Baladi [3], Baladi–Tsujii [9],
Blank–Keller–Liverani [5], Butterley–Liverani [6], Gouëzel–Liverani [33],
and Liverani [46,47] (some of the above papers considered the related setting
of Anosov maps). In this paper we use the microlocal approach to dynam-
ical resonances, introduced by Faure–Sjöstrand [29] and developed further
by Dyatlov–Zworski [20]; see also Faure–Roy–Sjöstrand [28], Dyatlov–
Guillarmou [15], as well as Dang–Rivière [17] and Meddane [48] for the
treatment of Morse–Smale and Axiom A flows.

The study of the relation of the vanishing order mR(0) to the topology of
the underlying manifold M has a long history, going back to the works of
Fried [25,26] for geodesic flows on hyperbolic manifolds. The paper [25] also
related the leading coefficient of ζR at 0 to Reidemeister torsion, which is a
topological invariant of M . It considered the more general setting of a twisted
zeta function corresponding to a unitary representation. One advantage of such
twists is that one can choose the representation so that the twisted de Rham
complex is acyclic, i.e. has no cohomology, and then one expects ζR to be
holomorphic and nonvanishing at 0.

In [27, p. 66] Fried conjectured a formula relating the Reidemeister torsion
with the value ζR(0) for geodesic flows on all compact locally homogeneous
manifolds with acyclic representations. Fried’s conjecture was proved by Shen
[53] for compact locally symmetric reductive manifolds, following earlier
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The Ruelle zeta function at zero for nearly hyperbolic 311

contributions byBismut [4] andMoscovici–Stanton [49]. The abovementioned
works [4,25,26,49,53] used representation theory and Selberg trace formulas,
which do not extend beyond the class of locally symmetric manifolds.

In recent years much progress has been made on understanding the relation
between the behavior of ζR at 0, as well as the dimensions of Resk,�0 , with
topological invariants for general (not locally symmetric) negatively curved
Riemannian manifolds and Anosov flows:

• Dyatlov–Zworski [21] computed mR(0) for any contact Anosov flow in
dimension 3 with orientable stable/unstable bundles, including geodesic
flows on compact oriented negatively curved surfaces;

• Dang–Rivière [18, Theorem 2.1] showed that the chain complex
(Res•,∞, d), where Resk,∞ = Resk,∞(0) is defined in (2.39) below, is
homotopy equivalent to the usual de Rham complex and hence their coho-
mologies agree. One can see that Conjecture 1 is compatible with this
result, using (2.43) and the fact that (dα∧)k : �n−k

0 → �n+k
0 is a bundle

isomorphism for 0 ≤ k ≤ n;
• Hadfield [35] showed a result similar to [21] for geodesic flows on nega-
tively curved surfaces with boundary;

• Dang–Guillarmou–Rivière–Shen [16] computed dim Resk,∞0 for hyper-
bolic 3-manifolds and proved Fried’s formula relating ζR(0) to Reidemeis-
ter torsion for nearly hyperbolic 3-manifolds in the acyclic case; see also
Chaubet–Dang [11];

• Küster–Weich [44] obtained several results on geodesic flows on compact
hyperbolic manifolds and their perturbations, in particular showing that
dim Res10 = b1(�) when dim� 
= 3;

• Cekić–Paternain [12] studied volume preserving Anosov flows in dimen-
sion 3, giving the first example of a situation where mR(0) jumps under
perturbations of the flow and thus is not topologically invariant;

• Borns-Weil–Shen [10] proved a result similar to [21] for nonorientable
stable/unstable bundles.

Our Theorem 1 gives a jump in mR(0) for geodesic flows on 3-manifolds and
indicates that the situation for the hyperbolic case is different from that in the
case of generic metrics. We stress that it is more difficult to obtain results for
genericmetric perturbations (such asTheorem1) than for generic perturbations
of contact forms (such as Theorem 4 in §4) due to the more restricted nature
of metric perturbations.

One of our main technical results (Theorem 5) bears (limited) similari-
ties to known pairing formulas for Patterson–Sullivan distributions such as
those established by Anantharaman–Zelditch [2], Hansen–Hilgert–Schröder
[37], Dyatlov–Faure–Guillarmou [14], and Guillarmou–Hilgert–Weich [32].
We briefly discuss this in the Remark after Theorem 5.
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1.4 Structure of the paper

• §2 discusses contact Anosov flows on 5-manifolds and sets up the scene for
the rest of the paper. In particular, it introduces Pollicott–Ruelle resonances,
(co-)resonant states, dynamical zeta functions, de Rham cohomology, and
geodesic flows. It also proves various general lemmas about the maps πk
and semisimplicity.

• §3 gives a complete description of generalized resonant states at 0 for
hyperbolic 3-manifolds, proving part 1 of Theorem 1. The approach in this
section is geometric, as opposed to the algebraic route taken in [25] and
[16].

• §4 discusses contact perturbations of geodesic flows on hyperbolic 3-
manifolds. It proves Theorem 3 which is a general perturbation statement
using the nondegeneracy condition (1.3), as well as Theorem 4 on generic
contact perturbations. It also gives the proof of part 2 of Theorem 1, relying
on the key identity (1.5).

• §5 contains the proof of the identity (1.5) (stated in Theorem 5), using a
change of variables, a regularization procedure, and the results of §3.

• Finally, Appendix A gives a proof of the fact that hyperbolic 3-manifolds
have no nonzero harmonic 1-forms of constant length.

2 Contact 5-dimensional flows

In this section we study general contact Anosov flows on 5-dimensional mani-
folds. Some of the statements below apply to non-contact Anosov flows and to
other dimensions, however we use the setting of 5-dimensional contact flows
for uniformity of presentation.

2.1 Contact Anosov flows

Assume that M is a compact connected 5-dimensional C∞ manifold and α ∈
C∞(M; T ∗M) is a contact 1-form on M , namely

d volα := α ∧ dα ∧ dα 
= 0 everywhere.

We fix the orientation on M by requiring that d volα be positively oriented.
Let X ∈ C∞(M; T M) be the associated Reeb field, that is the unique vector
field satisfying

ιXα = 1, ιXdα = 0. (2.1)
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The Ruelle zeta function at zero for nearly hyperbolic 313

Note that this immediately implies (where LX denotes the Lie derivative)

LXα = dιXα + ιXdα = 0.

We assume that the flow generated by X ,

ϕt := et X : M → M,

is an Anosov flow, namely there exists a continuous flow/unstable/stable
decomposition of the tangent spaces to M ,

TρM = E0(ρ)⊕ Eu(ρ)⊕ Es(ρ), ρ ∈ M, E0(ρ) := RX (ρ) (2.2)

and there exist constants C, θ > 0 and a smooth norm | • | on the fibers of
T M such that for all ρ ∈ M , ξ ∈ TρM , and t

|dϕt (ρ)ξ | ≤ Ce−θ |t | · |ξ | if

{
t ≤ 0, ξ ∈ Eu(ρ) or

t ≥ 0, ξ ∈ Es(ρ).
(2.3)

The flow/unstable/stable decomposition gives rise to the dual decomposition
of the cotangent spaces to M ,

T ∗ρ M = E∗0(ρ)⊕ E∗u(ρ)⊕ E∗s (ρ), E∗0 := (Eu ⊕ Es)
⊥,

E∗u := (E0 ⊕ Eu)
⊥, E∗s := (E0 ⊕ Es)

⊥.
(2.4)

Since LXα = 0, we see from (2.3) that α|Eu⊕Es = 0 and thus

E∗0 = Rα.

Sinceα is a contact formanddα vanishes on Eu×Eu andon Es×Es (as follows
from (2.3) and the fact that LXdα = 0), we have dim Eu = dim Es = 2.

2.1.1 Bundles of differential forms

We define the vector bundles over M

�k := ∧k(T ∗M), �k
0 := {ω ∈ �k | ιXω = 0} � ∧k(E∗u ⊕ E∗s ). (2.5)

Note that smooth sections of �k are differential k-forms on M .
We use the de Rham cohomology groups

Hk(M;C) := {u ∈ C∞(M;�k) | du = 0}
{dv | v ∈ C∞(M;�k−1)} . (2.6)
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314 M. Cekić et al.

Unless otherwise stated, we will always take�k to be complexified.We define
the Betti numbers

bk(M) := dim Hk(M;C).
Since M is connected and by Poincaré duality we have

b0(M) = 1, bk(M) = b5−k(M).

The bundles �k and �k
0 are related as follows:

�k � �k
0 ⊕�k−1

0

with the canonical isomorphism and its inverse given by

u �→ (u − α ∧ ιXu, ιXu), (v,w) �→ v + α ∧ w. (2.7)

Denote by dα∧ the map u �→ dα∧u and by dα∧2 the map u �→ dα∧dα∧u,
then we have linear isomorphisms (as both maps are injective and image and
domain have the same dimension)

dα∧ : �1
0 → �3

0, dα∧2 : �0
0 → �4

0. (2.8)

We also have a nondegenerate bilinear pairing between sections of �k
0 and

�4−k
0 given by

u ∈ C∞(M;�k
0), u∗ ∈ C∞(M;�4−k

0 ) �→ 〈〈u, u∗〉〉 :=
∫

M
α ∧ u ∧ u∗

(2.9)

which in particular identifies the dual space to L2(M;�k
0)with L2(M;�4−k

0 ).
If A : C∞(M;�k

0)→ D′(M;�k
0) is a continuous operator, whereD′ denotes

the space of distributions, then its transpose operator is the unique operator
AT : C∞(M;�4−k

0 )→ D′(M;�4−k
0 ) satisfying

〈〈Au, u∗〉〉 = 〈〈u, AT u∗〉〉 for all u ∈ C∞(M;�k
0), u∗ ∈ C∞(M;�4−k

0 ).

(2.10)

2.2 Geodesic flows

A large class of examples of contact Anosov flows is given by geodesic flows
on negatively curved manifolds, which is the setting of the main results of this
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paper. More precisely, assume that (�, g) is a compact connected oriented
3-dimensional Riemannian manifold. Define M to be the sphere bundle of �
and let π� be the canonical projection:

M := S� = {(x, v) ∈ T� : |v|g = 1}, π� : M → �.

Define the canonical, or tautological, 1-form α on M as follows: for all ξ ∈
T(x,v)M ,

〈α(x, v), ξ 〉 = 〈v, dπ�(x, v)ξ 〉g. (2.11)

Then α is a contact form, the corresponding flow ϕt is the geodesic flow, and
d volα is the standard Liouville volume form up to a constant, see for instance
[52, §1.3.3]. If the metric g has negative sectional curvature, then the flow ϕt
is Anosov, see for instance [42, Theorem 3.9.1].

We have the time reversal involution

J : M → M, J (x, v) = (x,−v) (2.12)

which is an orientation reversing diffeomorphism satisfying

J ∗α = −α, J ∗X = −X, ϕt ◦ J = J ◦ ϕ−t (2.13)

and the differential of J maps E0, Eu, Es into E0, Es, Eu .

2.2.1 Horizontal and vertical spaces

Recall from (2.2) that an Anosov flow induces a splitting of the tangent bundle
T M into the flow, unstable, and stable subbundles. For geodesic flows there
is another splitting, into horizontal and vertical subbundles, which we briefly
review here. See [52, §1.3.1] for more details.

Let (x, v) ∈ M = S�. The vertical space at (x, v) is the tangent space to
the fiber Sx�:

V(x, v) := ker dπ�(x, v) ⊂ T(x,v)M.

To define a complementary horizontal subspace of T(x,v)M , we use the metric.
The connection map of the metric is the unique bundle homomorphism K :
T M → T� covering the map π� such that for any curve on M written as

ρ(t) = (x(t), v(t)), x(t) ∈ �, v(t) ∈ Sx(t)�
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we have

K(ρ(t))ρ̇(t) = Dtv(t) ∈ Tx(t)�, (2.14)

where Dtv(t) denotes the Levi–Civita covariant derivative of the vector field
v(t) along the curve x(t) (see e.g. [13, Proposition 2.2] for a precise definition).
Note that since dt 〈v(t), v(t)〉g = 0, the range of K(x, v) is g-orthogonal to v.

We now define the horizontal space as

H(x, v) := kerK(x, v) ⊂ T(x,v)M.

We have the splitting

T(x,v)M = H(x, v)⊕ V(x, v), dim H(x, v) = 3, dim V(x, v) = 2

and the isomorphisms (here {v}⊥ is the g-orthogonal complement of v in Tx�)

dπ�(x, v) : H(x, v)→ Tx�, K(x, v) : V(x, v)→ {v}⊥

which together give the following isomorphism T(x,v)M → Tx� ⊕ {v}⊥:

ξ �→ (ξH , ξV ), ξH = dπ�(x, v)ξ, ξV = K(x, v)ξ. (2.15)

We use the map (2.15) to identify T(x,v)M with Tx� ⊕ {v}⊥.
Under the identification (2.15), the contact form α and its differential satisfy

(see [52, Proposition 1.24])

α(x, v)(ξ) = 〈ξH , v〉g,
dα(x, v)(ξ, η) = 〈ξV , ηH 〉g − 〈ξH , ηV 〉g. (2.16)

Using the splitting (2.15), we define the Sasaki metric 〈•, •〉S onM as follows:

〈ξ, η〉S := 〈ξH , ηH 〉g + 〈ξV , ηV 〉g. (2.17)

We finally remark that the generator X of the geodesic flow has the following
form under the isomorphism (2.15):

X (x, v)H = v, X (x, v)V = 0. (2.18)
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2.2.2 De Rham cohomology of the sphere bundle

We now describe the de Rham cohomology of M = S� in terms of the
cohomology of �. To relate the two, we use the pullback operators

π∗� : C∞(�;�k)→ C∞(M;�k), 0 ≤ k ≤ 3

and the pushforward operators defined by integrating along the fibers of S�

π�∗ : C∞(M;�k)→ C∞(�;�k−2), 2 ≤ k ≤ 5. (2.19)

Here the orientation on each fiber Sx� is induced by the orientation on �: if
v, v1, v2 is a positively oriented orthonormal basis of Tx�, then the vertical
vectors corresponding to v1, v2 form a positively oriented basis of Tv(Sx�).
The pushforward operation can be characterized as follows: if X1, . . . , Xk−2
are vector fields on � and X̃1, . . . , X̃k−2 are vector fields on M projecting to
X1, . . . , Xk−2 under dπ� , then for any ω ∈ C∞(M;�k) and x ∈ �

π�∗ω(x)(X1, . . . , Xk−2) =
∫

Sx�
ιX̃k−2 . . . ιX̃1

ω.

Another characterization of π�∗ is that for any ω ∈ C∞(M;�k) and any
compact k − 2 dimensional oriented submanifold with boundary Y ⊂ �, we
have

∫

π−1� (Y )
ω =

∫

Y
π�∗ω. (2.20)

Here the orientation on π−1� (Y ) is induced by the orientation on Y . If Y = �

is the entire base manifold, then the orientation on π−1� (�) = S� featured
in (2.20) is opposite to the usual orientation on M = S�, induced by d volα =
α ∧ dα ∧ dα. In fact, using (2.16) we can compute that

π�∗d volα = −8πd volg, (2.21)

where d volg is the volume form on � induced by g and the choice of
orientation, by applying d volα to the vectors X = (v, 0), (v1, 0), (v2, 0),
(0, v1), (0, v2) written using the horizontal/vertical decomposition (2.15),
where v, v1, v2 is a positively oriented g-orthonormal basis on �.
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The pushforward map has the following properties (see for instance [8,
Propositions 6.14.1 and 6.15] for the related case of vector bundles):

dπ�∗ = π�∗d, (2.22)

π�∗
(
ω1 ∧ (π∗�ω2)

) = (π�∗ω1) ∧ ω2. (2.23)

Note that the maps π�∗, π∗� can also be defined on distributional forms. For
π�∗ this follows from the fact that pushforward is always well-defined on
distributions as long as the fibers are compact and for the pullback π∗� this
follows from the fact that π� is a submersion [38, Theorem 6.1.2].

Since the map J defined in (2.12) is an orientation reversing diffeomor-
phism of the fibers of S�, we also have

π�∗(J ∗ω) = −π�∗ω. (2.24)

Since pullbacks commute with the differential d, and by (2.22), the opera-
tions π∗�, π�∗ induce maps on de Rham cohomology, which we denote by the
same letters:

π∗� : Hk(�;C)→ Hk(M;C), π�∗ : Hk(M;C)→ Hk−2(�;C).

From the Gysin exact sequence (see for instance [8, Proposition 14.33], where
the Euler class is zero since � is three-dimensional; alternatively one can use
Künneth formulas and the fact that every compact orientable 3-manifold is
parallelizable) we have isomorphisms

π∗� : H1(�;C)→ H1(M;C), π�∗ : H4(M;C)→ H2(�;C) (2.25)

and the exact sequences

0→ H2(�;C) π∗�−→ H2(M;C) π�∗−−→ H0(�;C)→ 0, (2.26)

0→ H3(�;C) π∗�−→ H3(M;C) π�∗−−→ H1(�;C)→ 0. (2.27)

In particular, we get formulas for the Betti numbers of the sphere bundle M :

b0(M) = b5(M) = 1, b1(M) = b4(M) = b1(�),

b2(M) = b3(M) = b1(�)+ 1. (2.28)
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2.3 Pollicott–Ruelle resonances

Wenow review the theory of Pollicott–Ruelle resonances in the present setting.
Define the first order differential operators

Pk := −iLX : C∞(M;�k)→ C∞(M;�k),

Pk,0 := −iLX : C∞(M;�k
0)→ C∞(M;�k

0).

Note that Pk,0 is the restriction of Pk to C∞(M;�k
0) which is the space of all

u ∈ C∞(M;�k) which satisfy ιXu = 0.
For λ ∈ C with Im λ large enough, the integral

Rk(λ) := i
∫ ∞

0
eiλt e−i t Pk dt : L2(M;�k)→ L2(M;�k) (2.29)

converges and defines a bounded operator on L2 which is holomorphic in λ.
Here the evolution group e−i t Pk is given by e−i t Pk u = ϕ∗−t u. It is straightfor-
ward to check that Rk(λ) is the L2-resolvent of Pk :

Rk(λ) = (Pk − λ)−1 : L2(M;�k)→ L2(M;�k), Im λ� 1, (2.30)

where we treat Pk as an unbounded operator on L2 with domain {u ∈
L2(M;�k) | Pku ∈ L2(M;�k)} and Pku is defined in the sense of distri-
butions.

2.3.1 Meromorphic continuation

Since ϕt is an Anosov flow, the resolvent Rk(λ) admits a meromorphic con-
tinuation

Rk(λ) : C∞(M;�k)→ D′(M;�k), λ ∈ C,

see for instance [20, §3.2] and [29, Theorems 1.4, 1.5]. The proof of this con-
tinuation shows that Rk(λ) acts on certain anisotropic Sobolev spaces adapted
to the stable/unstable decompositions, see e.g. [20, §3.1]; this makes it pos-
sible to compose the operator Rk(λ) with itself. Instead of introducing these
spaces here, we use the spaces of distributions

D′�(M;�k) := {u ∈ D′(M;�k) |WF(u) ⊂ �}, (2.31)

where � ⊂ T ∗M\0 is a closed conic set and WF(u) denotes the wavefront set
of a distribution u. These spaces come with a natural sequential topology, see
[38, Definition 8.2.2].
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We have the wavefront set property of Rk(λ) proved in [20, (3.7)]:

WF′(Rk(λ)) ⊂ W := �(T ∗M) ∪ ϒ+ ∪ (E∗u × E∗s ), (2.32)

where�(T ∗M) ⊂ T ∗M×T ∗M is the diagonal andϒ+ = {(ϕt (x), dϕt (x)−T
ξ, x, ξ) | t ≥ 0, ξ(X (x)) = 0}; for an operator B : C∞(M)→ D′(M) with
Schwartz kernel KB ∈ D′(M × M), we denote WF′(B) = {(x, ξ, y,−η) |
(x, ξ, y, η) ∈ WF(KB)} ⊂ T ∗(M × M). The Schwartz kernel of Rk(λ)

is meromorphic in λ with values in D′W ′ where W ′ := {(x, ξ, y,−η) |
(x, ξ, y, η) ∈ W }. By the wavefront set calculus [38, Theorem 8.2.13] and
since E∗u ∩ E∗s = 0, Rk(λ) defines a meromorphic family of continuous oper-
ators

Rk(λ) : D′E∗u (M;�k)→ D′E∗u (M;�k), (2.33)

where we view E∗u ⊂ T ∗M as a closed conic subset and defineD′E∗u by (2.31).
Note that differential operators (in particular, d, ιX ,LX ) define continuous

maps on the regularity classes D′E∗u . We have

Rk(λ)(Pk − λ)u = (Pk − λ)Rk(λ)u = u for all u ∈ D′E∗u (M;�k).

(2.34)

For Im λ� 1 and u ∈ C∞(M;�k) this follows from (2.30); the general case
follows from here by analytic continuation and since C∞ is dense in D′E∗u .

We also have the commutation relations

dRk(λ)u = Rk+1(λ)du, ιX Rk(λ)u = Rk−1(λ)ιXu for all u ∈ D′E∗u (M;�k).

(2.35)

As with (2.34) it suffices to consider the case Im λ� 1 and u ∈ C∞(M;�k),
in which (2.35) follows from (2.29) and the fact that d and ιX commute with
ϕ∗−t .

The poles of the family of operators Rk(λ) are called Pollicott–Ruelle res-
onances on k-forms. At each pole λ0 ∈ C we have an expansion (see for
instance [20, (3.6)])

Rk(λ) = RH
k (λ; λ0)−

Jk(λ0)∑

j=1

(Pk − λ0)
j−1�k(λ0)

(λ− λ0) j
, (2.36)

where RH
k (λ; λ0) : D′E∗u (M;�k) → D′E∗u (M;�k) is a family of operators

holomorphic in a neighborhood of λ0, Jk(λ0) ≥ 1 is an integer, and �k(λ0) :
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D′E∗u (M;�k) → D′E∗u (M;�k) is a finite rank operator commuting with Pk
and such that (Pk − λ0)

Jk(λ0)�k(λ0) = 0.
Taking the expansions of (2.35) at λ0 we see that

d�k(λ0) = �k+1(λ0)d, ιX�k(λ0) = �k−1(λ0)ιX . (2.37)

2.3.2 Resonant states

The range of the operator�k(λ0) is equal to the space of generalised resonant
states (see for instance [20, Proposition 3.3])

Resk,∞(λ0) :=
⋃

�≥1
Resk,�(λ0), (2.38)

where we define

Resk,�(λ0) := {u ∈ D′E∗u (M;�k) | (Pk − λ0)
�u = 0}. (2.39)

We define the algebraic multiplicity of λ0 as a resonance on k-forms by

mk(λ0) := rank�k(λ0) = dim Resk,∞(λ0). (2.40)

The geometric multiplicity is the dimension of the space of resonant states

Resk(λ0) := Resk,1(λ0) = {u ∈ D′E∗u (M;�k) | (Pk − λ0)u = 0}.

We say a resonance λ0 of Pk is semisimple if the algebraic and geometricmulti-
plicities coincide, that is Resk,∞(λ0) = Resk(λ0). This is equivalent to saying
that Jk(λ0) = 1 in (2.36). Another equivalent definition of semisimplicity is

u ∈ D′E∗u (M;�k), (Pk − λ0)
2u = 0 �⇒ (Pk − λ0)u = 0. (2.41)

We note that the operators�k(λ0) are idempotent. In fact, applying the Laurent
expansion (2.36) at λ0 to u ∈ Resk,�(λ1) and using the identity Rk(λ)u =
−∑�−1

j=0(λ− λ1)
− j−1(Pk − λ1)

j u we see that

�k(λ0)�k(λ1) =
{
�k(λ0) if λ1 = λ0,

0 if λ1 
= λ0.
(2.42)

123



322 M. Cekić et al.

2.3.3 Operators on the bundles �k
0

The above constructions apply equally as well to the operators Pk,0 (except
that the operator d does not preserve sections of �k

0, so the first commutation
relation in (2.37) does not hold, and the second one is trivial); we denote the
resulting objects by

Rk,0(λ), Jk,0(λ0), RH
k,0(λ; λ0), �k,0(λ0), Res

k,�
0 (λ0), mk,0(λ0).

Under the isomorphism (2.7) the operator Pk is conjugated to Pk,0 ⊕ Pk−1,0.
Therefore (2.7) gives an isomorphism

Resk,�(λ0) � Resk,�0 (λ0)⊕ Resk−1,�0 (λ0). (2.43)

Moreover, we get for all u ∈ D′E∗u (M;�k)

�k(λ0)u = �k,0(λ0)(u − α ∧ ιXu)+ α ∧�k−1,0(λ0)ιXu. (2.44)

Since LXdα = 0, the operations (2.8) give rise to linear isomorphisms

dα∧ : Res1,�0 (λ0)→ Res3,�0 (λ0), dα∧2 : Res0,�0 (λ0)→ Res4,�0 (λ0)

(2.45)

which in particular give the equalities

m1,0(λ0) = m3,0(λ0), m0,0(λ0) = m4,0(λ0). (2.46)

2.3.4 Transposes and coresonant states

Since LXα = 0 and
∫
M LXω = 0 for any 5-form ω, we have

(Pk,0)
T = −P4−k,0, k = 0, 1, 2, 3, 4, (2.47)

where the transpose is defined using the pairing 〈〈•, •〉〉, see (2.10). Thus the
transpose of the resolvent (Rk,0(λ))

T is the meromorphic continuation of the
resolvent corresponding to the vector field−X ; the latter generates an Anosov
flow with the unstable and stable spaces switching roles compared to the ones
for X . Similarly to (2.33) we have

(Rk,0(λ))
T : D′E∗s (M;�4−k

0 )→ D′E∗s (M;�4−k
0 ), (2.48)

whereD′E∗s is the space of distributional sections with wavefront set contained
in E∗s . Same applies to the transposes of the operators RH

k,0(λ; λ0) and�k,0(λ0)
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appearing in (2.36). The range of (�k,0(λ0))
T is the space of generalised

coresonant states Res4−k,∞0∗ (λ0) where

Resk,∞0∗ (λ0) :=
⋃

�≥1
Resk,�0∗ (λ0),

Resk,�0∗ (λ0) := {u∗ ∈ D′E∗s (M;�k
0) | (Pk,0 + λ0)

�u∗ = 0}.
The space of coresonant states is defined as

Resk0∗(λ0) := Resk,10∗ (λ0) = {u∗ ∈ D′E∗s (M;�k
0) | (Pk,0 + λ0)u∗ = 0}.

Similarly to (2.45) we have the isomorphisms

dα∧ : Res1,�0∗ (λ0)→ Res3,�0∗ (λ0), dα∧2 : Res0,�0∗ (λ0)→ Res4,�0∗ (λ0).
(2.49)

In the special case when ϕt is a geodesic flow with the time reversal map J
defined in (2.12), the pullback operator J ∗ gives an isomorphism between
D′E∗u (M;�k

0) and D′E∗s (M;�k
0). Moreover, J ∗Pk,0 = −Pk,0J ∗. This gives

rise to isomorphisms between the spaces of generalised resonant and coreso-
nant states

J ∗ : Resk,�0 (λ0)→ Resk,�0∗ (λ0). (2.50)

2.3.5 Coresonant states and pairing

Since E∗u and E∗s intersect only at the zero section, we can define the product
u ∧ u∗ ∈ D′(M;�4

0) and thus the pairing 〈〈u, u∗〉〉 for any u ∈ D′E∗u (M;�k
0),

u∗ ∈ D′E∗s (M;�
4−k
0 ), see [38, Theorem 8.2.10]. Note that this pairing is

nondegenerate since both D′E∗u and D′E∗s contain C∞, and the transpose for-

mula (2.10) still holds since C∞ is dense inD′E∗u and inD
′
E∗s . In particular, we

have a pairing

u ∈ Resk,∞0 (λ0), u∗ ∈ Res4−k,∞0∗ (λ0) �→ 〈〈u, u∗〉〉 ∈ C. (2.51)

This pairing is nondegenerate. Indeed, assume that u ∈ Resk,∞0 (λ0) and

〈〈u, u∗〉〉 = 0 for all u∗ ∈ Res4−k,∞0∗ (λ0). Since Res4−k,∞0∗ (λ0) is the range
of (�k,0(λ0))

T , we have

0 = 〈〈u, (�k,0(λ0))
Tϕ〉〉 = 〈〈�k,0(λ0)u, ϕ〉〉

= 〈〈u, ϕ〉〉 for all ϕ ∈ C∞(M;�4−k
0 ),
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where the last equality follows from the fact that�k,0(λ0)
2 = �k,0(λ0) and u

is in the range of�k,0(λ0). It follows that u = 0. Similarly one can show that
if 〈〈u, u∗〉〉 = 0 for some u∗ ∈ Res4−k,∞0∗ (λ0) and all u ∈ Resk,∞0 (λ0), then
u∗ = 0.

Consider the operators on finite dimensional spaces

Pk,0 − λ0 : Resk,∞0 (λ0)→ Resk,∞0 (λ0), (2.52)

−P4−k,0 − λ0 : Res4−k,∞0∗ (λ0)→ Res4−k,∞0∗ (λ0), (2.53)

which are transposes of each other with respect to the pairing (2.51). The
kernels of �-th powers of these operators are Resk,�0 (λ0) and Res4−k,�0∗ (λ0),
thus (using the isomorphisms (2.49))

dim Resk,�0 (λ0) = dim Res4−k,�0∗ (λ0) = dim Resk,�0∗ (λ0). (2.54)

We now give a solvability result for the operators Pk,0. It follows from the
Fredholm property of these operators on anisotropic Sobolev spaces but we
present instead a proof using the Laurent expansion (2.36).

Lemma 2.1 Assume that w ∈ D′E∗u (M;�k
0). Then the equation

(Pk,0 − λ0)u = w, u ∈ D′E∗u (M;�k
0) (2.55)

has a solution if and only if w satisfies the condition

〈〈w, u∗〉〉 = 0 for all u∗ ∈ Res4−k0∗ (λ0). (2.56)

Proof First of all, if (2.55) has a solution u, then for each u∗ ∈ Res4−k0∗ (λ0)

we have

〈〈w, u∗〉〉 = 〈〈(Pk,0 − λ0)u, u∗〉〉 = −〈〈u, (P4−k,0 + λ0)u∗〉〉 = 0,

that is the condition (2.56) is satisfied.
Now, assume that w satisfies the condition (2.56); we show that (2.55) has

a solution. We start with the special case when w ∈ Resk,∞0 (λ0). We use the

pairing (2.51) to identify the dual space to Resk,∞0 (λ0) with Res4−k,∞0∗ (λ0).
By (2.56),w is annihilated by the kernel of the operator (2.53). Thereforew is
in the range of the operator (2.52), that is (2.55) has a solution u ∈ Resk,∞0 (λ0).

We now consider the case of generalw satisfying (2.56). Taking the constant
term in the Laurent expansion of the identity (2.34) at λ = λ0, we obtain

(Pk,0 − λ0)R
H
k,0(λ0; λ0)w = w −�k,0(λ0)w. (2.57)
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Wehave�k,0(λ0)w ∈ Resk,∞0 (λ0) and it satisfies (2.56), thus (2.55) has a solu-
tion with this right-hand side. Writing w = �k,0(λ0)w +

(
Id−�k,0(λ0)

)
w,

we may take as u the sum of this solution and RH
k,0(λ0; λ0)w. ��

Lemma 2.1 implies the following criterion for semisimplicity:

Lemma 2.2 The semisimplicity condition (2.41) holds for the operator Pk,0
if and only if the restriction of the pairing (2.51) to Resk0(λ0)×Res4−k0∗ (λ0) is
nondegenerate.

Proof The condition (2.41) is equivalent to saying that the intersection of
Resk0(λ0) with the range of the operator Pk,0 − λ0 : D′E∗u (M;�k

0) →
D′E∗u (M;�k

0) is trivial; that is, for each w ∈ Resk0(λ0)\{0} the equation (2.55)
has no solution. By Lemma 2.1, this is equivalent to saying that w does
not satisfy the condition (2.56), i.e. there exists v ∈ Res4−k0∗ (λ0) such that
〈〈w, v〉〉 
= 0. This is equivalent to the nondegeneracy condition of the present
lemma. ��

2.3.6 Zeta functions

We now discuss dynamical zeta functions. We assume that the unstable/stable
bundles Eu, Es are orientable (the non-orientable case is covered by [10]); this
is true for the case of geodesic flows on orientable manifolds as follows from
the fact that the vertical bundle trivially intersects the weak unstable bundle
RX ⊕ Eu (see [34, Lemma B.1]).

We say γ : [0, Tγ ] → M is a closed trajectory of the flow ϕt of period Tγ >
0 if γ (t) = ϕt (γ (0)) and γ (Tγ ) = γ (0). We identify closed trajectories
obtained by shifting t . The primitive period of a closed trajectory, denoted
by T �

γ , is the smallest positive t > 0 such that γ (t) = γ (0). We say γ is a

primitive closed trajectory if Tγ = T �
γ .

Define the linearised Poincaré map Pγ := dϕ−Tγ (γ (0))|Eu⊕Es . We have
detPγ = 1 since the restriction of dα ∧ dα to Eu ⊕ Es is a ϕt -invariant
nonvanishing 4-form. Since ϕt is an Anosov flow, the map I −Pγ is invertible
(in fact Pγ has no eigenvalues on the unit circle).

For 0 ≤ k ≤ 4, define the zeta function

ζk(λ) := exp

(
−

∑

γ

T �
γ tr(∧kPγ )eiλTγ

Tγ det(I − Pγ )

)
, Im λ� 1, (2.58)

where the sum is over all the closed trajectories γ . The series in (2.58) con-
verges for sufficiently large Im λ, see e.g. [20, §2.2].
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The zeta function ζk continues holomorphically to λ ∈ C and for each
λ0 ∈ C, the multiplicity of λ0 as a zero of ζk is equal to mk,0(λ0), the alge-
braic multiplicity of λ0 as a resonance of the operator Pk,0 defined similarly
to (2.40) – see [20, §4] for the proof.

By Ruelle’s identity (see e.g. [20, (2.5)]) the Ruelle zeta function defined
in (1.1) factorizes as follows:

ζR(λ) = ζ0(λ)ζ2(λ)ζ4(λ)

ζ1(λ)ζ3(λ)
.

Using (2.46) we see that the order of vanishing of the function ζR at λ0 is equal
to

mR(λ0) =
4∑

k=0
(−1)kmk,0(λ0) = 2m0,0(λ0)− 2m1,0(λ0)+ m2,0(λ0).

(2.59)

2.4 Resonance at 0

This paper focuses on the resonance at 0, which is why we henceforth put
λ0 := 0 unless stated otherwise. For instance we write

RH
k,0(λ) := RH

k,0(λ; 0), �k,0 := �k,0(0), Resk,�0 := Resk,�0 (0).

Our main goal is to study the order of vanishing of the Ruelle zeta function
at 0, which by (2.59) is equal to

mR(0) = 2m0,0(0)− 2m1,0(0)+ m2,0(0), mk,0(0) = dim Resk,∞0 .

Since LX = dιX + ιXd, the space of resonant states at 0 for the operator Pk,0
is

Resk0 = {u ∈ D′E∗u (M;�k) | ιXu = 0, ιXdu = 0}. (2.60)

In particular, the exterior derivative defines an operator d : Resk0 → Resk+10 .
(Unfortunately this is no longer true for the spaces of generalised resonant
states Resk,�0 with � ≥ 2, since d does not necessarily map these to the kernel
of ιX .)
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2.4.1 0-Forms and 4-forms

We first analyze the resonance at 0 for the operators P0,0 and P4,0. The follow-
ing regularity result is a special case of [21, Lemma 2.3] (see also [28, Lemma
4] for a similar statement in the case of Anosov maps):

Lemma 2.3 Assume that

u ∈ D′E∗u (M;C), Xu ∈ C∞(M;C), Re〈Xu, u〉L2(M;d volα) ≤ 0.

Then u ∈ C∞(M;C).
Using Lemma 2.3 we show the following statement similar to [21, Lemma 3.2]
(we note that it straightforwardly generalizes to other dimensions, which was
known already to [46, Corollary 2.11]):

Lemma 2.4 The semisimplicity condition (2.41) holds at λ0 = 0 for the oper-
ators P0,0, P4,0 and

m0,0(0) = m4,0(0) = 1.

Moreover, Res00 = Res00∗ is spanned by the constant function 1 and Res40 =
Res40∗ is spanned by the form dα ∧ dα.

Proof We only give the proof for 0-forms (i.e. functions); the case of 4-forms
follows from here using the isomorphisms (2.45), (2.49).

Assume that u ∈ Res00. Then Xu = 0, so Lemma 2.3 implies that u ∈
C∞(M;C). Thus the differential du ∈ C∞(M;�1) is invariant under the
flow ϕt ; the stable/unstable decomposition (2.4) gives that du ∈ E∗0 at every
point. Together with the equation Xu = 0, this implies that du = 0 and thus
(since M is connected) u is constant. We have shown that Res00 is spanned
by the function 1; applying the above argument to −X we see that Res00∗ is
spanned by 1 as well.

To show the semisimplicity condition (2.41), assume that u ∈ D′E∗u (M;C)
satisfies X2u = 0. Then Xu ∈ Res00, so Xu is constant. Together with the
identity

∫
M(Xu) d volα = 0 this gives Xu = 0 as needed. ��

2.4.2 Closed forms

We now study resonant states which are closed, that is elements of the space

Resk0 ∩ ker d = {u ∈ D′E∗u (M;�k) | ιXu = 0, du = 0}.
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We use a special case of [21, Lemma 2.1] which shows that de Rham cohomol-
ogy in the spaces D′E∗u (M;�k) is the same as the usual de Rham cohomology
defined in (2.6):

Lemma 2.5 Assume that u ∈ D′E∗u (M;�k) and du ∈ C∞(M;�k+1). Then
there exist v ∈ C∞(M;�k), w ∈ D′E∗u (M;�k−1) such that u = v + dw.

Similarly to [21, §3.3] we introduce the linear map

πk : Resk0 ∩ ker d → Hk(M;C), πk(u) = [v]Hk

where u = v + dw, v ∈ C∞(M;�k), w ∈ D′E∗u (M;�k−1).
(2.61)

Here v,w exist by Lemma 2.5. To show that the map πk is well-defined,
assume that u = v + dw = v′ + dw′ where v, v′ ∈ C∞(M;�k) and w,w′ ∈
D′E∗u (M;�k−1). Then d(w−w′) = v′−v ∈ C∞(M;�k), thus by Lemma 2.5

we may write w − w′ = w1 + dw2 where w1 ∈ C∞(M;�k−1), w2 ∈
D′E∗u (M;�k−2). Then v′ − v = dw1 where w1 is smooth, so [v]Hk = [v′]Hk .

Similar arguments apply to the spaces Resk0∗ ∩ ker d of closed coresonant
k-forms; we denote the corresponding maps by

πk∗ : Resk0∗ ∩ ker d → Hk(M;C).
From Lemma 2.4 we see that π0 is an isomorphism and hence by (2.45) that
π4 = 0.

We now establish several properties of the spaces Resk0 ∩ ker d and the maps
πk ; some of these are extensions of the results of [21, §3.3].

Lemma 2.6 The kernel of πk satisfies

d(Resk−10 ) ⊂ ker πk ⊂ d(Resk−1,∞).

Proof The first containment is immediate. For the second one, assume that
u ∈ Resk0 ∩ ker d and πk(u) = 0. Then u = v + dw where v ∈ C∞(M;�k)

satisfies [v]Hk = 0 and w ∈ D′E∗u (M;�k−1). We have v = dζ for some

ζ ∈ C∞(M;�k−1) and by (2.37)

u = �ku = �kd(ζ + w) = d�k−1(ζ + w).

Therefore u ∈ d(Resk−1,∞). ��
We note that the case k = 0 of the following lemma holds trivially.

Lemma 2.7 Assume that for some k all the coresonant states in Res5−k0∗ are
exact forms. Then the map πk is onto.
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Proof Take arbitrary v ∈ C∞(M;�k) such that dv = 0. We will construct
u ∈ Resk0 ∩ ker d such that πk(u) = [v]Hk by putting

u := v + dw for some w ∈ D′E∗u (M;�k−1
0 ).

Such u is automatically closed, so we only need to choose w so that ιXu = 0,
that is

ιXdw = LXw = −ιXv (2.62)

where the first equality is immediate because ιXw = 0.
To solve (2.62), we use Lemma 2.1. It suffices to check that the condi-

tion (2.56) holds:

〈〈ιXv, u∗〉〉 = 0 for all u∗ ∈ Res5−k0∗ .

We compute

〈〈ιXv, u∗〉〉 =
∫

M
α ∧ (ιXv) ∧ u∗ =

∫

M
v ∧ u∗ = 0.

Here in the second equality we used that ιXu∗ = 0 (thus ιX of the 5-forms on
both sides are the same) and in the last equality we used that v is closed and,
by the assumption of the lemma, u∗ is exact. ��
Lemma 2.8 The maps π1, π1∗ are isomorphisms, in particular

dim(Res10 ∩ ker d) = dim(Res10∗ ∩ ker d) = b1(M).

Proof We only consider the case of π1, with π1∗ handled similarly. To show
that π1 is one-to-one, we use Lemma 2.6 and the fact that Res0,∞ = Res00
consists of constant functions by Lemma 2.4. To show that π1 is onto, it
suffices to use Lemma 2.7: by Lemma 2.4, the space Res40∗ is spanned by
dα ∧ dα = d(α ∧ dα). ��
Lemma 2.9 We have d(Res30) = d(Res30∗) = 0.

Proof We only consider the case of Res30, with Res30∗ handled similarly.
Assume that u ∈ Res30. Then du ∈ Res40, so by Lemma 2.4 we have
du = cdα ∧ dα for some constant c. It remains to use that

c
∫

M
d volα =

∫

M
α ∧ du =

∫

M
dα ∧ u = 0,

where in the second equality we integrated by parts and in the third equality
we used that ιX (dα ∧ u) = 0, thus dα ∧ u = 0. ��
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Wealso have the followingnondegeneracy result for the pairingbetween closed
resonant and coresonant forms when k = 1:

Lemma 2.10 The pairing induced by 〈〈•, •〉〉 on (Res10 ∩ ker d) × (dα ∧
(Res10∗ ∩ ker d)) is nondegenerate.
Proof We show the following stronger statement: for each closed but not exact
v ∈ C∞(M;�1),

Re〈〈π−11 ([v]H1), dα ∧ π−11∗ ([v]H1)〉〉 < 0. (2.63)

Here we used that the map π1 is an isomorphism, as shown in Lemma 2.8. We
have

π−11 ([v]H1) = v + d f, π−11∗ ([v]H1) = v + dg,

where f ∈ D′E∗u (M;C), g ∈ D′E∗s (M;C) satisfy

X f = Xg = −ιXv. (2.64)

We compute

Re〈〈π−11 ([v]H1), dα ∧ π−11∗ ([v]H1)〉〉
= Re

∫

M
α ∧ dα ∧ (v + d f ) ∧ (v + dg)

= Re
∫

M
α ∧ dα ∧ (d f ∧ v + v ∧ dg + d f ∧ dg)

= Re
∫

M
dα ∧ dα ∧ ( f v − gv − gd f )

= Re
∫

M

(
f ιXv − gιXv − (X f )g

)
d volα

= −Re〈X f, f 〉L2(M;d volα).

Here in the second line we used that Re(v ∧ v) = 0. In the third line we
integrated by parts and used that dv = 0. In the fourth line we used that
ιXdα = 0 (the 5-forms under the integral are equal as can be seen by taking
ιX of both sides). In the last line we used the identity (2.64).

Thus, if (2.63) fails, we have Re〈X f, f 〉L2(M;d volα) ≤ 0 which by

Lemma 2.3 implies that f ∈ C∞(M;C) and thus u := π−11 ([v]H1) lies
in Res10 ∩C∞(M;�1). Now the fact that u is invariant under the flow ϕt and
the stable/unstable decomposition (2.4) imply that u ∈ E∗0 at each point, and
the fact that ιXu = 0 then gives u = 0. This shows that v is exact, giving a
contradiction. ��
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We finally give the following result in the case when all forms in Res10 are
closed:

Lemma 2.11 Assume that Res10 consists of closed forms, i.e. d(Res10) = 0.
Then:

1. The semisimplicity condition (2.41) holds at λ0 = 0 for the operators P1,0
and P3,0.

2. d(Res20) = 0, π2 is onto, and ker π2 is spanned by dα.
3. m1,0(0) = m3,0(0) = b1(M), dim Res20 = b2(M)+ 1, and π3 = 0.

Remark Lemma 2.11 does not provide full information on the resonance at 0
since it does not prove the semisimplicity condition for the operator P2,0,
and only assumes that resonant forms Res10 are closed (in fact we will see
that d(Res10) 
= 0 and P2,0 is not semisimple in the hyperbolic case when
b1(M) > 0, see § 3).

Proof 1. Since dim(Res10 ∩ ker d) = dim(Res10∗ ∩ ker d) by Lemma 2.8, and
dim Res10 = dim Res10∗ by (2.54), we have d(Res10∗) = 0. By (2.49) we have
Res30∗ = dα ∧ Res10∗. Now Lemma 2.10 shows that 〈〈•, •〉〉 defines a non-
degenerate pairing on Res10×Res30∗, which by Lemma 2.2 shows that the
semisimplicity condition (2.41) holds atλ0 = 0 for the operator P1,0. By (2.45)
semisimplicity holds for P3,0 as well.
2. We first show that Res20 consists of closed forms. Assume that ζ ∈ Res20,
then dζ ∈ Res30. By (2.45), dζ = dα ∧ u for some u ∈ Res10. Take arbitrary
u∗ ∈ Res10∗. Then

〈〈u, dα ∧ u∗〉〉 =
∫

M
α ∧ dζ ∧ u∗ =

∫

M
dα ∧ ζ ∧ u∗ = 0 (2.65)

Here in the second equality we integrate by parts and use that du∗ = 0; in the
last equality we use that ιX applied to the 5-form under the integral is equal
to 0. Now by Lemma 2.10we have u = 0, whichmeans that dζ = 0 as needed.

Next, by Lemma 2.6 we have ker π2 ⊂ d(Res1,∞). By (2.43), Lemma 2.4,
and the fact that Res1,∞0 = Res10 we have Res1,∞ = Res10⊕Cα. Since
d(Res10) = 0 and dα ∈ ker π2, we see that ker π2 is spanned by dα.

Finally, to show that π2 is onto, it suffices to use Lemma 2.7: since all
elements of Res10∗ are closed, all elements of Res30∗ = dα ∧ Res10∗ are exact.
3. This follows immediately from the above statements and Lemma 2.8. To
show that π3 = 0 we note that Res30 = dα ∧ Res10 consists of exact forms. ��
2.4.3 Summary

We now briefly summarize the contents of this section. Lemma 2.2 will often
be used to interpret the semisimplicity condition (2.41) via the more tractable
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nondegeneracy of the pairing (2.9). Next, Lemma 2.4 provides us with a defini-
tive understanding of Res0,∞0 and Res4,∞0 , which by the isomorphisms (2.49)
reduces the problem to studying Res1,∞0 and Res2,∞0 . As Theorem 1 shows,
this is a complicated question, but Lemma 2.8 says that Res10 ∩ ker d is ‘stably
topological’, that is, it is always mapped isomorphically by π1 to H1(M).
Moreover, if one can show d(Res10) = 0, Lemma 2.11 shows that semisim-
plicity for 1-forms is valid, which will be used in the perturbed picture in § 4.
Under the same assumption, we also know that Res20 is spanned by the ‘topo-
logical part’π−12 (H2(M)) and the form dα. Thus, to compute (2.59) it suffices
to study conditions under which forms in Res10 are closed, and semisimplic-
ity conditions for P2,0. This will be done in two steps: in § 3 we will first
develop a detailed understanding when ϕt is the geodesic flow of a hyperbolic
3-manifold, and later in § 4 we will study the perturbed picture.

3 Resonant states for hyperbolic 3-manifolds

In this section we study in detail the Pollicott–Ruelle resonant states at 0 for
geodesic flows on hyperbolic 3-manifolds. The theorem below summarizes
the main results. Here Resk0 = Resk,10 are the spaces of resonant k-forms,

Resk,�0 are the spaces of generalized resonant k-forms (see §2.4), and πk :
Resk0 ∩ ker d → Hk(M;C) are the maps defined in (2.61). The maps π∗� , π�∗
are defined in §2.2.2.

Theorem 2 Let M = S� where � is a hyperbolic 3-manifold and ϕt be the
geodesic flow on �. Then:

1. There exists a 2-form ψ ∈ C∞(M;�2
0) which is closed but not exact,

π�∗(ψ) = −4π , and ψ is invariant under ϕt .
2. Res10 = C⊕ Cψ is 2b1(�)-dimensional where C := Res10 ∩ ker d is b1(�)-

dimensional and Cψ is another b1(�)-dimensional space characterized by
the identity dα ∧ Cψ = ψ ∧ C.

3. The semisimplicity condition (2.41) holds at λ0 = 0 for the operators P1,0
and P3,0.

4. Res20 = Cdα⊕Cψ⊕dCψ is b1(�)+2-dimensional and consists of closed
forms. The map π2 has kernel Cdα ⊕ dCψ and range C[ψ]H2 .

5. Res2,∞0 = Res2,20 is 2b1(�) + 2-dimensional. The range of the map LX :
Res2,20 → Res20 is equal to dCψ .

6. Res30 = dα ∧ Res10 is 2b1(�)-dimensional and consists of closed forms.
The map π3 has kernel dα ∧ C and its range is a codimension 1 subspace
of H3(M;C) not containing [π∗�d volg]H3 .

7. The map π�∗ annihilates dα ∧ C and is an isomorphism from dα ∧ Cψ
onto the space of harmonic 1-forms on �.
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Theorem 2 together with Lemma 2.4 and (2.59) give part 1 of Theorem 1:

Corollary 3.1 Theorem 2, the algebraic multiplicities of 0 as a resonance of
the operators Pk,0 are

m0,0(0) = m4,0(0) = 1, m1,0(0) = m3,0(0) = 2b1(�),

m2,0(0) = 2b1(�)+ 2 (3.1)

and the order of vanishing of the Ruelle zeta function ζR at 0 is equal to

mR(0) = 2m0,0(0)− 2m1,0(0)+ m2,0(0) = 4− 2b1(�).

Previously (3.1) was proved in [16, Proposition 7.7] using different methods.
Herewegive amore refineddescription:we construct the resonant forms, prove
pairing formulas, and study the existence of Jordan blocks. We emphasize that
these properties are of crucial importance for the perturbation arguments in
§ 4 and were not known prior to this work.

This section is structured as follows: in §3.1 we review the geometric fea-
tures of hyperbolic 3-manifolds used here. In §3.2 we construct the smooth
invariant 2-form ψ and study its properties, proving part 1 of Theorem 2.
In §3.3 we study the resonant 1-forms and 3-forms, proving parts 2, 3, and 6
of Theorem 2. In §3.4 we study the resonant 2-forms, proving parts 4 and 5 of
Theorem 2. Finally, in §3.5 we show that the pushforward operator π�∗ maps
elements of Res30 to harmonic 1-forms on (�, g), proving part 7 of Theorem 2.

3.1 Hyperbolic 3-manifolds

Wefirst review the geometry of hyperbolic 3-manifolds, following [14, §3].We
define a hyperbolic 3-manifold to be a nonempty compact connected oriented
3-dimensional Riemannian manifold � with constant sectional curvature−1.
Each such manifold can be written as a quotient

� = �\H3,

where H
3 is the 3-dimensional hyperbolic space and � ⊂ SO+(1, 3) is a

discrete torsion-free co-compact subgroup.Wewill use the hyperboloidmodel

H
3 = {x ∈ R

1,3 | 〈x, x〉1,3 = 1, x0 > 0},

where R
1,3 = R

4 is the Minkowski space, with points denoted by x =
(x0, x1, x2, x3) and the Lorentzian inner product

〈x, x〉1,3 := x20 − x21 − x22 − x23 .
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The group SO+(1, 3) is the group of linear transformations onR1,3 (that is, 4×
4 real matrices) which preserve the inner product 〈•, •〉1,3, have determinant 1,
and preserve the sign of x0 on elements of H3. The Riemannian metric on H3

is the restriction of −〈•, •〉1,3; the group SO+(1, 3) acts on H3 by isometries,
so the metric descends to the quotient �. Note that we may write H

3 �
SO+(1, 3)/SO(3) as a homogeneous space for the SO+(1, 3)-action, since
SO(3) is the stabilizer of the point (1, 0, 0, 0) ∈ H

3.

3.1.1 Geodesic flow

We now study the geodesic flow on �, using the notation of §2.2. The sphere
bundle S� is the quotient

S� = �\SH3, (3.2)

where the sphere bundle SH3 ⊂ R
1,3 × R

1,3 has the form

SH3 = {(x, v) ∈ R
1,3 × R

1,3 | 〈x, x〉1,3 = 1, 〈v, v〉1,3 = −1, 〈x, v〉1,3 = 0}.
Note that we may write SH3 � SO+(1, 3)/SO(2) as a homogeneous
space for the SO+(1, 3)-action, since SO(2) is the stabilizer of the point
(1, 0, 0, 0, 0, 1, 0, 0) ∈ SH3. The contact form α, defined in (2.11), and the
generator X of the geodesic flow are

α = −〈v, dx〉1,3, X = v · ∂x + x · ∂v, (3.3)

where ‘·’ denotes the (positive definite) Euclidean inner product on R1,3. The
geodesic flow is then given by

ϕt (x, v) = (x cosh t + v sinh t, x sinh t + v cosh t).

As a corollary, the distance function on H
3 with respect to the hyperbolic

metric is given by

cosh dH3(x, y) = 〈x, y〉1,3 for all x, y ∈ H
3. (3.4)

The tangent space T(x,v)(SH3) consists of vectors (ξx , ξv) ∈ R
1,3⊕R

1,3 such
that

〈x, ξx 〉1,3 = 〈v, ξv〉1,3 = 〈x, ξv〉1,3 + 〈v, ξx 〉1,3 = 0.

The connection map (2.14) is given by

K(x, v)(ξx , ξv) = ξv − 〈x, ξv〉1,3 x = ξv + 〈v, ξx 〉1,3x .
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Here and throughout we note that the addition of points x and vectors ξv
(or ξx ) has to be understood in R

1,3. The horizontal and vertical spaces
H(x, v),V(x, v) ⊂ T(x,v)(SH3) are then

H(x, v) = {(ξx , ξv) | 〈x, ξx 〉1,3 = 0, ξv = −〈v, ξx 〉1,3 x},
V(x, v) = {(0, ξv) | 〈x, ξv〉1,3 = 〈v, ξv〉1,3 = 0}

and the horizontal-vertical splitting map (2.15) takes for ξ = (ξx , ξv) ∈
T(x,v)(SH3) ⊂ R

1,3 ⊕ R
1,3 the form

ξH = ξx , ξV = ξv + 〈v, ξx 〉1,3 x .
The Sasaki metric (2.17) is for ξ, η ∈ T(x,v)(SH3) given by

〈ξ, η〉S = −〈ξx , ηx 〉1,3 − 〈ξv, ηv〉1,3 + 〈v, ξx 〉1,3〈v, ηx 〉1,3.
The unstable/stable subspaces Eu, Es from (2.2) on SH3 are given by

Eu(x, v) = {(w,w) | w ∈ R
1,3, 〈w, x〉1,3 = 〈w, v〉1,3 = 0},

Es(x, v) = {(w,−w) | w ∈ R
1,3, 〈w, x〉1,3 = 〈w, v〉1,3 = 0}. (3.5)

In terms of the horizontal-vertical splitting (2.15) they can be characterized as
follows:

Eu = {ξV = ξH }, Es = {ξV = −ξH }. (3.6)

A distinguished feature of hyperbolic manifolds is that the restriction of the
differential of the geodesic flow to the unstable/stable spaces is conformal with
respect to the Sasaki metric:

|dϕt (x, v)ξ |S =
{
et |ξ |S, ξ ∈ Eu(x, v);
e−t |ξ |S, ξ ∈ Es(x, v).

(3.7)

The objects discussed above are invariant under the action of SO+(1, 3) and
thus descend naturally to the quotients �, S�.

3.1.2 The frame bundle and canonical vector fields

A convenient tool for computations on M = S� is the frame bundle F�,
consisting of quadruples (x, v1, v2, v3) where x ∈ � and v1, v2, v3 ∈ Tx�
form a positively oriented orthonormal basis. We have

F� = �\FH
3, FH

3 � SO+(1, 3),
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where the frame bundle FH
3 is identified with the group SO+(1, 3) by the

following map (where e0 = (1, 0, 0, 0), e1 = (0, 1, 0, 0), . . . )

γ ∈ SO+(1, 3) �→ (γ e0, γ e1, γ e2, γ e3). (3.8)

Under this identification, the action of SO+(1, 3) on FH
3 corresponds to the

action of this group on itself by left multiplications. Therefore, SO+(1, 3)-
invariant vector fields on FH

3 correspond to left-invariant vector fields on the
group SO+(1, 3), that is to elements of its Lie algebra so(1, 3). We define
the basis of left-invariant vector fields on SO+(1, 3) corresponding to the
following matrices in so(1, 3):

X =

⎛

⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , R =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟⎟⎠ , U+1 =

⎛

⎜⎜⎝

0 0 −1 0
0 0 −1 0
−1 1 0 0
0 0 0 0

⎞

⎟⎟⎠ ,

U+2 =

⎛

⎜⎜⎝

0 0 0 −1
0 0 0 −1
0 0 0 0
−1 1 0 0

⎞

⎟⎟⎠ , U−1 =

⎛

⎜⎜⎝

0 0 −1 0
0 0 1 0
−1 −1 0 0
0 0 0 0

⎞

⎟⎟⎠ , U−2 =

⎛

⎜⎜⎝

0 0 0 −1
0 0 0 1
0 0 0 0
−1 −1 0 0

⎞

⎟⎟⎠ .

Under the identification (3.8), and considering FH
3 as a submanifold

of (R1,3)4,we canwrite using coordinates (x, v1, v2, v3) ∈ (R1,3)4 andwriting
‘·’ for the Euclidean inner product

X = v1 · ∂x + x · ∂v1, R = v2 · ∂v3 − v3 · ∂v2,
U±1 = −v2 · ∂x − x · ∂v2 ± (v2 · ∂v1 − v1 · ∂v2),
U±2 = −v3 · ∂x − x · ∂v3 ± (v3 · ∂v1 − v1 · ∂v3).

Since the vector fields above are invariant under the action of SO+(1, 3), they
descend to the frame bundle of the quotient, F�.

The commutation relations between these fields are (as can be seen by
computing the commutators of the corresponding matrices, or by using the
explicit formulas above)

[X,U±i ] = ±U±i , [U+i ,U−i ] = 2X, [U±1 ,U∓2 ] = 2R,

[X, R] = [U±1 ,U±2 ] = 0, [R,U±1 ] = −U±2 , [R,U±2 ] = U±1 . (3.9)

The map

πF : (x, v1, v2, v3) ∈ F� �→ (x, v1) ∈ S�
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is a submersion,with one-dimensional fiberswhose tangent spaces are spanned
by the field R. Thus, if a vector field on F� commutes with R then this
vector field descends to the sphere bundle S�. In particular, the vector field X
descends to the generator of the geodesic flow (which we also denote by X ).

The vector fields U±i do not commute with R and thus do not descend to
S�. However, the vector space span(U+1 ,U

+
2 ) is R-invariant and descends to

the stable space Es on S�. Similarly, the space span(U−1 ,U
−
2 ) descends to

Eu . Because of this we think of U+1 ,U
+
2 as stable vector fields and U−1 ,U

−
2

as unstable vector fields.

3.1.3 Canonical differential forms

We next introduce the frame of canonical differential 1-forms on F�

α, R∗, U±∗1 , U±∗2

which is defined as a dual frame for the vector fields X, R,U∓1 ,U
∓
2 , in the

sense compatible with the definition of the dual stable/unstable bundles (2.4),
as follows:

〈α, X〉 = 〈R∗, R〉 = 〈U±∗1 ,U∓1 〉 = 〈U±∗2 ,U∓2 〉 = 1 (3.10)

and all the other pairings between the 1-forms and the vector fields in question
are equal to 0. In particular, 〈U±∗i ,U±i 〉 = 0.

Using the following identity valid for any 1-form β and any two vector fields
Y, Z

dβ(Y, Z) = Yβ(Z)− Zβ(Y )− β([Y, Z ]), (3.11)

the commutation relations (3.9), and the duality relations (3.10), we compute
the differentials of the canonical forms:

dα = 2(U+∗1 ∧U−∗1 +U+∗2 ∧U−∗2 ), dR∗ = 2(U−∗2 ∧U+∗1 +U+∗2 ∧U−∗1 ),

dU±∗1 = ±α ∧U±∗1 − R∗ ∧U±∗2 , dU±∗2 = ±α ∧U±∗2 + R∗ ∧U±∗1 . (3.12)

It follows that

LXU
±∗
j = ±U±∗j , LRU

±∗
1 = −U±∗2 , LRU

±∗
2 = U±∗1 . (3.13)

If ω is a differential form on F�, then ω descends to S� (i.e. it is a pullback
by πF of a form on S�) if and only if ιRω = 0, LRω = 0. In particular the
form α on F� descends to the contact form on S�, which we also denote
by α.
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3.1.4 Conformal infinity

Following [14, §3.4] we consider the maps

�± : SH3 → (0,∞), B± : SH3 → S
2, (3.14)

where S2 is the unit sphere in R3, defined by the identities

x ± v = �±(x, v)(1, B±(x, v)) for all (x, v) ∈ SH3. (3.15)

Note that B±(x, v) is the limit as t → ±∞ of the projection to H
3 of the

geodesic ϕt (x, v) in the compactification of the Poincaré ball model of H3.
Let

(S2 × S
2)− := {(ν−, ν+) ∈ S

2 × S
2 | ν− 
= ν+}.

In fact, the maps B± yield the following diffeomorphism of SH3 (see [14,
(3.24)]):

� : SH3 � (y, v) �→ (ν−, ν+, t) ∈ (S2 × S
2)− × R

with ν± = B±(y, v), t = 1

2
log

(�+(y, v)
�−(y, v)

)
.

(3.16)

The geometric interpretation of � is as follows: ν± are the limits on the con-
formal boundary S

2 of the geodesic ϕs(y, v) as s → ±∞ and t is chosen
so that ϕ−t (y, v) is the closest point to e0 on that geodesic (as can be seen
from (5.30) below and noting that Xt = 1 by (3.22)).

We have the identity [14, (3.23)]

�−(x, v)�+(x, v)
∣∣B−(x, v)− B+(x, v)

∣∣2 = 4, (3.17)

where | • | denotes the Euclidean distance on R
3 ⊃ S

2.
We also introduce the Poisson kernel

P(x, ν) = (〈x, (1, ν)〉1,3
)−1

> 0, x ∈ H
3, ν ∈ S

2 ⊂ R
3. (3.18)

The following relations hold [14, (3.21)]:

�±(x, v) = P(x, B±(x, v)). (3.19)

If we fix x ∈ H
3, then the maps v �→ B±(x, v) are diffeomorphisms from the

fiber SxH3 onto S
2. The inverse maps are given by ν �→ v±(x, ν) where [14,

(3.20)]

v±(x, ν) = ∓x ± P(x, ν)(1, ν) ∈ SxH
3, B±(x, v±(x, ν)) = ν. (3.20)
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The diffeomorphisms v �→ B±(x, v) are conformalwith respect to the induced
metric on SxH3 and the canonical metric | • |S2 : by [14, (3.22)]) we have

|∂vB±(x, v)η|S2 =
|η|g

�±(x, v)
for all η ∈ Tv(SxH

3). (3.21)

Next, we have by (3.3) and (3.5)

X�± = ±�±, d�−|Eu = d�+|Es = 0. (3.22)

The maps B± are submersions with connected fibers, the tangent spaces to
which are described in terms of the stable/unstable decomposition (2.2) as
follows: for each ν ∈ S

2

T (B−1+ (ν)) = (E0 ⊕ Es)|B−1+ (ν)
, T (B−1− (ν)) = (E0 ⊕ Eu)|B−1− (ν)

.

(3.23)

This can be checked using (3.5), see [14, (3.25)]. The action of the differential
dB+ on Eu , and of dB− on Es , can be described as follows: for any (x, v) ∈
SH3 and w ∈ R

1,3 such that 〈x, w〉1,3 = 〈v,w〉1,3 = 0,

dB±(x, v)(w,±w) = 2(w′ − w0B±(x, v))
�±(x, v)

where w = (w0, w
′).

(3.24)

We next briefly discuss the action of the group SO+(1, 3) on the conformal
infinity S2, referring to [14, §3.5] for details. For any γ ∈ SO+(1, 3), define

Nγ : S2 → (0,∞), Lγ : S2 → S
2

by the identity (where on the left is the linear action of γ on (1, ν) ∈ R
1,3)

γ · (1, ν) = Nγ (ν)(1, Lγ (ν)) for all ν ∈ S
2.

The maps Lγ define an action of SO+(1, 3) on S
2. This action is transitive

and the stabilizer of e1 ∈ S
2 is the group of matrices A ∈ SO+(1, 3) such

that A(1, 1, 0, 0)T = τ(1, 1, 0, 0)T for some τ > 0, which may be shown to
be isomorphic to the group of similarities of the plane Sim(2), giving S

2 �
SO+(1, 3)/Sim(2) the structure of a homogeneous space.

This action is by orientation preserving conformal transformations, more
precisely

|dLγ (ν)ζ |S2 =
|ζ |S2
Nγ (ν)

for all (ν, ζ ) ∈ TS2. (3.25)
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Moreover, the maps B± have the equivariance property

B±(γ · (x, v)) = Lγ (B±(x, v)) for all (x, v) ∈ SH3. (3.26)

We finally use the maps B± to describe a special class of differential forms
on S� defined as follows (c.f. [14,44]):

Definition 3.2 We call a k-form u ∈ D′(S�;�k
0) stable if it is a section of

∧k E∗s ⊂ �k
0 where E∗s ⊂ T ∗(S�) is the annihilator of E0 ⊕ Es (see (2.4)).

We call u unstable if it is a section of ∧k E∗u where E∗u is the annihilator of
E0 ⊕ Eu .
We call a form u totally (un)stable if both u and du are (un)stable.

The lemma below (see also [44, §§2.3–2.4]) shows that totally (un)stable k-
forms on S�, � = �\H3, correspond to �-invariant k-forms on S

2. Denote
by π� : SH3 → S� the covering map.

Lemma 3.3 Let u ∈ D′(S�;�k
0) be totally stable. Then the lift π∗�u has the

form

π∗�u = B∗+w where w ∈ D′(S2;�k), L∗γw = w for all γ ∈ �.(3.27)
Conversely, each form B∗+w, where w satisfies (3.27), is the lift of a totally
stable k-form on S�. A similar statement holds for totally unstable forms, with
B+ replaced by B−.

Proof We only consider the case of totally stable forms, with totally unstable
forms handled similarly. First of all, note that lifts of totally stable k-forms on
S� are exactly the �-invariant totally stable k-forms on SH3. Next, by (3.23),
a k-form ζ ∈ D′(SH3;�k) is totally stable if and only if ιY ζ = 0, LY ζ = 0
for any vector field Y tangent to the fibers of the map B+, which is equivalent
to saying that ζ = B∗+w for some w ∈ D′(S2;�k). Finally, by (3.26), �-
invariance of ζ is equivalent to �-invariance of w. ��
Lemma 3.3 implies that

every totally stable u ∈ D′(S�;�k
0) lies in D′E∗s (S�;�k

0),

every totally unstable u ∈ D′(S�;�k
0) lies in D′E∗u (S�;�k

0).
(3.28)

Indeed, assume that u is totally stable. Write π∗�u = B∗+w for some w ∈
D′(S2;�k), then we have WF(π∗�u) = π∗� WF(u) (as π� is a local dif-
feomorphism). From the behavior of wavefront sets under pullbacks [38,
Theorem 8.2.4], we know that WF(π∗�u) is contained in the conormal bun-
dle of the fibers of the submersion B+. From (3.23) and (2.4) we then have
WF(u) ⊂ E∗s . A similar argument works for the totally unstable case.
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3.2 Additional invariant 2-form

The space of smooth flow invariant 2-forms on S� is known to be 2-
dimensional, see Lemma 3.7 below, [40, Claim 3.3] or [36], thus there exists
a smooth invariant 2-form which is not a multiple of dα. In this section we
introduce such a 2-form ψ and study its properties; these are crucial for the
study of Pollicott–Ruelle resonances at zero in §§3.3–3.4 below.

3.2.1 A rotation on Eu ⊕ Es

Let x ∈ �. For any two v,w ∈ Tx�, we may define their cross product
v×w ∈ Tx�, which is uniquely determined by the following properties: v×w
is g-orthogonal to v andw; the length of v×w is the area of the parallelogram
spanned by v,w in Tx�; and v,w, v×w is a positively oriented basis of Tx�
whenever v × w 
= 0.

For future use we record here an identity true for any v,w1, w2, w3, w4 ∈
Tx� such that |v|g = 1 and w1, w2, w3, w4 are g-orthogonal to v:

〈v × w1, w2〉g〈v × w3, w4〉g = 〈w1, w3〉g〈w2, w4〉g − 〈w2, w3〉g〈w1, w4〉g.
(3.29)

Using the horizontal/vertical decomposition (2.15), we define the bundle
homomorphism

I : T S�→ T S�, I(x, v)(ξH , ξV ) = (v × ξV , v × ξH ). (3.30)

From (2.18) and (3.6) we see that I preserves the flow/stable/unstable decom-
position (2.2). Moreover, it annihilates E0 = RX and it is a rotation by π/2
on Eu and on Es (with respect to the Sasaki metric), so in particular it satisfies
I2 = − Id on ker α = Eu ⊕ Es ; however, the direction of the rotation is
opposite on Eu and on Es if we identify them by (3.5).

The map I is invariant under the geodesic flow ϕt = et X :

LXI = 0. (3.31)

This follows from the conformal property of the geodesic flow (3.7) and the
description of the action of I on E0, Eu, Es in the previous paragraph.

For any point (x, v1, v2, v3) in the frame bundle F�, we have (using the
horizontal/vertical decomposition)

I(x, v1)(v2,±v2) = ±(v3,±v3), I(x, v1)(v3,±v3) = ∓(v2,±v2).
(3.32)
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It follows that (see §3.1.2 for the definition of the vector fields U±i on F�)

I(x, v1)(dπFU±1 (x, v1, v2, v3)) = ∓dπFU±2 (x, v1, v2, v3),
I(x, v1)(dπFU±2 (x, v1, v2, v3)) = ±dπFU±1 (x, v1, v2, v3).

(3.33)

3.2.2 Relation to conformal infinity

The homomorphism I lifts to T SH3. If B± : SH3 → S
2 are the maps defined

in (3.14) and ‘×’ denotes the cross product on R
3, then for all (x, v) ∈ SH3

and ξ ∈ T(x,v)SH3 we have

dB±(x, v)(I(x, v)ξ) = B±(x, v)× dB±(x, v)(ξ). (3.34)

To see this, we use (3.23), and the fact that I preserves the flow/stable/unstable
decomposition, to reduce to the case ξ = (w,±w), where x, v, w is an
orthonormal set inR1,3. By the equivariance (3.26) of B± under SO+(1, 3), the
fact that the action Lγ of any γ ∈ SO+(1, 3) on S2 is by orientation preserving
conformal maps, and the equivariance of I under SO+(1, 3) we can reduce to
the case x = e0, v = e1, w = e2, where e0, e1, e2, e3 is the canonical basis of
R
1,3. In the latter case (3.34) is verified directly using (3.24) and (3.32).
Let � be the Hodge star operator on 1-forms on the round sphere S2. It may

be expressed as follows: for any w ∈ C∞(S2;�1) and (ν, ζ ) ∈ TS2 we have

〈(�w)(ν), ζ 〉 = −〈w(ν), ν × ζ 〉.

From (3.34) we get the following relation of I to �: for any 1-form w on S
2

we have

(B∗±w) ◦ I = −B∗±(�w), (3.35)

where for any 1-form β on SH3 the 1-form β ◦ I on SH3 is defined by

〈(β ◦ I)(x, v), ξ 〉 = 〈β(x, v), I(x, v)ξ 〉. (3.36)

3.2.3 The new invariant 2-form

We next define the 2-form ψ ∈ C∞(S�;�2) as follows: for all (x, v) ∈ S�
and ξ, η ∈ T(x,v)S�,

ψ(x, v)(ξ, η) = dα(x, v)(I(x, v)ξ, η). (3.37)
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To see that ψ is indeed an antisymmetric form, we may use (2.16) and (3.30)
to write it in terms of the horizontal/vertical decomposition of ξ, η:

ψ(x, v)(ξ, η) = 〈v × ξH , ηH 〉g − 〈v × ξV , ηV 〉g. (3.38)

Using (3.12), (3.33) we may also compute the lift of ψ to the frame bundle
F�, which we still denote by ψ :

ψ = 2(U+∗1 ∧U−∗2 +U−∗1 ∧U+∗2 ). (3.39)

We have

ιXψ = 0, LXψ = 0. (3.40)

The first of these statements is checked directly using (2.18). The second
statement can be verified using (3.13) and (3.39), or using that LXI = 0 and
LXdα = 0.

We now establish several properties of the formψ .Wewill use the following
corollaries of (2.16), (3.38):

dα|H×H = 0, dα|V×V = 0, ψ |H×V = 0 (3.41)

where the horizontal/vertical spaces H,V are defined in §2.2.1.

Lemma 3.4 We have

dψ = 0, (3.42)

ψ ∧ ψ = dα ∧ dα, (3.43)

d(α ∧ ψ) = 0. (3.44)

Proof By (3.40) we have ιXdψ = 0. Therefore, dψ(x, v)(ξ1, ξ2, ξ3) = 0 for
ξ1, ξ2, ξ3 ∈ T(x,v)S� such that one of these vectors lies in E0. Next, LXdψ =
0, that is dψ is invariant under the geodesic flow. Using this invariance for
time t → ±∞ together with (3.7) and the fact that 3 is an odd number, we
see that dψ(x, v)(ξ1, ξ2, ξ3) = 0 also when each of the vectors ξ1, ξ2, ξ3 lies
in either Eu(x, v) or Es(x, v). It follows that (3.42) holds.

To check (3.43), we first note that ιX of both sides is zero. Thus it suffices
to check that

ψ ∧ ψ(x, v)(ξ1, ξ2, ξ3, ξ4) = dα ∧ dα(x, v)(ξ1, ξ2, ξ3, ξ4) (3.45)

for some choice of basis ξ1, ξ2, ξ3, ξ4 ∈ T(x,v)S� of the kernel of α. We take

ξ1 = (w1, 0), ξ2 = (w2, 0), ξ3 = (0, w3), ξ4 = (0, w4)
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under the horizontal/vertical decomposition (2.15), where each w j ∈ Tx� is
orthogonal to v. By (2.16), (3.38)

ψ ∧ ψ(x, v)(ξ1, ξ2, ξ3, ξ4) = −2〈v × w1, w2〉g〈v × w3, w4〉g,
dα ∧ dα(x, v)(ξ1, ξ2, ξ3, ξ4) = 2(〈w2, w3〉g〈w1, w4〉g

− 〈w1, w3〉g〈w2, w4〉g)

and (3.45) follows from (3.29).
Finally, to show (3.44) it suffices to prove that dα ∧ ψ = 0. To show this

we may argue similarly to the proof of (3.43) above, using (3.41).
Alternatively, (3.42)–(3.44) can be checked by lifting to the frame bundle

F� and using (3.12) and (3.39). ��
The next lemma studies the relation of ψ to the de Rham cohomology of
M = S�; in particular, its first item and (3.40) give the first item of Theorem 2.
Recall the pullback and pushforward operators π∗�, π�∗ defined in §2.2.2 and
denote by d volg the volume 3-form on � induced by g and the choice of
orientation.

Lemma 3.5 We have:

1. π�∗(ψ) = −4π . In particular, [ψ]H2 
= 0.
2. π�∗(α ∧ ψ) = 0.
3. π�∗(α ∧ dα) = 0.
4. α ∧ dα ∧ dα = 2ψ ∧ π∗�(d volg).
5. [α ∧ ψ]H3 = 2[π∗�(d volg)]H3 .

Proof 1. Let (x, v) ∈ S� and v2, v3 be a positively oriented g-orthonormal
basis of the tangent space to the fiber Tv(Sx�). We consider v2, v3 as vertical
vectors in T(x,v)S�, aswell as vectors in Tx�. The triple v, v2, v3 is a positively
oriented g-orthonormal basis of Tx�, so by (3.38)

ψ(x, v)(v2, v3) = −〈v × v2, v3〉g = −1.

Thus the restriction of ψ to each fiber Sx� is −1 times the standard volume
form on Sx� � S

2, which implies that π�∗(ψ) = −4π . It now follows from
(2.22) that [ψ]H2 
= 0.

2. Fix x ∈ �, v1 ∈ Tx�. Let v ∈ Sx� and v2, v3 be a positively oriented
g-orthonormal basis of the tangent space Tv(Sx�) as in part 1 of this proof.
Let ξ1 = (v1, 0) be the horizontal lift of v1 to T(x,v)(S�). By (2.16) and (3.38)
we compute

α ∧ ψ(x, v)(ξ1, v2, v3) = −〈v1, v〉g〈v × v2, v3〉g = −〈v1, v〉g.
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Since v �→ 〈v1, v〉g is an odd function on Sx�, we have

(π�∗(α ∧ ψ))(x)(v1) =
∫

Sx�
−〈v1, v〉g d vol(v) = 0.

3. If ξ1, ξ2, ξ3 ∈ T(x,v)(S�) and ξ2, ξ3 are vertical, then by (2.16) we have

α ∧ dα(x, v)(ξ1, ξ2, ξ3) = 0

which implies that π�∗(α ∧ dα) = 0.
4. Let x ∈ � and v, v2, v3 be a positively oriented g-orthonormal basis of

Tx�. Let ξ = X (x, v), ξ2, ξ3 be the horizontal lifts of v, v2, v3 to T(x,v)S�;
we treat v2, v3 as vertical vectors in T(x,v)S�. Using (2.16) and (3.38), we
compute

α ∧ dα ∧ dα(x, v)(ξ, ξ2, ξ3, v2, v3)

= −2 = 2ψ ∧ π∗�(d volg)(x, v)(ξ, ξ2, ξ3, v2, v3).
5. Using the exact sequence (2.27) and the fact that π�∗(α ∧ ψ) = 0, we

see that

[α ∧ ψ]H3 = c[π∗�(d volg)]H3

for some constant c. To determine c, note that α∧ψ ∧ψ has the same integral
over S� as cψ ∧ π∗�(d volg). Since α ∧ ψ ∧ ψ = α ∧ dα ∧ dα = 2ψ ∧
π∗�(d volg), we get c = 2. ��
We also have the following identity relating the operators dα∧ and ψ∧ on
1-forms in �1

0:

Lemma 3.6 For any 1-form β on S� such that ιXβ = 0, we have

dα ∧ β = ψ ∧ (β ◦ I), (3.46)

where the 1-form β ◦ I is defined by (3.36).

Proof It is easy to see that ιX of both sides of (3.46) is equal to 0. It is thus
enough to check that

dα ∧ β(x, v)(ξ1, ξ2, ξ3) = ψ ∧ (β ◦ I)(x, v)(ξ1, ξ2, ξ3) (3.47)

for any three vectors ξ1, ξ2, ξ3, each of which is either horizontal or vertical
under the decomposition (2.15). Moreover, we may assume that the horizontal
components of these vectors lie in the orthogonal complement {v}⊥ to v in
Tx�. It suffices to consider the following two cases:
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Case 1: β(x, v)(ξ) = 〈ξH , w4〉g for somew4 ∈ {v}⊥. By (3.30) and (3.41),
both sides of (3.47) are equal to 0 unless two of ξ1, ξ2, ξ3 are horizontal and
one is vertical; we write

ξ1 = (w1, 0), ξ2 = (w2, 0), ξ3 = (0, w3),

where w j ∈ {v}⊥. We compute using (2.16), (3.30), and (3.38)

dα ∧ β(x, v)(ξ1, ξ2, ξ3) = 〈w1, w3〉g〈w2, w4〉g − 〈w2, w3〉g〈w1, w4〉g,
ψ ∧ (β ◦ I)(x, v)(ξ1, ξ2, ξ3) = 〈v × w1, w2〉g〈v × w3, w4〉g
and (3.47) follows from (3.29).

Case 2: β(x, v)(ξ) = 〈ξV , w4〉g for somew4 ∈ {v}⊥. By (3.30) and (3.41),
both sides of (3.47) are equal to 0 unless two of ξ1, ξ2, ξ3 are vertical and one
is horizontal; we write

ξ1 = (0, w1), ξ2 = (0, w2), ξ3 = (w3, 0),

where w j ∈ {v}⊥. We compute using (2.16), (3.30), and (3.38)

dα ∧ β(x, v)(ξ1, ξ2, ξ3) = 〈w2, w3〉g〈w1, w4〉g − 〈w1, w3〉g〈w2, w4〉g,
ψ ∧ (β ◦ I)(x, v)(ξ1, ξ2, ξ3) = −〈v × w1, w2〉g〈v × w3, w4〉g
and (3.47) again follows from (3.29).

Alternatively, we may lift both sides of (3.46) to the frame bundle F�: it
suffices to consider the cases when β is replaced by one of the forms U±∗i ,
in which case (3.46) is checked by a direct calculation using (3.12), (3.33),
and (3.39). ��
3.2.4 Characterization of all smooth flow-invariant 2-forms

We finally give

Lemma 3.7 Assume that u ∈ C∞(S�;�2) satisfies LXu = 0. Then u is a
linear combination of dα and ψ .

Proof Without loss of generality we assume that u is real valued. Since dα ∧
ψ = 0 and ψ ∧ ψ = dα ∧ dα by (3.43)–(3.44), we may subtract from u a
linear combination of dα and ψ to make

∫

M
α ∧ dα ∧ u =

∫

M
α ∧ ψ ∧ u = 0. (3.48)

We will show that under the condition (3.48) we have u = 0.
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Since α∧dα∧u, α∧ψ ∧u, α∧u∧u are smooth 5-forms on S� invariant
under the geodesic flow, by Lemma 2.4 (we identify�0 and�5 via the volume
form d volα) we have

α ∧ dα ∧ u = α ∧ ψ ∧ u = 0, α ∧ u ∧ u = c d volα (3.49)

for some constant c ∈ R.
Next, ιXu ∈ C∞(S�;�1

0) and LX ιXu = 0, so by (2.3) (similarly to the
last step of the proof of Lemma 2.10) we get ιXu = 0. Also by (2.3) we
obtain u|Eu×Eu = 0 and u|Es×Es = 0. Therefore, it is enough to show that
u|Es×Eu = 0.

Since dα is nondegenerate on Es × Eu (as follows for instance from (2.16)
and (3.6)), there exists unique smooth bundle homomorphism A : Es → Es
such that

u(x, v)(ξ, η) = dα(A(x, v)ξ, η) for all (x, v) ∈ S�, ξ ∈ Es(x, v),

η ∈ Eu(x, v).

It remains to show that A = 0.
Take any (x, v) ∈ S�, assume that v,w1, w2 is a positively oriented

orthonormal basis of Tx�, and define using the horizontal/vertical decom-
position and (3.6)

ξ j = (w j ,−w j ) ∈ Es(x, v), η j = (w j , w j ) ∈ Eu(x, v), j = 1, 2.

Applying (3.49) to the vectors X (x, v), ξ1, ξ2, η1, η2 and using (2.16), (3.32),
and (3.37), we get

tr A(x, v) = 0, A(x, v)T = A(x, v), det A(x, v) = c, (3.50)

where the transpose is with respect to the restriction of the Sasaki metric to
Es(x, v).
If c = 0, then (3.50) implies that A = 0. Assume that c 
= 0, then by (3.50)

we have c < 0 and A has eigenvalues±√−c. The eigenspace of A(x, v) cor-
responding to the eigenvalue

√−c is a one-dimensional subspace of Es(x, v)
depending continuously on (x, v). This is impossible since by restricting to a
single fiber Sx� ⊂ S� and projecting Es onto the vertical space V we would
obtain a continuous one-dimensional subbundle of the tangent space to the
2-sphere. ��
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3.3 Resonant 1-forms and 3-forms

In this section we apply the properties of the 2-form ψ defined in (3.37)
to determine the precise structure of resonant 1-forms on M = S�. Let us
introduce some notation for (co-)resonant 1-forms (see (3.36) for the definition
of u ◦ I)

C(∗) := Res10(∗) ∩ ker d, Cψ(∗) := {u ◦ I | u ∈ C(∗)},
where the subscript (∗) means we either suppress the star or we include it,
respectively corresponding to resonances or co-resonances; we apply this con-
vention to other notions appearing in this section. We remark that the use of
subscriptψ in Cψ is motivated by the property dα∧Cψ = ψ∧C demonstrated
in (3.58) below; in fact we initially used this relation as the definition of Cψ ,
before coming to the interpretation via the map I.

Since I is invariant under the geodesic flow by (3.31) and annihilates X ,
we have

Cψ(∗) ⊂ Res10(∗) .

By Lemma 2.8 and (2.28) we have

dim C(∗) = dim Cψ(∗) = b1(�). (3.51)

We next show that all resonant 1-forms lie in the direct sum C ⊕ Cψ . This is
done in Lemma 3.9 below but first we need

Lemma 3.8 Assume that u ∈ Res10. Then u is totally unstable in the sense of
Definition 3.2. Similarly, if u ∈ Res10∗, then u is totally stable.

Remark Lemma 3.8 was previously proved by Küster–Weich [44, §2.6].

Proof We consider the case u ∈ Res10, with the case u ∈ Res10∗ handled in the
same way.

We first show that u is unstable in the sense of Definition 3.2. For that
it is enough to prove that u(Y ) = 0 for any Y ∈ C∞(M; E0 ⊕ Eu). Since
ιXu = 0, wemay assume that Y ∈ C∞(M; Eu). By the integral formula (2.29)
for the Pollicott–Ruelle resolvent Rk,0(λ), we have for Im λ � 1 and any
w ∈ C∞(M;�1

0), ρ ∈ M

〈R1,0(λ)w, Y 〉(ρ) = i
∫ ∞

0
eiλt 〈w(ϕ−t (ρ)), dϕ−t (ρ)Y (ρ)〉 dt.

Since Y is a section of the unstable bundle, by (3.7) we have |〈w(ϕ−t (ρ)),
dϕ−t (ρ)Y (ρ)〉| ≤ Ce−t for some constantC and all t ≥ 0, ρ ∈ M . Therefore,
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the integral above converges uniformly in ρ for Im λ > −1, which implies
that λ �→ 〈R1,0(λ)w, Y 〉 is holomorphic in Im λ > −1. If�1,0 is the projector
appearing in the Laurent expansion of R1,0(λ) at λ = 0, defined in (2.36), then
ιY�1,0 = 0. Since Res10 is contained in the range of�1,0, we get u(Y ) = 0 as
needed.

We now analyze du. First of all, ιXdu = 0 since u ∈ Res10. Next, we have
du|Eu×Eu = 0. This can be seen by following the argument above, or using
that u(Y ) = 0 for any Y ∈ C∞(M; E0 ⊕ Eu), the identity (3.11), and the
fact that the class C∞(M; E0 ⊕ Eu) is closed under Lie brackets (as follows
from (3.23)).

It remains to show that du|Eu×Es = 0. Let ζ be the restriction of du to
Eu× Es , considered as a section inD′E∗u (M; E∗s ⊗ E∗u). (Here E∗s , E∗u are dual
to Eu, Es as in (2.4).) We endow E∗s ⊗ E∗u with the inner product which is the
tensor product of the dual Sasaski metrics on E∗s and E∗u . The operator

P := −iLX : C∞(M; E∗s ⊗ E∗u)→ C∞(M; E∗s ⊗ E∗u)

is formally self-adjoint as follows from (3.7), and Pζ = 0. Then by [21,
Lemma 2.3] the section ζ is in C∞.

Let us now consider ζ = du|Eu×Es as a smooth 2-form on M (i.e. ιXζ = 0,
ζ |Eu×Eu = ζ |Es×Es = 0, and ζ |Eu×Es = du|Eu×Es ), then LXζ = 0 and by
Lemma 3.7 we see that ζ = a dα + bψ for some constants a, b. We claim
that a = b = 0. This follows from (3.43)–(3.44) and the identities

∫

M
α ∧ dα ∧ ζ =

∫

M
α ∧ dα ∧ du = 0, (3.52)

∫

M
α ∧ ψ ∧ ζ =

∫

M
α ∧ ψ ∧ du = 0. (3.53)

Here the first identity in each line follows from the fact that dα|Eu×Eu =
ψ |Eu×Eu = 0 (which can be verified using (2.16), (3.6), and (3.37)). More
precisely, it suffices to observe that α∧ dα∧ (du− ζ ) and α∧ dψ ∧ (du− ζ )
are pointwise zero, as du − ζ is supported on Es × Es by definition. The
second identity in each line follows by integration by parts and the fact that
dα ∧ dα ∧ u = dα ∧ψ ∧ u = 0 (as ιX of both of these 5-forms is equal to 0).
Now, a = b = 0 implies that ζ = 0, that is du|Eu×Es = 0 as needed. ��
We are now ready to prove

Lemma 3.9 We have C(∗) ∩ Cψ(∗) = {0} and Res10(∗) = C(∗) ⊕ Cψ(∗).

Proof We consider the case of Res10, with Res10∗ handled similarly. We need
to prove that each u ∈ Res10 can be expressed uniquely as a sum of elements
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in C and Cψ . By Lemma 3.8, u is totally unstable. By Lemma 3.3, the lift of u
to SH3 has the form

π∗�u = B∗−w for some �-invariant w ∈ D′(S2;�1),

where � ⊂ SO+(1, 3) is the discrete subgroup such that� = �\H3. Take the
Hodge decomposition of w:

w = w1 + �w2 where w1, w2 ∈ D′(S2;�1), dw1 = dw2 = 0.

(3.54)

Since � acts on S
2 by orientation preserving conformal transformations Lγ

(see (3.25)), its action commutes with the Hodge star �. Since H1(S2) = 0,
the Hodge decomposition above is unique, which implies that w1, w2 are �-
invariant. Applying Lemma 3.3 again and using (3.28), we see that

B∗−w j = π∗�u j for some u1, u2 ∈ D′E∗u (M;�1
0).

Since dw j = 0, we have du j = 0, which together with the fact that ιXu j = 0
shows that u1, u2 ∈ C. Finally, by (3.35) and (3.54) wemay express u uniquely
as

u = u1 − u2 ◦ I, u1 ∈ C, u2 ◦ I ∈ Cψ,

finishing the proof. ��
The next lemma establishes semisimplicity on resonant 1-forms:

Lemma 3.10 The semisimplicity condition (2.41) holds at λ0 = 0 for the
operators P1,0 and P3,0.

Proof By (2.45) it suffices to establish semisimplicity for P1,0. By Lemma 2.2
it suffices to show that the pairing 〈〈•, •〉〉 on Res10×Res30∗ is nondegenerate.
Recall from (2.49) that Res30∗ = dα ∧ Res10∗. By Lemma 2.10 the pairing
〈〈•, •〉〉 is nondegenerate on C × (dα ∧ C∗). Therefore, it suffices to show the
following diagonal structure of the pairing with respect to the decompositions
Res10(∗) = C(∗) ⊕ Cψ(∗) established in Lemma 3.9:

〈〈u, dα ∧ u∗〉〉 = 0 for all u ∈ C, u∗ ∈ Cψ∗ (3.55)

〈〈u, dα ∧ u∗〉〉 = 0 for all u ∈ Cψ, u∗ ∈ C∗ (3.56)

〈〈u, dα ∧ u∗〉〉 = − 〈〈u ◦ I, dα ∧ (u∗ ◦ I)〉〉 for all u ∈ C, u∗ ∈ C∗.
(3.57)
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We first show (3.55). By Lemma 2.5 and (2.25) we may write

u = π∗�w + d f for some w ∈ C∞(�;�1), dw = 0,

f ∈ D′E∗u (M;C),
u∗ ◦ I = π∗�w∗ + d f∗ for some w∗ ∈ C∞(�;�1), dw∗ = 0,

f∗ ∈ D′E∗s (M;C).

We now compute

〈〈u, dα ∧ u∗〉〉 = 〈〈u, ψ ∧ (u∗ ◦ I)〉〉
=

∫

M
α ∧ ψ ∧ (π∗�w + d f ) ∧ (π∗�w∗ + d f∗)

=
∫

M
α ∧ ψ ∧ π∗�(w ∧ w∗) = −

∫

�

π�∗(α ∧ ψ) ∧ w ∧ w∗
= 0.

Here the first equality used Lemma 3.6. The third equality used integration by
parts and (3.44). The fourth equality used (2.20) and (2.23), with the negative
sign explained in the paragraph following (2.20). The fifth equality used part 2
of Lemma 3.5. A similar argument proves (3.56).

Finally, to show (3.57) we compute

〈〈u, dα ∧ u∗〉〉 = 〈〈u, ψ ∧ (u∗ ◦ I)〉〉 = 〈〈ψ ∧ u, u∗ ◦ I〉〉
= −〈〈dα ∧ (u ◦ I), u∗ ◦ I〉〉

using Lemma 3.6 and the fact that u ◦ I ◦ I = −u. ��
We finally discuss the properties of the maps π3(∗) : Res30(∗)→ H3(M;C);

as explained at the top of § 3.3, recall that the subscript (∗) denotes the cor-
responding resonance or co-resonance space, so we can include both in the
discussion. Recall that all forms in Res30(∗) are closed by Lemma 2.9 and

Res30(∗) = dα ∧ Res10(∗) by (2.45), (2.49). Moreover, by Lemma 3.6 and the
definition of Cψ(∗)

dα ∧ Cψ(∗) = ψ ∧ C(∗). (3.58)

We have π3(∗)(dα ∧ C(∗)) = 0. Assume now that u ∈ Cψ , then u ◦ I ∈ C, and
by Lemma 2.5 and (2.25) we may write

u ◦ I = π∗�w + d f for some w ∈ C∞(�;�1), dw = 0,

f ∈ D′E∗u (M;C).
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Wedging with ψ , taking π�∗, and using (2.22)–(2.23), part 1 of Lemma 3.5,
and Lemma 3.6 we get

π�∗π3(dα ∧ u) = π�∗(ψ ∧ π∗�w) = −4πw,

which (together with a similar argument for coresonant states) immediately
shows that

π�∗π3(∗) : dα ∧ Cψ(∗) → H1(�;C) is an isomorphism. (3.59)

This implies that

ker π3(∗) = dα ∧ C(∗) (3.60)

and so by (2.27) the range of π3(∗) is a codimension 1 subspace of H3(M;C)
which does not contain [π∗�d volg]H3 .

Summarizing the contents of § 3.3, we note that the second item of The-
orem 2 follows from (3.58), Lemma 3.9, Lemma 2.8, and (2.28), the third
item by Lemma 3.10, and the sixth item by the discussion in the preceding
paragraph.

3.4 Resonant 2-forms

We next study resonant 2-forms. We start with

Lemma 3.11 We have d(Res20(∗)) = 0 and ker π2(∗) = Cdα ⊕ dCψ(∗) has
dimension b1(�)+ 1.

Proof We consider the case of resonant 2-forms, with the case of coresonant
2-forms handled similarly. We first show that d(Res20) = 0, arguing similarly
to the proof of Lemma 2.11. Take ζ ∈ Res20, then by the definition (2.61) of
π3 we have dζ ∈ ker π3. Thus by (3.60), dζ = dα ∧ u for some u ∈ C. Take
arbitrary u∗ ∈ C∗, then precisely as in (2.65)

〈〈u, dα ∧ u∗〉〉 =
∫

M
α ∧ dζ ∧ u∗ =

∫

M
dα ∧ ζ ∧ u∗ = 0.

Now Lemma 2.10 implies that u = 0 and thus dζ = 0 as needed.
Next, if u ∈ Cψ , then using the same argument of integration by parts as

in (3.52) yields

∫

M
α ∧ dα ∧ du = 0.
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Therefore, du cannot be a nonzero multiple of dα, which means that Cdα ∩
dCψ = {0}. We have dα ∈ ker π2 and by Lemma 2.6 we have dCψ ⊂ ker π2
as well.

It remains to show that ker π2 ⊂ Cdα ⊕ dCψ . By Lemma 2.6, ker π2 is
contained in d(Res1,∞). By (2.43) and Lemmas 2.4, 3.9, and 3.10, we have
Res1,∞ = Cα ⊕ C ⊕ Cψ . Then d(Res1,∞) = Cdα ⊕ dCψ , which finishes the
proof. ��
We next establish the following auxiliary result:

Lemma 3.12 Assume that η ∈ C∞(�;�2), dη = 0, and w ∈ D′E∗u (M;�1)

satisfy

ιX (π
∗
�η + dw) = 0. (3.61)

Then η is exact.

Remark The proof of Lemma 3.12 uses the 2-form ψ which is only available
in the case of constant curvature. By contrast, Lemma 3.12 is false if Res10∗
consists of closed forms and b1(�) > 0; in fact the equation (3.61) then has a
solutionw ∈ D′E∗u (M;�1

0) for any closed η. Indeed, in this case 〈〈ιXπ∗�η, dα∧
u∗〉〉 =

∫
M π∗�η ∧ dα ∧ u∗ = 0 for any u∗ ∈ Res10∗ by integration by parts,

and the existence of w now follows from Lemma 2.1.

Proof Put ζ := π∗�η + dw, then ιXζ = 0. Take arbitrary closed η∗ ∈
C∞(�;�1) and put u∗ := π−11∗ ([π∗�η∗]H1) ∈ C∗. Then u∗ = π∗�η∗ + dw∗
for some w∗ ∈ D′E∗s (M;C). We compute

0 =
∫

M
ψ ∧ ζ ∧ u∗ =

∫

M
ψ ∧ π∗�η ∧ π∗�η∗

= −
∫

�

(π�∗ψ)η ∧ η∗ = 4π
∫

�

η ∧ η∗.

Here the first equality follows since the 5-form under the integral lies in the
kernel of ιX . The second equality follows by integration by parts, using that
ψ, η, η∗ are closed. The third equality follows from (2.20) and (2.23). The
fourth equality follows from part 1 of Lemma 3.5.

We see that η∧η∗ integrates to 0 on� for any closed smooth 1-form η∗. This
implies that η is exact; indeed, we can reduce to the case when η is harmonic
and take η∗ to be the Hodge star of η (we note that this final argument is just
a form of Poincaré duality). ��
We now describe the space of resonant 2-forms (recalling the convention (∗)
at the top of § 3.3):

123



354 M. Cekić et al.

Lemma 3.13 The range of π2(∗) is equal to C[ψ]H2 , and Res20(∗) = Cdα ⊕
Cψ ⊕ dCψ(∗). In particular, dim Res20(∗) = b1(�)+ 2.

Proof We consider the case of resonant 2-forms, with the case of coresonant
2-forms handled similarly. First of all, ψ ∈ Res20, thus [ψ]H2 = π2(ψ) is in
the range of π2. Next, by (2.26) and part 1 of Lemma 3.5 we have

H2(M;C) = π∗�H2(�;C)⊕ C[ψ]H2 .

To show that the range of π2 is equal to C[ψ]H2 , it remains to prove that
the intersection of this range with π∗�H2(�;C) is trivial. Take u ∈ Res20 and
assume that π2(u) = [π∗�η]H2 for some η ∈ C∞(�;�2), dη = 0. Then
u = π∗�η + dw for some w ∈ D′E∗u (M;�1). Since ιXu = 0, Lemma 3.12
implies that η is exact, that is π2(u) = 0 as needed.

Finally, the statement that Res20 = Cdα⊕Cψ ⊕ dCψ follows from the first
statement of this lemma together with Lemma 3.11. ��

The next lemma describes the space of generalized resonant states Res2,20
(see (2.39) and §2.3.3). It implies in particular that the operator P2,0 does not
satisfy the semisimplicity condition (2.41), assuming that b1(�) > 0:

Lemma 3.14 1. The pairing 〈〈•, •〉〉 on Res20×Res20∗ has the following form
in the decomposition of Lemma 3.13:

〈〈dα, dα〉〉 = 〈〈ψ,ψ〉〉 = volα(M) > 0, 〈〈dα,ψ〉〉 = 〈〈ψ, dα〉〉 = 0,

(3.62)

〈〈ζ, ζ∗〉〉 = 0 for all ζ ∈ dCψ, ζ∗ ∈ Res20∗, (3.63)

〈〈ζ, ζ∗〉〉 = 0 for all ζ ∈ Res20, ζ∗ ∈ dCψ∗. (3.64)

2. The range of the map

LX : Res2,20(∗) → Res20(∗) (3.65)

is equal to dCψ(∗). We have dim Res2,20(∗) = 2b1(�)+ 2.

Proof 1. The identities (3.62) follow immediately from (3.43) and (3.44). We
next show (3.63), with (3.64) proved similarly. Let ζ = du where u ∈ Cψ . We
compute

〈〈ζ, ζ∗〉〉 =
∫

M
dα ∧ u ∧ ζ∗ = 0.
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Here in the first equality we integrate by parts and use that dζ∗ = 0 by
Lemma 3.11. The second equality follows from the fact that ιX (dα∧u∧ζ∗) =
0.
2. We consider generalized resonant states, with generalized coresonant states
handled similarly. First, assume that ζ ∈ Res2,20 , then LXζ ∈ Res20. Moreover,
since the transpose of LX is equal to −LX (see §2.3.4) we compute

〈〈LXζ, ζ∗〉〉 = −〈〈ζ,LXζ∗〉〉 = 0 for all ζ∗ ∈ Res20∗ . (3.66)

Using this for ζ∗ = dα and ζ∗ = ψ together with (3.62)–(3.63), we see that
LXζ ∈ dCψ . That is, the range of the map (3.65) is contained in dCψ .

Now, take arbitrary η ∈ dCψ . By (3.63), we have 〈〈η, ζ∗〉〉 = 0 for all
ζ∗ ∈ Res20∗. Then by Lemma 2.1 there exists ζ ∈ D′E∗u (M;�2

0) such that

LXζ = η. Since η ∈ Res20, we see that ζ ∈ Res2,20 . This shows that the range
of the map (3.65) contains dCψ .

Finally, the equality dim Res2,20 = 2b1(�) + 2 follows from Lemma 3.13
and the fact that the kernel of the map (3.65) is given by Res20. ��
We finally show that there are no higher degree Jordan blocks, completing the
analysis of the generalized resonant states of P2,0 at 0:

Lemma 3.15 We have Res2,∞0(∗) = Res2,20(∗).
Proof We consider the case of generalized resonant states, with generalized
coresonant states handled similarly. It suffices to prove that Res2,30 ⊂ Res2,20 .
Take η ∈ Res2,30 and put ζ := LXη ∈ Res2,20 . Exactly as in (3.66), the pairing
of ζ with any element of Res20∗ is equal to 0. In particular

〈〈ζ, du∗〉〉 = 0 for all u∗ ∈ Res10∗ .

By part 2 of Lemma 3.14, we have LXζ = du for some u ∈ Cψ . Put

ω := d(ζ + α ∧ u) ∈ D′E∗u (M;�3).

Then ιXω = ιXdζ−du = 0. Sinceω is exact we haveLXω = 0 andmoreover
that ω ∈ ker π3 ⊂ Res30. By (3.60), we then have ω ∈ dα ∧ C.

We now compute

0 = 〈〈ζ, du∗〉〉 = −
∫

M
α ∧ dζ ∧ u∗ = 〈〈u, dα ∧ u∗〉〉 − 〈〈ω, u∗〉〉.

Here in the second equality we integrated by parts and used that the 5-form
dα∧ζ∧u∗ lies in the kernel of ιX and thus equals 0.Using the identities (3.55)–
(3.57) and Lemma 2.10, recalling that u ∈ Cψ , ω ∈ dα ∧ C, and using that
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u∗ can be chosen as an arbitrary element of C∗ or Cψ∗, we see that u = 0 and
ω = 0. Just using that u = 0 implies L2

Xη = LXζ = 0, that is η ∈ Res2,20 as
needed. ��

3.5 Relation to harmonic forms

In this sectionwe show that pushforwards of elements of Res30 = dα∧(C⊕Cψ)
to the base� are harmonic 1-forms. Recall that a 1-form h is called harmonic
if dh = 0 and d � h = 0, where � is the Hodge star on (�, g). We will denote
the set of such forms by H1(�). We start with the following identity:

Lemma 3.16 Assume that u ∈ D′E∗u (M;�1
0) is unstable in the sense of Defi-

nition 3.2 and β ∈ C∞(�;�1). Then

ψ ∧ u ∧ π∗�(�β) = −α ∧ dα ∧ u ∧ π∗�β, (3.67)

dα ∧ u ∧ π∗�(�β) = α ∧ ψ ∧ u ∧ π∗�β. (3.68)

Proof We first show (3.67). Take arbitrary (x, v) ∈ M = S� and assume that
v,w1, w2 is a positively oriented g-orthonormal basis of Tx�. It suffices to
prove that

(ψ ∧ u ∧ π∗�(�β))(x, v)(X, ξ1, ξ2, ξ3, ξ4)
= −(α ∧ dα ∧ u ∧ π∗�β)(x, v)(X, ξ1, ξ2, ξ3, ξ4) (3.69)

where we write in terms of the horizontal/vertical decomposition (2.15)

X = (v, 0), ξ1 = (w1, 0), ξ2 = (w2, 0), ξ3 = (0, w1), ξ4 = (0, w2).

Using (3.38), (3.41), the fact that dπ�(x, v)(ξH , ξV ) = ξH , the condition
ιXu = 0, and the identities

(�β)(x)(v,w1) = β(x)(w2), (�β)(x)(v,w2) = −β(x)(w1)

we see that the left-hand side of (3.69) is equal to

−u(x, v)(ξ1)β(x)(w1)− u(x, v)(ξ2)β(x)(w2).

Using (2.16), we next see that the right-hand side of (3.69) is equal to

u(x, v)(ξ3)β(x)(w1)+ u(x, v)(ξ4)β(x)(w2).

It remains to note that by (3.6) the vectors ξ1 + ξ3 and ξ2 + ξ4 lie in Eu(x, v)
and thus u(x, v)(ξ1 + ξ3) = u(x, v)(ξ2 + ξ4) = 0 since u is unstable.
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The identity (3.68) is verified by a similar calculation, or simply by apply-
ing (3.67) to u ◦ I and using Lemma 3.6 and the fact that u ◦ I ◦ I = −u.
��
We can now prove item 7 of Theorem 2:

Lemma 3.17 The map π�∗ annihilates dα ∧ C(∗) and it is an isomorphism
from dα ∧ Cψ(∗) onto the spaceH1(�). In particular, by Lemma 3.9 we have
π�∗ : dα ∧ Res10(∗)→ H1(�).

Proof We consider the case of resonant 3-forms, with coresonant 3-forms
handled similarly (using a version of Lemma 3.16 for stable 1-forms). We first
show that for any u ∈ C, the push-forwards to � of dα ∧ u and ψ ∧ u are
coclosed, that is

d � π�∗(dα ∧ u) = 0, d � π�∗(ψ ∧ u) = 0. (3.70)

To show the first equality in (3.70), it suffices to prove that
∫

�

π�∗(dα ∧ u) ∧ �d f = 0 for all f ∈ C∞(�;C).

Using (2.20) and (2.23), we compute this integral as

−
∫

M
dα ∧ u ∧ π∗�(�d f ) = −

∫

M
α ∧ ψ ∧ u ∧ d(π∗� f )

=
∫

M
π∗� f dα ∧ ψ ∧ u = 0

Here in the first equality we used (3.68), where u is unstable by Lemma 3.8. In
the second equality we integrated by parts and used that dψ = 0 and du = 0.
In the third equality we used that ιX of the 5-form under the integral is equal
to 0. The second equality in (3.70) is proved similarly, using (3.67) instead
of (3.68).

Next, by (2.22), since all forms in dα ∧ C are exact, their pushforwards
to � are exact as well. Since these pushforwards are also coclosed, we get
π�∗(dα∧C) = 0. Similarly, all forms in dα∧Cψ = ψ ∧C are closed, so their
pushforwards are closed as well; since these pushforwards are also coclosed,
we get π�∗(dα ∧ Cψ) ⊂ H1(�).

Finally, by (3.59) we see that π�∗ is an isomorphism from dα ∧ Cψ onto
H1(�). ��
We finally remark that for any 1-form u ∈ D′(M;�1) we have

π�∗(α ∧ u) = 0. (3.71)
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Indeed, by (2.16) we see that α, and thus α ∧ u, vanish when restricted to
the tangent spaces of the fibers Sx�. From (3.71) and (2.22) we get for any
u ∈ D′(M;�1)

π�∗(dα ∧ u) = π�∗(α ∧ du). (3.72)

4 Contact perturbations of geodesic flows on hyperbolic 3-manifolds

Let M = S� where (�, g) is a hyperbolic 3-manifold and α0 be the contact
form on M corresponding to the geodesic flow on �, see §§2.2,3.1. In this
section we study Pollicott–Ruelle resonances at λ = 0 for perturbations of α0.
Ultimately, we will study perturbations of the metric, but via perturbations of
the contact form. In particular, we give the proof of Theorem 1 in §4.4 below,
relying on Theorem 5 (in §5) and Proposition A.1 proved later.

Let

ατ ∈ C∞(M; T ∗M), τ ∈ (−ε, ε)
be a family of 1-forms depending smoothly on τ . We may shrink ε > 0 so that
each ατ is a contact form on M and the corresponding Reeb vector field

Xτ ∈ C∞(M; T M)

is Anosov; the latter follows from stability of the Anosov condition under
perturbations (see for instance [23, Corollary 5.1.12] or [41, Corollary 6.4.7]
for the related case of Anosov diffeomorphisms).

We will use first variation methods, introducing the 1-form

β := ∂τατ |τ=0 ∈ C∞(M;�1).

We use the subscript or superscript (τ ) to refer to the objects corresponding
to the contact manifold (M, ατ ) and the flow ϕ

(τ)
t := et Xτ . For example, we

use the operators (see §2.3)

P(τ )
k = −iLXτ , P(τ )

k,0 , R(τ )k (λ), �
(τ)
k := �

(τ)
k (0),

the spaces of (generalized) resonant states at λ = 0

Resk,�(τ ), Resk,�0(τ ), Resk(τ ), Resk0(τ ),

and the algebraic multiplicities of 0 as a resonance of the operators P(τ )
k , P(τ )

k,0

m(τ )
k (0), m(τ )

k,0(0).
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Whenwe omit τ thismeans that we are considering the unperturbed hyperbolic
case τ = 0, that is

α := α0, Pk := P(0)
k , Rk := R(0)k , Resk,� := Resk,�(0), �k := �

(0)
k , . . .

(4.1)

The first result of this section, proved in §4.1 below, is the following theorem.
(Here the maps π(τ)k : Resk0(τ ) ∩ ker d → Hk(M;C) are defined in (2.61).)

Theorem 3 Let the assumptions above in this section hold. Assume moreover
the following nondegeneracy condition:

〈〈ιXβ •, •〉〉 defines a nondegenerate pairing on d(Res10)× d(Res10∗).
(4.2)

Then there exists ε0 > 0 such that for all τ with 0 < |τ | < ε0 we have:

1. d(Res10(τ )) = 0 and thus by Lemma 2.8 and (2.28) we have dim Res10(τ ) =
b1(�).

2. d(Res20(τ )) = 0, dim Res20(τ ) = b1(�) + 2, and the map π(τ)2 is onto and
has kernel Cdατ .

3. d(Res30(τ )) = 0 and the map π(τ)3 is equal to 0.

4. The semisimplicity condition (2.41) holds at λ0 = 0 for the operators P(τ )
k,0

for all k = 0, 1, 2, 3, 4.

Theorem 3 together with Lemma 2.4 and (2.59) give the following

Corollary 4.1 Under the assumptions of Theorem 3we have for 0 < |τ | < ε0

m(τ )
0,0(0) = m(τ )

4,0(0) = 1, m(τ )
1,0(0) = m(τ )

3,0(0) = b1(�), m
(τ )
2,0(0) = b1(�)+ 2

and the order of vanishing of the Ruelle zeta function ζR at 0 is

mR(0) = 2m(τ )
0,0(0)− 2m(τ )

1,0(0)+ m(τ )
2,0(0) = 4− b1(�).

Corollary 4.1 is in contrast with the hyperbolic case τ = 0,whereCorollary 3.1
gives the order of vanishing 4− 2b1(�).

To give an application of Theorem 3 which is simpler to prove than The-
orem 1, we show in §§4.2–4.3 below that the nondegeneracy condition (4.2)
holds for a large set of conformal perturbations of the contact form α: 1

1 By the Gray Stability Theorem (see [31, Theorem 2.2.2]), any perturbation of a contact form
is a conformal perturbation up to pullback by a diffeomorphism.
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Theorem 4 Let M = S� where (�, g) is a hyperbolic 3-manifold. Fix a
nonempty open setU ⊂ M, and denote by C∞c (U ;R) the space of all smooth
real-valued functions on M with support insideU , with the topology inherited
from C∞(M;R).

Then there exists an open dense subset of C∞c (U ;R) such that for any a
in this set, the 1-form β := aα satisfies the condition (4.2). It follows that for
τ 
= 0 small enough depending on a the contact flow on M corresponding
to the contact form ατ := eτaα satisfies the conclusions of Theorem 3, in
particular the Ruelle zeta function has order of vanishing 4− b1(�) at 0.

4.1 Proof of Theorem 3

We first prove an identity relating the action of the vector field

Y := ∂τ Xτ |τ=0 ∈ C∞(M; T M) (4.3)

on resonant and coresonant 1-forms to the bilinear form featured in (4.2). It
reformulates the pairing (4.2) and will subsequently (see Lemma 4.4) be used
to show that the non-closed 1-forms may be perturbed away.

Lemma 4.2 For all u ∈ Res10 and u∗ ∈ Res10∗, we have

〈〈�1LY�1u, dα ∧ u∗〉〉 = 〈〈LY u, dα ∧ u∗〉〉 = 〈〈(ιXβ)du, du∗〉〉. (4.4)

Proof 1. To show the first equality in (4.4), we note that by the decomposi-
tion (2.44) and Lemma 2.4 we have for all w ∈ D′E∗u (M;�1)

�1w = �1,0(w − (ιXw)α)+ 1

volα(M)

(∫

M
ιXw d volα

)
α.

We now compute

∫

M
α ∧ dα ∧ (�1LY�1u) ∧ u∗ = 〈〈�1,0(LY u − (ιXLY u)α), dα ∧ u∗〉〉

= 〈〈LY u − (ιXLY u)α, dα ∧ u∗〉〉
=

∫

M
α ∧ dα ∧ LY u ∧ u∗.

Here in thefirst equalityweused thatu ∈ Res10 and thus�1u = u. In the second
equality we used that dα∧ u∗ ∈ Res30∗ and thus (�1,0)

T (dα∧ u∗) = dα∧ u∗
(see §2.3.4). This proves the first equality in (4.4).
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2. We now show the second equality in (4.4). Differentiating the relations
ιXτ ατ = 1 and ιXτ dατ = 0 (see (2.1)) at τ = 0, we get

ιYα = −ιXβ, ιY dα = −ιXdβ. (4.5)

Note also that

α ∧ dα ∧ du = α ∧ dα ∧ du∗ = 0 (4.6)

as follows from Lemma 2.4 as the 5-forms above are in Res00 d volα , respec-
tively Res00∗ d volα , and integrate to 0 on M using integration by parts (since
the 5-forms dα ∧ dα ∧ u, dα ∧ dα ∧ u∗ lie in the kernel of ιX and thus are
equal to 0).

We have

∫

M
α ∧ dα ∧ LY u ∧ u∗ =

∫

M
α ∧ dα ∧ ιY du ∧ u∗

+
∫

M
α ∧ dα ∧ dιY u ∧ u∗. (4.7)

We first compute

∫

M
α ∧ dα ∧ ιY du ∧ u∗ = −

∫

M
α ∧ ιY dα ∧ du ∧ u∗ −

∫

M
(ιY u∗)α ∧ dα ∧ du

=
∫

M
α ∧ ιXdβ ∧ du ∧ u∗ =

∫

M
dβ ∧ du ∧ u∗

=
∫

M
β ∧ du ∧ du∗ =

∫

M
(ιXβ)α ∧ du ∧ du∗.

(4.8)

Here in the first equality we used that the 5-form dα ∧ du ∧ u∗ lies in the
kernel of ιX and is thus equal to 0, implying ιY (dα ∧ du ∧ u∗) = 0. In the
second equality we used the identities (4.5) and (4.6). In the third equality we
used that α ∧ ιXdβ ∧ du ∧ u∗ = dβ ∧ du ∧ u∗ as the difference of the two
forms belongs to ker ιX , by ιXdu = 0 and ιXu∗ = 0. In the fourth equality we
integrated by parts, and in the fifth equality we used that ιX of the integrated
5-forms are equal.

We next compute

∫

M
α ∧ dα ∧ dιY u ∧ u∗ =

∫

M
ιY u(dα ∧ dα ∧ u∗ − α ∧ dα ∧ du∗) = 0.

(4.9)
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Here in the first equality we integrated by parts and in the second one we
used (4.6) and the fact that dα ∧ dα ∧ u∗ = 0 (as ιX of this 5-form is equal
to 0).

Plugging (4.8)–(4.9) into (4.7), we get the second equality in (4.4). ��
The pairing in (4.4) controls how the resonance at 0 for the operator P(τ )

1,0
moves as we perturb τ from 0, and the nondegeneracy condition (4.2) roughly
speaking means that the multiplicity of 0 as a resonance of P(τ )

1,0 drops by
dim d(Res10) = b1(�). This observation is made precise in Lemma 4.4 below,
but first we need to review perturbation theory of Pollicott–Ruelle resonances.
It will be more convenient for us to use the operators P(τ )

k rather than P(τ )
k,0

since the latter act on the τ -dependent space of k-forms annihilated by ιXτ . In
the rest of this section we assume that ε0 > 0 is chosen small, with the precise
value varying from line to line.

We will use the perturbation theory developed in [7]. For an alternative
approach, see [16, §6]. Since we are interested in the resonance at 0, we may
restrict ourselves to the strip {Im λ > −1}. Following the notation of [12,
§6.1], we consider the τ -independent anisotropic Sobolev spaces

HrG,s(M;�k) := e−r Op(G)Hs(M;�k), r ≥ 0, s ∈ R. (4.10)

Here Op is a quantization procedure on M , G(ρ, ξ) = m(ρ, ξ) log(1+ |ξ |) is
a logarithmically growing symbol on the cotangent bundle T ∗M , |ξ | denotes
an appropriately chosen norm on the fibers of T ∗M , and the functionm(ρ, ξ),
homogeneous of order 0 in ξ , satisfies certain conditions [7, (4)] with respect
to the vector field Xτ for all τ ∈ (−ε0, ε0). The space Hs is the usual Sobolev
space of order s. Denote the domain of P(τ )

k on HrG,s by

D(τ )
rG,s(M;�k) := {u ∈ HrG,s(M;�k) | P(τ )

k u ∈ HrG,s(M;�k)}.
The following lemmasummarizes the perturbation theoryusedhere. For details
see for example [7, Theorem 1 and Corollary 2] or [12, Lemma 6.1 and §6.2].

Lemma 4.3 There exists a constant C0 such that for r > C0 + |s| and τ ∈
(−ε0, ε0), the operator

P(τ )
k − λ : D(τ )

rG,s(M;�k)→ HrG,s(M;�k), Im λ > −1 (4.11)

is Fredholm and its inverse (assuming λ is not a resonance) is given by R(τ )k (λ).

Moreover, the set of pairs (τ, λ) such that λ is a resonance of P(τ )
k is closed

and the resolvent R(τ )k (λ) : HrG,s → HrG,s is bounded locally uniformly in
τ, λ outside of this set.
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Since R(τ )k (λ) is the inverse of P(τ )
k − λ on anisotropic Sobolev spaces, we

have the resolvent identity for all τ, τ ′ ∈ (−ε0, ε0)

R(τ )k (λ)− R(τ
′)

k (λ) = R(τ )k (λ)(P(τ ′)
k − P(τ )

k )R(τ
′)

k (λ), Im λ > −1.
(4.12)

Here the right-hand side is well-defined since for r > C0+|s|+1 the operator

R(τ
′)

k (λ) maps HrG,s to itself, P(τ )
k and P(τ ′)

k map HrG,s to HrG,s−1, and
R(τ )k (λ)mapsHrG,s−1 to itself. Using (4.12) we see that for r > C0+ |s| + 1

the family R(τ )k (λ) : HrG,s → HrG,s−1 is locally Lipschitz continuous in τ .

Next, recalling (4.3) and that P(τ )
k = −iLXτ , we have by (4.12)

∂τ R
(τ )
k (λ)|τ=0 = i Rk(λ)LY Rk(λ) (4.13)

as operatorsHrG,s → HrG,s−2 when r > C0 + |s| + 2.
Fix a contour γ in the complex plane which encloses 0 but no other reso-

nances of the unperturbed operators Pk = P(0)
k . For |τ | < ε0, no resonances

of P(τ )
k lie on the contour γ , so we may define the operators

�̃
(τ)
k := − 1

2π i

∮

γ

R(τ )k (λ) dλ.

Unlike the spectral projectors �(τ)
k corresponding to the resonance at 0, the

operators �̃(τ)
k depend continuously on τ , since R(τ )k (λ) is continuous in τ .

Moreover, the rank of �̃(τ)
k is constant in τ ∈ (−ε0, ε0), see [12, Lemma 6.2].

By (2.36) we have

�̃
(0)
k = �k := �k(0)

so the rank of �̃(τ)
k can be computed using the algebraic multiplicities of 0 as

a resonance in the unperturbed case τ = 0 (using (2.43)):

rank �̃(τ)
k = mk(0) = mk,0(0)+ mk−1,0(0). (4.14)

By (2.36), we also have

�̃
(τ)
k =

∑

λ∈ϒk
τ

�
(τ)
k (λ) (4.15)
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where ϒk
τ is the set of resonances of the operator P(τ )

k which are enclosed by
the contour γ . Note that by (4.15) and (2.42)

�̃
(τ)
k �

(τ)
k (λ) = �

(τ)
k (λ) for all λ ∈ ϒk

τ (4.16)

and the range of �̃(τ)
k is the direct sum of the ranges Resk,∞(τ ) (λ) of �

(τ)
k (λ)

over λ ∈ ϒk
τ . In particular, using (2.43) we get

rank �̃(τ)
k =

∑

λ∈ϒk
τ

(
m(τ )

k,0(λ)+ m(τ )
k−1,0(λ)

)
. (4.17)

Together with (4.14) and induction on k this implies for |τ | < ε0

∑

λ∈ϒk
τ

m(τ )
k,0(λ) = mk,0(0). (4.18)

We are now ready to show that under the condition (4.2) the space Res10(τ )
of resonant 1-forms at 0 for the perturbed operator P(τ )

1,0 , τ 
= 0, consists of
closed forms:

Lemma 4.4 Under the assumptions of Theorem 3, there exists ε0 > 0 such
that for 0 < |τ | < ε0 we have d(Res10(τ )) = 0.

Proof 1. Define the operator

Z(τ ) := P(τ )
1 �̃

(τ)
1 .

Roughly speaking this operator contains information about the nonzero reso-
nances of P(τ )

1 enclosed by γ ; in particular, each of the corresponding spaces of
generalized resonant states is in the range of Z(τ ) as can be seen from (4.16).

In the hyperbolic case τ = 0, the semisimplicity condition (2.41) holds
for the operator P1 at λ = 0, as follows from Lemmas 2.4 and 3.10 together
with (2.43). Therefore, the range of �̃(0)

1 = �1 is contained in Res1, implying
that

Z(0) = 0. (4.19)

By (4.14), the rank of �̃(τ)
1 can be computed using the algebraic multiplicities

of 0 as a resonance in the hyperbolic case τ = 0, which are known by (3.1):

rank �̃(τ)
1 = 2b1(�)+ 1. (4.20)
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The intersection of the range of �̃(τ)
1 with the kernel of P(τ )

1 is equal
to Res1(τ ). By (2.43) and Lemma 2.4 we have Res1(τ ) = Res10(τ )⊕Cατ . Next,
by Lemma 2.8 and (2.28) we have dim Res10(τ ) = b1(�) + dim d(Res10(τ )).
Therefore

dim Res1(τ ) = b1(�)+ 1+ dim d(Res10(τ )).

By the Rank-Nullity Theorem and (4.20) we then have

rank Z(τ ) = b1(�)− dim d(Res10(τ )). (4.21)

2. Since (P(τ )
1 − λ)R(τ )1 (λ) is the identity operator, we have for all τ

Z(τ ) = − 1

2π i

∮

γ

λR(τ )1 (λ) dλ.

Using (4.13) we now compute the derivative

∂τ Z(0) = − 1

2π

∮

γ

λR1(λ)LY R1(λ) dλ = −i�1LY�1.

Here in the second equality we used the Laurent expansion (2.36) for R1(λ)

at λ0 = 0 (recalling that J1(0) = 1 by semisimplicity).
By Lemma 4.2, for any u ∈ Res10, u∗ ∈ Res10∗ we have

∫

M
α ∧ dα ∧ (

∂τ Z(0)u
) ∧ u∗ = −i〈〈(ιXβ)du, du∗〉〉. (4.22)

By the nondegeneracy assumption (4.2) the bilinear form (4.22) is nondegen-
erate on u ∈ Cψ , u∗ ∈ Cψ∗. This implies that

rank ∂τ Z(0) ≥ dim Cψ = b1(�). (4.23)

Together (4.19) and (4.23) show that for 0 < |τ | < ε0

rank Z(τ ) ≥ b1(�).

Then by (4.21) we have dim d(Res10(τ )) = 0 for 0 < |τ | < ε0 which finishes
the proof. ��
Remark Lemma 4.4 holds more generally whenever P1,0 is semisimple. If for
all contact perturbations (ατ )τ we would have that (4.2) is trivial, this would
imply that du ∧ du∗ = 0 for all u ∈ Res10 and u∗ ∈ Res10∗. When (�, g) is
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hyperbolic, we will show in § 4.2 that this is impossible, while for general
(�, g) proving such a statement seems out of reach for now.

Together with Lemma 2.4, Lemma 2.9, Lemma 2.11, and (2.28) Lemma 4.4
gives all the conclusions of Theorem 3 except semisimplicity on 2-forms. In
particular we have for 0 < |τ | < ε0 (using (2.43))

dim Res20(τ ) = b1(�)+ 2, (4.24)

d(Res1,∞(τ ) ) = Cdατ . (4.25)

To finish the proof of Theorem 3 it remains to establish semisimplicity on
2-forms:

Lemma 4.5 Under the assumptions of Theorem 3, there exists ε0 > 0 such
that for 0 < |τ | < ε0 the semisimplicity condition (2.41) holds at λ0 = 0 for
the operator P(τ )

2,0 .

Proof We first claim that for 0 < |τ | < ε0

rank
(
ατ ∧ (�̃(τ)

2 −�
(τ)
2 )

) ≥ rank
(
ατ ∧ d(�̃(τ)

1 −�
(τ)
1 )

) ≥ b1(�).

(4.26)

Indeed, by (2.37) and (4.15) we have d(�̃(τ)
1 − �

(τ)
1 ) = (�̃

(τ)
2 − �

(τ)
2 )d

which implies the first inequality in (4.26). Next, we have rank(α ∧ d�̃(0)
1 ) =

b1(�) + 1 as the range of d�̃(0)
1 is equal to d Res1 = Cdα ⊕ dCψ . Since

�̃
(τ)
1 depends continuously on τ , we see that rank(ατ ∧ d�̃(τ)

1 ) ≥ b1(�)+ 1
for all small enough τ . On the other hand, for τ small but nonzero we have
rank d�(τ)

1 = 1 by (4.25). Together these imply the second inequality in (4.26).

Now, by (4.15) and (2.43) the range of ατ ∧ (�̃
(τ)
2 − �

(τ)
2 ) is contained

in the sum of the spaces ατ ∧ Res2,∞0(τ )(λ) over λ ∈ ϒ2
τ \{0}. Therefore (4.26)

implies that for 0 < |τ | < ε0

∑

λ∈ϒ2
τ \{0}

m(τ )
2,0(λ) ≥ b1(�). (4.27)

From (4.18) and (3.1) we see that

∑

λ∈ϒ2
τ

m(τ )
2,0(λ) = m2,0(0) = 2b1(�)+ 2
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therefore by (4.27) we have m(τ )
2,0(0) ≤ b1(�) + 2. Since dim Res20(τ ) =

b1(�)+2 by (4.24), we showed that the algebraic and geometric multiplicities
for 0 as a resonance of P(τ )

2,0 coincide, finishing the proof. ��

4.2 The full support property

In this section, we prove a full support statement which will be used in the
proof of Theorem 4. In fact, we recall that we need to prove the nondegeneracy
assumption (4.2), that is, that 〈〈ιXβ•, •〉〉 is nondegenerate on d Res10×d Res10∗,
and the support properties of elements of d Res10(∗) will be useful. In §§4.2–4.4
we assume that M = S� where (�, g) is a hyperbolic 3-manifold and the
contact form α and the spaces of (co-)resonant states at zero Res10, Res

1
0∗ are

defined using the geodesic flow on (�, g).

Proposition 4.6 For all u ∈ Res10, u∗ ∈ Res10∗ with du 
= 0, du∗ 
= 0, the
distributional 5-form α ∧ du ∧ du∗ fulfills supp(α ∧ du ∧ du∗) = M.

To show Proposition 4.6, we first study properties of the 2-forms du and du∗.
Define the smooth 2-forms

ω± ∈ C∞(M;�2
0)

by requiring that E0 ⊕ Eu be in the kernel of ω−, E0 ⊕ Es be in the kernel of
ω+, and, using the horizontal/vertical decomposition (2.15)

ω±(x, v)
(
(w1, ± w1), (w2,±w2)

)

= 〈v × w1, w2〉g for all w1, w2 ∈ {v}⊥ ⊂ Tx�(4.28)

where ‘×’ denotes the cross product on Tx� defined in §3.2.1. In terms of the
canonical 1-forms on the frame bundle F� defined in §3.1.3 the lifts of ω±
to F� are given by

ω± = U±∗1 ∧U±∗2 . (4.29)

One can think of ω± as canonical volume forms on the stable/unstable spaces.
By (4.29) and (3.12) we compute

dω± = ±2α ∧ ω±. (4.30)
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Lemma 4.7 Assume that u ∈ Res10, u∗ ∈ Res10∗. Then

du = f−ω−, du∗ = f+ω+; (4.31)

α ∧ du ∧ du∗ = −1
8 f− f+d volα (4.32)

where the distributions f− ∈ D′E∗u (M;C), f+ ∈ D′E∗s (M;C) satisfy for any
vector fields U− ∈ C∞(M; Eu), U+ ∈ C∞(M; Es)

(X ± 2) f± = 0, U± f± = 0. (4.33)

Proof Weconsider the case of du, with du∗ studied similarly. FromLemma3.8
we know that u is a totally unstable 1-form, which implies that du is a section
of E∗u ∧ E∗u . The latter is a one-dimensional vector bundle over M and ω− is a
nonvanishing smooth section of it, so du = f−ω− for some f− ∈ D′E∗u (M;C).
Using (4.30) we compute

0 = d( f−ω−) = (d f− − 2 f−α) ∧ ω−.
Taking ιX and ιU− of this identity and using that ιXω− = ιU−ω− = ιU−α = 0
(recalling the definitions of U±∗1 ,U±∗2 in (3.10) and below), we get (4.33).

Finally, (4.32) follows from (4.31) and the following identity which can be
verified using either (4.28) and (2.16) or (4.29) and (3.12):

α ∧ ω− ∧ ω+ = −1
8d volα .

��
We can now finish the proof of Proposition 4.6. Given (4.32) it suffices to
prove that, assuming that f− 
= 0 and f+ 
= 0,

supp( f− f+) = M. (4.34)

Let π� : SH3 → S� = M be the covering map corresponding to (3.2)
and �±, B± be defined in (3.14). Then by (3.22) and (4.33) we have for any
U− ∈ C∞(SH3; Eu), U+ ∈ C∞(SH3; Es)

X (�2±( f± ◦ π�)) = U±(�2±( f± ◦ π�)) = 0,

that is�2+( f+ ◦π�) is totally stable and�2−( f− ◦π�) is totally unstable in the
sense of Definition 3.2. Similarly to Lemma 3.3 we can then describe the lifts
of f± to SH3 in terms of some distributions g± on the conformal infinity S2:

f± ◦ π� = �−2± (g± ◦ B±) for some g± ∈ D′(S2;C). (4.35)
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Since f± are resonant states of X , a result of Weich [54, Theorem 1] shows
that supp f+ = supp f− = M , which from (4.35) and the facts that �± > 0,
and that B± are submersions which map SH3 onto S2, implies that

supp g+ = supp g− = S
2. (4.36)

We will now use the coordinates (ν−, ν+, t) ∈ (S2 × S
2)− ×R on SH3 intro-

duced in (3.16). Then by (4.35) and (3.17) we can write in these coordinates

( f− f+) ◦ π� = 1
16 |ν− − ν+|4g−(ν−)g+(ν+).

By (4.36), we see that the support of the tensor product g− ⊗ g+(ν−, ν+) =
g−(ν−)g+(ν+) is equal to the entire S2×S

2, which implies that supp( f− f+)◦
π� = SH3 and thus supp( f− f+) = M . This shows (4.34) and finishes the
proof.

4.3 Proof of Theorem 4

We first remark that in the special case dim d(Res10) = b1(�) = 1, it is
straightforward to see that Proposition 4.6 implies the following simplified
version of Theorem 4: for each nonempty open set U ⊂ M there exists
a ∈ C∞(M;R) with supp a ⊂ U and such that β := aα satisfies (4.2).
Indeed, it suffices to fix any nonzero du ∈ d(Res10), du∗ ∈ d(Res10∗), and
choose a such that

∫
M aα∧ du ∧ du∗ 
= 0. We note that there are examples of

hyperbolic 3-manifolds with b1(�) = 1, see for instance [24, Theorem 13.4].
For the general case, wewill use the following basic fact from linear algebra:

Lemma 4.8 Denote by ⊗2
C
n the space of complex n × n matrices. Assume

that V ⊂ ⊗2
C
n is a subspace such that for each v1, v2 ∈ C

n\{0} there exists
B ∈ V such that 〈Bv1, v2〉 
= 0. (Here 〈•, •〉 denotes the canonical bilinear
inner product on Cn.) Then the set of invertible matrices in V is dense.

Proof LetO be a nonempty open subset of V .We need to show thatO contains
an invertible matrix. Assume that there are no invertible matrices in O . Let A
be a matrix of maximal rank in O , then k := rank A < n since A cannot be
invertible. There exist bases e1, . . . , en and e∗1, . . . , e∗n of Cn such that

〈Ae j , e∗�〉 =
{
1 if j = � ≤ k;
0 otherwise.

By the assumption of the lemma, there exists B ∈ V such that 〈Bek+1, e∗k+1〉 
=
0. Consider the matrix At = A + t B which lies in O for sufficiently small t ,

123



370 M. Cekić et al.

and let b(t) be the determinant of the matrix (〈Ate j , e∗�〉)k+1j,�=1. Then b(0) = 0
and b′(0) = 〈Bek+1, e∗k+1〉 
= 0. Therefore, for small enough t 
= 0 we have
b(t) 
= 0, which means that rank At ≥ k + 1. This contradicts the fact that k
was the maximal rank of any matrix in O . ��
We are now ready to give the proof of Theorem 4. For a ∈ C∞(M;R), define
the bilinear form

Sa : d(Res10)× d(Res10∗)→ C, Sa(du, du∗) =
∫

M
aα ∧ du ∧ du∗.

To prove Theorem 4, it then suffices to show that the set of a ∈ C∞c (U ;R)
such that Sa is nondegenerate is open and dense. Since nondegeneracy is an
open condition, this set is automatically open. To show that it is dense, consider
the finite dimensional vector space

V := {Sa | a ∈ C∞c (U ;R)}.
Choosing bases of the b1(�)-dimensional spaces d(Res10) and d(Res10∗), we
can identify V with a subspace of ⊗2

C
b1(�). Let du ∈ d(Res10), du∗ ∈

d(Res10∗) be nonzero, then by Proposition 4.6 we have supp(α ∧ du ∧ du∗) =
M , so there exists a ∈ C∞c (U ;R) such that Sa(du, du∗) 
= 0. Then by
Lemma 4.8 the set of nondegenerate bilinear forms in V is dense.

Let U be a nonempty open subset of C∞c (U ;R). Then {Sa | a ∈ U}
is a nonempty open subset of V . Thus there exists a ∈ U such that Sa is
nondegenerate, which finishes the proof.

4.4 Proof of Theorem 1

We now give the proof of part 2 of Theorem 1, relying on Theorem 5 (in §5)
and Proposition A.1 below, combined together in Corollary 5.1. (Part 1 of
Theorem 1 was proved in Corollary 3.1 above.)

We start by computing how a general metric perturbation affects the contact
form for the geodesic flow. Let (�, g) be any compact 3-dimensional Rieman-
nian manifold and the contact form α and the generator X of the geodesic flow
on S� be defined as in §2.2. Let

gτ , τ ∈ (−ε, ε)
be a family of Riemannian metrics on � depending smoothly on τ , such that
g0 = g. The associated geodesic flows act on the τ -dependent sphere bundles

S(τ )� = {(x, v) ∈ T� : |v|gτ = 1}.
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To bring these geodesic flows to S�, we use the diffeomorphisms

�τ : S�→ S(τ )�, �τ (x, v) =
(
x,

v

|v|gτ

)
.

Denote by ατ the contact form on S(τ )� corresponding to gτ . Then

α̃τ := �∗τ ατ

is a contact 1-form on S� and the corresponding contact flow is the geodesic
flow of (�, gτ ) pulled back by �τ .

Let π(τ)� : S(τ )� → � be the projection map. Using (2.11) and the fact

that π(τ)� ◦ �τ is equal to π� := π
(0)
� , we compute for all (x, v) ∈ S� and

ξ ∈ T(x,v)(S�)

〈̃ατ (x, v), ξ 〉 = 〈v, dπ�(x, v)ξ 〉gτ|v|gτ
.

Recalling dπ�(x, v)X (x, v) = v (see (2.18)) and using g0(v, v) = 1, it
follows that

ιX∂τ α̃τ |τ=0(x, v) = ∂τ gτ (v, v)|τ=0 − 1

2
g0(v, v) · ∂τ gτ (v, v)|τ=0

= ∂τ |v|gτ |τ=0. (4.37)

In particular, if themetric gτ is given by a conformal perturbation gτ = e−2τbg,
where b ∈ C∞(�;R), then

ιX∂τ α̃τ |τ=0(x, v) = −b ◦ π�. (4.38)

We are now ready to prove Theorem 1. Assume that (�, g) is a hyperbolic
3-manifold as defined in §3.1 and put gτ := e−2τbg. By Theorem 3 applied to
the family of contact forms α̃τ , with β = ∂τ α̃τ |τ=0 satisfying (4.38), it suffices
to show that for b in an open and dense subset of C∞(�;R) the bilinear form

(du, du∗) �→
∫

M
(b ◦ π�)α ∧ du ∧ du∗

is nondegenerate on d(Res10)× d(Res10∗).
The space Res10 is preserved by complex conjugation as follows from its

definition (2.60); here we use that for any u we have WF(ū) = {(ρ,−ξ) |
(ρ, ξ) ∈ WF(u)}. Denote by Res10R the space of real-valued 1-forms in Res10
and letJ (x, v) = (x,−v) be themap defined in (2.12). By (2.50), the pullback
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J ∗ is an isomorphism from Res10 onto Res
1
0∗. Thus it suffices to show that for

b in an open and dense subset of C∞(�;R) the real bilinear form

S̃b(du, du
′) :=

∫

M
(b ◦ π�)α ∧ du ∧ J ∗(du′)

is nondegenerate on d(Res10R)× d(Res10R).
Since b ◦ π� is J -invariant, J ∗α = −α, and J is an orientation reversing

diffeomorphism on M , we see that S̃b is a symmetric bilinear form. Unlike
in the contact perturbation case in § 4.3, we will not be able to produce for
every pair (du, du′) ∈ d(Res10R)× d(Res10R) an element b ∈ C∞(�;R) such
that S̃b(du, du′) 
= 0. Instead, we will only produce b such that S̃b(du, du) 
=
0. Hence, we will need the following variant of Lemma 4.8 for symmetric
matrices:

Lemma 4.9 Denote by ⊗2
SR

n the space of real symmetric n × n matrices.
Assume that V ⊂ ⊗2

SR
n is a subspace such that for each w ∈ R

n\{0} there
exists B ∈ V such that 〈Bw,w〉 
= 0. Then the set of invertible matrices in V
is dense.

Proof Similarly to the proof of Lemma 4.8, assume thatO is a nonempty open
subset of V which does not contain any invertible matrices and A is a matrix
in O of maximal rank k < n. Since A is symmetric, it can be diagonalized,
i.e. there exists an orthonormal basis e1, . . . , en of Rn such that Ae j = λ j e j
where λ j are real and, since rank A = k, we may assume that λ1, . . . , λk 
= 0
and λk+1 = · · · = λn = 0.

By the assumption of the lemma, there exists B ∈ V such that
〈Bek+1, ek+1〉 
= 0. Consider the matrix At = A+ t B which lies inO for suf-
ficiently small t , and let b(t) be the determinant of thematrix (〈Atei , e j 〉)k+1i, j=1.
Then b(0) = 0 and b′(0) = λ1 · · · λk〈Bek+1, ek+1〉 
= 0. Therefore, for small
enough t 
= 0 we have b(t) 
= 0, which means that rank At ≥ k + 1. This
contradicts the fact that k was the maximal rank of any matrix in O . ��

Now to showTheorem 1 it remains to follow the argument at the end of §4.3,
with Lemma 4.8 replaced by Lemma 4.9 and using the following

Proposition 4.10 Assume that u ∈ Res10R and du 
= 0. Then there exists
b ∈ C∞(�;R) such that S̃b(du, du) 
= 0.

Proof Using the pushforwardmapπ�∗ defined in (2.19) we compute by (2.20)
and (2.23)

S̃b(du, du) = −
∫

�

bπ�∗(α ∧ du ∧ J ∗(du)). (4.39)
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By Corollary 5.1 below we have π�∗(α ∧ du ∧ J ∗(du)) 
= 0 which finishes
the proof. ��

5 The pushforward identity

In this section we prove an identity, Theorem 5, used in Proposition 4.10 above
which is a key component in the proof of our main Theorem 1.

We assume throughout this section that (�, g) is a compact hyperbolic 3-
manifold as defined in §3.1 and write � = �\H3 where � ⊂ SO+(1, 3). For
s > 2, define the operator

Qs : C∞c (H3)→ C∞(H3), Qs f (x)

:=
∫

H3

(
cosh dH3(x, y)

)−s
f (y) d volg(y). (5.1)

As shown in §5.1.2 below, the operator Qs can be extended to �-invariant
distributions on H

3 and it is smoothing, so it descends to an operator

Qs : D′(�;C)→ C∞(�;C). (5.2)

Let �g be the (nonpositive) Laplace–Beltrami operator on (�, g). Recall
the pushforward map on forms π�∗ defined in (2.19) and the spaces of (co-
)resonant k-forms Resk0,Res

k
0∗ on M = S� associated to the geodesic flow

on (�, g), see §§2.2–2.3.
The main result of this section is the following

Theorem 5 Assume that u ∈ Res10, u∗ ∈ Res10∗. Define the pushforwards

σ− := π�∗(dα ∧ u), σ+ := π�∗(dα ∧ u∗), (5.3)

which are harmonic 1-forms on � by Lemma 3.17. Define F ∈ D′(�;C) by

π�∗(α ∧ du ∧ du∗) = F d volg . (5.4)

Then we have

Q4F = −1
6�g(σ− · σ+), (5.5)

where the inner product σ− · σ+ is the function on � defined by σ− · σ+(x) =
〈σ−(x), σ+(x)〉g.

123



374 M. Cekić et al.

Remark By (4.39) and since Q4 is self-adjoint we can rewrite (5.5) as follows:
for each b ∈ D′(�),

1

6

∫

�

b�g(σ− · σ+) d volg =
∫

S�
(π∗�Q4b)α ∧ du ∧ du∗. (5.6)

One can think of the right-hand side of (5.6) as the integral of π∗�Q4b against
a Patterson–Sullivan distribution α ∧ du ∧ du∗ (note that this distribution is
invariant under the geodesic flow) and the left-hand side of (5.6) as a topo-
logical quantity because it features harmonic 1-forms. Then (5.6) bears some
similarity to the result of Anantharaman–Zelditch [2, Theorem 1.1] for the
symbol a := π∗�b; the latter is in the setting when � is a surface and the
left-hand side there has a spectral interpretation because it features an eigen-
function of the Laplacian. However, the operator Lr used in [2] is different in
nature from the operator Q4 featured in (5.6): for our application is crucial that
the right-hand side of (5.6) depends only on the pushforward of α∧ du ∧ du∗
to � and that does not seem to typically be the case for the right-hand side of
[2, Theorem 1.1]. See also the work of Hansen–Hilgert–Schröder [37] giving
an asymptotic statement for higher dimensional situations.

The formula (5.6) in the special case b ≡ 1 (which is trivial in our situation
because both sides are equal to 0) also has some similarity to the pairing
formulas of Dyatlov–Faure–Guillarmou [14, Lemma 5.10] and Guillarmou–
Hilgert–Weich [32, Theorem 5]. In this vague analogy between Theorem 5
and the results of [2,14,32] our setting would correspond to an exceptional
value of the spectral parameter: comparing (5.32) with [2, (1.3)] gives the
value s = −2 (in the notation of [2]).

Together with Proposition A.1, Theorem 5 gives the following statement
which is used in the proof of Proposition 4.10. Recall the map J (x, v) =
(x,−v) defined in (2.12).

Corollary 5.1 Assume that u ∈ Res10 is real-valued and du 
= 0. Then
π�∗(α ∧ du ∧ J ∗(du)) 
= 0.

Proof Put u∗ = J ∗u ∈ Res10∗. By (2.13) and (2.24) we have σ+ = σ− where
the 1-forms σ± are defined in (5.3). By Lemma 3.17, σ = σ+ = σ− is a
real-valued harmonic 1-form on �, and du 
= 0 implies that σ 
= 0.

Let F be defined in (5.4), then by Theorem 5 we have

Q4F = −1
6�g|σ |2g. (5.7)

Now, by Proposition A.1 we see that |σ |2g is not constant, that is �g|σ |2g 
= 0.
Therefore, Q4F 
= 0 which implies that F 
= 0. ��
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5.1 Preliminary steps

We first prove several preliminary statements. We will use the hyperboloid
model of §3.1.

5.1.1 Hyperbolic Laplacian

We first write the Laplacian �g of the hyperbolic metric on H
3 using the

hyperboloid model. Consider the open cone

C+ := {(x̃0, x̃ ′) ∈ R
1,3 : x̃0 > |x̃ ′|}.

Each point x̃ ∈ C+ can be written in polar coordinates as

x̃ = r x, r > 0, x ∈ H
3.

Define the d’Alembert operator on C+ as � = ∂2x̃0
− ∂2x̃1

− ∂2x̃2
− ∂2x̃3

. In polar
coordinates it can be written as

� = r−2
(
(r∂r )

2 + 2r∂r −�g
)

(5.8)

where the hyperbolic Laplacian �g acts in the x variable.
Using (5.8), we derive the following useful identity: for any ψ ∈

C∞((0,∞)) and y ∈ H
3

−�gψ(〈x, y〉1,3) = ψ̃(〈x, y〉1,3) where ψ̃(ρ)

:= (1− ρ2)ψ ′′(ρ)− 3ρψ ′(ρ) (5.9)

and the operator�g acts in the x variable (note that ψ̃(ρ) is given by the radial
part of−�g applied to ψ(ρ) by (3.4)). Indeed, it suffices to apply (5.8) to the
function f (x̃) := ψ(〈x̃, y〉1,3), x̃ ∈ C+, and use that � f (x̃) = ψ ′′(〈x̃, y〉1,3).
Taking in particular ψ(ρ) = ρ−s where s ∈ C, we get

(−�g − s(2− s)
)〈x, y〉−s1,3 = s(s + 1)〈x, y〉−s−21,3 . (5.10)

Similarly, if ν−, ν+ ∈ S
2 ⊂ R

3, then by applying (5.8) to the function

fν−,ν+(x̃) =
(〈x̃, (1, ν−)〉1,3 〈x̃, (1, ν+)〉1,3

)−1
, x̃ ∈ C+
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and using that � fν−,ν+ = 2(1 − ν− · ν+) f 2ν−,ν+ , where we recall ‘·’ denotes
the Euclidean inner product, we get

−�g
(
P(x, ν−)P(x, ν+)

) = 2(1− ν− · ν+)
(
P(x, ν−)P(x, ν+)

)2

(5.11)

where the Poisson kernel P(x, ν) is defined in (3.18) and the Laplacian �g
acts in the x variable.

5.1.2 Properties of the operators Qs

Let Qs : C∞c (H3) → C∞(H3) be the operator defined in (5.1). Using (3.4)
we can rewrite it as

Qs f (x) =
∫

H3
〈x, y〉−s1,3 f (y) d volg(y). (5.12)

Note that the operator Qs is equivariant under the action of the group
SO+(1, 3):

Qs(γ
∗ f ) = γ ∗(Qs f ) for all γ ∈ SO+(1, 3). (5.13)

For s > 2, the function y �→ 〈x, y〉−s1,3 lies in L1(H3; d volg) and its L1 norm
is independent of x ; indeed, using the SO+(1, 3)-invariance we may reduce
to the case x = (1, 0, 0, 0), which can be handled by an explicit computation.
Therefore, Qs : L∞(H3)→ L∞(H3).

The space L∞(�) is isomorphic to the space of �-invariant functions
in L∞(H3). Using (5.13), we see that Qs descends to the quotient� = �\H3

as an operator

Qs : L∞(�)→ L∞(�), s > 2. (5.14)

Next, using (5.10), we get the following identity relating the operators Qs with
the hyperbolic Laplacian �g on �:

(−�g − s(2− s))Qs = Qs(−�g − s(2− s)) = s(s + 1)Qs+2. (5.15)

Putting together (5.14) and (5.15) and using elliptic regularity, we see that for
any s > 2, Qs in fact extends to a smoothing operator D′(�) → C∞(�),
proving (5.2).

We now show that for f ∈ D′(�) one can obtain Qs f as a limit of cutoff
integrals:
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Lemma 5.2 Fix a cutoff function χ(ρ) ∈ C∞c (R) such that χ = 1 near 0. For
ε > 0 and s > 2, define the operator

Qs,χ,ε : D′(H3)→ C∞(H3),

Qs,χ,ε f (x) =
∫

H3
χ(ε〈x, y〉1,3)〈x, y〉−s1,3 f (y) d volg(y).

Note that Qs,χ,ε satisfies the equivariance relation (5.13) and thus descends
to an operator D′(�)→ C∞(�). Then we have for all f ∈ D′(�)

Qs,χ,ε f → Qs f in C∞(�) as ε→+0. (5.16)

Proof It suffices to show that for all n ≥ 0,

‖�n
g(Qs − Qs,χ,ε)�

n
g‖L∞(�)→L∞(�) → 0 as ε→+0.

By (5.9) with ψ(ρ) := ρ−s(1− χ(ερ)) we have (with each instance of�g in
�2n

g below acting in either x or y)

�2n
g

(〈x, y〉−s1,3(1− χ(ε〈x, y〉1,3))
) = 〈x, y〉−s1,3ψ

(n)
s,χ,ε(〈x, y〉1,3),

where, putting Ts := ρs
(
(1− ρ2)∂2ρ − 3ρ∂ρ)ρ−s ,

ψ(n)
s,χ,ε(ρ) := T 2n

s (1− χ(ε•))(ρ). (5.17)

For any f ∈ L∞(H3)we have (integrating by parts in y and using the fact that
�g is formally self-adjoint)

�n
g(Qs − Qs,χ,ε)�

n
g f (x) =

∫

H3
〈x, y〉−s1,3ψ

(n)
s,χ,ε(〈x, y〉1,3) f (y) d volg(y).

Estimating the L∞x L1
y norm of the integral kernel of the latter operator we get

for any δ ∈ (0, s − 2) (we will use that δ > 0 at the end of the proof) and for
some Cs,δ > 0 depending only on s, δ

‖�n
g(Qs − Qs,χ,ε)�

n
g‖L∞(�)→L∞(�) ≤ Cs,δ sup

ρ≥1
|ρ−δψ(n)

s,χ,ε(ρ)|. (5.18)

For k ∈ N0 and ψ ∈ C∞((0,∞)), define the seminorm

‖ψ‖δ,k := max
0≤ j≤k supρ≥1

|ρ−δ(ρ∂ρ) jψ(ρ)|.
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We have ‖Tsψ‖δ,k ≤ Cs,δ,k‖ψ‖δ,k+2. Therefore

sup
ρ≥1
|ρ−δψ(n)

s,χ,ε(ρ)| ≤ Cs,δ,n‖1− χ(ερ)‖δ,4n = O(εδ), (5.19)

which finishes the proof. ��
5.1.3 Spherical convolution operators

Let κ ∈ C∞([0, 4]). Define the smoothing operator

Aκ : D′(S2)→ C∞(S2), Aκ f (ν) =
∫

S2
κ(|ν − ν′|2) f (ν′) dS(ν′).

(5.20)

Here |ν − ν′| denotes the Euclidean distance between the points ν, ν′ ∈ S
2 ⊂

R
3.
In this section we prove an estimate on the norm of Aκ between Sobolev

spaces, Lemma 5.5, which is used in the regularization argument in §5.2.3
below. Before we state this estimate, we establish a few basic properties of
Aκ :

Lemma 5.3 We have

‖Aκ‖L2(S2)→L2(S2) ≤ π‖κ‖L1([0,4]).

Proof By Schur’s lemma we have

‖Aκ‖L2(S2)→L2(S2) ≤ sup
ν′∈S2

∫

S2

∣∣κ(|ν − ν′|2)∣∣ dS(ν).

By SO(3)-invariance we see that the integral above is independent of ν′.
Choose ν′ = (0, 0,−1) and use spherical coordinates ν = (sin θ cosϕ,
sin θ sin ϕ, cos θ) to compute

∫

S2

∣∣κ(|ν − ν′|2)∣∣ dS(ν) = 2π
∫ π

0

∣∣κ(2+ 2 cos θ)
∣∣ sin θ dθ = π

∫ 4

0
|κ(r)| dr

which finishes the proof. ��
Lemma 5.4 Denote by �S2 the (nonpositive) Laplace–Beltrami operator on
S
2. Then

Aκ�S2 = �S2 Aκ = Aκ̃ , κ̃(r) := (4− r)rκ ′′(r)+ (4− 2r)κ ′(r).
(5.21)
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Proof It is enough to show that, with �S2 acting in the ν variable,

�S2(κ(|ν − ν′|2)) = κ̃(|ν − ν′|2).

Similarly to the proof of Lemma 5.3, by SO(3)-invariance we may reduce
to the case ν′ = (0, 0,−1) and take spherical coordinates (θ, ϕ) for ν, in
which the Laplace operator is �S2 = (sin θ)−1∂θ sin θ∂θ + (sin θ)−2∂2ϕ and
|ν − ν′|2 = 2+ 2 cos θ . Then we compute

�S2(κ(|ν − ν′|2)) = 1

sin θ
∂θ sin θ∂θκ(2+ 2 cos θ)

= 4 sin2 θκ ′′(2+ 2 cos θ)− 4 cos θκ ′(2+ 2 cos θ)

= κ̃(2+ 2 cos θ),

which finishes the proof. ��
We can now give

Lemma 5.5 Assume that s1, s2 ∈ R and s2 − s1 = 2� for some � ∈ N0.
Then there exists a constant C depending only on s1, s2 such that for all
κ ∈ C∞([0, 4])

‖Aκ‖Hs1 (S2)→Hs2 (S2) ≤ C
2�∑

j=0
‖rmax( j−�,0)∂ j

r κ(r)‖L1([0,4]). (5.22)

Proof Define the differential operator arising from (5.21) (corresponding to
1−�S2)

W := (r − 4)r∂2r + (2r − 4)∂r + 1.

Denote by C a constant depending only on s1, s2, whose precise value may
change from line to line. We have

‖Aκ‖Hs1 (S2)→Hs2 (S2) ≤ C‖(1−�S2)
s2/2Aκ(1−�S2)

−s1/2‖L2(S2)→L2(S2)

= C‖(1−�S2)
�Aκ‖L2(S2)→L2(S2)

= C‖AW �κ‖L2(S2)→L2(S2)

≤ C‖W �κ‖L1([0,4]).

Here in the second equalityweused that Aκ commuteswith�S2 byLemma5.4.
In the third inequality we used Lemma 5.4 again. In the last inequality we used
Lemma 5.3.
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By induction in � we see that W � is a linear combination with constant
coefficients of the operators rk∂ j

r where 0 ≤ j ≤ 2� and k ≥ max( j − �, 0).
Therefore, ‖W �κ‖L1([0,4]) is bounded by the right-hand side of (5.22), which
finishes the proof. ��

5.2 Proof of Theorem 5

Here we give the proof of Theorem 5, proceeding in several steps. In §5.2.1
we write both sides of (5.5) as integrals featuring some distributions g± on
S
2. In §5.2.2 we introduce a change of variables which shows that the two

integrals are formally equal. In §5.2.3 we prove that regularized versions of
the two integrals are equal and show convergence of the regularization to finish
the proof.

Denote by π� the covering maps H3 → � and SH3 → M = S� (which
one is meant will be clear from the context). Since we can choose the repre-
sentation of � as the quotient �\H3 arbitrarily, for any given x ∈ � we may
arrange that π�(e0) = x where

e0 := (1, 0, 0, 0) ∈ H
3. (5.23)

Therefore, in order to prove Theorem 5 it suffices to consider the case x =
π�(e0), i.e. to show that

π∗�Q4F(e0) = −1
6π
∗
��g(σ− · σ+)(e0). (5.24)

5.2.1 Reduction to the conformal boundary

We first express both sides of (5.24) in terms of some distributions g± on the
conformal boundary S2.

Let u ∈ Res10, u∗ ∈ Res10∗. By Lemma 4.7 we have

du = f−ω−, du∗ = f+ω+, α ∧ du ∧ du∗ = −1
8 f− f+d volα,

where by (4.35), the lifts of f− ∈ D′E∗u (M;C), f+ ∈ D′E∗s (M;C) to the

covering space SH3 have the form (recalling the definitions (3.14) of �±,
B±)

π∗� f± = �−2± (g± ◦ B±) for some g± ∈ D′(S2;C). (5.25)
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Arguing similarly to (2.21), we see that the distribution F ∈ D′(�;C) defined
in (5.4) can be written as the pushforward

F(x) = 1

4

∫

Sx�
f−(x, v) f+(x, v) dS(v), x ∈ �

where dS is the canonical volume form on the spherical fiber Sx�. Therefore,
the lift of F to H3 has the form

π∗�F(x) =
1

4

∫

SxH3

(
�−(x, v)�+(x, v)

)−2
g−(B−(x, v))g+(B+(x, v)) dS(v).

(5.26)

We next express the harmonic 1-forms σ± defined in (5.3) in terms of the
distributions g±:
Lemma 5.6 Using the hyperbolic metric, identify the pullbacks π∗�σ± with
vector fields on H

3. Then for any x ∈ H
3

π∗�σ±(x) =
1

4

∫

S2
g±(ν)v±(x, ν) dS(ν),

where v±(x, ν) ∈ SxH3 ⊂ TxH3 is defined in (3.20).

Proof By (3.72) and since du = f−ω−, du∗ = f+ω+ we have

σ± = π�∗( f±α ∧ ω±).
Recall the horizontal/vertical decomposition (2.15). For any (x, v) ∈ M =
S�, ξ = (ξH , ξV ) ∈ T(x,v)M , and a positively oriented g-orthonormal basis
v, v1, v2 ∈ Tx� we compute by (2.16) and (4.28)

(α ∧ ω±)(x, v)(ξ, (0, v1), (0, v2)) = 1
4 〈ξH , v〉g.

Using the metric g, we identify σ± with a vector field on �. Then

σ±(x) = 1

4

∫

Sx�
f±(x, v)v dS(v), x ∈ �.

It follows that for each x ∈ H
3

π∗�σ±(x) =
1

4

∫

SxH3
�±(x, v)−2g±(B±(x, v))v dS(v)

= 1

4

∫

S2
g±(ν)v±(x, ν) dS(ν).
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Here in the first equality we used (5.25). In the second equality we made the
change of variables ν = B±(x, v) and used (3.21). ��
We note that by the preceding lemma v±(x, ν) define vector-valued Poisson
kernels in the sense of [43,51]. From Lemma 5.6 we get the following formula
for the right-hand side of (5.24) in terms of the distributions g±:

Lemma 5.7 We have (here e0 is defined in (5.23))

− π∗��g(σ− · σ+)(e0) = 1

8

∫

S2×S2
(1− ν− · ν+)2g−(ν−)g+(ν+) dS(ν−)dS(ν+).

(5.27)

Proof By (3.20) we have for each ν−, ν+ ∈ S
2 and x ∈ H

3

〈v−(x, ν−), v+(x, ν+)〉g = −〈v−(x, ν−), v+(x, ν+)〉1,3
= P(x, ν−)P(x, ν+)(1− ν− · ν+)− 1.

With the hyperbolic Laplacian �g acting in the x variable, we then compute
by (5.11)

−�g〈v−(x, ν−), v+(x, ν+)〉g = 2(1− ν− · ν+)2
(
P(x, ν−)P(x, ν+)

)2
.

Now (5.27) follows fromLemma5.6 by integration and using that P(e0, ν±) =
1 by (3.18). ��

5.2.2 Change of variables

By (5.26) and (5.12) we can formally write the left-hand side of (5.24) as
follows:

π∗�Q4F(e0) = 1

4

∫

SH3
y−40

(
�−(y, v)�+(y, v)

)−2

× g−(B−(y, v))g+(B+(y, v))dS(v)d volg(y), (5.28)

where we recall y = (y0, y1, y2, y3) ∈ H
3. Note that one has to take care when

defining the integral above, as g± are distributions and SH3 is noncompact,
see §5.2.3 below.

On the other hand, the right-hand side of (5.24) canbe expressed using (5.27)
as an integral over (ν−, ν+) ∈ S

2 × S
2. To prove (5.24) and relate the two

integrals we will use the change of variables � : (y, v) �→ (ν−, ν+, t), where
t ∈ R, introduced in (3.16). The basic properties of � are collected below in
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Lemma 5.8 1. Let (ν−, ν+, t) = �(y, v). Then

�−(y, v)�+(y, v) = 4

|ν− − ν+|2 =
2

1− ν− · ν+ , (5.29)

y0 = 2 cosh t

|ν− − ν+| . (5.30)

(As before, we write elements of H3 as y = (y0, y1, y2, y3) ∈ R
1,3.)

2. The Jacobian of � at (y, v) with respect to the densities d volg(y)dS(v)

and dS(ν−)dS(ν+)dt is equal to 4
(
�−(y, v)�+(y, v)

)−2
.

Remark The identity in part 2 of the above is well-known, see [50, Theo-
rem 8.1.1 on p. 131].

Proof 1. The identity (5.29) follows immediately from (3.17), noting that
|ν− − ν+|2 = 2(1− ν− · ν+). To see (5.30), we compute by (5.29) and (3.16)

�±(y, v) = 2e±t

|ν− − ν+| ,

which by (3.15) gives

y0 = �−(y, v)+�+(y, v)
2

= 2 cosh t

|ν− − ν+| .

2. Take (y, v) ∈ SH3. Let w ∈ TyH3 satisfy 〈v,w〉1,3 = 0. Then

|dB±(y, v)(w,±w)|S2 = 2|dB±(y, v)(0, w)|S2 =
2|w|g

�±(y, v)
. (5.31)

Here in the first equality we write (w,±w) = (w,∓w) ± 2(0, w) and use
that by (3.23), dB±(y, v)(w,∓w) = 0. In the second equality we use (3.21).
Denoting by X the generator of the geodesic flow and defining t by (3.16), we
also have by (3.22) and (3.23)

dB±(y, v)(X (y, v)) = 0, dt (X (y, v)) = 1.

Fix a g-orthonormal basis v, v1, v2 of TyH3 and consider the following basis
of T(y,v)SH3:

ξ0 = X (y, v), ξ±1 = (v1,±v1), ξ±2 = (v2,±v2).

Since ξ−j ∧ξ+j = 2(v j , 0)∧(0, v j ), the value of the density d volg(y)dS(v) on
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ξ0, ξ
−
1 , ξ

−
2 , ξ

+
1 , ξ

+
2 is equal to 4. On the other hand, writing

(η−(ξ), η+(ξ), τ (ξ)) = d�(y, v)(ξ), we have

η±(ξ∓j ) = η±(ξ0) = 0, τ (ξ0) = 1

and the vectors η±(ξ±1 ), η±(ξ
±
2 ) are orthogonal to each other and have

length 2�±(y, v)−1 each by (5.31). It follows that the value of the den-
sity dS(ν−)dS(ν+)dt on the images of ξ0, ξ

−
1 , ξ

−
2 , ξ

+
1 , ξ

+
2 under d�(y, v)

is equal to 16
(
�−(y, v)�+(y, v)

)−2. Thus the Jacobian of� at (y, v) is equal

to 4
(
�−(y, v)�+(y, v)

)−2. ��
Using Lemma 5.8 and (5.28), we can formallywrite the left-hand side of (5.24)
as

π∗�Q4F(e0) = 1

64

∫

(S2×S2)−×R

(1− ν− · ν+)2
cosh4 t

g−(ν−)g+(ν+) dS(ν−)dS(ν+)dt.

(5.32)

Using the change of variables s = tanh t , we compute

∫

R

dt

cosh4 t
=

∫ 1

−1
(1− s2) ds = 4

3
. (5.33)

Comparing (5.32)with (5.27),we formally obtain the identity (5.24).However,
our argument is incomplete since the integrals in (5.28) and (5.32) are over the
noncompact manifolds SH3, (S2 × S

2)− × R and g± are distributions. Thus
one cannot immediately apply the change of variables formula to get (5.32)
from (5.28), or Fubini’s Theorem to get (5.24) from (5.32). To deal with these
issues, we will employ a regularization procedure.

5.2.3 Regularization and end of the proof

Fix a cutoff function

χ ∈ C∞c (R; [0, 1]), suppχ ⊂ [−2, 2], χ |[−1,1] = 1.

For ε > 0, define the integral

Iε :=
∫

H3
χ(εy0)y

−4
0 π∗�F(y) d volg(y).

(As before, we embed H
3 into R

1,3 and we have y0 = 〈e0, y〉1,3 wheree0 =
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(1, 0, 0, 0).) By Lemma 5.2 with x = e0, Iε converges to the left-hand side
of (5.24):

Iε → π∗�Q4F(e0) as ε→+0. (5.34)

By (5.34) and (5.27), the proof of (5.24) (and thus of Theorem 5) is finished
once we show that

Iε → 1

48

∫

S2×S2
(1− ν− · ν+)2g−(ν−)g+(ν+) dS(ν−)dS(ν+) as ε→+0.

(5.35)

By (5.26) we have the following regularized version of (5.28):

Iε = 1

4

∫

SH3
χ(εy0)y

−4
0

(
�−(y, v)�+(y, v)

)−2

× g−(B−(y, v))g+(B+(y, v)) dS(v)d volg(y).

Making the change of variables (ν−, ν+, t) = �(y, v) and using Lemma 5.8,
we then get the following regularized version of (5.32) (we keep in mind that
g± are merely distributions so that all of the integrals around these lines are
understood in the distributional sense):

Iε = 1

64

∫

S2×S2×R
χ

( 2ε cosh t

|ν− − ν+|
)(1− ν− · ν+)2

cosh4 t

× g−(ν−)g+(ν+) dS(ν−)dS(ν+)dt.

For r ≥ 0, define the function

ψε(r) := 3

4

∫

R

χ
(2ε cosh t√

r

)
cosh−4 t dt. (5.36)

Note that ψε ∈ C∞([0,∞)) and ψε(r) = 0 for r % ε2. We now have

Iε = 1

48

∫

S2×S2
ψε(|ν− − ν+|2)(1− ν− · ν+)2g−(ν−)g+(ν+) dS(ν−)dS(ν+).

(5.37)
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Recalling that |ν−− ν+|2 = 2(1− ν− · ν+), we see from (5.37) that it suffices
to prove the following version of (5.35):

∫

S2×S2

(
1 − ψε(|ν− − ν+|2)

)|ν− − ν+|4g−(ν−)

× g+(ν+) dS(ν−)dS(ν+)→ 0 as ε→+0. (5.38)

If g± were smooth functions on S2, then (5.38) would follow from the Domi-
nated Convergence Theorem since by (5.33) we have ψε(r)→ 1 as ε→ +0
for all r > 0. However, g± are merely distributions, so one has to be more
careful. We start by establishing the Sobolev regularity of g± by following
the standard proof of the Fredholm property in anisotropic Sobolev spaces.
(We use the proof in [20]; one could alternatively carefully examine the proof
in [29].) See the papers of Adam–Baladi [1, §3.3], Guillarmou–Poyferré–
Bonthonneau [30, Appendix A], and Dyatlov [19] for a general discussion of
Sobolev regularity thresholds for the Pollicott–Ruelle resolvent.

Lemma 5.9 We have g± ∈ H−2−δ(S2) for all δ > 0.

Proof We show the regularity of g−, with g+ handled similarly. Recall that g−
is related to the distribution f− ∈ D′E∗u (M;C) by (5.25). Since �− is smooth

and B− is a submersion, it suffices to show that f− ∈ H−2−δ(M).
By Lemma 4.7, we have (X − 2) f− = 0, that is f− is a Pollicott–

Ruelle resonant state for the operator P = −i X corresponding to the
resonance λ0 = −2i , see §2.3.2. Given that Pollicott–Ruelle resonant states
are eigenfunctions of P on anisotropic Sobolev spaces (see (4.10)), it suf-
fices to show that one can choose the order function m in the definition of
the weight G(ρ, ξ) = m(ρ, ξ) log(1 + |ξ |) such that the Fredholm prop-
erty (4.11) holds on the anisotropic Sobolev space HG,0 for Im λ ≥ −2 and
HG,0 ⊂ H−2−δ; the latter is equivalent to requiring that m ≥ −2 − δ every-
where.

In [20, §§3.3–3.4] the Fredholm property (4.11) is shown using propagation
of singularities and microlocal radial estimates. Following the proof of [20,
Proposition 3.4], we see that one only needs to check that the low regularity
radial estimate [20, Proposition 2.7] applies to the operator P − λ (where
Im λ ≥ −2) at the radial sink E∗u (see (2.4)) in the space H−2−δ . (The high
regularity radial estimate [20, Proposition 2.6] would apply once m is suffi-
ciently large on E∗s , which can be arranged.) The threshold regularity for this
estimate is computed in [22, Theorem E.54]. In our setting, since the operator
P is symmetric on L2(M; d volα) and it has order k = 1, it is enough that

2+ (−2− δ)
Hp|ξ |
|ξ | < 0 on E∗u
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where p(ρ, ξ) = 〈X (ρ), ξ 〉 is the principal symbol of P and its Hamiltonian
flow is given by etHp(ρ, ξ) = (ϕt (ρ), dϕ

−T
t (ρ)ξ), see [20, §3.1]. Choosing

the norm |ξ | induced by the Sasaki metric and using (3.7), we see that

Hp|ξ |
|ξ | = 1 on E∗u ,

which means that the threshold regularity condition for the radial estimate is
satisfied and the proof is finished. ��
Coming back to the proof of (5.38), we rewrite it as

〈Aκεg−, g+〉L2(S2) → 0 as ε→+0, (5.39)

where the operator Aκε is given by (5.20):

Aκε f (ν+) =
∫

S2
κε(|ν− − ν+|2) f (ν−) dS(ν−)

and the function κε ∈ C([0, 4]) is given by (using (5.33) and (5.36) in the
second equality below)

κε(r) := 4

3
r2(1− ψε(r)) = r2

∫

R

(
1− χ

(2ε cosh t√
r

))
cosh−4 t dt.

Using Lemma 5.9, we have in particular g± ∈ H−5/2(S2). Thus to finish the
proof of (5.39), and thus of Theorem 5, it remains to prove the norm bound

‖Aκε‖H−5/2(S2)→H5/2(S2) → 0 as ε→+0. (5.40)

To show (5.40), we will bound the norms of Aκε between Sobolev spaces using
Lemma 5.5. To do this we estimate the derivatives of κε:

Lemma 5.10 Let j, k ∈ N0. Then there exists C depending only on j, k such
that for all ε ∈ (0, 1]

‖rk∂ j
r κε(r)‖L1([0,4]) ≤

⎧
⎪⎨

⎪⎩

Cε4, k ≥ j;
Cε4 log(1/ε), k = j − 1;
Cε2(3+k− j), k ≤ j − 2.

(5.41)

Proof Throughout the proof we denote by C a constant depending only on
j, k whose precise value might change from line to line.
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1. For any G(s) ∈ C∞([0,∞)) which is constant near s = ∞ define

�G(τ ) :=
∫

R

G
(2 cosh t√

τ

)
cosh−4 t dt, τ > 0.

We have the identity

τ∂τ�G = −1
2�s∂sG . (5.42)

Moreover, we have the estimate

G|[−1,1] = 0 �⇒ |�G(τ )| ≤ C‖G‖L∞
1+ τ 2

, (5.43)

which can be proved by bounding |�G(τ )| by ‖G‖L∞ times the integral
of cosh−4 t dt over the set of t such that cosh t ≥ √

τ/2 and using that∫
cosh−4 t dt = tanh t− 1

3 tanh
3 t+C and

√
1− λ− 1

3(1−λ)3/2 = 2
3+O(λ2)

as λ = 4
τ
→ 0.

2. We have

κε(r) = r2�1−χ(ε−2r).

By (5.42) for each j ≥ 0

(r∂r )
jκε(r) = r2(r∂r + 2) j

(
�1−χ(ε−2r)

) = r2�G j (ε
−2r),

where G j (s) := (2− 1
2s∂s)

j (1− χ)(s).

Since χ |[−1,1] = 1, we have G j |[−1,1] = 0. Thus by (5.43)

|(r∂r ) jκε(r)| ≤ Cr2

1+ ε−4r2
.

Writing r j∂
j
r as a linear combination of (r∂r )q with 0 ≤ q ≤ j , we get

|∂ j
r κε(r)| ≤ Cr2− j

1+ ε−4r2
≤ Cε4r− j .

Since suppχ ⊂ [−2, 2], we have by (5.33)

κε(r) = 4
3r

2 for 0 ≤ r ≤ ε2.
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Therefore

‖rk∂ j
r κε(r)‖L1([0,4]) ≤ C

∫ ε2

0
rk∂ j

r (r
2) dr + Cε4

∫ 4

ε2
rk− j dr

which gives (5.41). ��

Combining Lemma 5.5 and Lemma 5.10, we get

‖Aκε‖H−5/2→H3/2 ≤ Cε2, ‖Aκε‖H−5/2→H7/2 ≤ C.

By interpolation in Sobolev spaces (taking f ∈ H−5/2(S2) and using that
‖v‖2

H1(S2)
is bounded by 〈(1 − �S2)v, v〉L2(S2) ≤ C‖v‖L2(S2)‖v‖H2(S2) for

v := (1−�S2)
3/4Aκε f ) we then have

‖Aκε‖H−5/2→H5/2 ≤ Cε.

This gives (5.40) and finishes the proof of Theorem 5.
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Appendix A. Harmonic 1-forms of constant length

The purpose of this appendix is to give an elementary proof of the fact that
there are no harmonic 1-forms of constant nonzero length on closed hyperbolic
3-manifolds:

Proposition A.1 Let (�, g) be a compact hyperbolic 3-manifold (see §3.1).
Assume that ω ∈ C∞(�; T ∗�) is a harmonic 1-form such that its length |ω|g
is constant. Then ω = 0.

Remark Proposition A.1 follows directly from the more general work of [55].
The presentation in the appendix borrows from ideas in [39].

To prove Proposition A.1 we argue by contradiction. Assume that ω 
= 0;
dividingω by its length we arrange that, where δ = −�d� is the formal adjoint
of d (here � is the Hodge star)

dω = 0, δω = 0, |ω|g = 1.

Using the metric g, define the dual vector field to ω,

W ∈ C∞(�; T�), |W |g = ω(W ) = 1.

Lemma A.2 There exist one-dimensional smooth subbundles E± ⊂ T� such
that T� = RW ⊕ E+ ⊕ E−.

Proof 1. The Levi-Civita covariant derivative∇W is an endomorphism on the
fibers of T�. This endomorphism is symmetric with respect to the metric g;
indeed we compute for any two vector fields Y, Z ∈ C∞(�; T�)

0 = dω(Y, Z) = Yg(W, Z)− Zg(W, Y )− g(W, [Y, Z ])
= g(∇YW, Z)− g(∇ZW, Y ).

(A.1)

Taking Z := W and using that g(∇YW,W ) = 1
2Yg(W,W ) = 0 we see that

the vector field W is geodesible, that is

∇WW = 0. (A.2)

Since δω = 0, the vector field W is also divergence free; that is,

tr(∇W ) = 0. (A.3)

2. We next claim that

tr((∇W )2) = 2. (A.4)
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To see this, take locally defined vector fields Y1, Y2 such that W, Y1, Y2 is a
g-orthonormal frame and ∇WY j = 0. These can be obtained using parallel
transport along the flow lines of W (which are geodesics since ∇WW = 0).
We compute

1 = g(∇W∇Y j W −∇Y j∇WW +∇∇Y j WW −∇∇WY j W, Y j )

= Wg(∇Y j W, Y j )− g(∇Y j W,∇WY j )

+ g(∇∇Y j WW, Y j )− g(∇∇WY j W, Y j )

= Wg(∇Y j W, Y j )+ g((∇W )2Y j , Y j ).

Here in the first line we used that � has sectional curvature −1, in the second
line we used (A.2), and in the last line we used that∇WY j = 0. Summing over
j = 1, 2 and using again (A.2) we get

2 = W tr(∇W )+ tr((∇W )2)

and (A.4) now follows from (A.3).
3. From (A.2), (A.3), and (A.4) we see that ∇W has eigenvalues 0, 1,−1.

It remains to let E± be the eigenspaces of ∇W with eigenvalues ±1. ��
We are now ready to finish the proof of Proposition A.1. We can approxi-
mate the 1-form ω by a closed 1-form with rational periods (integrals over
closed curves on �); indeed, for an appropriate choice of linear isomorphism
H1(�;C) � C

b1(�) the forms with rational periods correspond to points in
Q

b1(�). In particular, we can find a number q ∈ N and a closed 1-form ω̃ with
integer periods such that

sup
�

|ω − q−1ω̃|g ≤ 1
2 . (A.5)

Since ω̃ has integer periods, we can write ω̃ = d f for some smooth map
f from � to the circle S

1 = R/Z. Since ω(W ) = 1, (A.5) implies that
W f = ω̃(W ) > 0 which in turn gives d f 
= 0 everywhere, that is f is a
fibration. Next, for each x ∈ � define the one-dimensional spaces

Ẽ±(x) := (RW (x)⊕ E±(x)) ∩ ker d f (x),

then the tangent bundle of each fiber f −1(c) decomposes into a direct sum
Ẽ+ ⊕ Ẽ−. Since � is orientable, so is f −1(c), which implies that f −1(c) is
topologically a torus. Then � is a torus bundle over a circle, which gives a
contradiction because such bundles do not admit hyperbolic metrics: by the
homotopy long exact sequence of a fibration the fundamental group of �
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contains a subgroup isomorphic to Z ⊕ Z, which is impossible for compact
negatively curved manifolds by Preissman’s Theorem [45, Theorem 12.19].
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