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Abstract 

The compressive response of a three-dimensional (3D) non-interlaced composite 

comprising three orthogonal sets of carbon fibre tows within an epoxy matrix is 

analysed. First, the compressive response is measured in three orthogonal directions 

and the deformation/failure modes analysed by a combination of X-ray tomography 

and optical microscopy. In contrast to traditional unidirectional and two-dimensional 

(2D) composites, stable and multiple kinks (some of which zig-zag) form in the tows 

that are aligned with the compression direction. This results in an overall composite 

compressive ductility of about 10% for compression in the low fibre volume fraction 

direction. While the stress for the formation of the first kink is well predicted by a 

usual micro-buckling analysis, the composite displays a subsequent hardening 

response associated with formation of multiple kinks. Finite element (FE) calculations 

are also reported to analyse the compressive response with the individual tows 

modelled as anisotropic continua via a Hill plasticity model. The FE calculations are 

in good agreement with the measurements including prediction of multiple kinks that 

reflect from the surfaces of the tows. The FE calculations demonstrate that the three-

dimensionality of the microstructure constrains the kinks and this results in the stable 

compressive response. In fact, the hardening and peak strength of these composites is 

not set by the tows in direction of compression, but rather set by the out-of-plane 

compressive response of the tows perpendicular to the compression direction. 

 

*Corresponding author. E-mail address: vsd@eng.cam.ac.uk.  
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1. Introduction 

Carbon fibre reinforced polymer (CFRP) composites are widely utilized in aerospace 

and automotive structures due to their high strength and stiffness to weight ratios (Poe 

et al., 1999; Stig, 2012). These long fibre composites are designed to possess high 

axial stiffness and tensile strength but the compressive strength of unidirectional 

composites rarely exceeds 60% of their tensile strength. The main competing 

mechanisms governing the compressive strength of long fibre composites are: (i) 

elastic micro-buckling (an elastic instability involving matrix shear); (ii) plastic 

micro-buckling in which the matrix deforms plastically; (iii) fibre crushing (a 

compressive fibre failure mode); (iv) splitting by matrix cracking parallel to the main 

fibre direction; (v) buckle delamination and (vi) shear band formation at 45# to the 

main axis of loading due to matrix yielding (Fleck, 1997).  

 

In composites with high toughness matrices, the micro-buckling and fibre crushing 

modes are most commonly encountered. For example, the compressive strength of 

glass and carbon fibre polymer reinforced composites (GFRP and CFRP, respectively) 

is usually governed by elastic or plastic micro-buckling. While the micro-buckling 

strength is typically set by matrix properties, Kyriakides and Ruff (1997) showed that 

the wavelength, amplitude, distribution of imperfections and fibre waviness also 

strongly influence the strength of long-fibre composites. Moreover, Vogler and 

Kyriakides (1997) demonstrated that CFRP and GFRP composites could continue to 

carry (a reduced) load after the onset of micro-buckling by the broadening of the kink 

band. However, the compressive ductility (defined as the compressive strain at which 

the material has a significant loss in load carrying capacity) of traditional CFRPs 

(unidirectional or two-dimensional (2D) composites comprising laminated or woven 

layers) is about 2% to 4%. Competing lightweight metallic materials such as 

Aluminium and Magnesium have a significantly higher compressive resilience with 

nearly no loss in compressive load carrying capacity after initial yield. This limits the 

application of CFRPs in situations that for example require maintenance of structural 

integrity after impact loading. 

 

There exists a large literature on theoretical/numerical studies with the aim of 

improving the understanding of constituent properties of the composite that set the 

compressive ductility. For example, Laffan et al. (2012) investigated the compressive 
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toughness and strength of notched unidirectional (UD) carbon fibre composites. 

Unlike Sivashankar et al. (1996), they observed that calculations based on an effective 

compressive stress intensity factor (this is defined using the understanding the fields 

at the tip of a kink-band are similar to that ahead of a crack) were unable to predict 

the measurements with sufficient fidelity and attributed this discrepancy to failure 

modes such as crushing, band broadening and delamination that were not 

appropriately accounted for in the toughness model. Finite element (FE) calculations 

also reported by Laffan et al. (2012) reproduced these mechanisms with sufficient 

fidelity so that predictions of failure stresses had a high level of accuracy. These 

findings were further reinforced by Pinho et al. (2012) who emphasized the role of 

matrix splitting in governing the micro-buckling stresses and Wind et al. (2015) who 

showed that a FE model in which the fibres and matrix were explicitly modelled 

accurately captured the 4-point bend response of a notched CFRP specimen. 

 

Since matrix cracking is an important mechanism that results in the loss of 

compressive ductility, the tailoring of fibre/tow architectures in CFRPs has been 

widely used to improve the compressive response. The most common approaches 

include modifying 2D composites by adding out-of-plane reinforcements. This is 

typically achieved by Z-pinning (Freitas et al., 1994; Mouritz, 2007), stitching 

(George et al., 2014; Malcom et al., 2013) and knitting (Kamiya et al., 2000). In 

addition, a range of techniques has been developed to manufacture three-dimensional 

(3D) fabrics wherein tows are present in at-least three orthogonal directions; see 

Khokar (2002) for a detailed review of these techniques. In brief, 3D fabrics fall into 

three categories: (i) 2D woven 3D fabrics produced by usual 2D weaving methods 

with mono-directional shedding1; (ii) 3D woven 3D fabrics produced by a dual-

direction shedding system and (iii) non-woven 3D fabrics without interlacing or 

interweaving produced by a technique known as “noobing” that is described in 

Section 2. The ability to manipulate the volume fractions of fibre in three directions 

not only allows tailoring of the multi-axial properties of composites (Quinn et al., 

2008); it also reduces the susceptibility to delamination, which results in an 

improvement in the impact performance of CFRPs (McIlhagger et al., 2007, 2008; 

                                                        
1 In weaving shed is the channel created for passing weft by temporarily cross-separating the 
warp yarns to achieve interlacing between the warps and wefts. The term shedding refers to 
the action of creating a shed.  
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Tan et al., 2000). Moreover 3D composites can add more functionality to any 

eventual component as discussed by Stig (2012).  

 

Most 3D woven composites suffer from a relatively low modulus due to significant 

fibre crimp or waviness. In an attempt to overcome this drawback, Kuo and Ko 

(2000) modified a conventional weaving machine to produce 3D fabrics with 

orthogonal, non-interlacing yarns. They demonstrated that such a composite had a 

high compressive ductility due to the confinement imposed by the off-axis yarns. In a 

subsequent study, Kuo et al. (2007) demonstrated the formation of multiple kinks 

within the tows of such 3D composites. However, the inherent limitations of their 

modified weaving process resulted in high fibre waviness and hence reduced 

compressive strengths in the composites they investigated. Moreover, no detailed 

theoretical/numerical investigations have been reported to-date to understand the 

compressive failure mechanisms in such composites. 

 

The main focus of this study is to develop an understanding of the compressive failure 

mechanisms in 3D non-woven carbon fibre/epoxy composites manufactured by the 

noobing process. This process significantly reduces fibre waviness and hence has the 

potential to significantly enhance the compressive strength of such composites. The 

outline of the study is as follows. We first briefly describe the manufacturing process 

and the microstructure of these 3D composites. Next, we report the compressive 

failure response along with detailed imaging to illustrate the deformation/failure 

modes. Finally, we report FE calculations of the compressive responses with the 

individual tows modelled as anisotropic continua. 

 

 

2. Materials, manufacture and property estimates 

The principle of 3D fabric forming/manufacture by the noobing process is 

fundamentally different from traditional weaving, knitting or braiding processes. In 

brief, linear sets of yarns in either “uniaxial” or “multi-axial” arrays (see Fig. 1 for 

definitions of uniaxial and multi-axial) are bound/tied together by another set of yarns 

to produce a 3D layerless fabric. Since the yarns do not interlace, interloop or 

intertwine the fabrics are referred to as noobed (the acronym NOOB standing for 

Non-interlacing, Orientating Orthogonally and Binding) fabrics (Khokar, 1996). 
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There are a variety of noobing processes and readers are referred to Khokar (2002) for 

a detailed discussion. Here we briefly describe the process used to manufacture the 

noobed materials used in this study. 

 

 
Figure 1: Sketches of the two types of non-woven 3D fabrics: (a) “uniaxial” fabrics 

comprising orthogonal yarns in the 𝑋, 𝑌 and 𝑍-directions and (b) “multi-axial” fabrics with 5 

yarn directions (±𝐵 in addition of the 𝑋, 𝑌 and 𝑍-direction yarns). 

 

2.1 The noobing process and composite manufacture 

The composites were manufactured in two steps: first the dry 3D fabrics were 

produced in block form and then infused with the epoxy matrix. The 3D fabrics were 

manufactured2 using the method developed by Khokar (2012) that we briefly describe 

here. With (𝑋, 𝑌, 𝑍) forming a Cartesian co-ordinate system, the composite comprises 

an array of 𝑍 -yarns bound together by 𝑋  and 𝑌 -yarns that traverse the rows and 

columns of the grid formed by the 𝑍-yarns. These 𝑋 and 𝑌-yarns loop as shown in 

Fig. 2a and bind the fabric together. Readers are referred to Khokar (2012) for details 

of the device used for the automated manufacture of this 3D fabric. We emphasize 

here that this fabric is produced by a process that does not involve shedding as in a 

weaving process and comprises three orthogonal non-interlaced 𝑋 , 𝑌  and 𝑍-yarns. 

The noobed fabric is relatively stable as it is well bound together on all sides by the 

looping 𝑋, 𝑌 and 𝑍 yarns (in Fig. 2a, looping by only 𝑋 and 𝑌 yarns are shown for the 

sake of clarity). Infusion of a polymer matrix is performed via a resin transfer 

moulding process (RTM) to produce the 3D composite material.  

                                                        
2  The noobed fabrics were supplied by Biteam AB, Danderydsgatan 23, SE-114 26 
Stockholm, Sweden but are now available from Fureho AB, Segloravägen 6, SE-504 64 
Borås, Sweden. 
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2.2 Material geometry 

The 3D noobed composites used here comprise Toray T700S 12k carbon fibre tows 

(non-twisted carbon fibre yarns are usually referred to as tows) in a NM FW3070 

epoxy matrix3 with a glass transition temperature of 180#C. The carbon fibres in the 

12k tows are approximately 𝑑 = 7.2	µm  in diameter and the 3D composite was 

anisotropic with 20% of the total number of tows in 𝑍-direction and 40% each in the 

𝑋  and 𝑌 -directions. Blocks of the 3D noobed composites of size 175	 𝑋 mm	×

	103	 𝑌 mm	×45	 𝑍 mm were manufactured and specimens of required dimensions 

were cut from these blocks using a diamond band saw.  

 

 
 

Figure 2: (a) Sketch of the orthogonal non-woven yarns in the 3D noobed fabric that is 

infused to give the composite. The 𝑋 and 𝑌-yarns form closed loops that bind together the 3D 

fabric. (b) Sketch of the unit cell of the 3D noobed composite employed in this study. The unit 

cell is inferred from the XCT images in Fig. 3. 

 

In order to evaluate the micro-structure of the as-produced (noobed + infused) 

composites, square specimens of side roughly 20 mm were cut from the block and 

imaged via X-ray computed tomography (XCT). The XCT images of the interior of 

the specimens on three orthogonal planes are shown in Fig. 3. The specimen was cut 

from the edge of the block so as to also visualise the looped tows (Fig. 2a). These 

images clearly show that while the 𝑍-direction tows have an approximately square 

cross-section the 𝑋 and 𝑌-direction tows are flattened in the 𝑍-direction during the 
                                                        
3 Nils Malmgren AB, P.O.Box 2039 S-442 02 Ytterby Sweden. 
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RTM process. Moreover, the geometry of the orthogonal arrangement of the tows 

requires that pockets of pure matrix (in addition to the matrix that exists between 

fibres within each tow) are regularly interspersed in the composite. The periodic unit 

cell as inferred from these XCT images is sketched in Fig. 2b (an average unit cell 

based on measurements at 30 different locations in the XCT images) and includes all 

the relevant dimensions of the tows and matrix pockets.  

 

 
 

Figure 3: X-ray tomographic (XCT) scans of the 3D noobed composite showing sections on 

three orthogonal planes. The (𝑋, 𝑌, 𝑍) co-ordinate system is based on the noobing process 

where the 𝑋 and 𝑌-yarns form a closed loop (Fig. 2a).  

 

2.2.1 Volume fractions 

The composite comprises four principal phases: (i) the 𝑋, 𝑌 and 𝑍-direction tows and 

(ii) matrix pockets. Based on the unit cell with dimensions sketched in Fig. 2b, the 𝑋 

and 𝑌-direction tows comprise a volume fraction 𝑣; = 𝑣< ≈ 29% of the composite 

while the 𝑍-direction tows occupy a volume fraction 𝑣@ ≈ 17% of the composite. The 

remainder 𝑣A = 25%  of the volume is occupied by the matrix pockets. It now 

remains to specify the overall carbon fibre volume fraction within the composite. 

Recall that each tow comprises 12k fibres of diameter 7.2	µm. Then based on the tow 

cross-sectional areas from Fig. 2b the fibre volume fractions in the 𝑋 and 𝑌-direction 

tows are 𝑓; = 𝑓< ≈ 68% while the 𝑍-direction tow comprises 𝑓@ ≈ 30% fibres. The 

overall fibre volume fraction in the composite then follows as 𝑓 = 2𝑣;𝑓; + 𝑣@𝑓@ ≈

45%. The area fractions of the different phases are also of interest in the subsequent 

derivations of material properties. We calculate these area fractions on the surfaces of 

the cuboidal unit cell sketched in Fig. 2b. For example, the area fraction of the 𝑍-

direction tows on the 𝑋 − 𝑌 plane is denoted as 𝐴;<@ : the dimensions given in Fig. 2b 
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specify that 𝐴;<@ = 0.17. For brevity, we do not state here all such possible area 

fractions that can be readily calculated from the dimensions in Fig. 2b. 

 

2.3 Material properties 

The 3D noobed composite comprised Toray T700S 12k carbon fibre tows in a NM 

FW3070 epoxy matrix. The properties of these two constituents as given by the fibre 

and matrix manufacturers are: 

(i) The fibre Young’s modulus and Poisson’s ratio are 𝐸H = 210	GPa and 𝜈H = 0.25, 

respectively while the tensile strength of the fibres, 𝜎H = 4	GPa. 

(ii) The matrix Young’s modulus and Poisson’s ratio are 𝐸N = 3	GPa and 𝜈N = 0.25, 

respectively while the matrix tensile yield strength, 𝜎N = 140	MPa. 

 

These properties of the constituents can be used to derive estimates of the effective 

properties of the different phases in the 3D noobed composite comprised of four 

phases. The 𝑍-direction tows have a significantly larger cross-sectional area compared 

to the 𝑋  and 𝑌 -direction tows. Thus, for purposes of the approximate analysis 

presented in Section 3 and the detailed finite element (FE) calculations in Section 4 

we shall explicitly consider the 𝑍-direction tows but model the 𝑋  and 𝑌-direction 

tows and the matrix pockets that surround the 𝑍-direction tows as a single effective 

medium. We shall thus first derive effective properties for the tows and then use them 

to estimate properties of this effective medium. For the sake of brevity, we shall 

subsequently refer to this effective medium as a homogenised matrix. All the relevant 

anisotropic properties will be stated using the global co-ordinate system. For example, 

𝐸@@  and 𝐸;@  denote the longitudinal and transverse moduli, respectively of the 𝑍 -

direction tow (the superscript specifies that these properties relate to the 𝑍-direction 

tow while the subscripts specify the direction of the property). Similarly, 𝐸;; and 𝐸@; 

are the longitudinal and transverse moduli, respectively of the 𝑋-direction tow while 

𝐸;P  and 𝐸@P  are the moduli of the homogenised matrix in the 𝑋  and 𝑍 -directions, 

respectively. 

 

2.3.1 Elastic properties 

The tows are assumed to be transversely isotropic with the fibre direction normal to 

the plane of isotropy. We first consider the 𝑍 -direction tows. The longitudinal 
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modulus 𝐸@@  is given by the Voigt bound as 𝐸@@ = 𝑓@𝐸H + 1 − 𝑓@ 𝐸N  while the 

transverse moduli 𝐸;@ = 𝐸<@  are given by the equivalent Reuss bound. Since the 

Poisson’s ratios of the matrix and fibres are assumed equal, we take 𝜈@;@ = 𝜈;<@ = 𝜈N 

and the shear modulus 𝐺;@@  is estimated from a Reuss bound such that 

 
1
𝐺;@@

=
2(1 + 𝜈H)𝑓@

𝐸H
+
2(1 + 𝜈N)(1 − 𝑓@)

𝐸N
. (2.1) 

The five independent elastic constants required to describe the elastic properties of the 

transversely isotropic 𝑍-direction tows are listed in Table 1. Equivalent estimates can 

be evaluated for the 𝑋 (or 𝑌)-direction tows with 𝑓@ replaced by 𝑓;. These properties 

are also listed in Table 1 for the 𝑋-direction tow. Note that the 𝑋-direction is normal 

to the plane of isotropy for the 𝑋-direction tow and hence the components of the 

elasticity tensor listed in Table 1 differ for the 𝑋 and 𝑍-direction tows. 

 

We proceed to calculate the properties of the homogenised matrix that surrounds the 

𝑍 -direction tows. From the unit cell sketched in Fig. 2b it is clear that this 

homogenised matrix is an orthotropic effective material with Young’s moduli equal in 

the 𝑋 and 𝑌-directions. Thus, in order to simplify the constitutive description it is 

reasonable to assume that this homogenised matrix is also transversely isotropic with 

the 𝑍-direction being normal to the plane of isotropy. Again, since all the constituents 

have equal Poisson’s ratios it is reasonable to take 𝜈@;P = 𝜈;<P = 𝜈N . The Voigt 

estimate for the moduli 𝐸;P = 𝐸<P is given as 

 𝐸;P =
𝑣; 𝐸;; + 𝐸<; + 𝑣N𝐸N

2𝑣; + 𝑣N
, (2.2) 

while that for modulus 𝐸@P is 

 𝐸@P =
2𝑣;𝐸<; + 𝑣N𝐸N
2𝑣; + 𝑣N

. (2.3) 

Similarly, the shear modulus 𝐺;@P  is given by the Voigt bound as 

 𝐺;@P 	=
𝑣; 𝐺<@; + 𝐺;@; + 𝑣N

𝐸N
2(1 + 𝜈N)

2𝑣; + 𝑣N
, (2.4) 

where 𝐺<@; = 0.5𝐸<;/(1 + 𝜈@<; ) . The five independent elastic constants for this 

effective medium are listed in Table 1. 
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𝑍-direction	

tow 

𝐸@@ = 65	 𝐸;@ = 𝐸<@

= 4.2	

𝜈@;@ = 0.25	 𝜈;<@ = 0.25	 𝐺;@@ = 𝐺<@@

= 1.7	

𝑋-direction	

tow 

𝐸@; = 𝐸<;

= 8.8	

𝐸;; = 142	 𝜈;@; = 0.25	 𝜈@<; = 0.25	 𝐺;@; = 𝐺;<;

= 3.6	

homogenised	

matrix	

𝐸@P = 7.1	 𝐸;P = 𝐸<P

= 54	

𝜈@;P = 0.25	 𝜈;<P = 0.25	 𝐺;@P = 𝐺<@P

= 2.8	

 

Table 1: The elastic properties of the transversely isotropic tows and the homogenised matrix 

in the 3D noobed composite. The 𝑋 and 𝑌 -direction tows have identical properties with the 

super/subscript 𝑋 replaced by 𝑌. All the moduli are given in GPa. 

 

 

 
Figure 4: (a) Sketch of the homogenised matrix within the unit cell with the constituents of 

the homogenised matrix also indicated. The three regions A, B and C into which the 

homogenised matrix within the unit cell is divided for the analysis of the effective properties 

are also indicated. (b) Sketch of the indirect tension mechanism operative during the 

compression of region B in the 𝑍-direction. 

 

 

2.3.2 Plastic/failure strengths 

In estimating the plastic/failure strengths of the different phases we note that the 

strength for tensile loading along the fibre direction is limited by the failure strength 

𝜎H of the fibres while loading in other directions (e.g. transverse or shear loading) is 
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limited by flow of the matrix around fibres. Since the fibre strength is significantly 

greater than the matrix strength, the fibres may be assumed to be rigid for the 

purposes of analysis of strength in matrix flow governed regimes. With this 

understanding we proceed to develop estimates for the anisotropic strengths of the 

tows and the homogenised matrix. 

 

First consider the 𝑍-direction tow. The longitudinal tensile strength is limited by fibre 

fracture and directly given by a Voigt estimate as 𝑌@@ = 𝑓@𝜎H + 1 − 𝑓@ 𝜎N . The 

calculation of the transverse strength is more complex. A Reuss estimate assuming 

rigid fibres will specify that the transverse strength is equal to that of the matrix. 

However, this is a poor estimate as the rigid fibres constrain the flow of the matrix 

and enhance the strength. Bele and Deshpande (2015) provided a simple analytical 

estimate (verified via FE calculations) for the transverse strength of a composite 

comprising rigid cylinders dispersed in a plastic matrix. Here we use that prescription 

to estimate the transverse and shear strengths of the tow. The Hashin lower bound 

(Hashin, 1962) for the Young’s modulus 𝐸  of a composite comprising a volume 

fraction 𝑓@ of rigid inclusions in an incompressible matrix of modulus 𝐸N is 

 
𝐸
𝐸N

= 1 +
5𝑓@

2(1 − 𝑓@)
. (2.5) 

This linear bound can be transformed to an estimate of the strength using the method 

proposed by Suquet (1993) in which Eq. (2.5) is employed as a fictitious linear 

comparison composite. The transverse strength is then given as 

 𝑌;@ = 𝑌<@ = 𝜎N
𝐸
𝐸N

(1 − 𝑓@), (2.6) 

with 𝐸/𝐸N given by Eq. (2.5). The shear strengths are assumed to be related to the 

transverse strength via a Tresca yield criterion such that 𝑌;<@ = 𝑌;@@ = 𝑌@<@ = 𝑌;@/2. 

These properties of the 𝑍-direction tow are listed in Table 2. The plastic/failures 

strengths for the 𝑋-direction tow can also be estimated in an analogous manner and 

these predictions are also listed in Table 2.  

 

Next consider the homogenised matrix sketched in Fig. 4a. Uniaxial loading in the 𝑋-

direction results in longitudinal and transverse loading of the 𝑋 -direction and 𝑌 -
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direction tows, respectively as well as loading of the matrix pockets. The average 

stress sustained by this homogenised material at failure then follows as 

 𝑌;P = 𝐴@<; (𝑌;; + 𝜎N) + 0.5𝐴@<@ 𝜎N + 𝑌<; , (2.7) 

with 𝑌<P = 𝑌;P. In order to calculate the strength 𝑌@P it is convenient to divide the 𝑋 −

𝑌 plane of the homogenised matrix into three regions A, B and C as shown in Fig. 4a. 

The uniaxial stress in the 𝑍-direction over regions A and C is limited to the matrix 

yield strength 𝜎N while compression of region B is equivalent to the compression of a 

cross-ply laminate. The out-of-plane compression of a cross-ply laminate results in 

the development of tensile stresses in the fibres due to the anisotropic Poisson 

expansion of the cross-plies (Fig. 4b). This so-called indirect tension mechanism was 

analysed by Attwood et al. (2014) who showed that the compressive strength of cross-

ply laminates equals the in-plane tensile strength 𝑌;; of each lamina. The strength 𝑌@P 

then is given by the average over the three regions such that 

 𝑌@P =
2𝐴;<N 𝜎N + 1 − 𝐴;<@ − 2𝐴;<N 𝑌;;

1 − 𝐴;<@
, (2.8) 

where 𝐴;<N  is the area fraction that the matrix pockets occupy in the 𝑋 − 𝑌 plane on 

the surface of the unit cell (it is equal to the ratio of the area of region A to the area 

1.81 + 1.25 S	mmS of the unit cell projected on the 𝑋 − 𝑌 plane). We assume all 

shear strengths to be equal (𝑌@;P = 𝑌@<P = 𝑌;<P ) and given by a Voigt bound such that  

 𝑌@;P =
2𝑣;𝑌;<; + 𝑣N𝜎N/2

2𝑣; + 𝑣N
, (2.9) 

where we have assumed that the matrix shear strength is 𝜎N/2 as per the Tresca yield 

criterion (we recognise that the Tresca criterion may not be completely appropriate for 

an epoxy resin, but used here in order simplify the analysis and get a first order 

estimate) . These plastic collapse and failure strengths are listed in Table 2. 
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𝑍-direction	

tow	

𝑌@@ = 1300	 𝑌;@ = 𝑌<@

= 170	

𝑌;<@ = 𝑌;@@

= 𝑌@<@ = 85	

𝑋-direction	

tow	

𝑌;; = 2800	 𝑌@; = 𝑌<;

= 200	

𝑌;<; = 𝑌;@;

= 𝑌@<; = 100	

Homogenised	

matrix	

𝑌@P = 1260	 𝑌;P = 𝑌<P

= 940	

𝑌@;P = 𝑌@<P

= 𝑌;<P = 92	

 

Table 2: The plastic/failure strengths of the tows and the homogenised matrix in the 3D 

noobed composite. In this table all the strengths are in MPa. 

 

 

3. Measurements of the compressive response 

The aim of the experimental study is to measure the compressive response of the 3D 

noobed composites and investigate the deformation/failure mechanisms. We first 

describe the measurement protocols and then proceed to discuss observations of the 

compressive behaviour. 

 

 

Figure 5: Sketch of the setup used for the compression of the 3D noobed composite in the 𝑍 

and 𝑋-directions. The inset includes a sketch of the cuboidal specimen. 

 

3.1 Measurement protocol 

Tests were conducted to measure the response of these composites subjected to 

uniaxial compression in the 𝑍 -direction as well as the 𝑋  and 𝑌 -directions. The 
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compressive response was measured using cuboidal specimens of length 41 mm and a 

10 mm square cross-section, i.e. for compression in the 𝑍-direction the 41 mm edge of 

the specimen was aligned with the 𝑍-direction of the material while for compression 

in the 𝑋-direction the 41 mm edge was along the 𝑋-direction of the material. This size 

ensured that there were at least 3×3 𝑍-direction tows over the cross-section of the 

specimens used to measure the compressive responses in the 𝑍 -direction and the 

specimens used for measuring in the 𝑋 -direction had 3×12  tows over the cross-

section. The specimens were first cut to approximately the correct size using a 

diamond edged band-saw and then milled down to their final dimensions so as to 

ensure that the cuboids had parallel sides. These cuboids were then press-fitted into 

loading platens that had a 13 mm deep recess with a 10 mm cross section. This 

resulted in a compression setup wherein the gauge length of the specimen was 15 mm 

as sketched in Fig. 5. Guide-pins were employed as shown in Fig. 5 to minimize the 

introduction of bending loads into the specimen. Loading was performed in a screw-

driven test machine at an applied cross-head displacement rate of 0.2 mm/min. The 

applied load was measured via the load cell of the test machine and used to define the 

nominal compressive stress 𝜎T while the compressive strain was measured via a laser 

extensometer over a 12 mm central gauge section of the specimen. 

 

In addition to tests to measure the overall compressive response, we also performed 

interrupted tests wherein the specimens were unloaded after a specified level of 

compression and then imaged to observe the deformation/failure modes. Two types of 

imaging were performed: (i) XCT imaging which is non-destructive and (ii) high 

resolution optical imaging of the interior of the specimens. This optical imaging 

involved polishing of the specimen to expose the specimen interior and hence was a 

destructive process. The unloaded specimen was polished with SiC abrasive paper 

first using a coarse-grit (P220-P400) until approximately the mid-section of the 

specimen was exposed. Then, another 1 mm or so of the specimen was further 

abraded using a fine-grit (P800-P4000) in order to obtain a clean and smooth surface 

for imaging. In order to maximise the resolution of the images while still imaging a 

large enough area to clearly expose the deformation/failure modes, the imaged area 

was divided into a grid comprising approximately 200 squares. Each of these squares 
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was imaged separately and the entire imaged section was then reconstructed by 

stitching together these sub-images. 

 

 

 
 

Figure 6: (a) The measured and FE prediction of the uniaxial compressive stress 𝜎T versus 

compressive strain 𝜀T  response for compression in the 𝑍 -direction. FE predictions of the 

unloading response from selected applied strain levels prior to ultimate failure are also 

included. (b) FE predictions of the deformed unit cell with distributions of the plastic strain 

𝜀;@
V  at four levels of applied strain (labelled P, Q, R and S) as indicated in (a). The images of 

the unit cell show the 𝑋 − 𝑍 plane. 

 



 16 

 
 

Figure 7: (a) Measured loading/unloading curves for compression in the 𝑍-direction. The 

measurements are shown for four specimens (labelled A through D), each compressed to 

different levels of strain 𝜀T. The sketch in the inset shows plane along which the specimens 

were sectioned and optically imaged. (b-e) The development and propagation of kink-bands 

in the 𝑍-direction tow in the 4 sectioned specimens.  

 

3.2 Compression in the 𝑍-direction 

The measured uniaxial compression response in the 𝑍-direction is plotted in Fig. 6a in 

terms of the applied nominal stress 𝜎T  versus the nominal strain 𝜀T  (here both the 

stress and strain are defined positive in compression). The measured response is 

atypical compared to the usual elastic-brittle compressive response of traditional 

CFRPs. In particular, after an initial elastic response with a modulus of 18.5 GPa, the 

3D noobed composite displays a small stress plateau at around 300 MPa followed by 

almost linear strain hardening with a hardening modulus of 4.7 GPa. Fracture of the 
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specimen with loss of load carrying capacity occurs at a nominal compressive strain 

of about 10%, which is about a factor of three higher, compared to the compressive 

failure strains of usual CFRPs. In order to understand this rather unique compressive 

response we performed interrupted tests to visualise the deformation modes via 

optical microscopy as described above. 

 

Tests on four different specimens (labelled A through D) were conducted with the 

tests interrupted after applied strains 𝜀T = 1.8%, 2.3%, 5.3%  and 9.3% . The 

measured 𝜎T  versus 𝜀T  curves including the unloading responses are included in 

Fig. 7a for each of these specimens. Remarkably, the unloading behaviour is not 

linear elastic but upon load removal there is near complete recovery of the applied 

strain. This is reminiscent of reverse plasticity associated with the Bauschinger effect 

in metals. We proceed to discuss the reasons for this recovery along with the 

deformation mechanisms as discerned from the optical images.  

 

The optical images of a section parallel to the 𝑋 − 𝑍 plane (see sketch in the inset of 

Fig. 7a) are included in Figs. 7b through 7e for the four specimens A through D, 

respectively. In each of the images, there are 3 tows in the 𝑍-direction with the 𝑌-

direction tows and the matrix pockets giving rise to the banded microstructure 

between the 𝑍-direction tows (the 𝑋-direction tows are not visible in the sectioned 

plane). In all the four samples there is no clear deformation visible in the 𝑌-direction 

tows and the matrix pockets but there is clear evidence of the formation of bands of 

intense deformation, akin to kink bands in traditional unidirectional fibre composites, 

in the 𝑍-direction tows. In specimen A, which was unloaded from 𝜀T = 1.8%, a single 

kink is observed but with increasing applied strain 𝜀T the number of such kinks within 

the 𝑍-direction tows increases and in fact some of these kinks “reflect” so that a zig-

zag pattern of kinks is observed. We therefore infer that the non-linear deformation 

that commences at 𝜎T ≈ 300MPa is due to the formation and propagation of these 

kink bands while the remainder to the composite (i.e. homogenised matrix) remains 

elastic. Thus, upon unloading there is the near complete recovery of the imposed 

strains as material surrounding the 𝑍-direction tows recovers elastically. 
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Figure 8: Optical micrographs of kinks in specimen D (Fig. 7a) at different levels of 

magnification.  

 

While the dark bands in the 𝑍-direction tows in Figs. 7b-7e are reminiscent of kinks it 

is instructive to observe the structure within these bands via higher resolution images. 

Such images are included in Fig. 8 (at four different levels of increasing 

magnification) for the kinks in specimen D. Clear evidence of fibre kinking with fibre 

fracture demarking the boundary between the kinked and unkinked regions is 

observed very similar to the well-established microbuckling/kinking behaviour in 

unidirectional carbon fibre composites. We proceed to discuss the differences and 

similarities between kinking in the 𝑍 -direction tows in these 3D composites and 

kinking in unidirectional CFRPs.  

 

A magnified view of a kink-band in the 𝑍-direction tow at an applied strain 𝜀T =

2.3% (just post the onset of the non-linearity in the stress versus strain response) is 

included in Fig. 9a. Budiansky (1983) estimated the kink width to be  

 𝑤
𝑑
=
𝜋
4

𝐸@@

𝜏<

Z/[

 (3.1) 

where from Section 2.3.1, 𝐸@@ = 65	GPa  is the longitudinal modulus of the 𝑍 -

direction tow and 𝜏< = 85	MPa is the shear yield strength of 𝑍-direction tow. The 

measured and predicted kink widths are in good agreement with 𝑤 = 51	µm from 

Eq. (3.1) and the measured value of 𝑤 ≈ 48	µm. Next consider the stress 𝜎\ for the 
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onset of non-linearity that is set by kink formation in the 𝑍-direction tows. Since the 

homogenised matrix is elastic when micro-buckling is induced in the 𝑍-direction tows 

it follows that 𝜎\ is given by 

 𝜎\ = 𝐴;<@ 𝜎] + 1 − 𝐴;<@ 𝜎]
𝐸@P

𝐸@@
, (3.2) 

where 𝐴;<@ = 0.17  is the area fraction of the 𝑍 -direction tows on the 𝑋 − 𝑌  plane 

while 𝜎]  is the micro-buckling stress of the 𝑍-direction tows. This micro-buckling 

stress is given in terms of the fibre-misalignment 𝜙 with respect to the longitudinal 

axis as (Argon, 1972)  

 𝜎] =
𝜏<
𝜙
	. (3.3) 

Using the material parameters from Section 2.3 with 𝜙 = 5# , we estimate 𝜎\ =

254	MPa which is in reasonable agreement with the measurements. Thus, the onset of 

the non-linearity in the response including the width of the kink-band within the 𝑍-

direction tows is reasonably well predicted by the traditional kinking analysis. 

However, subsequent to the formation of the initial kink, the 3D noobed composite 

displays a hardening stress versus strain response (unlike traditional CFRPs). This is 

because the kinks in the 𝑍 -direction tows do not propagate into the rest of the 

composite but rather zig-zag as seen in Fig. 8. This is because the kinks are 

constrained by the material surrounding the 𝑍-direction tows that remains elastic. 

However, in addition to the zig-zagging these kink bands also broaden as seen in 

micrograph at 𝜀T ≈ 9% included in Fig. 9b: multiple fibre fractures and a kink width 

𝑤 ≈ 190µm is observed in contrast to the 𝑤 ≈ 48µm kink band in Fig. 9a where a 

single line of fibre fracture demarcates the kink boundary. We thus conclude that 

while there are clear similarities with the compressive response of traditional CFRPs, 

the 3D noobed composites differ by: (i) displaying a hardening compressive response 

with a large compressive ductility and (ii) the formation of multiple kinks (some of 

which zig-zag) rather than a single kink band.  
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Figure 9: Optical micrographs that show kink-bands in the 𝑍-direction tow for a specimen 

compressed in the 𝑍-direction to strains (a) 𝜀T ≈ 2% and (b) 𝜀T ≈ 9%.  

 

3.3 Compression in the X or Y – directions 

The compressive response of the 3D noobed composite in the 𝑋 and 𝑌-directions is 

indistinguishable and hence here we only discuss the compressive behaviour in the 𝑋-

direction. The measured response is included in Fig. 10a and the key differences with 

respect to the compression response in the 𝑍-direction are: (i) a higher modulus in the 

𝑋-direction; (ii) a higher critical stress for the onset of the non-linearity and (iii) no 

hardening subsequent to the onset of the non-linearity with a significantly lower 

ductility compared to compression in the 𝑍 -direction. These differences can be 

understood in terms of the high fibre volume fractions in the 𝑋 and 𝑌-direction tows 

compared to the 𝑍-direction tows. We proceed here to explain these differences in a 

qualitative manner with a detailed numerical analysis given in Section 4. 

 

The higher modulus of the 3D noobed composite in the 𝑋-direction follows directly 

from the fact that the 𝑋-direction tows have a higher fibre volume fraction with 𝑓; ≈

68%  and that the volume fraction of the 𝑋 -direction tows 𝑣; > 𝑣@ . In order to 

understand the compressive failure mechanisms and lower compressive ductility we 

performed both interrupted tests with XCT scans of the specimen and destructive 

optical imaging. The XCT scans (after unloading) of the specimens at three different 

stages of the deformation are included in Fig. 11. Scan A is in the elastic domain and 

there is no clear visible deformation/failure in the images of the 𝑋 − 𝑍 and 𝑋 − 𝑌 

planes. Some evidence of cracking is visible in scan B which is taken immediately 

after the peak load is attained while scan C which is taken after loading to 𝜀T ≈ 3.5% 

shows extensive localisation of the deformation across the entire specimen width. 
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However, the resolution of these XCT scans is not sufficient to discern the fibre 

fracture modes and hence we also performed destructive optical imaging of a 

specimen deformed to just beyond the peak load. These optical images are included in 

Fig. 12 showing views of two different planes 𝑋 − 𝑍 and 𝑋 − 𝑌. Intriguingly, similar 

to the multiple kink bands seen in the 𝑍-direction tows in Figs. 7 and 8, multiple and 

zig-zagged kinks are also observed in the 𝑋-direction tows although this multiple 

kinking is not as extensive. We thus hypothesize that the formation of these kinks sets 

the peak compressive stress. However, unlike compression in the 𝑍-direction there is 

no hardening beyond the stress required to initiate kinking. We attribute this to the 

high strength in the 𝑋 -direction and the relatively low shear strength of the 𝑍 -

directions tows that allows kinks that form in the 𝑋-direction tows to propagate across 

the specimen width. We shall use FE calculations to better understand this 

deformation mode and the differences between the compressive responses in the 𝑋 

and 𝑍-directions. 
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Figure 10: (a) The measured and FE prediction of the uniaxial compressive stress 𝜎T versus 

compressive strain 𝜀T response for compression in the 𝑋-direction. (b) FE predictions of the 

deformed unit cell with distributions of the plastic strain 𝜀;<
V  at three levels of applied strain 

(labelled P, Q and R) as indicated in (a). The images of the unit cell show the 𝑋 − 𝑌 plane. 
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Figure 11: XCT scans of the 3D noobed composite at three levels of compression in the 𝑋-

direction. (a) The measured stress 𝜎T versus strain 𝜀T response with the strain levels (labelled 

A through C) where the specimen was imaged marked. The inset shows a sketch of the 

imaged planes. XCT images of the three specimens with views of the (b) 𝑋 − 𝑍 plane and (c) 

the 𝑋 − 𝑌 plane. 
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4. Finite element modelling of the compressive response 

In order to improve our understanding of the observed deformation and failure modes 

we report FE calculations of the compressive responses in the 𝑍 and 𝑋-directions. 

These calculations are continuum calculations wherein the discrete microstructure 

comprising fibres and matrix is not modelled explicitly. Rather, we keep the model 

relatively simple so as to aid interpretation but of course include sufficient physics to 

capture the experimental observations. With this in mind we report calculations where 

the composite is modelled using the homogenised properties of the tows as reported in 

Section 2.3. 

 

We analyse two separate repeating unit cells for compression in the 𝑋  and 𝑍 -

directions. The unit cell for the analysis of the compression in the 𝑍-direction is first 

described. The repeating unit cell is cuboidal with a square cross-section of side 

3.06 mm and height 7.5 mm representing half the gauge length of the tested specimen. 

The cell comprises a single 𝑍 -direction tow of cross-section 1.25	mm	×1.25	mm 

surrounded by the 𝑋 and 𝑌-direction tows as well as the matrix pockets as shown in 

Fig. 13a. While the 𝑍-direction tow is modelled as a distinct material with properties 

as described in Section 2.3, the 𝑋 and 𝑌-direction tows as well as the matrix pockets 

are not modelled explicitly but rather as a single homogenous continuum (Fig. 13b), 

i.e. as the homogenised matrix described in Section 2.3. This approximation is 

employed as the very large number of distinct constituents that are present in the 

material surrounding the 𝑍 -direction tow makes the fully discrete approach 

numerically very expensive. The unit cell for modelling compression in the 𝑋 -

direction is sketched in Fig. 13c. This cell is also a cuboid with a rectangular cross-

section of sides 3.06 mm (𝑌) and 2.4 mm (𝑍) and height 9.18 mm. Thus, the unit cell 

comprises three 𝑍 -direction tows as shown in Fig. 13c surrounded by the 

homogenised matrix consistent with the approach used to the model the 𝑍-direction 

compression. 

 

4.1 Material model 

Two anisotropic materials are used to model the 𝑍 -direction tows and the 

homogenised matrix. Here we detail the material properties used to describe both 

these materials. A tow comprising a high volume fraction of nearly rigid fibres in a 
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polymer matrix is likely to be best described by an anisotropic frictional model with 

non-associated flow. Some attempts in this direction have been made; see for example 

Vogler et al. (2013). However, such models require additional parameters including 

the friction angle that are not available for the noobed composite and hence here we 

use a simplified treatment.  Specifically, both materials are modelled as anisotropic 

elastic, perfectly plastic materials with the anisotropic plasticity described by the Hill 

(1948) anisotropic plasticity model.  

 

First consider the 𝑍-direction tow. We model it as a transversely isotropic medium 

with the 𝑍 or fibre direction being normal to the plane of isotropy. Then the elastic 

strains 𝜀`ab  are related to the stresses 𝜎`a  in the (𝑋, 𝑌, 𝑍)  co-ordinate system via 5 

independent elastic constants as 

 

𝜀𝑋𝑋𝑒
𝜀𝑌𝑌𝑒
𝜀𝑍𝑍𝑒
𝜀𝑌𝑍𝑒
𝜀𝑋𝑍𝑒
𝜀𝑋𝑌𝑒

=

1/𝐸𝑋𝑍 −𝜈𝑌𝑋𝑍 /𝐸𝑋
𝑍 −𝜈𝑍𝑋𝑍 /𝐸𝑍

𝑍 0 0 0
−𝜈𝑋𝑌/𝐸𝑋𝑍 1/𝐸𝑋𝑍 −𝜈𝑍𝑋𝑍 /𝐸𝑍

𝑍 0 0 0
−𝜈𝑋𝑍𝑍 /𝐸𝑋

𝑍 −𝜈𝑋𝑍𝑍 /𝐸𝑋
𝑍 1/𝐸𝑍𝑍 0 0 0

0 0 0 1/(2𝐺𝑌𝑍𝑍 ) 0 0
0 0 0 0 1/(2𝐺𝑌𝑍𝑍 ) 0
0 0 0 0 0 (1 + 𝜈𝑋𝑌𝑍 )/𝐸𝑋

𝑍

𝜎𝑋𝑋
𝜎𝑌𝑌
𝜎𝑍𝑍
𝜎𝑌𝑍
𝜎𝑋𝑍
𝜎𝑋𝑌

. (4.1) 

 

The total strain rate is then written as the sum of the elastic and plastic strain rates 

such that  

 𝜀`a = 𝜀`ab + 𝜀`a
V , (4.2) 

with the plastic strain rate given by the associated flow rule  

 𝜀`a
V = 𝜆

𝜕𝛷
𝜕𝜎`a

, (4.3) 

in terms of the plastic multiplier 𝜆 and the Hill yield potential 𝛷. This potential is 

specified in terms of the constants 𝐹, 𝐺, 𝐻, 𝐿,𝑀 and 𝑁 as 

 
2𝛷 ≡ 𝐹 𝜎<< − 𝜎@@ S + 𝐺 𝜎@@ − 𝜎;; S + 𝐻 𝜎;; − 𝜎<< S

+ 2𝐿𝜎<@S + 2𝑀𝜎@;S + 2𝑁𝜎;<S , 
(4.4) 

such that continued plastic flow occurs with 𝛷 = 1/2. The six constants 𝐹, 𝐺, 𝐻, 𝐿,𝑀 

and 𝑁 then follow from six strengths with respect to the principal axes of anisotropy, 

i.e. 
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 𝐺 + 𝐻 =
1
𝑌;@ S ,				𝐹 + 𝐻 =

1
𝑌<@ S 			and			𝐺 + 𝐹 =

1
𝑌@@ S,			 (4.5) 

where 𝑌;@ , 𝑌<@  and 𝑌@@  are the tensile strengths in the 𝑋 , 𝑌  and 𝑍 -directions, 

respectively (note that the Hill model assumes equal compressive and tensile 

strengths). Similarly, the shear strengths 𝑌<@@ , 𝑌@;@  and 𝑌;<@  give the remaining 

constants via 

 𝐿 =
1

2 𝑌<@@ S ,				𝑀 =
1

2 𝑌@;@ S 			and			𝑁 =
1

2 𝑌;<@ S.		 (4.6) 

The 5 elastic constants and the 6 strengths required for the constitutive model of the 

𝑍-direction tow are listed in Tables 1 and 2, respectively.  

 

The material surrounding the 𝑍-direction tows comprises the 𝑋 and 𝑌-direction tows 

as well as the matrix pockets. This material is modelled as a single effective medium 

labelled the “homogenised matrix”. Based on the discussion in Section 2.3, we model 

this homogenised matrix as a transversely isotropic medium with the 𝑍 -direction 

being normal to the plane of isotropy. Thus, again we use an elastic law of the form 

Eq. (4.1) with plastic flow modelled via Hill’s anisotropic plastic model. The elastic 

and plastic properties of this effective medium as derived in Section 2.3 are listed in 

Tables 1 and 2, respectively. These properties can be used in the elastic law that is 

analogous to Eq. (4.1) and also to determine the 6 constants of the Hill model. 

 

4.2 The boundary value problem 

The finite element (FE) calculations were performed using the commercial FE 

package ABAQUS with the unit cells (Figs. 13b and 13c) discretised using 8 noded 

linear brick elements with reduced integration (C3D8R in the ABAQUS notation). 

Cubic elements of side approximately 0.05 mm were employed to discretise both the 

𝑍-direction tows and the surrounding homogenised matrix: calculations with further 

mesh refinements revealed no significant changes in the numerical results. Uniaxial 

compression was simulated by enforcing displacement boundary conditions on the top 

and bottom surfaces of the unit cell with the four side surfaces being traction-free: 

periodic boundary conditions were not enforced so as to allow the formation of kink-

bands. Since the unit cell had 1/9th the cross-sectional area of the specimen employed 

in the experiments, we needed to ensure that global buckling was not operative in the 

numerical simulations. We achieved this by analysing a unit cell with about half the 
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gauge height of the specimen used in the experiments. In all the calculations perfect 

bonding was assumed between the 𝑍-direction tow and the surrounding homogenised 

matrix. 

 

In the 𝑍-direction compression calculations, an imperfection was introduced into the 

𝑍-direction tow in order to initiate a kink band. This imperfection as sketched in 

Fig. 13d comprised a region of width 𝑤 = 200	µm inclined at an angle 𝛽 = 20# with 

respect to the 𝑋-direction. The fibres were assumed to be misaligned within this 

imperfect region. This misalignment was specified by rotating the principal axes of 

the material anisotropy such that the material 𝑍-direction was at an angle 𝜙 = 5# with 

respect to the global 𝑍-direction in the 𝑋 − 𝑍 plane as shown in Fig. 13d. Such a 

prescription of the initial imperfection to initiate a kink-band is commonly employed 

(Kyriakides et al., 1995; Kyriakides and Ruff, 1997) and consistent with a range of 

experimental observations (Moran et al., 1995). No imperfection was employed for 

the 𝑋-direction compression simulations as the 𝑋-direction tows were not explicitly 

modelled but rather homogenised with the 𝑌-direction tows and the matrix pockets. 

 

 
 

Figure 12: Optical micrographs of the 3D noobed composite compressed in the 𝑋-direction to 

just beyond the peak load. The images are taken on central sections through the specimen on 

(a) the 𝑋 − 𝑍 plane and (b) the 𝑋 − 𝑌 plane. 

 

4.3 Numerical results 

The FE prediction of the 𝑍 -direction compressive response of the composite is 

included in Fig. 6a while predictions of the deformed configurations of the unit cell at 
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four selected values of applied strain 𝜀T are included in Fig. 6b (marked P, Q, R and S 

in Fig. 6a). Contours of the plastic strain 𝜀;@
V  are included in these images to highlight 

the regions of the local deformations and the associated kink-bands. The FE 

prediction of the overall stress versus strain response is in excellent agreement with 

the measurements (Fig. 6a). This agreement follows from predictions of the 

deformation modes seen in Fig. 6b. At around the onset of non-linearity (P) a kink-

band forms in the 𝑍-direction tow from the initial imperfection included in the tow. 

With increasing strain (Q) there is negligible plastic straining outside the 𝑍-direction 

tow but multiple kinks including reflected kinks are observed in the 𝑍-direction tow in 

line with the micrographs in Fig. 7. At near the peak stress (R), plastic deformation is 

seen to initiate in the material outside the 𝑍-direction tow and beyond the peak load 

(S) a kink band that spans across the entire width of the unit cell is predicted 

consistent with the overall failure of the specimen. These results demonstrate that the 

onset of the non-linearity is set by kink band formation and hence accurately 

predicted by Eqs. (3.2) and (3.3). On the other hand, the subsequent hardening is 

mainly due to the elastic compression of the material surrounding the 𝑍-direction tow. 

Consequently, consistent with the measurements shown in Fig. 7a, the unloading FE 

calculations predict significant recovery of the applied compressive strains along with 

reverse plasticity in the 𝑍-direction tows. Final failure results from failure of the 

surrounding material via the indirect tension mechanism discussed in Section 2.3. 

This understanding allows an approximate estimation of the peak strength by 

assuming that the 𝑍-direction tow has no load carrying capacity after the onset of 

kinking. The peak strength 𝜎V  is then given as 𝜎V = 1 − 𝐴;<@ 𝑌@P ≈ 1	GPa  where 

𝑌@P = 1260	MPa(Table 2). This approximate prediction overestimates the strength 

even though it ignores any contribution from the 𝑍 -direction tow. We trace this 

discrepancy to the fact that this approximate analysis neglects the stress 

concentrations that develop in the homogenised matrix due to the formation of kinks 

in the 𝑍-direction tow. Hence, full FE calculations as performed here are required to 

accurately predict these stress concentrations and the peak 𝑍-direction strength of the 

composite. We emphasize here that consistent with the measurements, the FE 

calculations predict elastic recovery of the specimen prior to collapse of the entire 

specimen. This is because even though the 𝑍-direction tow forms kinks and deforms 

plastically, the surrounding material remains elastic. 
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Prediction of the 𝑋 -direction compressive response is included in Fig. 10a with 

deformed configurations shown in Fig. 10b at selected applied strains (marked P, Q 

and R in Fig. 10a). Here contours of the plastic strain 𝜀;<
V  are included on the 

deformed configurations. The FE prediction of the stress versus strain response is in 

reasonable agreement with the measurements except for the fact that the FE 

calculations over-predict the peak strength. This is because no initial imperfection is 

included in these FE calculations since the 𝑋 -direction tows are not explicitly 

modelled. Consistent with observations (Figs. 11 and 12) no significant localised 

deformation is observed prior to the peak stress though the FE calculations show 

strain concentrations emanating from the corners of the 𝑍-direction tows. At the peak 

stress, kink bands initiated from these concentrations at the corners of the 𝑍-direction 

tows span across the unit cell. Consistent with the measurements, these kink bands 

cause a large loss in load carrying capacity. We emphasize here that since the 𝑋-

direction tows are not explicitly modelled, this model does not have the resolution 

required to study the formation of kink bands within these tows as seen in Fig. 12. 

Thus, formation of kink-bands in the effective material around the 𝑍-direction tows 

results in complete collapse of the specimen. This is because the 𝑍-direction tows are 

weaker compared to the 𝑋 and 𝑌-direction tows (as they have a smaller fibre volume 

fraction) and have already attained their transverse collapse stress prior to the failure 

of the homogenised matrix. In summary, we hypothesise that high compressive 

ductility is only expected when the material surrounding the tows in the compression 

direction has a higher compressive strength than the tows undergoing axial 

compression. Of course, further experiments in which fibre volume fractions in the 

noobed composites are varied and associated FE calculations are required to confirm 

this hypothesis. This is beyond the scope of the current investigation. 
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Figure 13: (a) Sketch of the unit cell of the 3D noobed composite for compression in the 𝑍-

direction. The sketch shows four separate constituent phases of the composite within the unit 

cell. Sketches of the unit cell with the homogenised matrix used in the FE calculations of 

compression in the (b) 𝑍-direction and (c) 𝑋-direction. (d) A sketch of section AA of the unit 

cell in (b) to illustrate the geometric imperfection included in the 𝑍-direction tow. 

 

 

5. Concluding remarks 

We have reported the compressive response of a carbon fibre/epoxy composite 

comprising non-interlaced carbon fibre tows in three orthogonal directions produced 
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by the noobing process. In contrast to traditional unidirectional and two-dimensional 

(2D) composites, stable and multiple kinks form in the tows aligned with the 

compression direction. This is due to the constraint imposed by the surrounding 

material that comprises tows in two orthogonal directions. Compression in the low 

fibre volume fraction direction results in a high compressive ductility of about 10%. 

The onset of the nonlinear response occurs at about 2% applied strain associated with 

the formation of kink bands within the tows in the compression direction. These 

initial kink bands are well predicted by the well-established micro-buckling theories 

developed for unidirectional fibre composites. However, unlike traditional CFRPs 

these noobed 3D composites display a subsequent stable and strain hardening 

response along with the formation of multiple zig-zagging kink bands. Finite element 

(FE) calculations with the tows modelled as anisotropic continua are also reported to 

understand the deformation/failure modes in these composites. These FE calculations 

predict both the compressive response and the observed deformation and failure 

modes including the zig-zagging kink bands with reasonable accuracy. In particular, 

the FE calculations confirm that for compression in the low fibre volume fraction 

direction, overall failure of the composites is not set by the formation of kink bands 

within the tows aligned with the compression direction. Rather the loss of load 

carrying capacity results from compressive failure of the material surrounding tows 

aligned with the compression direction. 
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