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Abstract

Single-molecule localisation microscopy (SMLM), has allowed for optical microscopy to
probe biological systems beyond the diffraction limit. The intrinsic 3D nature of biology has
motivated the development of 3D-SMLM with novel techniques, including the double-helix
point spread function (DHPSF). A bespoke microscope platform employing the DHPSF
transformation was built, achieving ~10 nm lateral and ~20 nm axial localisation precision

over a ~4 um axial depth.

Until recently, the DHPSF has been limited by spherical aberration present when imaging
away from coverslip surfaces to the study of small volumes close to the coverslip. By
matching the refractive index of the objective lens immersion liquid to that of the imaging
media, this aberration can be minimised, facilitating large-volume imaging away from
unphysiological flat surfaces. The work presented in this thesis illustrates the capabilities
of the DHPSF for 3D-SMLM and single-particle tracking (SPT) in previously inaccessible
areas of biological samples (e.g. in the nucleus and on the apical cell surface).

Application of the DHPSF for SPT in eukaryotic cells are presented; tracking the motion
of T-cell membrane proteins on the apical surface and components of the chromosome
remodelling complex in the nucleus of embryonic stem cells. For these applications, mean-
squared displacement and jump distance diffusion analysis methodologies were extended

into 3D and benchmarked against simulated datasets.

A variety imaging applications that are facilitated by the extended depth of focus of the
DHPSF are presented, focusing on quantification of T-cell membrane protein reorganisation
upon immunological activation. Finally, the clustering distribution of the T-cell receptor is
investigated by Ripley’s K analysis enabled by duel labelling of its position and the outer

membrane in primary T cells.
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Chapter 1

Introduction to Super-Resolution
Fluorescence Microscopy and
3D-Single-Molecule Localisation
Microscopy

Continuing in the footsteps of Dr Steven Lee, who will take any opportunity to use this quote,
Richard Feynman once said [1]:

"It is very easy to answer many of these fundamental biological questions;
you just look at the thing!"

In order to do exactly this, methods have been developed to image biological systems and
processes with minimal artefacts and with nanoscale resolution. This chapter provides
background and context for the microscopy approaches presented in this thesis. Optical
microscopy and the diffraction limit are introduced with fluorescence microscopy highlighted
due to its widespread adoption in biological studies. Methods developed to image beyond the
diffraction limit are outlined with particular focus on single-molecule localisation microscopy
(SMLM) methods. Multiple approaches extending SMLM into 3D are introduced with an
emphasis on the double-helix point spread function (DHPSF). Finally, applications of SMLM
to single particle tracking (SPT) and quantitative imaging are discussed. Specific technical
challenges involved in building a DHPSF microscope and backgrounds to the biological

problems investigated will be discussed in the individual results chapters.



2 Introduction

1.1 Optical Microscopy and the Diffraction Limit

Optical microscopy employs visible light (=400-800 nm in wavelength) passing through or
emitted by a sample that is collected by a series of lenses to create an image of the sample of
interest. The numerical aperture (NA) of an optical system is a measure of collecting power
determined by the range of angles that a lens can accept light rays. The magnification of
an optical microscope is primarily determined by the objective lens with high-NA objective
lenses available typically up to 100x magnification. Regardless of how much the image is
magnified, the diffraction limit prevents additional details from being seen below a certain
distance. The diffraction limit was first described by Abbe in 1873 [2]. It states: all imaging
systems are limited in their frequency space by a high-frequency cut-off corresponding to
A/(2n,) (where A is the wavelength of collected light and NA is the numerical aperture of
the objective lens). The physical manifestation of this is that a point source when viewed
through any optical system will exhibit a diffraction pattern known as a point-spread function
(PSF) (i.e. impulse response or optical transfer function). The final image produced by an
optical system is a convolution of the sample’s true structure and the PSF of the imaging
system.

The origin of the PSF can be explained by considering the Fourier spectrum (the space of
spatial frequencies) of an object in the focal plane of an imaging system and the transmission
of the spectral components through the system. Lenses perform a spatial Fourier transform on
the intensity distribution propagating from their focal plane, resulting in a spatial frequency
distribution in their image plane [3]. An additional lens placed so that its focal plane coincides
with the image plane of the first lens performs an inverse Fourier transform, forming an
image of the object placed the focal plane of the first lens. In the simplest microscope system

these lenses are the objective lens and the tube lens, respectively.

The Fourier transform of a point source is a uniform spatial frequency intensity over
infinite space. In a simple microscope (figure 1.1a), this is the case for a point source in
the focal plane of the objective lens (figure 1.1b&c). Due to the finite size of the apertures
within the optical system (e.g. the finite widths of the lenses) this distribution is cropped
so that is resembles a top-hat function (figure 1.1d). The inverse Fourier transform of
a circular top-hat function (created by circular optics) is an Airy disk [3] (equation 1.1).
The tube lens of the microscope performs an inverse Fourier transform on the cropped

spatial frequency distribution, resulting in point source appearing as an Airy disk with width
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inversely proportional to the widths of the top-hat function (figure 1.1e). This is the PSF of

the microscope.

a, Focal Objective Tube Image
plane lens lens plane
1 |
1 |
I 1
1 |
1 |
(b) (d) (e)
b, Point Source ¢, Spatial Frequency
(Focal Plane)
A
Fourier
transform
Position (a.u.) i Position (a.u) T
d, Spatial Frequency e, Airy Disk
(Tube Lens) (Image Plane)
A Inverse
Fourier
transform

=)

»

- Position (a.u.)

+Q)

Position (a.u.)

Fig. 1.1 The origin of the PSF described by Fourier Optics. Lenses perform a spatial Fourier
transform on the intensity distribution in their focal plane. (a) A simple microscope system
consisting of an objective lens and a tube lens. (b) Intensity distribution of a point source
in the focal plane of a simple microscope. (c) Spatial Fourier transform of the intensity
distribution of a point source: a uniform spatial frequency intensity over infinite space. (d)
Intensity distribution at the tube lens: the Fourier transform of a point source is cropped by
the lens aperture into a top-hat function. (e) Intensity distribution at the image plane: the
inverse Fourier transform of a top-hat function results in a PSF defined by an Airy Disk.
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Where (xo,yo) is the centre of the Airy disk, J; is the first-order Bessel function and
o is a constant given by @ = 2nNA/MA where NA is the numerical aperture and M is the

magnification of the imaging system and A is the wavelength of light imaged.

An Airy disk can be readily approximated to a 2D Gaussian function (equation 1.2) [4]
(figure 1.2), which is computationally easier to describe as it does not contain additional

maxima at increasing width.
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Where 0, is the standard deviation of the Gaussian function in x and y, given by [5].

o — 1.3234
W 2mny,

(1.3)

Equation 1.3 tells us that the width of the PSF of an optical system can be reduced by
reducing the wavelength of light used to probe the sample. However, short-wavelength/high-
energy electromagnetic radiation has a destructive effect on live samples, limiting its appli-
cation in biological studies. The resolution of an imaging system can be defined in many
ways, but is most commonly described by the Rayleigh criterion [6], which states that, in
order to be resolved, two point sources must be separated by at least the distance between the
centre of their Airy disk diffraction pattern to the first diffraction minima. This distance is
approximately 250 nm for visible light. If two objects are closer than this distance their PSFs
will overlap and they will not be resolved. Electron microscopy (EM) reduces this resolution
limit with the shorter wavelength of electrons compared to photons in the visible range (/2
pm compared to 450-700 nm). However, EM requires fixation and heavy-metal staining of
biological samples, limiting its application to fixed-cell imaging. Additionally, the ultra high
vacuums used may have perturbation effects on the morphology of fragile biological samples,

even after fixation.
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Fig. 1.2 Comparison of Airy Function to Gaussian function. The two curves were matched
by equating the integrated area under the central maxima. The Gaussian function was plot
with a standard deviation of one unit.

1.2 Fluorescence Microscopy

Fluorescence microscopy is a form of optical microscopy that exploits the phenomena of
fluorescence in place of the absorption or reflection of light. Targets within the sample can be
labelled with fluorescent probes. Once excited, the fluorescence emission of these probes is
collected by an objective lens and projected to form an image in the image plane of the system,
allowing for direct visualisation of specific biological components and processes with high
contrast in live and fixed cells. These two factors (labelling specificity and compatibility with
live-cell imaging) along with its relative ease of use have resulted in fluorescence microscopy
becoming wide-spread in research.

The phenomena of fluorescence was first coined in 1852 by Stokes [7] and is described as:
the emission of a photon of light when an electron of a molecule relaxes from an excited high-
energy state to a lower-energy ground state with a temporal probability well-modelled by an
exponential decay and a characteristic lifetime on the order of nanoseconds. In fluorescence
microscopy the ground-state electrons of fluorescent probes are excited by absorption of
incident photons of specific energy matching the energy gap between ground and excited
states. The excited electron nonradiatively relaxes into a lower vibrational-energy excited
state before it radiatively relaxes into the ground state, emitting a photon (figure 1.3). As a
result, this photon has lower energy than the incident photon and thus has a longer wavelength
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(i.e. a Stokes shift). This is the key phenomenon enabling fluorescence microscopy, as the
fluorescence emission is spectrally separated from the excitation illumination it can be

isolated by chromatic filters and imaged onto a detector [8]
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Fig. 1.3 Simplified Jablonski energy diagram of fluorescence absorption and emission.
Incident light of wavelength A, excites an electron from the ground state to a higher-energy
excited state. Non-radiative relaxation occurs before the electron radiatively relaxes back to
the ground state, emitting a photon of wavelength A, where A, < A.;,. Additional relaxation
pathways via a intersystem crossing to a triplet state are also possible.

Fluorescent probes exist in a range of forms including; quantum dots [9], nitrogen-
vacancy point defects in nanodiamonds [10], organic dyes and fluorescent proteins. These
last two are collectively reffered to as fluorophores. Fluorescent proteins are encoded by
the target cell’s genome or inserted via plasmids. This has the advantage that the genetic
sequence can be introduced into a cell line, so that it is inherited and the fluorescent protein
can be stably expressed by all subsequent cells. Organic dyes are fluorescent chemical
compounds that are attached to the molecule of interest within the sample. Organic dyes
generally emit more photons than fluorescent proteins and are more photo-stable [11] but
require additional labelling to the target of interest prior to imaging. This is often achieved
via immunostaining, in which an antibody is used to bind a specific antigen within the sample.
This antibody is either labelled directly with an organic dye (primary antibody labelling) or
is bound by secondary antibodies that are labelled with organic dyes (secondary antibody
labelling). Antibodies are ~10 nm [12], adding an additional spatial uncertainty when
imaging. As such, primary antibody labelling is generally preferable for high-resolution
applications. The specificity and affinity of antibodies varies between systems and their
presence can alter function in live-cell experiments, limiting their application in some cases

to fixed-cell imaging [13]. Another labelling approach for organic dyes achieves specificity
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with bioconjugation systems such as HaloTag [14] or SNAP-Tag [15]. These systems, as
well as fluorescent protein labelling, generally facilitate higher-resolution imaging than
immunostaining methods due to their reduced size (~3-5 nm for HaloTag, SNAP-Tag and
fluorescent proteins [16, 17]). Bioconjugation is readily compatible with live-cell imaging,

providing the organic dye-HaloTag ligand can enter the cell for labelling to occur.

1.3 Super-Resolution Fluorescence Microscopy

While the resolution of conventional fluorescence microscopy is limited by diffraction
to ~250 nm, emerging methods known as ‘super-resolution’ (SR) techniques have been
developed to image beyond this limit and improve the spatial resolution of fluorescence
microscopy by orders of magnitude [18]. Routinely achieving sub 20 nm resolution, SR
techniques have been demonstrated to achieve resolution below 10 nm in both non-biological
[19] and biological samples [20]. Unlike other high-resolution imaging techniques, such as
electron microscopy and X-ray crystallography, SR imaging can be minimally damaging to

biological samples and offers nanoscale information and target-specific labelling in vivo.

SR methods can generally be classified into two classes: deterministic techniques and
stochastic techniques. Stochastic SR methods are often referred to as single-molecule

localisation microscopy (SMLM).

1.3.1 Deterministic 2D Super-Resolution Techniques

Although the work presented in this thesis does not contain any deterministic SR, an brief
introduction is included for completeness. Deterministic SR techniques exploit nonlinear
responses to excitation exhibited by fluorophores to reduce the size of the PSF of the imaging
system or gain addition spatial information. The first implementation of such a technique was
stimulated emission depletion microscopy (STED) [21, 22]. STED uses the phenomenon
of stimulated emission, in which photons of a specific energy can interact with excited
fluorophores causing their fluorescence to be emitted in the direction of the original photon,
away from the objective lens of the microscope. The minimum of a donut-shaped depletion
laser spot is aligned with the maximum of a diffraction-limited excitation spot resulting in a
sub-diffraction effective excitation PSF (figure 1.4). By increasing the power of the depletion
illumination the effective excitation PSF can be made arbitrarily small. The effective PSF is
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scanned across the sample to create an intensity-based SR image containing the positions of
the fluorophores. A key issue with STED is photodamage to live cell samples related to the
use of high-power depletion illumination to confine to effective illumination PSF. Precise
alignment of the confocal excitation stop and depletion spot is also required, increasing
complexity, although STED microscopes are now commercially available. Unlike SMLM,
STED is applicable to most fluorophores [23] as the process of stimulated emission affects

all fluorophores.

Confocal Depletion PSF: Effective
Excitation PSF: Excitation PSF:

Fig. 1.4 The basic principles of STED illumination. A diffraction-limited confocal excitation
PSF is aligned with a donut-shaped depletion PSF, creating a sub-diffraction-limited effective
excitation PSF that is scanned across the sample.

A related scanning technique uses reversible saturatable optical linear fluorescence
transitions (RESOLFT) [24]. Certain fluorophores, such as Dreiklang fluorescent protein and
reversibly switchable enhanced green fluorescent protein (rsEGFP) [25], can be temporarily
switched into a non-emissive ‘dark state’ when incident by photons of a certain wavelengths.
Inhomogeneous illumination containing isolated zero-intensity regions is used to switch
the majority of fluorophores to the dark state. Although the isolated zero-intensity regions
display a diffraction-limited FWHM, the area that is below the intensity threshold required
to ’switch off’ the fluorophores can be sub-diffraction limit in size. Fluorophores in these
sub-intensity regions are not switched into the dark state and are thus emissive when incident
by a separate excitation illumination. The zero-intensity points are then scanned across
the sample to create an intensity-based SR image. In scanning illumination techniques the
acquisition speed depends on the area that is being scanned. Video-rate SR images of small
areas have been demonstrated by STED with 80 frames per second for diffusing fluorescent

beads [26] and 28 frames per second for live-cell imaging [27].
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Structured illumination microscopy (SIM) [28] provides an alternative method to gain
sub-diffraction-limited information. In SIM, the sample is illuminated with known spatially
structured excitation patterns. The resulting image is the product of the excitation pattern
and the distribution of fluorophores within the sample, which contains moiré interference
patterns. These moiré interference patterns contain additional high-resolution information
about the sample that can be deconvolved to bypass the diffraction limit by a factor two.
Three grid illumination patterns, each rotated by 60°, are used to image each sample in
order to achieve isotropic lateral resolution of ~100 nm. As SIM collects three wide-field
images as opposed to scanning, it can theoretically operate at 1/3 the rate of conventional
fluorescence microscopy and is typically capable of achieving ~50 ms temporal resolution.
Saturated Sim (SSIM) [29], similarly to STED, uses non-linear fluorophore saturation to

limit the size of non-illuminated domains of the sample to further increase the resolution.

1.3.2 2D Single-Molecule Localisation Microscopy

In SMLM, the stochastic switching of certain fluorophores is exploited to gain sub-diffraction-
limit information on the position of individual fluorophores within the sample. This approach
was first demonstrated in 2006 by three independent groups with (fluorescence) photo-
activated localisation microscopy ((f)PALM) [30, 31] and stochastic optical reconstruction
microscopy (STORM) [32].

In SMLM, the detected PSF of a single emitter is considered as a probability function
of its spatial position. Although the PSF is observed to be ~500 nm in diameter, its centre
position can be determined with greater precision, representing the statistically most likely
position of the spatially isolated emitter. By fitting the intensity distribution of a PSF to
a 2D Gaussian (equation 1.2) (or by find its centre of mass), the position of fluorophores
within the sample can be localised with precision beyond the diffraction limit. In general,
for individual PSFs to be localised they need to satisfy the Rayleigh criterion (although
high-density localisation techniques such as DAOSTORM [33] have been shown to surpass
this limitation at the cost of localisation precision). In most practical cases, if fluorophores
within the sample are too dense and their PSFs overlap they cannot be localised. The key step
in ()PALM and STORM is separating the emission of overlapping fluorophores in time so
that they no longer overlap in space. Another way to look at SMLM is sacrificing temporal
information for spatial information. This is achieved in a variety of ways but the underlying
concept involves modulating the emissive state of a subset of fluorophores, localising their

isolated PSFs and then ’turning off’ their fluorescence before repeating the process for a
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new subset. Over time a SR map of the position of the fluorophores within the sample
is produced (figure 1.5). The process that determines the emissive subset depends on the

SMLM technique in question.

ThelLeelLab

Fig. 1.5 Cartoon of the basic principles of SMLM. Far left: The Lee Lab logo is labelled
with fluorescent probes. Centre-left: simulated diffraction-limited image observed when all
fluorescent probes are simultaneously emitting. Centre-right: a subset of probes emitting
so that their PSFs are separated and can be localised. Far right: after the localisation of
numerous subsets, a super-resolved image is formed. High-resolution detail obscured in the
diffraction-limited image can now be determined. Scale bars are 3 yum.

PALM and fPALM use photoactivatable fluorophores whose absorption and emission
spectra are modified upon the absorption of a photon of specific wavelength. Initially non-
emissive fluorophores are stochastically excited into an emissive state by illumination by an
ultraviolet activation laser. The power of the activation illumination is tuned so that a small
subset of the total fluorophores are emissive and their PSFs do no not overlap. PALM was
initially demonstrated using the fluorescent protein Eos [30] and fPALM was demonstrated
using photoactivatable green fluorescent protein (PA-GFP) [31]. Recent developments in
fluorophore design have produced a range of photoactivatable fluorescent proteins and organic

dyes that emit more photons and exhibit greater photo-stability [34].

STORM takes advantage of the non-emissive states exhibited by some fluorophores
upon excitation illumination in specific buffer conditions. Initially emissive fluorophores are
stochastically switched into a non-emissive state by the excitation laser. The fluorophores
remain in the non-emissive state until they are returned to their emissive state, usually by
illumination of a different colour. This was first demonstrated with a pair of Cy3 and Cy5
dyes in the presence of a primary thiol, that were shown to cycle hundreds of times before
permanent photobleaching occurred [32]. The ability to localise each fluorophore multiple
times increases the sampling density of the final image but can lead to counting artefacts
when attempting to determine stoichiometry. Additional chemical modification methods

have been developed to encourage desired effects in certain fluorophores such as increased
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blinking of Cy5 fluorescent dye [35], reduce blinking of Cy5 [36] or photoactivatibility of
Alexa Fluor 647 fluorescent dye [37].

Another method facilitating SMLM is points accumulation for imaging in nanoscale
topology (PAINT) [38]. In PAINT, a reservoir of target-specific imaging probes (which can
be a fluorophore itself, or a moiety with affinity for the target attached to a fluorophore [39])
is maintained in the imaging buffer of the sample. The imaging probe binds to the target of
interest within the sample (either transiently or permanently). When unbound, fast-Brownian
motion blurs the probe’s emission so that it does not form a narrow PSF and it is not localised.
When bound, the probe’s emission forms a narrow PSF and its position can be localised. By
controlling the concentration of imaging probe in the buffer, the density of PSFs can be tuned

so that they no longer overlap.

PALM, STORM and PAINT methods of isolating the emission of single-molecules are

discussed in further detail in chapter 2.

One of the first biological applications of SMLM techniques was PALM imaging the
transmembrane protein CD63 tagged with the photoactivatable fluorescent protein Kaede in
COS-7 cells (a monkey kidney-derived cell line) [30]. Since then many biological systems
have been investigated by SMLM, with cytoskeletal networks making up some of the most
commonly presented examples [40-42] due to their well-defined structure, diffraction-limited
width and proximity to the coverslip surface. SMLM techniques have been pioneered in
bacteria due to their small size, which generally fits within TIRF illumination volumes.
This work has been concentrated on bacterial cell division and DNA replication [43]. The
increased spatial resolution compared to traditional fluorescence microscopy has elucidated
protein distributions within bacterial cells, such as the HU regulatory protein and chromosome
segregation apparatus in Caulobacter crescentus [44, 45]. Other applications of SMLM
include; determining the mechanism by which fluorescently-labelled Poliovirus particles
enter live cells [46], imaging synapse morphology and the relative position of synaptic
proteins within individual synapses in mouse brains [47], visualising the eightfold symmetry
and central channel of the nuclear pore complex [48] and documenting the role of clathrin in
spatially directing membrane invaginations during endocytosis [49]. The fluorophore Nile
Red was demonstrated to transiently bind within lipid bilayers [50], enabling PAINT imaging
of the plasma membrane in neuronal-like cells [51]. Additionally, 2D-SMLM (particularly
PALM) has facilitated quantitative analysis in range of studies, including quantifying the
clustering state of T-cell membrane proteins at the coverslip surface [52], the stoichiometry

of the asialogycoprotein receptor complex in rat hepatic lectin [53] and G protein-coupled
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receptors in HeLa cells [54] as well as revealing that CENP-A is deposited during G2 phase
of the cell cycle in fission yeast [55].

Unlike excitation-scanning techniques, most SMLM techniques are compatible with wide-
field excitation illumination although, in order to increase the signal-to-noise ratio (SNR),
excitation confinement techniques are often employed. The most commonly implemented ex-
citation confinement techniques are total internal reflection fluorescence illumination (TIRF)
[56, 57], highly inclined and laminated optical sheet illumination (HILO) [58]/variable-angle
epifluorescence microscopy (VAEM) [59] and single-plane illumination (SPI) [60, 61]. These
techniques are discussed in detail in chapter 2.

1.3.3 SMLM-Facilitating Fluorophores

PSF isolation in PALM and STORM is primarily facilitated by the photomodulatable proper-
ties of certain fluorophores. The first examples of this were the fluorescent proteins PA-GFP
[62], which was modified from wildtype GFP, and Kaede, which was isolated from Tra-
chyphyllia geoffroyi coral. Two years later, Eos photoactivatable fluorescent protein was
isolated from Lobophyllia hemprichii coral [63]. The absorption peak of Eos is primarily
at 506 nm but is shifted to 571 nm upon ultraviolet illumination (photoconversion peak at
390 nm) due to a photo-induced break in the peptide backbone [64]. Wildtype Eos displays
a higher quantum efficiency than other fluorescent proteins but exists in a tetrameric state
in solution, which is undesirable for a fluorescent tag as this can lead to mislocalisation
and destabilisation of the labelled protein. A number of variants of Eos have since been
engineered to produce monomeric PALM probes. Monomeric-Eos2 (mEos2) [34] was first
developed, maintaining the optical properties of Eos and displaying an activation efficiency
(the fraction of fluorophores that can convert to the emissive state) of 0.6 [65]. However,
it was later demonstrated that mEos2 still formed oligomers in solution, motivating the
development of mEo0s3.2 [66]. mEos3.2 is monomeric in solution although its activation
efficiency is reduced to 0.4 [65]. Both mEos2 and mEos3.2 exhibit short-lived fluorescence
intermittency upon activation [67]. This is observed as ‘blinking’ of individual molecules
in SMLM and can lead to over-counting artefacts in quantification studies. mEos3.2 is the
PALM fluorophore of choice in this work as it facilitates high SNR imaging with minimal
affect on the functionality of the target, that may arise due to aggregation, compared to other

photoactivatable fluorescent proteins.
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Photoactivatable organic dyes have also been developed, exhibiting greater quantum
efficiency and photo-stability compared to photoactivatable fluorescent proteins. Caged
rhodamine dyes that exhibit irreversible photoactivation under ultraviolet illumination, have
been developed for a range of excitation wavelengths and display an activation efficiency of
60-90% [68]. Photoactivatable Janelia Fluor (PA-JF) dyes are a rhodamine derived range
of fluorophores that initially adopt a closed, non-fluorescent conformation. Ultraviolet
illumination of these dyes causes a photo-induced ring opening reaction to form a fluorescent
rhodamine scaffold [69]. PA-JF fluorophores report an activation efficiency of up to 50% in
solution, which can be increased depending on its environment, and display low fluorescence
intermittency, with each fluorophore exhibiting a mean of 1.4 fluorescence events [69]. The
activation efficiency of PA-JF549 and PA-JF646 is increased to ~90% and 76% when bound
to a HaloTag respectively [69], making these fluorophores ideal for counting applications
providing they can be attached to a HaloTag.

Although STORM was initially achieved with a pair of organic dyes, direct STORM
(dSTORM) [41] achieves photomodulation of conventional organic dyes by the presence of
reducing agents in the imaging buffer. After a fluorophore is excited to a higher energy state
from the ground state, rather than radiative relaxation, non-radiative intersystem crossing
into a longer-lived triplet state can occur (see figure 1.3). In the presence of reducing agents
electron transfer can then occur to create a stable radical anion that represents a nonfluorescent
state. Upon reaction with oxygen or illumination by ultraviolet light the fluorophore can be
returned to its emissive state as the electron is returned to the ground state [70]. STORM
modulation can be achieved with a range of fluorophores, each requiring bespoke buffer

conditions that should be optimised on an experimental basis for ideal imaging conditions.

PAINT imaging does not require photomodulatable fluorophores as the separation of PSFs
is achieved by blurring of unbound fluorophores. As such, standard imaging buffer conditions
can be used with a wide range of fluorophores. In order to reduce background signal and
maintain bound-fluorophore emission, fluorophore modulation by Forster resonance energy
transfer (FRET) has been implemented in PAINT imaging [71, 72], achieving a ~30-fold
increase in localisation acquisition speed compared to traditional fluorophore PAINT. The
use of photoactivatable fluorophores in combination with SPI techniques could potentially

also be used to increase SNR in PAINT experiments, as discussed further in chapter 6.
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1.3.4 Fast SMLM

A key limitation of SMLM compared to deterministic SR techniques is the increased time
required to collect datasets. Typically thousands to hundreds of thousands of images of the
sample must be recorded so that enough fluorescence events are observed to sufficiently
resolve the structure of interest. The number of images required can be reduced by increasing
the density of emitting fluorophores, however, ultimately the temporal resolution of traditional
SMLM is limited by the Rayleigh criterion. This can be disadvantageous when imaging

dynamic processes as the system is often changing faster than it can be imaged.

A number of analysis approaches have been developed to localise individual fluorophores
without the need for isolated PSFs. In super-resolution optical fluctuation imaging (SOFI)
[73], the integral of the second-order correlation function of each pixels intensity fluctuation
in time gives a SOFI intensity to each pixel which is proportional to the squared PSF,
increasing the resolution of the imaging system by a factor of /2. Deconvolution-STORM
(deconSTORM) [74] analyses involves iterative deconvolutions of the raw dataset to estimate
the sample. Bayesian analysis of blinking and bleaching (3B) [75] was also developed
to resolve overlapping emitters by modelling the dataset as being generated by a number
of fluorophores. 3B has been shown to facilitate 50 nm resolution imaging of podosome

formation with ~4 s temporal resolution [75].

Super-resolution radial fluctuations (SRRF) [76] is an analytical approach that enables
super-resolution images to be produced from dense SMLM data and bulk labelling flu-
orescence imaging without fluorophore localisation. Gradient fields are computed from
fluorescence intensity data and used to identify local convergence. SRRF is capable of distin-
guishing PSFs separated by ~0,7 times their FWHM. Similar to SOFI, deconSTORM and 3B,
temporal analysis is applied to further enhance resolution and so create SR reconstructions
from multiple imaging frames. A resolution of ~1 frame per second was achieved in live-cell

imaging with a resolution of 60-120 nm.

1.3.5 Quantification in SMLM

A key advantage of SMLM compared to deterministic SR techniques is the ability to easily
quantitatively analyse localisation data. It is possible to quantify deterministic datasets
produced by methods such as STED and SIM. However, due to the visual nature of the

output, complicated image processing is often required. In SMLM, the primary output is a
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list of coordinates corresponding to the position of fluorophores within the sample. These
can be used to reconstruct a SR image of the sample but are also directly compatible with a
range of quantitative analysis metrics. The most common of these approaches are discussed
in detail later in this chapter for both 2D and 3D-SMLM.

A disadvantage of SR images created by SMLM compared to deterministic methods
is a non-trivial relation between sampling density and resolution. Unlike intensity-based
images (as created by STED, SIM etc), where resolution is well defined and labelling density
is typically not a limiting factor, in SMLM it is the localisation uncertainty that is well
defined. The resolution of the reconstructed image is a combination of this uncertainty and
the recorded sampling density. The Nyquist criterion defines the smallest feature that can be
reliably resolved by coordinate-based data is given by twice the mean point-to-point distance

[77]. Thus, the smallest resolvable feature size is:

2
AN)’quist = m (1.4)

Where N is the labelling density and D is the dimension of the structure of interest. This
formula predicts that 10* points per um? are required to achieve 20 nm resolution in 2D.
However, in practice fewer points are often sufficient depending on the sample geometry
[18]. Other factors that affect reconstruction resolution relate to labelling inhomogeneity
within biological samples (e.g. membrane labelling may be expected to be homogenous but
clathrin-coated pits comprise a minute fraction of the overall membrane and thus high-density
labelling would still result in a low overall labelling density) and labelling probe size (e.g.
antibodies are ~10-15 nm in size, which is comparable to SMLM localisation precision).
Although methods such as Fourier ring correlation (FRC) [78], attempt to quantify resolution,
its definition remains a contentious topic within the SMLM field [79, 80]. Resolution in 3D-
SMLM can be defined by Fourier shell correlation (FSC) [81, 82]. However, the measured
FSC resolution can vary between regions within the sample, with high-frequency content
appearing to have a higher resolution even at the same localisation uncertainty and sampling
density [83]. In the words of Dong Li and Eric Betzig: “Supreme Court Justice Potter
Stewart famously stated in a case on the limits of free speech that he couldn’t define hardcore
pornography, but “I know it when I see it.” We feel similarly about resolution.” [80]. It
is my opinion that resolution is rarely a useful metric for comparison in SMLM as it is
greatly affected by localisation precision, labelling density and homogeneity as well as the

underlying structure of the sample, making a direct comparison almost impossible.
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1.3.6 SMLM PSF Fitting

In all 2D-SMLM the intensity distribution of PSFs from isolated emitters are fit with Gaussian
functions to determine their centre position (figure 1.6). The choice of fitting method depends
on the amount known about the form of the PSF and noise as well as time and computational
expense. The computation required to fit 2D functions to data increases exponentially as
the number of independent fit parameters increases. The 2D Gaussian function described in
equation 1.2 has up to six parameters that can be fitted (x and y position of its centre, x and
y widths, amplitude and background offset). However, prior knowledge of the system can
be used to reduce the number of parameters that must be fit. For example, if the standard
circularly symmetric 2D PSF is being imaged the x and y widths collapse into a single
parameter. Additionally, the emission wavelength of the fluorophore can be used to estimate
this width, further reducing fitting costs. Depending on the amount of information required,
the amplitude and background offset can also be fixed leaving only the minimum parameters
of x and y positions to fit. However, this prevents post-filtering of correct fits based on
improbable values of these parameters.

Intensity (a.u.)

0O 1 2 3 4 5 6 7 8
x-position (pixels)

Fig. 1.6 Gaussian function fitting to isolated PSFs. An experimentally recorded PSF at 580
nm was fit to a 1D Gaussian function in MATLAB.

The two most commonly used fitting methods are least-squares criterion (LS) and
maximum-likelihood estimation (MLE). In LS fitting, the squared difference between a
PSF predicted by estimated parameters (a Gaussian function in most SMLM) is compared to
the observed PSF for each pixel. The sum of these squared errors is minimised by varying
the fit parameters. MLE fitting requires a model of the PSF and camera noise. The likelithood
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of obtaining the observed PSF from the model given some initial estimated parameters is
computed and maximised by varying the fit parameters. MLE provides the highest precision
compared to LS at increased computational expense [84]. Due to MLE requiring detailed
information on the noise present (which varies between detectors), LS is still commonly

used.

The centre point of a PSF can be determined arbitrarily precisely in the absence of noise,
given an unlimited number of detected photons [85]. In practice, however, fluorophores emit
a relatively small number of photons and sample background is not negligible in SMLM
experiments. Ultra-sensitive detectors are required to detect the signal. In addition to sample-
related noise, sources of noise such as shot noise and dark current present in the detection
equipment become significant. Shot noise is present in all electronic devices and is a product
of random fluctuations of electric current in electronic conductors. This is due to the quantum
nature of electric current in the form of electrons. Shot noise is proportional to the square
root of the photocurrent from the detector, such that it becomes significant at low detection
intensities, ultimately limiting detector sensitivity. Dark current noise occurs in light-sensitive
devices. A small signal is emitted by the device even in the absence of illumination, mostly
due to thermal vibrations in the photodetector. Dark current is minimised by cooling the
detecting element within the device to reduce thermal vibrations. In modern EMCCDs the

photodetector is cooled to <-70°C so that the dark current becomes comparable to shot noise.

1.4 3D Super-Resolution Fluorescence Microscopy

The vast majority of biological structures and processes occur in three dimensions and are not
necessarily well-represented by two-dimensional information. 2D SR techniques collapse a
3D volume into a 2D projection. This can lead to erroneous conclusions being made that
can compromise scientific understanding. This is especially true for quantitative studies
where 3D structure can result in the observation of increased localisation density within

homogenous distributions that can lead to clustering artefacts (figure 1.7).

The extension of SR methods to 3D solves this problem by measuring sub-diffraction limit
axial information within the sample. As with 2D SR techniques, 3D SR has been achieved in
a variety of ways (all with the inevitable cost of increased experimental complexity) that can

be fitted into the same classifications of deterministic methods and SMLM methods.
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Fig. 1.7 lllustration of artefacts created by 2D imaging of 3D systems. A 3D distribution of ho-
mogeneous surface density (blue) and its 2D projection (red) is shown from the side. The 2D
projection does not report a homogeneous density but instead perceives high-density regions
(dashed-red areas) corresponding to changes in axial position that could be misinterpreted as
clustering.

1.4.1 Deterministic 3D SR Methods

Deterministic 3D SR techniques often involve scanning excitation illumination axially though
the sample. By confining the illumination volume axially to be smaller than the diffraction
limit, SR information can be achieved in three dimensions. In 3D-STED, the illumination
PSF can be reduced in size laterally as well as axially [19, 86]. The resulting effective PSF is

now scanned in three dimensions to create a SR image of the volume of interest.

Wide-field single-plane illumination microscopy (SPIM) has also been demonstrated to
achieve excitation confinement below the diffraction limit, enabling SR optical sectioning
across the sample. Bessel beam plane illumination has been shown to obtain ~300 nm
isotropic wide-field resolution by scanning for whole-cell SR imaging in live samples [87].
More recently, the principles of SIM have been extended to excitation confinement in lattice
light-sheet microscopy [88], employing a 2D lattice of ultra-thin illumination to scan whole-
cell volumes. With this approach, fast imaging with 150 nm and 280 nm lateral and axial
resolution and low photo-toxicity was achieved [89]. Further SPIM techniques are discussed

in more detail in chapter 2.

As with deterministic 2D SR methods, deterministic 3D methods benefit from a fast
acquisition rate compared to SMLM techniques. Optical-sectioning techniques are generally
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limited in resolution compared to SMLM although 3D-STED offers comparable resolution

with the use of potentially photo-toxic illumination powers.

1.4.2 3D Single-Molecule Localisation Microscopy

Within the category of 3D-SMLM, the method in which axial information is gained from the
PSF of an isolated emitter can be split into two categories: 1) inferring axial position from
multiple image planes and 2) PSF engineering, which are both capable of achieving ~10 nm
lateral localisation precision and ~20 nm axial localisation precision [90]. In either case,
axial information is gained at the detriment of other factors. Additional optical components
reduce transmission efficiency and thus can limit sensitivity in low SNR samples. The 2D
PSF is often spread over a larger area, reducing peak intensity and requiring a reduction in
labelling density. Resolution is also reduced as, according to equation 1.4, a 100-fold greater

number of localisations is required compared to 2D-SMLM to achieve Nyquist sampling.

Biplane [91] is a method for 3D-SMLM in which the sample is imaged simultaneously
in two axial planes. The two focal planes are offset relative to each other so that a single
PSF can be imaged in both. The intensity and defocus of the PSF is compared between
the two planes in order to determine the axial position (figure 1.8a). To achieve this with
a single objective lens, the emission signal is passed through a 50:50 beam splitter with
both channels incident onto separate detector or separate areas of the same detector. The
two emission paths are of different length so that they are focussed onto the detector with a
constant axial offset within the sample. The depth of focus achieved by Biplane is limited
by the axial size of the 2D PSF to ~500 nm. While Biplane techniques are relatively easy
to implement, requiring few additional optical components, they exhibit non-uniformity in
localisation precision across their focal plane [92] and halve the detected signal, resulting
in a lower lateral precision compared to 2D-SMLM. If a single detector is used, the field of

view is reduced in half to accommodate the two images.

The two focal planes of Biplane SMLM have been extended upon in multifocus mi-
croscopy (MFM) [93], which simultaneously images nine axial planes within the sample. A
multifocus grating is used in combination with a chromatic-correction grating and a prism
to split the emission signal into nine distinct areas on a single detector, each with a focal
offset of 380 nm so that the overall depth of focus is extended to ~4 um. As in Biplane, the

emission signal is reduced as the photons comprising a single PSF are split into multiple
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images while the transmission efficiency of the multifocal grating (=65%) further reduces
SNR.

One of the most technically complex and most precise 3D-SMLM technique is interfer-
ometric PALM (iIPALM) [94]. iPALM combines two high-NA objective lenses to acquire
additional spatial information. The emission collected by both lenses is passed through a
three-way beam-splitter so that it creates interference patterns on three separate detectors as
a function of the sources axial position. The intensity of a single PSF is compared between
the three detectors in order to determine the axial position with greater precision than lateral
precision. iPALM has been demonstrated to achieve a localisation precision of 9.5 nm
laterally and 4.1 nm axially for 1,200 photons detected from gold beads across a ~600 nm
depth of focus [94]. As three detectors are used to image each PSF, iPALM does not suffer
from the same axial variation in localisation precision as Biplane, achieving a more-flat
profile across the depth of field [94].

The most common form of 3D SMLM is Astigmatism. Astigmatism [95] is an example
of PSF engineering to gain axial information in SMLM. A cylindrical lens placed in the
emission path creates two slightly axially offset planes for the x and y axis. This manifests
itself as a change in ellipticity and orientation of the PSF depending on its axial position
relative to the focal planes (figure 1.8b). When an emitter is positioned equidistance between
the x and y focal planes, its PSF appears symmetrical. As the emitter moves towards one of
the two focal planes its PSF contracts in that dimension and expands in the other, creating an
ellipse. Due to a non-linear relation between axial position from a focal plane and PSF width,
the position of emitters can be localised outside of the two focal planes. The astigmatic
PSF is fit with a 2D Gaussian function that is not constrained to be symmetrical so that the
ellipticity and orientation are extracted to determine the axial position across a ~500 nm
depth of focus. Like Biplane, astigmatism is simple to implement, as just one additional
lens is added to the emission path. However, it suffers from non-uniformity in localisation
precision across the focal depth [92]. This is due to the non-linear relation between axial
position from a focal plane and PSF width; the width of the PSF changes more slowly close
to the focal plane compared to further away from it. Astigmatism does not spread out the 2D
PSF as much as other 3D-SMLM techniques and as a consequence, the SNRs are comparable
to 2D-SMLM allowing for challenging samples to be imaged.

Another 3D-SMLM technique is the double-helix point-spread function. As this technique
is the basis of the experimental work presented in this thesis it is discussed in detail in the

next section.
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Fig. 1.8 Simulated detected PSFs for isolated emitters in the centre of the depth of focus
(left), 250 nm above (middle) and 250 nm below (right) for biplane (a) and astigmatism (b)
methods of 3D-SMLM.
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1.5 The Double-Helix Point-Spread Function

The double-helix point-spread function (DHPSF) is another example of PSF engineering
to gain axial information from a 2D PSF. The ability to encode depth into the rotation of a
PSF was first demonstrated in 2006 [96] and was applied to single-molecule detection in
the form of the DHPSF by tracking fluorescent microspheres in 2008 [97, 98] and single
fluorophores in polymer samples in 2009 [99]. The first live-cell single-particle tracking
implementation of the DHPSF was exhibited in 2010, tracking endocytosed quantum dots
at the bottom surface of COLO205 cells [100] and mRNA, each tagged with 32 EGFP
molecules, in Saccharomyces cerevisiae yeast cells [101]. Since then, the DHPSF has been
used to track chromosome loci in Saccharomyces cerevisiae yeast [102]. The DHPSF was
first demonstrated for use with PALM in 2011 at the basal surface of PtK1 cells expressing
PA-GFP-tubulin that were imaged in 90% glycerol with an oil-immersion objective lens
[103]. Sequential multi-target imaging was presented in 2011, resolving both the outer
surface and intracellular protein structure in Caulobacter crescentus by a combination of
super-resolution by power-dependent active intermittency (SPRAI) and PAINT imaging
methods using eYFP and Nile Red fluorophores [104]. This was expanded in 2013 with
multicolour imaging of eYFP, Nile Red and PAmCherryl was demonstrated in Caulobacter
crescentus [105]. Proof-of-concept STORM imaging in mammalian cells was presented
of microtubules labelled with Alexa Fluor 647 at the basal ~1 um of BSC-1 cells in 2012
[106]. The DHPSF was first implemented with SPIM in 2014, demonstrating increased SNR
when imaging fluorescent bead samples [107]. This work was extended to mammalian cell
imaging with tilted light sheet illumination in 2018 [108]. A timeline listing key milestones
in the development of the DHPSEF, including the work presented in this thesis, is presented in
figure 1.9.

The DHPSF is created by transforming the conventional 2D PSF so that its intensity
distributions rotate as they propagate along the optical axis (figure 1.10). This is physically
implemented by placing a specially designed phase mask (described in detail in reference
[103] into the Fourier plane of a 4f system added into the emission path. This introduces a
phase shift in the Fourier domain of the imaged PSF so that, when the emission is transformed
back to the spatial domain, the conventional Airy disk of the 2D PSF is split into lobes that
rotate around a midpoint corresponding to the centre of the original PSE. The angle between
the two lobes linearly relates to the axial position of the emitter within the focal depth (see
figure 1.10). The two lobes are fit with Gaussian functions and localised as in 2D-SMLM
to precisely determine their midpoint and angle. The DHPSF can achieve a more uniform
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Fig. 1.9 Timeline of key milestones in the development of the DHPSF. Technical achieve-
ments are listed above the timeline and biological studies are listed below the timeline. The
published and unpublished work presented in this thesis is denoted by asterisks and crosses
respectively.

localisation precision of ~10 nm laterally and ~20 nm axially (see chapter 2) across a ~4
um depth of focus.

When using the DHPSF, the lateral localisation precision is reduced compared to the
analogous 2D experiment as the photons collected from each emitter are split in two separate
spots that are localised. Each emitter now has two lateral localisation errors associated with
its position and contains half the number of photons, reducing SNR by at least a factor two.
A statistical comparison of the Fisher information (a measure of the amount of information
a variable holds about a parameter that affects its distribution, in this case the parameter is
axial position) of biplane, astigmatism and the DHPSF 3D-SMLM techniques was conducted
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Fig. 1.10 The form and implementation of the DHPSF. The DHPSF can be implemented by
the addition of a 4 f system comprised of two lenses (L1 & L2) into the emission path of a
fluorescence microscope with a DHPSF phase mask (PM) placed in the Fourier plane of the
4 f system. The focal plane of L1 is placed in the image plane of the microscope (defined by
the tube lens, TL), relaying the fluorescence image onto a detector placed a distance 4f away.
Experimentally recorded example DHPSFs are shown across the ~4 um depth of focus.

by Badieirostami et al. [92]. The study found that the DHPSF provides the most constant
lateral and axial precision across the depth of field. While Biplane and astigmatism exhibit a
greater peak localisation precision near the centre of the focal depth in all dimensions, for
high detected photon numbers (=6,000), the DHPSF provides a greater average localisation
precision across the focal volume. For low detected photons (/1,000) Biplane provides a

marginally greater average precision to the DHPSF.



1.5 The Double-Helix Point-Spread Function 25

1.5.1 PSF Engineering

The axial position of an emitter within the focal plane of an objective lens can be encoded
into the form of the PSF by phase modulation in the Fourier domain of the emission. Placing
a patterned phase mask in a plane conjugate to the back focal plane of the objective (e.g. the
Fourier plane of a 4f system relaying the image plane) introduces phase aberration that can
be used to reengineer the 2D PSF. The electromagnetic field in the image plane is related to
that of the back focal plane by:

I(u,v:2,y,2) o< |[F {E(X,y:x,3,2) - P(¥,)) }|° (1.5)

Where F {a} denotes the Fourier transform of a, E(x',y’;x,y,z) is the electromagnetic
field at the back focal plane caused by a point source at (x,y,z) and P(x’,y’) is the phase

modulation imposed in the Fourier plane [83].

A translation of the point source in z manifests itself as a curvature of in the phase of
E(X',y') and P(x',y") determines how this affects the image I(u,v). This curvature can be

approximated by [83]:

E(X,y;z) < e (1.6)

Where A is given by:

— iknimzim\/l — (NA/njm /X +y')? + iknsz\/l — (NA/ng\/ X2 +y/2)? (1.7)

Where k is the wavenumber of the emission, n;, s is the refractive index of the glass
coverslip and sample respectively, z;,, is the position of the focal plane above the coverslip
interface, NA is the numerical aperture of the objective lens and z is the axial position of the

point source emitter [83].

Phase patterns, P(x’,y’), are wavelength dependent and are designed to encode axial
information into I(u, v;x,y,z) by modulating the effect of curvature in E(x’,y’;z). They can
be implemented via programmable deformable mirrors (DM), lithographically etched phase
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masks or spatial light modulators (SLM). DMs and SLMs have the advantage that they can be
reprogrammed to dynamically change the PSF. However, DMs are limited in their resolution
by the number of actuators, limiting the effectiveness of the phase pattern. SLMs are more
accurately programmable but typically only work on a single polarisation of light, reducing
signal by a factor two. Phase masks on the other hand offer high transmission efficiency and

pattern resolution but cannot be re-patterned.

1.5.2 Alternative Phase Patterns to the DHPSF for Determining Axial
Position

A variety of phase patterns (defining P(x’,y’)) have been designed to emphasize the phase
curvature so that axial information can be determined. In addition to the DHPSF, the
corkscrew PSF [109] employs a single rotating lobe while the self-bending PSF [110]
displaces laterally as a function of axial position. These PSFs extend the depth of focus
compared to the DHPSF at the cost of imaging each PSF twice with two complementary
phase patterns to determine its centre position. The phase-ramp PSF [111] creates a similar
PSF to the DHPSF with a simplified phase pattern at the cost of localisation precision and
focal depth. Large axial range PSFs have been mathematically designed by maximising
a function of the Fisher information [112], tailoring the form of the PSF to the axial size
of the system and its background levels. These so called Tetrapod PSFs [113] have been
demonstrated to have an axial range of ~20 um to achieve ~30 nm lateral localisation

precision and ~50 nm axial localisation precision in high-background situations.

1.6 Quantification in SMLM

As previously mentioned, the primary output of SMLM techniques is a list of coordinates
corresponding to the position of fluorophores within the sample. This output is readily
compatible with quantitative analysis and can be easily imported into programming languages.
While images (created by either deterministic methods or by the reconstruction of SMLM
datasets) can be used to answer broad questions (e.g. if a certain protein is found in the
nucleus of a cell or not), quantification allows for more subtle observations as well as
direct comparisons to be made (e.g. changes in the fraction of a certain protein found

inside the nucleus under different conditions). This can provide a powerful tool for probing
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biological systems, which often display innate variability, providing the correct metrics are
identified and adequate controls are considered. SMLM quantification methods are often
bespoke depending on the system of interest. This is especially true for 3D-SMLM as there
are fewer standardised analysis tools available. In these cases it is important to test the
performance of the analysis on idealised simulated data sets to ensure that the output is
correctly interpreted. SMLM (and 3D-SMLM) quantification tools occupy two categories: 1)
spatial distribution/stoichiometry analysis typically conducted on high-density localisation
datasets in fixed cells and 2) single-particle tracking (SPT) analysis conducted on live cells.

1.6.1 Quantification of Distribution/Stoichiometry in SMLM

SMLM techniques can provide a range of quantitative metrics such as counting protein
expression, measuring the size and shape of protein clusters, changes in density and co-
localisation. However, these studies are affected by issues such as detection efficiency
[65], photo-conversion efficiency [114] and blinking artefacts [115] that must be taken into
account in quantitative analysis [116]. Fluorescence intermittency artefacts are generally
more prominent in STORM as each fluorophore switches between ‘bright” and ‘dark’ states
multiple times. PALM reduce this effect, with the recent Janelia Fluor dyes displaying an
average of 1.4 fluorescent events [69], although a small fraction of molecules still appear ~5

times.

Co-localisation of multiple labelled proteins can be conducted using multi-colour SMLM.
Providing that the separate localisation lists are corrected for chromatic aberration and can
be precisely aligned with fiducial markers, co-localisation can theoretically be determined at
the single-protein level with precision given by the localisation uncertainty. Unfortunately,
in practice this is more difficult due to the detection/emission efficiency of the different
fluorophores used. Two or more colour Ripley’s K tests can be implemented to provide a
measure of co-localisation as well as examining the distribution of distances between the
protein datasets. Cross-correlation has also been implemented to quantify co-localisation in
SMLM datasets as a function of length scale [117].

Cell-wide distribution quantification can be achieved, providing information on homo-
geneity within the sample. This has be used to identify the presence of nanodomains in
membrane protein distribution (i.e. the presence of highly controversial lipid rafts [118]) and
can serve as a sample-wide metric of clustering. Within these analysis methods, some of

the most commonly implemented tools are nearest-neighbour (NN) analysis and Ripley’s
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K function. In NN analysis the distribution of Cartesian distances from each localisation to
its nearest localisation is compared to model distributions or between conditions. Assum-
ing a constant localisation density, a shift towards shorter NN distances implies increased
clustering. Complete spatial randomness (CSR) models of equal localisation density can
be simulated to identify the maximum NN distances expected in the absence of clustering.
The distribution of NN distances as a function of localisation density can be used to further
identify clustering; in CSR models density and NN distance are inversely correlated but in
completely clustered models the two are uncorrelated [119]. Ripley’s K function quantifies
overall clustering as a function of length scale. The mean number of localisations within
radius » from each localisation, N(r), is compared with a CSR distribution, given by p 77>
for 2D imaging of a circular area. The metric L(r) — r is then used to quantify the extent of

clustering within the sample [120]:

h
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|

(1.8)

Where p is the mean number of localisations per unit area. L(r) —r > 0 implies a
clustered distribution and L(r) — r < 0 implies an anti-clustered distribution. L(r) —r =0

for complete spatial randomness.

Individual cluster identification and quantification is also possible with SMLM and has
been demonstrated to identify the clustering state of T-cell membrane proteins [121]. How-
ever, erroneous background localisations, over-counting artefacts and detection efficiency
make accurate quantification of individual clusters difficult. The relative stoichiometry of
clusters can be compared directly, given a large enough sample size, by localisation number
[122]. By quantifying the fluorescence intermittency kinetics of the fluorophore used under
experimental conditions it is possible to estimate true cluster stoichiometry [121]. Individual
clusters can be identified in a number of ways, the most common of which is density-based
spatial clustering of applications with noise (DBSCAN) [123]. DBSCAN computes local
density to identify clusters from background, requiring a user-defined minimum density
of points to identify clusters. Other methods include Voronoi tessellation of localisations
[124, 125] and Bayesian modelling [126] to identify clusters and the latter has been extended
into 3D [127]. Recently, quantitative PAINT (qPAINT) [128] has been shown to provide
robust 2D counting measurements as dye photophysics are decoupled from blinking kinetics
in PAINT labelling. As with all analysis methods, significantly more progress has been made
in 2D compared to 3D and as a result there are fewer tools for 3D quantification currently
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available. Recently, Bayesian [127] and Voronoi [125] methods of 3D cluster analysis have
been demonstrated, with additional tools likely to follow as 3D-SMLM becomes more widely

adopted.

1.6.2 Single-Particle Tracking in SMLM

A key advantage of SMLM compared to other SR techniques is the ability to track the motion
of individual fluorophores across successive frames in live cells. Single-particle tracking
(SPT) provides quantitative information on the molecular dynamics of the target in question
that can elucidate subtle biological phenomena such as the motion of glycine receptors on
the surface of neurones [129] and the hand-over-hand motion of myosin V walking on actin
[130]. More recently, 3D-SPT has been demonstrated in Saccharomyces cerevisiae using the
DHPSF to track individual mRNA particles [101] to track individual mRNA and in mouse
fibroblast cells using Multifocus Microscopy (MFM) also to track mRNA [131].

In order for the trajectory of individual particles to be determined the density of emitters
must be low enough that individual PSFs are separated and the chance that emitters will
move so that their positions are confused is low. As a result the maximum working density is
related to the speed of motion being observed, with faster motion requiring lower densities.
Low imaging density can be achieved with low-labelling concentration so that only a handful
of targets within the sample are labelled. This can require a large number of samples to
be imaged in order to obtain statistically significant results and does not provide much
information on a single-cell level. By using photoactivatable fluorophores and a low level
of activation, many trajectories can be extracted from single cells [132], increasing the
efficiency of data acquisition and allowing for high-density diffusion maps to be produced
[42]. Alternatively, PAINT labelling can be employed to achieve thousands of trajectories
from a single cell in an approached named universal PAINT (uPAINT) [133], although this is
experimentally more difficult to implement.

In most SPT analysis methods long trajectories are preferable as the number of times the
motion of each particle is sampled increases. Consequently, SPT experiments are optimised
so that a single fluorophore is localised as many times as possible before it photobleaches.
Typically this is achieved by reducing the number of photons collected per exposure, either
by reduced excitation power density or increasing acquisition rate depending on movement

speed, at the compromise of SNR and thus localisation precision. Recent developments in
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organic dyes allow for many more localisations of a single fluorophore compared to current

fluorescent proteins, as such more robust quantification of motion can be obtained.

The two most common SPT tools are mean-square displacement (MSD) [134] and
jump-distance (JD) [135] analysis, which are discussed in detail in chapter 4. As with
distribution-quantification tools, the majority of SPT tools currently available are focused on
2D-SMLM. Both MSD and JD analysis tools have been extended into 3D-SMLM datasets
(also described in chapter 4) for the work presented in chapter 4 and the corresponding
MATLAB code is attached in the appendix of this thesis.

1.7 Thesis Overview

The chapters that follow describe the construction of a DHPSF microscope platform and its

optimisation for imaging biologically relevant samples away from coverslip surfaces.

Chapter 2 describes the individual components of the DHPSF microscope as well as
characterisation of its localisation precision and stability. Relevant illumination methods and
imaging modalities are also introduced in this chapter.

Chapter 3 describes aberrations affecting the form and accuracy of the DHPSF. These are
addressed and minimised to enable the use of the DHPSF in technically demanding areas of

biological samples.

Chapters 4 and 5 present SPT and imaging applications of the DHPSF in a range of cell
types and imaging modes that are facilitated by the extended depth of focus of the DHPSF
compared to other 3D-SMLM techniques.

Finally, in chapter 6, the DHPSF is applied to quantify the nanoscale organisation of
the T-cell receptor, a T-cell membrane protein that plays a key role in immune-response
triggering. High-density whole-cell imaging is also demonstrated.



Chapter 2

Building and Characterising the DHPSF
Platform

This chapter focusses on the building and characterisation of a fluorescence instrument
capable of DHPSF imaging as well as standard 2D imaging. Individual components are
listed with their function described. A schematic diagram shows a functional view of the
instrument with the idea that one reading this chapter could build an equivalent imaging

platform.

Quantification of the performance of the instrument is then provided with a discussion
of factors affecting metrics such as stability and accuracy with solutions provided to reduce
their effect. Applicable imaging methods, labelling strategies and background reduction

techniques are discussed and quantified.

Contributions

Dr Steven Lee and I built the DHPSF instrument and I took and analysed all data from this
instrument that is presented in this chapter. Dr Aleks Ponjavic helped to design, build and
operate a compatible light-sheet illumination stage for SPI and wrote an auto-focus script to

track the axial position of fiducial markers in beanshell for micromanager.
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2.1 Building the DHPSF Platform

2.1.1 Components of Typical 2D Fluorescence Microscopes

This section describes the components included in the majority of 2D-fluorescence micro-
scope platforms. Such an instrument would be capable of wide-field florescence microscopy
as well as 2D-SMLM techniques. Figure 2.1 depicts an idealised microscope schematic.
Firstly, the two fundamental components of any microscope, the objective lens and detector,
are described. Then, the components placed in the excitation path are described in the order
from photon emission to the sample. Thirdly, the components of the emission path are
described in order from the sample to the detector. Finally, the components responsible
for sample translation and vibration isolation of the platform are described to complete the

instrument.

Objective lens
The objective lens collects the photons emitted at the sample plane. Typically, high
numerical aperture (NA) lenses are used to gather the maximum signal. The highest
NA lenses employ oil as an immersion liquid and can reach an NA of 1.49. State of the
art water immersion lenses can reach an NA of 1.27. Infinity-corrected objective lenses
output collimated light rays collected from the focal plane and allow for additional optics
to be added between the objective lens and tube lens without altering the position of the
image plane. In this work the majority of imaging was conducted with a Nikon 1.27
NA PLAN APO water immersion objective lens to maximise emission collection with a

water immersion media.

Detector
Emitted fluorescence photons are recorded by a highly sensitive detector. Electron-
multiplying charged-coupled device (EMCCD) cameras are most commonly employed
in fluorescence microscopy due to their currently unparalleled quantum yield in commer-
cially available camera-based detectors. EMCCD cameras use electron multiplication to
amplify the signal generated from photons incident on the detector without amplifying
shot noise and can exhibit a quantum efficiency (QE) of >90% in the visible spectrum
due to their large (=16 um x 16 um) and back-thinned pixels. Scientific complementary
metal-oxide semiconductor (SCMOS) cameras are gaining popularity within the SR
community due to their affordability, superior acquisition speed (>400 frames per second,
compared to ~100 frames per second for EMCCD). While most sSCMOS cameras are less
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sensitive at very low photon numbers (reported values vary), due to their smaller pixels
(6.5 um x 6.5 um) and lower QE (=70%), recent developments claim to reach a QE
of ~®95% with 11 um x 6.5 um pixels (Photometrics Prime 95B). We chose to employ
a EMCCD camera in the design of our instrument as, at the time, sSCMOS detectors
were not available with comparable QE. Since then, an equivalent instrument employing
a high-QE sCMOS camera has since been built at the Cambridge Advanced Imaging
Centre (CAIC).
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Fig. 2.1 Schematic diagram of a typical 2D fluorescence instrument. Two lasers (640 nm and
561 nm) are shown combining and illuminating a sample, whose emission is then collected
and imaged onto a detector.

The Excitation Path

The excitation path involves the creation, modification and direction of excitation illumination.
This illumination is incident on the sample, exciting fluorophores that are in an emissive state.
The excitation path also includes activation illumination employed in PALM and STORM

methodologies.
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Light source
Excitation of fluorophores within the sample is achieved by high-intensity monochromatic
illumination at a specific wavelength. This is typically provided by LED lasers in the
power range of ~100 mW.

Illumination power-density control
The power density of the excitation illumination must be controlled to optimise imaging
conditions. This can be achieved via the laser itself or with neutral optical-density (OD)
filters in the excitation path. OD is a measure of the transmission efficiency of a material
and is defined as (OD = —log10(Ipu /Iin) where 1 is the intensity of light). Neutral OD
filters are wavelength independent, reducing the intensity of all light passing through
equally.

Polarising optics
Fluorophores are only excited by the component of light parallel to its fluorescence dipole.
Circularly polarised light achieves uniform excitation of fluorescence dipole orientation
within the sample. The linearly polarised output of LED lasers is typically converted to
circular polarisation by a wavelength-matched quarter-wave plate (QWP). QWPs retard
one orientation of polarised light by a quarter of the wavelength so that, when placed at

45° to the polarisation axis, linearly polarised light is converted to a circular polarisation.

Beam expanding optics
Beam expanding optics magnify the illumination to excite fluorophores across a larger
area of the sample, increasing the field of view that can be imaged. This is often achieved
by a Galilean telescope system comprised of two lenses. The first lens (of negative
focal length, f1) diverges the collimated beam before the second lens (of positive focal
length, f,) re-collimates the beam, resulting in a magnification of M = —f,/f}. The
distance between the two lenses is roughly equal to the sum of the two focal lengths but

is fine-tuned to achieve maximum collimation at the sample.

Excitation Filtering
Excitation filters are band-pass filters placed in the excitation path to ensure that only the
desired wavelength of light is incident on the sample. Typical ODs for an excitation filter
are 6-7 OD outside of the band and ~0 OD inside. Excitation filters typically have a very

narrow spectral band (FWHM ~2 nm) to reduce unwanted illumination.

Positioning mirrors
Adjustable mirrors are used to coaxially align individual excitation paths in a combined

beam path that is then directed towards the sample. Two or more adjustable mirrors are
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included in each excitation path to allow for precise control of the position and direction

of each laser beam separately.

Shutters
Digitally-controlled shutters are placed in each excitation path, this hardware automation
allows for the use of complex combinations of laser illumination timings, for example, in
photo-switching experiments.

Dichroic beam combiners
Dichroic mirrors reflect specific wavelengths of light while appearing transparent to other
wavelengths when incident at a specific range of angles (usually 45+1.5 degrees). A
specific dichroic is placed in each excitation path to coaxially combine the excitation

beams into a single combined beam path.

Wide-field excitation geometry optics
In order to achieve wide-field excitation geometries, as opposed to confocal illumination,
the excitation beam is focused to the back-focal plane (BFP) of the objective lens,
resulting in collimated a excitation geometry at the sample. This is implemented by the
addition of a Kohler lens placed a focal length before the BFP of the objective lens. This
facilitates epifluorescence illumination or total-internal reflection (TIRF) to be achieved
depending on the angle of incidence of the laser beam on the coverslip-sample interface.
This angle can be controlled by orthogonal translation of the Kohler lens relative to the

objective lens by mounting on a single-axis translation stage.

Objective lens
In standard fluorescence microscope platforms, the final component of the excitation
path, and the first of the emission path, is the objective lens (some excitation confinement
techniques involve separate lenses to create narrow excitation geometries and collect the
fluorescence signal, these are discussed later in this chapter).

The Emission Path

The emission path includes optics associated with the collection and detection of the fluores-
cence photons emitted by excited fluorophores within the sample. A generalised diagram
demonstrating the spectral filtering of excitation and emission signals for imaging by dichroic

beamsplitter and emission filters is presented in figure 2.2.
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Separation of excitation and emission photons
A beamsplitting dichroic mirror is used to reflect the excitation path towards the ob-
jective lens while remaining transparent for the emission signal, which is of longer
wavelength. This dichroic is usually mounted within the microscope body for maximum
stability and can display multiple reflecting and transparent bands corresponding to

typical wavelengths associated with excitation and emission respectively (figure 2.2).

Imaging the sample plane
The collimated rays output by the infinity-corrected objective lens are focussed into an
image by a tube lens placed after the dichroic beamsplitter. The image plane of the
platform is created in the focal plane of the tube lens, which is usually mounted within

the microscope body.

Isolation of emission signal
Imaging contrast is achieved by filtering the emission path for the emission wavelength of
the fluorophore of interest using a range of emission filters. The filters are chosen so that
their transparency wavelength band matches the emission spectrum of the fluorophore
so that the number of background photons (originating from sources such as excitation
bleed-through, cell autofluorescence and Raman scattering) incident of the camera is
reduced. Often a combination of band-pass and long-pass filters is used for an optimal
SNR. Typical emission filters will have an ~0 OD band that covers the majority of the
emission spectra of the fluorophore being imaged. Outside of this band the OD of the
emission filter is generally >5-6. The combined OD of the long-pass and band-pass filters
is typically >10 at the excitation wavelength, where the majority of the background is

present.

Detection of emitted photons
As described above, the spectrally-filtered emission is focussed to form an image on a

detector at the end of the emission path.

Other Components

Additional components that are typically employed to mount the components described
above and increase the stability of the system are described below. Non-essential components
to improve usability and ease of alignment are also described.
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Fig. 2.2 Generalised diagram demonstrating the spectral filtering of excitation and emission
photons in fluorescence imaging. The absorption and emission spectra of a typical fluorophore
(Tetramethylrhodamine, green and orange respectively) are represented by filled volumes.
The excitation illumination (561 nm LED laser, green line) overlaps close to the absorption
maximum but is below the transmission wavelength of the dichroic beamsplitter (pink line).
The emission spectrum is further filtered by an emission filter (orange line) to increase
imaging contrast.

Microscope body
The microscope body mounts the objective and allows for fine control of its axial position

relative to the sample, translating the objective’s focal plane through the sample.

Sample-mounting components
Typically, biological samples are mounted onto a glass coverslip that is held by a sample-
mounting stage. Stages are of stiff construction to reduce sample movement and vibration.
Lateral translation of the sample is provided by the stage. Coarse large distance translation
is achieved mechanically whereas, precise movement can be achieved by piezoelectric

motors over distances of ~100 um.

Objective lens positioning control
The objective lens can be mounted onto a piezoelectric scanner that moves axially for fast
and precise focal control over ~100 um with minimal relaxation effects. Such devices
achieve +5 nm repeatability and ~0.5 nm step resolution. These piezo scanners can be
linked to a drift-correction system to maintain a constant focal plane within the sample

for long-timescale imaging.

Vibration insulation
The entire instrument, including laser pathways, is mounted onto an actively damped

vibration-insulation optical table. Optical tables typically damp vibration between 3 to
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50 Hz, decoupling the microscope from environmental vibrations. The effect of acoustic
vibration and air flow around the instrument is reduced by constructing a box around
the sample. For microscopes investigating live biological processes under physiological
conditions, this can be combined with an incubating unit to maintain a constant sample

temperature.

Excitation alignment aids
A number of physical circular apertures or variable diameter and identical height are
added into the individual laser paths and to the combined beam path to aid alignment. If
a beam passes through the centre of two or more irises (without a mirror in-between) it
can be determined to be aligned parallel to the optical table. The irises are positioned
once all laser beams have been coaxially aligned so that in the future the beams can be

re-aligned by passing through the centre of the irises in their path.

White light source
A white light illumination source can be attached to the inverted microscope base,

allowing for conventional images of cells to be taken for reference.

Multi-colour optics
For multi-colour experiments, a dichroic beam splitter is placed before the emission
filters to create multiple emission paths of different wavelengths. The multiple emission
paths are passed through the relative emission filters and are imaged on separate detectors

(figure 2.4) or on discrete areas of a single detector’s sensor in a ‘Dual view’ system.

2.1.2 Additional Components Achieving DHPSF Transformation

To achieve the DHPSF transformation, additional optics are placed in the emission pathway
of the standard fluorescence microscope shown in figure 2.1. The 2D PSF is modified by
a DHPSF phase mask (shown in figure 2.3) placed in the Fourier plane of a 4 f system of
lenses before it is reimaged onto the detector.

4f systems are comprised of two lenses both of focal length f. The first lens (L) is placed
so that its focal plane is in the original image plane of the microscope (at a distance f from
the image plane). Interference effects induced by diffraction through the lens results in a
Fourier transformation of the emission image being formed in the image plane of the L (a
distance f from the L), this is known as the Fourier plane. The second lens (L) is then
placed so that its focal plane is in the Fourier plane (a distance f from the Fourier plane).
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The second lens performs a reverse Fourier transformation and focusses the emission onto
the detector placed in the lens’ image plane (a distance f from the second lens, this a total

distance of 4 f from the microscope image plane. (figure 2.3b).

Each component of the 4f system is mounted into a three-axis translation stage for
precise alignment. The DHPSF phase mask is placed in the Fourier plane of the 4 f system
and aligned laterally relative to the emission path so that the two lobes of the DHPSF rotate

around a central position (figure 2.3d).

The designed DHPSF microscope contains two 4 f systems that share the same first lens.
An imaging-flat (radius of curvature ~100 m) dichroic beam splitter placed between L; and
the phase mask separates the emission of different colour fluorophores into the appropriate
4 f path. The emission is then incident on a wavelength-specific phase mask before an image

is formed onto two separate cameras (figure 2.4).
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Fig. 2.3 Schematic diagram of additional optics achieving the DHPSF transformation. (a)
Additional optics comprising a 4 f system in the emission path of a typical 2D SR microscope
with a DHPSF phase mask in the Fourier plane. (b) Idealised emission and Fourier trace of
DHPSF emission path. (c) Surface profile of the DHPSF phase mask (Adapted from Grover
et. al. [103] (d) Examples of DHPSFs across a ~4 um depth of field.



2.2 Characterisation of the DHPSF Platform 41

I' 1 «—Tubelens

2-colour
4f system
Detector2 | 5 - - .«—Image plane
L1
: X’. + 100 «
7
' - - *~_Dichroic
Ly EA nirvor
Fourier plane/
Double-helix I [
phase masks \
L2
» Detector 1

Fig. 2.4 Schematic diagram of two-colour 4 f system facilitating two-colour DHPSF imaging.
A dichroic beam splitter separates light onto two DHPSF phase masks optimised for separate
emission wavelengths before the two channels are imaged onto two detectors.

2.2 Characterisation of the DHPSF Platform

This section describes the characterisation and optimisation of factors affecting the stability
of the DHPSF platform. Applicable imaging methods, labelling strategies and background
reduction techniques are then introduced and quantified.

2.2.1 SMLM Fitting

Throughout this work, 2D localisation data was fit by PeakFit plugin for ImageJ [136] and
3D DHPSF localisation data was fit by easy-DHPSF [137]. PeakFit was chosen due to
its high scores in accuracy and detection rate in quantitative evaluation of SMLM fitting
packages [138] (achieving the 4th highest accumulative score of 35 tested algorithms).
PeakFit identifies maxima in an image as candidates for localisation before fitting a 2D

Gaussian with specified free parameters by either LS of MLE methods.
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Easy-DHPSF was the only available DHPSF fitting routine that was published from the
start of the project up until the time of writing. An axial scan of static fluorescent beads
provides a calibration reference of the form of the DHPSF across the depth of field. The
single-molecule input data is then used to create templates of the DHPSF at six equally spaced
planes within the image volume. The user then defines the image correlation thresholds used
in fitting the single-molecule localisations. The two lobes of accepted DHPSFs are then fit to
2D Gaussian functions with their centre point and axial position determined to determine the
position of the molecule in three dimensions. A calibration scan must be performed before
each experiment as small changes in the alignment of the 4 f system and phase mask alter
the form of the DHPSF.

In the absence of mechanical sources of noise, the precision that a single molecule can be
localised is ultimately determined by the detected signal above background and the physical
pixels that the signal is spread over [84]. The effect of factors such as signal intensity,
background noise and pixel size on localisation precision are discussed and theoretically
modelled by Webb et. al. [85]. This study proposed a universal equation estimating the
theoretical limit of precision in an optical system (equation 2.1), although this is widely
regarded to overestimate achievable localisation precision. The localisation precision is
shown to fall as 1lv for background noise and \/Lﬁ for photon-counting noise, where N is the
number of detected photons. This article also determines that the optimum ratio between

pixel size and the standard deviation of a 2D PSF is ~1:1 for Gaussian fitting.

2 +d?/12 | 8mstb?
B N a’N?

((Ax)?) (2.1)
where a is the pixel size, s is the standard deviation of the imaged PSF, b is the number

of background photons per pixel and N is the number of detected photons above background.

SMLM fitting algorithms use the fit error between the signal and fitted function to
estimate a localisation precision. This estimation is purely dependent on the SNR and does
not take mechanical stability beyond a single acquisition frame, thus underestimating the true
precision of the instrument. The achievable localisation precision of an instrument can be
quantified by repeatedly imaging static point sources and determining their perceived widths
[105].
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2.2.2 Mechanical Stability

The mechanical stability of a microscope is a measure of the errors induced in localisation
precision due to effects such as vibration and differential thermal expansion/contraction on
the various optical components in the optical train. Thus, in SMLM, the achievable precision
is a convolution of both fitting errors, which depend on the number of detected photons, and
the mechanical stability of the microscope, which is independent of the number of detected
photons. It is possible to determine this ‘true’ precision by measuring the distribution of
multiple localisations of individual point sources as a function of detected photons [105]. At
low detected photon numbers the true precision is dominated by fit errors whereas at high
detected photon numbers a plateau is reached at some combination of fit error and mechanical
stability, representing the ultimate achievable localisation precision of an instrument. Long
term stability can be achieved by fiducial correction of sample drift but is ultimately limited

by the experimental localisation precision.

Fig. 2.5 Examples of detector mounting methods tested for maximum short-term mechanical
stability.

The mechanical stability of a microscope is affected by many factors, such as the con-
struction material, size, sturdiness of mountings, temperature fluctuations and environmental
vibrations. The effect of detector mounting on localisation precision was investigated with
three different mounting techniques; (a) mounted directly to the microscope base with no
support, (b) mounting with 1/2” stainless steel optical posts to the optical table and (c)

mounting into a custom-made aluminium cradle (figure 2.5).

The localisation precision and thus instrument stability was measured as previously
described by Gahlmann et. al. [105]. Static diffraction-limited (100 nm) fluorescent beads

(560/580 nm absoption/emission) were imaged on poly-L-lysine coated coverslips for 2,000
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Fig. 2.6 Comparing mechanical stability of camera mounting methods. Average and standard
deviation of localisation precision of static fluorescent beads imaged for 2,000 frames with a
30 ms exposure time without drift correction is plotted as a function of detected photons.

frames with an exposure of 30 ms. The stability of the microscope was improved at all
detected photon values sequentially from cases (a), (b) and (c) (figure 2.6). The ultimate
precision for case (a) was measured to be 16.14-0.7 nm which was reached by ~4000 photons.
For case (b), the ultimate precision was measured to be 9.6:£0.3 nm by ~3000 photons. The
most stable detector mounting was case (c) with a measured localisation precision of 6.940.3
nm, which is reached by ~2000 photons. This mounting was chosen for all presented
experiments in this work. Figure 2.7 shows this 2D localisation precision in greater detail.
A localisation precision of <10 nm is reached by ~1000 detected photons and <20 nm by
~500 photons (figure2.7).

2.2.3 Comparing Mechanical Stability between Instruments

To confirm that the stability of the constructed microscope (instrument A) was similar to other
super-resolution instruments within the lab the same stability analysis was also conducted
on three other set ups. Another custom-built inverted optical microscope from the lab was

tested (instrument B). This instrument differed in that it employed an Olympus microscope
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Fig. 2.7 Empirically-determined 2D localisation precision of the instrument. The distribution
of localisations of individual fluorescent beads imaged for 2,000 frames with a 30 ms
exposure time without drift correction is plotted as a function of the average number of
detected photons per localisation.

body and oil-immersion objective lens. These were compared to a commercially available
super-resolution microscope (Nikon N-STORM, instrument C) from the Gallop lab (Gurdon
Institute, Cambridge). This instrument also uses an oil-immersion objective lens and EMCCD
detector. Finally, a non-super-resolution instrument was investigated (instrument D). This
setup was comprised of an ASI RAMM stage mounted directly to an optical table with a
less-sensitive CCD detector.

Figure 2.8 compares the mechanical stability of the four instruments. The commercially
available instrument C reached an ultimate precision of 7.74-0.4 nm but was surpassed by
both custom-built instruments A and B which achieved an ultimate precision of 6.94+0.3 nm
and 4.6+£0.4 nm respectively. The non-super-resolution instrument D achieved a prevision
of ~20 nm, performing worse than all other instruments at all detected photons. This
information confirms that the newly-built instrument performs as expected, reaching a
comparable mechanical stability to other SMLM instruments in the lab.
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Fig. 2.8 Average and standard deviation of measured localisation precision decay for instru-
ments A, B, C and D over a 60 second period without drift correction. Fitted exponential
decays are plot to guide the eye.

2.2.4 3D Stability of the DHPSF Platform

In addition to the lateral stability measured by 2D localisation experiments, axial stability
is crucial to 3D imaging techniques. The axial mechanical stability of inverted optical
microscopes is typically less than the lateral stability. This is because the focusing mechanism
responsible for translating the objective lens relative to the sample is more susceptible to
gravity. This mechanism is usually based on rack and pinion in which the mechanical linkage
that can be prone to relaxation effects. The lateral and axial stability can be directly measured

using the DHPSF in an analogous experiment to the 2D stability measurements.

In order to achieve maximum axial stability, a number of steps were taken before imaging.
The mechanical focus of the instrument was used only at the start of the process to find
the rough focal plane, after this point all focal adjustments were conducted via the piezo
objective positioner. An acoustic insulator was placed over the sample in order to reduce
airflow that may arise from events such as opening/closing of the lab door. The samples were

left for at least ten minutes for mechanical relaxation to occur before the focal plane was
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corrected with the piezo stage. During acquisition care was taken to minimise movement
within the room. These measures were taken for all imaging presented in this work with the
exception of when using fiducial markers for drift correction, when less care was needed.
Axial and lateral stability measurements were then plotted against detected photons and

compared to 2D measurements from the same instrument (figure 2.9).
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Fig. 2.9 Empirically determined localisation precision of the DHPSF instrument as a function
of detected photons. Measured lateral (x&y) and axial (z) localisation precision from 2,000
frames acquired with 30 ms exposure time compared to 2D localisation precision from the
same instrument without the addition of the DHPSF phase mask. Example DHPSFs are
shown at their corresponding detected photon values.

The ultimate lateral localisation precision of the DHPSF instrument was measured to be
8.8+0.5 nm. The reduction in stability compared to 2D localisation is most likely due to
the inherent reduction of signal and the introduction of additional optics into the emission
path. The ultimate axial precision of the DHPSF instrument was measured to be 18.5+0.9
nm. This agrees well with modelled predicted values [92]. Expected photon values and the
corresponding localisation precision are presented for individual fluorophores later in table
2.1.
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2.2.5 Focal Drift

Drift of the focal plane is a common issue faced in extended imaging experiments. The focal
plane within the sample can move so that the structure of interest is no longer in the depth
of field. Causes of focal drift include thermal expansion/contraction within the microscope
body and stage, as well as relaxation of the focussing mechanism mounting the objective
lens. These factors can be minimised by maintaining a more constant temperature around the
instrument and allowing the mechanisms to relax after movement for an extended period of

time.

The focal drift of the DHPSF microscope system was measured over a 20 minute period.
The mean of seven repeats was used to estimate the expected drift as a function of time (figure
2.10). The drift was found to follow the linear fit Ar = (0.0044 +0.0003)N + (1.3 £+ 1.8),
where Ar is the Cartesian drift distance in nanometers and N is the number of frames (at 100
ms exposure). Using this equation, the focal plane is expected to drift by 160413 nm each
hour. While focal drift can occur in both directions, it is expected to go with gravity on most

occasions as the rack and pinion system mounting the objective lens relaxes.
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Fig. 2.10 Axial drift of the microscope platform over time. The Cartesian distance drifted by
the focal plane within the sample is plotted as a function of frame number (100 ms exposure
per frame) for seven repeats. A linear fit was used to estimate the expected drift as a function
of time.

Focal drift can be corrected for with fiducial markers. In SMLM, fiducial markers are
typically isolated diffraction-limited point sources that do not bleach during the acquisition,

placed somewhere in the FOV. Polystyrene spheres coated with fluorescent dye can provide
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high SNR fiducial PSFs for high-precision fiducial tracking. However, these can often saturate
the dynamic range of the detector and are prone to photobleaching over long acquisition times,
especially at the increased excitation laser powers typically used in DHPSF imaging. One
solution to this is to use 100-200 nm gold nanoparticles, which scatter the excitation laser, as
fiducial markers. This sacrifices some SNR as the scattering provides fewer detected photons
compared to fluorescent beads but has the advantage that there is no photobleaching so that
the acquisition length is instead limited by other factors. Fluorescent nano-diamonds are
increasingly being used a fiducial markers. Point defects in their crystal structure are highly
fluorescent within the visible light range and immune to photobleaching. Nano-diamonds
provide greater SNR compared to gold nanoparticles but can saturate the detector at high

excitation powers.
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Fig. 2.11 Figure caption on following page.



2.2 Characterisation of the DHPSF Platform 51

Fig. 2.11 (Previous page.) Fiducial correction of axial drift. (a) Uncorrected localisations
from a fiducial marker imaged for 30,000 frames coloured in time (right) and drift-corrected
localisations from the same fiducial marker (left). (b) Distribution of corrected localisations
in x (left), y (centre) and z (right) with fit Gaussian distributions and standard deviation
quoted. (c) Distribution of corrected localisations for a low SNR (~3) fiducial marker in x
(left), y (centre) and z (right) with fit Gaussian distributions and standard deviation quoted.

The precision of 3D fiducial correction was measured by imaging multiple fiducial
markers for 30,000 frames with a 30 ms exposure (15 minutes total acquisition time) under
typical imaging conditions. Figure 2.11 shows the motion of one of these markers before
and after fiducial correction. During this acquisition the focus of the sample was roughly
maintained by an auto-focus script written by Dr Aleks Ponjavic, this can be seen in the
discontinuous step in axial position around frame 10,000 as the peizo-mounted objective
lens is moved to return the focus to the initial position within the sample. After correction,
sample drift was eliminated and the localisations were reduced to a near Gaussian distribution
with standard deviations in all dimensions corresponding to typical localisation precisions
presented in figure 2.9 (a standard deviation of 15.2 nm, 18.5 nm and 20.6 nm in x, y and z
respectively). The same experiment was repeated at a low SNR (~3) of fiducial marker. The
measured distribution after correction fit a Gaussian distribution with a standard deviation of
36.0 nm, 35.7 nm and 71.3 nm in x, y and z respectively, representing the worst case precision
of fiducial correction.

2.2.6 Compatible Excitation Wavelengths

The DHPSF instrument includes multiple excitation laser lines enabling imaging of a range
of fluorescent probes. A 405 nm laser provides photoactivation/modulation when applicable
and 488 nm, 515 nm, 561 nm and 641 nm lasers allow for excitation of fluorophores across
the visible spectra. The majority of imaging is conducted using 561 nm excitation due to the
availability of bright and photo-stable fluorophores excited at this wavelength. For two-colour
experiments, 641 nm or 488 nm excitation is used in conjunction with 561 nm excitation as

there is little spectral overlap causing unwanted cross-excitation.

The DHPSF phase mask is wavelength specific as its thickness is tuned to cause con-
structive and destructive interference in the emission signal [103]. The DHPSF instrument is
compatible with all possible phase masks and is currently equipped with 530 nm, 580 nm
and 640 nm compatible DHPSF phase masks and the corresponding emission filters.
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When designing an experiment it is important to consider possible causes of background
related to excitation illumination that may arise. Certain hydrophobic pens, used to contain
sample media, fluoresce at certain wavelengths. The hydrophobic ink can leach into the
media and result in non-specific background fluorescence that cannot be filtered away from
the emission signal of the fluorophores of interest. This issue has been found at both 488
nm and 641 nm but not 561 nm excitation with hydrophobic pens (PAP pen, GTX22601,
GeneTex). A similar issue is also seen when using frame-seal slide chambers (9x9 mm,
Biorad) sample containers. For all imaging with excitation away from 561 nm, this problem
is overcome by employing metal sample holders (A7816, ThermoFisher), by relying on the
surface tension of the sample media to form a droplet without a holder or by using PDMS
chambers (MultiWell Chamber Coverslip, CWCS 8R-1.0, Grace Bio-Labs).

2.3 Background Reduction

As evident in figure 2.9, the achievable localisation precision in SMLM is not only limited by
the mechanical stability of the microscope but also by the number of detected photons from
individual localisations. More specifically it is the signal-to-noise ratio (SNR), defined as the
number of photons above background divided by the standard deviation of the background
(SNR = %), which is important. Recent developments in fluorescence dyes have resulted
in improved quantum yields and photostability [139, 140] allowing for increased signal to
be collected. In addition, advancements in high NA objective lenses and efficient detectors
(EMCCD and sCMOS, [141, 142]) have improved the ability to collect and measure this
signal. Typical SMLLM experiments employ a range of long-pass and band-pass optical filters
to separate background photons at different wavelengths from the emission signal of the
fluorophore being imaged. However, the optical filters are not perfect (~5-6 OD) and thus a
certain amount of off-wavelength photons pass through, leading to degradation of the SNR in
many samples. Fluorophores excited out of the depth of focus of the microscope add to this
background noise in thick samples and autofluorescence often present in biological samples
[143] initially limited high-precision SMLM to the study of thinner biological samples.

As a result, a range of background-reduction techniques have been developed, facilitating
SMLM studies of biological samples from proteins at the surface or within a supported lipid
bilayer [144, 132, 40, 145] to whole-cell eukaryotic imaging [82, 146, 147] and thick tissue
samples. These techniques include excitation-confinement amongst other approaches such

as plasmonics field-confinement. These other approaches and excitation-confinement are
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reviewed by Lee et. al. [148]. Due to their relative ease of implementation and applicability
of the samples presented in this work, only excitation-confinement techniques are outlined
and investigated here.

The DHPSF microscope was designed to be compatible with four illumination modes:
epifluorescence, highly inclined and laminated optical sheet illumination (HILO) [58], single-
plane illumination (SPI) [60, 61] and total internal reflection fluorescence illumination (TIRF)
[56, 57] (figure 2.12). A trade-off between SNR and convenience is considered before each
experiment, optimising data collection and quality.
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Fig. 2.12 (Previous page.) Example schematic diagrams illustrating the implementation
of different illumination geometries. (a) Epifluorescence illumination. Collimated light is
focussed into the back focal plane (BFP) of the objective lens, illuminating all axial planes
within the sample. (b) Total internal reflection fluorescence illumination (TIRF). Collimated
light is focussed to the BFP of the objective lens. The beam is then translated or angled so
that the angle of incidence on the coverslip/media interface is past the critical angle, creating
an evanescent field that illuminates 100-300 nm into the sample. (c) Highly inclined and
laminated optical sheet (HILO) illumination. As in TIRF illumination the angle of incidence
of the light is changed to reduce illumination above the depth of focus. A pinhole placed
before the objective lens further reduces the excitation geometry by limiting thickness of
the laser beam. (d) Single-plane illumination (SPI) by typical light sheet. A second, low
magnification, objective lens is used to illuminate the sample perpendicularly to the collection
objective. Prior to this illumination objective lens a cylindrical lens is used to create a lateral
sheet of illumination.

Epifluorescence illumination involves collimated illumination exiting the objective lens
parallel to the optical axis. This is achieved by focussing the collimated laser beam to the
back focal plane of the objective with a Kohler lens so that the objective lens re-collimates the
illumination (figure 2.12a). This excitation geometry illuminates all axial planes within the
sample simultaneously resulting in fluorophores outside of the depth of focus to be excited
and emit photons that are collected by the detector but cannot be relayed to form an image
by the objective lens, adding to background noise. Nonspecific background is also created
from outside of the depth of field. Epifluorescence is the most simple excitation geometry
to implement but also provides the lowest SNR due to its lack of sectioning. Although
it is suitable for imaging high-signal and low-background samples such as fluorescent
beads, epifluorescence illumination does not usually provide sufficient SNR facilitate single-
molecule imaging in the majority of biological samples due to the reason described above.

In total internal reflection fluorescence (TIRF) microscopy [56] the excitation laser is
incident on the coverslip-media interface at or above the critical angle so that it undergoes
total internal reflection and does not propagate into the sample. Instead, an evanescent wave is
created on the low refractive index side of the interface that penetrates only 100-300 nm into
the sample (figure 2.12b), reducing unwanted background fluorescence outside of this volume.
TIRF illumination is achieved either by changing the angle of incidence of the excitation
laser into the back focal plane of the objective or by translating the beam so that it is still
parallel to the optical axis but now entering the objective off-centre. TIRF is commonplace
in 2D fluorescence microscopy due to its ease of implementation and optical sectioning that
is well matched to the depth of field of the 2D PSF. The major disadvantage of TIRF is that
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confines imaging to surfaces. As the majority of biological systems exist in a 3D volume
with thickness larger than 300 nm, this limits the range of systems that can be investigated.
Furthermore, the presence of a non-physiological surface can perturb extracellular membrane
proteins and may not allow for the true state of the system to be determined [149—151]. In
the case of 3D SMLM techniques and especially those with large depths of fields, such
narrow optical sectioning is suboptimal as a large fraction of the working depth of field is
not being utilised and imaging is limited to the glass/water interface. Generally speaking
increasing the depth of field must come at some cost, be it experimental complexity or axial
precision. Therefore when using large depth of field 3D SMLM there are few samples that
benefit from TIRF illumination compared to other background reduction methods and thus
the two are rarely implemented together. Standard depth of field 3D SMLM techniques such
as astigmatism and biplane imaging are more compatible with TIRF illumination due to their
comparable depth of field (~500 nm).

Highly inclined and laminated optical sheet illumination (HILO) [58] is implemented
similarly to TIRF illumination. The excitation laser is translated so that it is incident on the
coverslip-media interface at an oblique angle, however, not so far as to be past the critical
angle like in TIRF (figure 2.12c). As the inclination increases the thickness of excitation
geometry is reduced [59], reducing out of focus fluorescence and reportedly increasing the
SNR by a factor 3.1-3.5. Limiting the diameter of the excitation beam can further reduce the
excitation thickness to 510 pm, roughly following the relation x = R/tan(0), where R is the
radius of excitation beam and 0 is the angle of incidence. An additional increase in SNR of a
factor 2.2-2.9 is reported when reducing the diameter from 80 ym to 15 ym on the sample,
resulting in a combined increase in SNR by a factor up to 7.6 [58]. HILO facilitates SMLM
up to 20 um into biological samples, including tissue. HILO in conjunction with DHPSF
microscopy has previously been used to resolve the cytoskeletal structure of Caulobacter
crescentus bacteria [104]. The key advantage of HILO is being able to significantly increase
SNR to a level that facilitates SM detection in noisy biological samples without adding a
great amount of experiential complexity. All samples will benefit from the SNR increase
due to inclination (as also described in VAEM [59], however the additional increase related
to excitation beam radius comes at a cost of a reduced field of view. In the case of small
samples, such as single-cell imaging presented in this work, a 30 um excitation diameter
is sufficient so the maximum SNR can be achieved. However, when larger fields of view
are required a compromise between SNR increase and excitation diameter must be reached,
limiting the applicability of the technique. The minimum achievable excitation thickness
(FWHM) of ~6 um is quite well matched to the depth of field of the DHPSF although there

is still significant excitation of fluorophores adjacent to the focal volume that can reduce
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image quality. For the DHPSF instrument the angle of inclination is altered by translating the
excitation beam perpendicularly to the optical axis of the objective lens. As a consequence,
the excitation maxima aligns with the centre of the focal plane as the excitation is always
incident on the objective lens parallel to the optical axis (supplementary information in [58].

Single plane illumination (SPI) or light-sheet microscopy refers to a range of techniques
designed to create a narrower excitation geometry via a thin sheet of light, typically running
perpendicular to the optical axis so that it fills the focal plane of the objective (figure
2.12d). In the simplest systems a second objective is used to introduce the excitation beam
perpendicularly to the collection objective lens. A cylindrical lens placed before the SPI
objective to offset the axial focal point of the illumination beam from the lateral, resulting
in sheet-like excitation geometry within the field of view. The NA of the SPI objective
determines the FWHM of the sheet which can typically range between ~0.5-5 um [152]. In
these systems the thickness (and thus excitation power density) can vary across the sample
and the field of view is often limited in the case of very narrow sheets. Other difficulties
arise from engineering a system that is capable of controlling two objective lenses in close
proximity without limiting the sample geometry. One solution to this issue is single-objective
SPIM (soSPIM) [153] in which excitation light is directed through the detection objective
lens and reflected off micro-mirrors positioned at 45° close to the sample to achieve optical
sectioning. While this method eliminates the need for a second objective lens it has less
flexibility unless the position of the micro-mirror is directly controlled as demonstrated
by Gebhardt ez. al. [154]. More complicated SPIM approaches involve beam shaping by
holography to form Bessel beams [155] and airy beams [156] that maintain a constant narrow
thickness over much larger distances and exhibit less aberration when imaging deep within
samples. Although technically more complex to implement these techniques can provide
large field of view sectioning as thin as 300 nm [87]. State of the art lattice light sheet [89]
when combined with structured illumination has demonstrated video-rate super-resolution
microscopy on entire living cells [82, 157]. As with TIRF illumination, the DHPSF is better
matched to thicker SPI techniques in order to match the ~4 pum depth of field. These thicker
(~2-5 um) techniques typically provide greater sectioning compared to HILO illumination
but with significantly more experimental complexity, not only from the additional optical
components required but also from sample geometry issues related to the second objective

lens.

In general in this work HILO excitation is used as it provides adequate optical sectioning
to image the samples presented with high SNR (typically >5) without adding to experimental
complexity. The SPI set up that was designed includes less stable components for sample
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mounting compared to the standard mounting staged used for other techniques. The reduction
in stability will have negative effects on image quality even in the presence of fiducial
correction. In the case of high-background and low-signal samples SPI may be necessary for
SMLM. SPI is also useful when employing 488 nm and 640 nm excitation, as there can be an

increase in non-specific background fluorescence at these wavelengths compared to 561 nm.

2.4 Compatible SMLM Labelling Strategies for the DH-
PSF

In principle any SMLM labelling technique that allows for the isolation of individual emitting
fluorophores is compatible with the DHPSF. The DHPSF is larger than the PSFs of other
SMLM techniques and therefor occupies a greater area on the detector in the conjugate image
plane (~5-fold larger compared to an analogous 2D experiment) (figure 2.13). Consequently,
experiments require lower imaging concentrations so that PSFs no longer overlap and thus to
obtain the same number of localisations longer acquisitions must be recorded. In this work,
SMLM is achieved by a range of labelling methods including: single-molecule concentrations
of fluorophores, PALM [30, 31], STORM [32, 41] and PAINT [38].

Fig. 2.13 Relative size of 2D PSF and DHPSF. Typical examples of 2D PSFs (top) and
DHPSFs (bottom) with circles highlighting the approximate area occupied by a single PSE.
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Fig. 2.14 SMLM labelling strategies. (a) General principles of photo-activation localisation
microscopy (PALM). An activation laser brings ‘dark’ fluorophores into a ‘on’ state where
they are localised and bleached. (b) General principles of stochastic optical reconstruction
microscopy (STORM). Initially fluorescent fluorophores are bleached into a ‘dark’ state
where an activation laser causes fluorophores to blink repeatedly until they are photobleached
(in the case of Alexa Fluor 647). (c¢) General principles of points accumulation for imaging
in nanoscale topology (PAINT). Fluorophores present in the media diffuse rapidly, blurring
out their emission. When a fluorophore contacts a target site it binds transiently so that its
emission PSF can be localised. Over time the same target sites are imaged multiple times.
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Photo-activation localisation microscopy (PALM) [30, 31] isolates the emission of indi-
vidual fluorophores by exploiting photo-activatable or photo-switchable properties of some
fluorophores. These fluorophores are initially in a ‘dark’ state with absorption spectra not
resonant with the excitation laser so that no fluorescence is observed. Upon stimulation by
an activation laser (usually at 405 nm), the fluorophore converts to a fluorescently active ‘on’
state with absorption spectra resonant with the excitation laser and the molecule is observed
until either it switches ‘off” or it irreversibly photobleaches (figure 2.14a). By tuning the
power and timing of the activation laser a stochastic subset of the ‘dark’ fluorophores can
be activated. These fluorophores are imaged and subsequently photobleached before the
next subset of ‘dark’ fluorophores are activated. The activation laser can either be pulsed to
illuminate a different subset at regular intervals or be continuously incident on the sample
at low power so that ‘dark’ fluorophores are activated at a similar rate to ‘on’ fluorophores
photobleaching. As the number of unbleached fluorophores reduces the activation laser
power can be increased so that the localisation rate remains at a constant optimal level until
completion, although this can add to the non-specific background. An advantage of PALM
is that the localisation rate can be precisely controlled by the power of the activation laser,
allowing for a range of experiments including tracking (that typically requires a lower density
of PSFs) and imaging to be conducted. In the case of certain dyes blinking is observed
so that, once activated, intermittent dark-states are observed that can make stoichiometry
measurements difficult. In addition, the conversion from ‘dark’ to ‘on’ state has a certain
efficiency so that not all fluorophores present in the sample can be observed. For example,
the fluorescent protein mEos3.2, undergoes fluorescence intermittency or ‘blinks’ 2.8 times
on average after photoactivation and has a conversion efficiency of ~40% [65]. Recent
developments in organic dyes have created bright fluorophores that blink on average 1.4
times and can exhibit 95% photoactivation efficiency [69], making stoichiometry experiments
more accessible. Another advantage of PALM is that, unlike STORM, no specific buffer is
required to facilitate the activation, meaning that biological samples can be imaged in their

typical media.

Most dyes photobleach by interaction with singlet oxygen dissolved in the imaging
buffer [158]. Stochastic optical reconstruction microscopy (STORM) [32, 41] surrounds
fluorophores by an oxygen-scavenging buffer, allowing excited electrons to stochastically
enter a triplet or dark state. Conversely to PALM, in STORM all dyes are initially fluorescent
and are sent into a dark state by the excitation laser. In the case of Alexa Fluor 647,
molecules can be brought out of this dark state multiple times by 405 nm illumination
(typically achieving ~17 switching events per Alexa Fluor 647 molecule with 405 nm
illumination or ~8 without 405 nm illumination [159] (figure 2.14b). The distribution
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of switching event numbers can make stoichiometry measurements difficult in STORM,
especially when attempting to count low numbers of targets. Similarly to PALM, the
localisation rate can be turned with activation laser power in order to achieve optimal imaging.
A disadvantage of STORM is that the buffers required to make different fluorophores blink
may be harmful to living cells, reducing the applicability of STORM to imaging in live
cells. An advantage of STORM compared to PALM for imaging is that each fluorophore
is localised multiple times so that higher localisation densities can be achieved, creating
higher-resolution reconstructions. This is especially useful for determining the distribution

of low-expression targets if stoichiometry measurements are not important.

Points accumulation for imaging in nanoscale topology (PAINT) [38] can achieve a
near-unlimited number of localisations of a single target by maintaining a supply of diffusive
imaging probe in the solution of the sample being imaged. The imaging probe (which can be
a fluorophore itself or is tagged to one) binds transiently to the target of interest. When the
probe is unbound fast Brownian motion blurs its emission out on the detector but when it is
bound to its target the emission is able to form a tight PSF on the detector and the position
can be localised (figure 2.14c). In the case of some fluorophores such as Nile red [160, 161],
which binds non-specifically to hydrophobic regions such as the space between lipids in
plasma membranes, the emissive properties are changed upon binding allowing for additional
rejection of non-bound probes. As the binding is transient, photobleached fluorophores are
replaced by unbleached fluorophores and imaging can continue indefinitely achieving 10°-
10 localisations from a single cell [82]. DNA-PAINT [39, 162] is a variant of PAINT that
uses short ‘imaging’ oligonucleotides tagged with fluorescent dyes to achieve target-specific
PAINT imaging. The target protein of interest within a biological sample is expressed with
a short ‘docking’ strand of single-stranded DNA. A complimentary ‘imaging’ strand of
DNA is added to the sample and transiently duplexes to the docking strand. The primary
disadvantage of all PAINT methods is dramatically increased background fluorescence due
to unbound fluorophores present in the media. As a consequence, excitation confinement
techniques are of increased importance compared to all other labelling strategies. The
primary advantage of PAINT is the ability to record very high localisation densities in
order to increase reconstruction resolution. In theory, DNA-PAINT allows for accurate
stoichiometry measurements, being able to distinguish between monomers, dimers and
larger clusters from the blinking rate of each target [128]. However, it has so far been
technically difficult to implement. As DNA-PAINT imaging on intracellular targets requires
cell-membrane permeability it is not applicable to live biological samples. However, there is
no reason why live cell imaging is not possible when considering extracellular targets such as
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the majority of membrane proteins. Such experiments could allow for statistically significant
diffusion analysis on an individual cell basis.

In this work all three labelling strategies are presented with the addition of labelling with
a non-modulatable fluorophore at a low labelling level so that even when all fluorophores
are emitting their PSFs do not overlap. All live cell work was conducted in this method or
with PALM whereas fixed cell work was conducted in PALM, STORM or PAINT modes

depending on the aim of the experiment.

2.5 Compatible Fluorophores for the DHPSF

Due to the photon-splitting nature and transmission inefficiencies in the additional optics of
the DHPSF compared to 2D SMLM, the DHPSF is typically only compatible with brighter
(defined as quantum efficiency multiplied by extinction coefficient) fluorophores. This can
be somewhat mitigated with the use of SNR increasing techniques as previously discussed,
however, low quantum efficiency fluorophores, such as GFP, can still be challenging to image
with the DHPSF. The fluorophores used in this work are listed in table 2.1 with expected
detected photons at 30 ms exposure under typical imaging conditions and the corresponding
localisation precisions quoted. These fluorophores were chosen as they represent some of
the brightest and most commonly used products that are commonly available and, excluding
mEo0s3.2, are compatible with NHS ester labelling of antibodies.

Expected Sth and Laterfll . Axial C L. Absorption Excitation
95th Localisation Localisation .
Flurophore photons at . . . . Maximum  Wavelength
30 ms percentile Precision Precision (nm) (nm)
(photons) (nm) (nm)
mEos3.2 350 250, 700 2612 59+5 571 561
TMR 850 450, 1,550 19+2 4345 555 561
JF549 900 600, 1,400 19+2 43+5 549 561
PA-JF549 2,000 1,000, ,5,000 13+£2 2642 552 561
AlexaFluor 647 1,900 1,200 4,000 1442 2612 650 640

Table 2.1 Experimentally measured number of detected photons of all fluorophores pre-
sented in this work with corresponding localisation precision, required excitation laser and
compatible SMLM techniques.
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2.6 Discussion

At the time of building, in 2014-15, the DHPSF instrument built in the lab was one of the
first such instruments in Europe. The instrument was designed to be capable of both 3D
DHPSF imaging and standard 2D imaging by removing the DHPSF phase-mask. This is often
useful in range finding and proof of concept experiments due to the greatly reduced fitting
times required for 2D imaging. The instrument is flexible in its application due to having
multiple laser lines (405 nm, 488 nm, 515 nm, 561 nm and 640 nm) and interchangeable filter
sets. The image path contains two 4 f systems facilitating simultaneous two-colour imaging
experiments. Drawbacks of the instrument include significant focal drift from the microscope
body. This has been somewhat mitigated with the use of fiducial correction and automated
live correction, however, newer microscope bodies such as the Nikon Perfect Focus System
allow for increased focal stability without increasing experimental complexity by adding
fiducial markers. Due to the reduction in signal inherent to DHPSF imaging the collecting
power of the objective lens and sensitivity of the detector is of great importance. At the time
of writing the instrument contains the highest NA water objective (1.27 Nikon PLAN APO)
and most sensitive EMCCD camera commercially available but in the near future there may
be scope to further upgrade these components, reducing the DHPSF’s key limitation of signal
collection. The most useful improvement to the microscope system would be automation.
Currently, finding areas of interest (such as cells and especially those with fiducial markers
within the field of view) and focussing the microscope are conducted manually, requiring an
operator in between acquisitions. Throughput could be improved significantly if all aspects
of imaging could be automated, as recently demonstrated for 3D STORM imaging by Beghin
et. al. [163].

More generally, the most obvious improvement to the DHPSF technique as a whole is
related to fitting of the raw data. Currently the only published method of reconstructing
DHPSF data is easy-DHPSF [137], which is slow compared to 2D fitting algorithms and
requires user-defined thresholds to separate noise from true PSFs, making it incompatible
with batch-processing. In 2016 the Single-Molecule Localization Microscopy Symposium
ran a software benchmarking competition encouraging the development of DHPSF fitting
algorithms with many of the entrants outperforming easy-DHPSF on test data sets. However,
at the time of writing none of these options have been published or distributed. Dr Leila
Muresan, at the Cambridge Advanced Imaging Centre, is attempting to develop steerable
filters as an alternative to the template-matching used in easy DHPSF to eliminate the need
for user-defined thresholds. Additionally, a ‘quick and dirty’ alternative fitting routine was
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written by Dr Aleks Ponjavic within the lab using PeakFit to find individual localisations relat-
ing to lobes of the DHPSF before linking together localisations in MATLAB to approximate
the 3D position of fluorophores. This fitting routine is typically a factor 10 faster than easy-
DHPSF but is subject to increased background localisations and localisation precision. As a
result, this method is only used to save time providing an initial overview of preliminary data
before all final data sets are analysed with easy-DHPSF. Wang et. al. use a cepstrum-based
reconstruction scheme to deconvolve wide-field DHPSF images into traditional 2D images
with additional 3D information, extending the depth of field of diffraction-limited imaging
[164]. A similar approach could potentially improve DHPSF identification by deconvolving
DHPSF data into traditional 2D data, where PSF identification is simpler and the library
of developed processing techniques is far more developed. Once the DHPSFs had been
identified SM fitting to the original DHPSF data would provide 3D SR information.

The key advantages of the DHPSF compared to other 3D SMLM techniques is the
increased depth of field and isotropic resolution. Astigmatism and biplane methods are
typically limited to a working depth of field of ~500 nm, defined by the focal depth of
the objective, whereas the depth of field of the DHPSF can be up to 4 um. In terms of
implementation, astigmatism microscopy is the easiest to implement as it requires just the
addition of a cylindrical lens into the emission path. Biplane microscopy can be more difficult
to implement as the path length of both channels must be precisely set in order to offset
the two focal planes. Dual-objective biplane methods are additionally complex as two high-
power objective lenses must be held in close proximity above and below the sample, limiting
sample geometry. The DHPSF method is between the two in implementation difficulty. The
4 f system requires somewhat precise alignment and the position of the phase mask is very
important. However, as global shifts in the PSF are corrected for by the calibration, so as long
as the phase mask is placed in the Fourier plane and the additional optics are broadly aligned,
the DHPSF is functional. Multifocus microscopy (MEM) [93], which has been demonstrated
to achieve a ~4 um depth of field by splitting the emission path onto nine separate areas of
the detector, requires more precise alignment of additional optics and restricts the maximum

field of view to ~20 pum in published raw datasets.

The DHPSF instrument is capable of operating in both an imaging mode and a tracking
mode, as described and demonstrated in chapters four and five respectively. The work
completed on extending the DHPSF to imaging large volumes is described in chapter three.
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2.7 Methodology

DHPSF Microscope

A bespoke microscope capable of achieving the DHPSF transformation was designed and
built incorporating two EMCCD detectors and a 1.2NA water immersion lens or 1.27NA
water immersion lens mounted on a scanning piezo stage. The water immersion lens provides
~4 um depth of field and is capable of imaging PSFs away from the coverslip surface. (see
chapter 3 for more details).

405 nm, 488 nm, 515 nm, Cobolt), 561 nm and 640 nm laser beams were circularly
polarised, expanded, collimated and aligned coaxially before being focussed onto the back
aperture of the objective lens mounted onto an inverted microscope frame. The fluorescence
signal was separated from the excitation beams into the emission path by a quad-band
dichroic mirror. In the emission path, a wavelength-specific phase mask placed in the
Fourier-plane of a 4 f system performed the double-helix PSF transformation. In two colour
experiments an additional dichroic mirror was placed in the emission path to separate the
signal originating from the two different fluorophores. Long-pass filter and band-pass filters
placed just before the detector were used to isolate the imaged fluorescence emission from
background fluorescence. Finally, an EMCCD camera recorded the emission signal for later

analysis.

Micromanager control software [165] was used to control individual laser shutters and
camera acquisition time. Manually operated optical density filters in each laser line were
used to control laser power incident on the sample. For 2D imaging the same set up was used

with the exception of excluding the DHPSF phase masks.

DHPSF-Microscope Components

Lasers 405 nm (120 mW, iBeam smart-405-s, Toptica), 488 nm (240 mW, Cobalt MLD,
Cobalt) 515 nm (400 mW, Cobalt Fandango 150, Cobalt), 561 nm (200 mW, Cobolt
Jive 100, Cobolt) and 640 nm (200 mW, iBeam smart-640-s).

Neutral density filter Wheel containing 0.2, 0.3, 0.4, 0.5, 0.6, 1.0, 2.0, 3.0 and 4.0 OD @1~
filters (FW2AND, THORLABS).
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Wavelength-specific quarter-wave plate 405 nm, 488 nm, 515 nm, 561 nm and 633 nm
(WPQ10M, THORLABS).

Beam expanders @1~ concave and convex N-BK7 lenses, anti-reflection coated 350-700
nm. Focal lengths of -30 mm and 200 mm for 405 nm, 488 nm, 515 nm and 641
nm excitation paths. @1” concave and convex N-BK7 lenses, anti-reflection coated
350-700 nm. Focal lengths of -75 mm and 200 mm for 561 nm excitation path
(Thorlabs).

Shutters and controller (SHO5 & SC10, THORLABS).

Excitation filters (FF01-405/10-25, LL0O1-488-25, LLO1-514-25, LL02-561-25, FFO1-
640/14-25, Semrock).

Kohler lens @17 focal length 300 mm N-BK7 Plano-Convex lens, anti-reflection coated
350-700 nm (LA1484-A).

Dichroic beam combiners (Di02-R561-25x36, Di02-R514-25x36, Di02-R405-25x36,
Semrock).

White light source (M590L3-C5).
Microscope body (Eclipse Ti-U, Nikon).
Beamsplitting dichroic (Di01-R405/488/561/635-25x36, Semrock).

Objective lens (1.2 NA Plan Apo VC 60x, 1.27 NA Plan Apo VC 60x or 1.45 NA CFI
Apo TIRF 60x).

Objective lens piezo translation (P-726 PIFOC, PI).

Sample mounting stage (HLD117, Prior Scientific) with bespoke aluminium inset (De-
partment of Chemistry workshop).

4 f system lenses ?2” focal length 200 mm N-BK7 Plano-Convex lenses, anti-reflection
coated 350-700 nm (LA1979-A).

Three-axis translation stages (PT3(A)/M).

Emission filters For 488 imaging (FF01-496/LP-25 & FF01-525/15-25, Semrock). For 515
imaging (FFO1-515/LP-25 & FF01-582/75-25, Semrock). For 561 imaging (BLP02-
561R-25 & FF01-580/14-25, Semrock). For 640 imaging (BLPO1-647R-25 & FF02-
675/67-25, Semrock).
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DHPSF phase mask (DoubleHelix Optics) for 530 nm, 580 nm and 650 nm wavelength

emission.

EMCCD detector (Evolve 512 Delta, Photometrics).

Calibrating the DHPSF

In order to calibrate the relationship between rotation of the DHPSF and axial position within
the depth of focus, diffraction-limited fluorescence beads were imaged at the appropriate
wavelength while being scanned through the depth of focus. For all work presented in
this thesis, calibration was achieved by imaging 100 nm Tetraspeck fluorescently labelled
polystyrene beads (T7279, ThermoFisher).

A solution of 100 uL of a ~3.6x 108 particles/mL solution of fluorescent beads in
phosphate-buffered saline (PBS) (2810305, MP Biomedical) was prepared and filtered (0.22
um Millex-GP syringe filter unit, Millipore). Argon-plasma cleaned (PDC-002, Harrick
Plasma) microscope slides (24 x50 mm borosilicate, thickness No. 1, Brand or 22x22 mm
borosilicate, thickness No. 1, VWR) were coated with 0.01% poly-L-lysine (PLL) (molecular
mass 150-300 kDa; P4832, Sigma) for 30 minutes and washed with filtered PBS before
adding the diluted beads. After 2 minutes at room temperature the slides were washed in
filtered PBS and imaged using the DHPSF microscope. The piezo stage was used to scan the
objective lens axially through the sample in 40-50 nm steps across 4 ym, recording ten 30

ms exposure acquisitions at each step.

Determination of Localisation Precision

Fluorescent beads, prepared as in DHPSF calibration, were imaged for 2,000 frames with 30
ms exposure with and without the inclusion of the phase mask in the imaging path at a range
of laser powers such that the emission signal of the beads covered the dynamic range of the
EMCCD using a method previously described [105] Beads were localised using PeakFit for
2D images and easy-DHPSF for DHPSF images. An algorithm was written in MATLAB
to analyse the output localisations, separating localisation from individual beads via basic
cluster analysis. A histogram of the position of each bead’s localisations in each dimension
was plotted and fit to a Normal distribution. The standard deviation of the fit Gaussian
function gives the localisation precision in each dimension. This value was then plotted
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against the mean number of detected photons per frame for each bead. An exponential decay
with the form ¥ = Ae*/" +C was fit to this data, where C represents the ultimate stability of
the instrument and t the speed at which this localisation precision is reached.

Measurement of Focal Drift

Fluorescent beads, prepared as in DHPSF calibration, were imaged for 30,000 frames with
30 ms exposure by the DHPSF microscope. An auto-focus script roughly maintained the
focus of the sample by periodically checking the angle between the lobes of the DHPSF of

the fiducial marker and moving the piezo stage to return to the original position.

Fiducial correction was then applied to correct the position of the marker with the
distribution of the corrected position plot via a histogram in all three dimensions. A Gaussian
function was fit and used to extract the standard deviation of this distribution in x, y and z.
The SNR was reduced by lowering the laser power so that the fiducial marker was close to

the detection limit and the experiment was repeated.



Chapter 3

Reducing Aberrations in the DHPSF
Away from the Coverslip

This chapter describes work conducted towards reducing specific aberrations present when
imaging with the DHPSF. First, in collaboration with the O’Holleran group in CAIC, the
effect of Fourier-plane misalignment is addressed and a solution to minimise this aberration
is provided. Then a description of how spherical aberrations in the DHPSF that are present
when imaging away from the coverslip can be reduced, extending the DHPSF to imaging
large volumes. Quantification of the form of the DHPSF before and after this aberration

reduction is provided and the trade-offs of the methodology are discussed.

Contributions

Dr Steven Lee and I designed the experiments presented in this chapter. All experiments were
conducted and analysed by me. Sohaib Abdul Rehman and Dr Kevin O’holleran identified
and modelled the aberrations caused by phase mask misplacement. Sohaib helped to take

data relating to Fourier-plane shift and advised about analysis.



70 Reducing Aberrations in the DHPSF Away from the Coverslip

Named Publications Relating to this Chapter

* Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix
Point Spread Function. Alexander R. Carr, Aleks Ponjavic, Srinjan Basu, James
McColl, Ana Mafalda Santos, Simon Davis, Ernest D. Laue, David Klenerman and
Steve F. Lee. Biophysical Journal, 2017.

* Maximizing the field of view and accuracy in 3D Single Molecule Localization Mi-
croscopy. Sohaib Abdul Rehman, Alexander R. Carr, Martin O. Lenz, Steven F. Lee
and Kevin O’Holleran. Optics Express, 2018.

3.1 Compensation of Fourier Plane shift by Phase-Mask

Translation

The majority of modern microscopes employ infinity-corrected objective lenses which output
collimated light rays collected from the focal plane. These rays are then focussed to an
image in the image plane by a tube lens. As a result, the exact distance between the back
focal plane (BFP) of the objective lens and the tube lens is not crucial for the majority of
2D localisation microscopy. This is useful as additional optics can be added between the
objective and tube lenses (in infinity space) without moving the image plane. However,
in the case of 3D imaging techniques, the position of the tube lens is more important as
it can result is a displacement of the Fourier plane in 4f systems (figure 3.1a&b). If a
phase-modifying component (such as the DHPSF phase mask) is placed out of the Fourier
plane of the objective lens, point sources away from the central focal plane are laterally
shifted relative to the optic (figure 3.1c), which results in a spatially varying PSF. The cause
of this shift is discussed further by S.A. Rehman et. al. [166].
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Fig. 3.1 (Previous page.) The effect of Fourier plane misalignment on DHPSF imaging.
4f system (L1&L2) emission paths for an idealised microscope (a) and a typical infinity
corrected microscope (b). A shift in the distance between the back-focal plane of the
objective lens and the tube lens (TL) causes a translation of the Fourier plane and thus the
phase mask (PM) should be translated accordingly. (c) Ray trace of the emission of three
points within the FOV overlapping in the true Fourier plane of the system. (d) Simulated
radial displacements of the DHPSF for a 35 mm mismatch between PM and Fourier plane. (e)
Simulated displaying the effect of radial distortion across the depth of field on SMLM image
reconstruction when imaging a spherical sample (errors exaggerated 10-fold). The aberration
acts to contract the reconstruction below the centre of the focal plane and to expand it above
the centre of the focal plane.

The effect of Fourier-plane misalignment on localisation reconstruction is that localisa-
tions are shifted radially with a magnitude and direction determined by both the position of
the fluorophore laterally from the image centre and the distance away from the axial midpoint
(figure 3.1d). This acts to compress the reconstruction below the focal midpoint and expand
it above the focal midpoint (figure 3.1e). This can be particularly important when precise
comparisons are being made between large distances or when successive focal planes are
aligned to form a composite image. In literature, the phase mask of DHPSF systems is
routinely shown to be in the focal plane of the relay lenses [98, 99, 92], indicating that this
aberration is commonplace within DHPSF data. Moreover, in work published by Diezmann
et al. post-correcting field-dependent aberrations in the DHPSF, a similar radial displacement
is seen [167]. In the supplementary information of this study an approximately 70 nm radial
shift is shown at an axial depth of 600 nm, suggesting that phase mask has been placed in the
centre of the 4f system rather than in the true Fourier plane.

For our DHPSF instrument, when the DHPSF phase mask was placed in the expected
Fourier plane (i.e. the centre of the 4 f systems), the lateral shift of beads across the field of
view was measured to reach 120 nm by 1.5 um above and below the centre of the focal plane.
This shift was reduced to ~50 nm when the phase mask was moved closer to the true Fourier
plane (figure 3.2). In this case the lateral shift of the DHPSF was minimised empirically
and thus was limited by the ability to see a change in DHPSF centre point compared to the
EMCCD’s pixels. It is important to note that this shift relates to a loss of accuracy and not a
loss of precision within localisation fitting. Repeatedly localised fluorophores/objects will
exhibit broadly similar distributions across the field of view, however, the precise distance
between points far apart in the field of view will be expanded/contracted in relation to their
axial position. The effect this shift has on localisation data is further discussed by S.A.

Rehman et. al. [166]. In experiments that require precise measuring (a precision of <50 nm)
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of large distances (>~5 pm) between points or accurate stitching together of multiple planes,
this effect can be further minimised by more-precise phase mask placement. However, for all
experiments presented in the following chapters the loss of accuracy is negligible. This work
was published in 2018 in Optics Express [166].

Fig. 3.2 Correction of errors due to Fourier-plane misalignment. (a) Raw data of DHPSF
identifying the individual fluorescent beads analysed in (b) and (c). (b) Total axial displace-
ment error across a 3 um depth of field for five fluorescent beads across the FOV when the
DHPSF phase mask is placed in the centre of the 4 f system. (c) Total axial displacement
error across a 3 um depth of field for the same five fluorescent beads across the FOV when
the DHPSF phase mask is placed in the true Fourier plane.

1500



74 Reducing Aberrations in the DHPSF Away from the Coverslip

3.2 Reducing Spherical Aberration Away from the Cover-
slip

In the absence of aberration, the DHPSF rotates linearly as a function of depth within the
depth of field so that measuring the angle between lobes corresponds to the true depth within
the sample. As aberration is introduced the DHPSF is degraded, spreading out the lobes and
altering the rotation [97, 168]. This not only results in a reduction of signal but also in a

discrepancy between the apparent depth and true depth.

Spherical aberration (SA) is characterised by the axial spreading out of the PSF of an
optical system so that rays are not all focussed to the exact same point. SA is induced
when different rays effectively travel different distances due to variations in refractive index
between their respective paths. This is the case when imaging a sample with an immersion
objective lens that employs an immersion media with a different refractive index to the
sample being imaged, with the effect being exaggerated with increased axial depth into the

sample, as shown in figure 3.3.

n,

Objective Lens

@ Point Source  TD:True Distance
n .<n, AD: Apparent Distance

Fig. 3.3 Ray diagram of an immersion objective lens imaging point sources in a sample
of different refractive index representing sample media and immersion liquid/coverslip
(approximating Rimmersion = Rcoversiip)- A change in refractive index results in a discrepancy
between true distance and apparent distance from the interface.
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In DHPSF imaging, the mismatch of refractive index between immersion oil (n=1.515),
used for high numerical-aperture (NA) objective lenses, and typical sample media (n ~1.33)
degrades the DHPSFs when imaging away from the surface (figure 3.4). With increased
axial depth, an asymmetry in the rotation of the DHPSF is induced [101] before the form of
the two lobes is completely degraded [147] so that fitting cannot be conducted. Theoretical
modelling of the DHPSF estimates a discrepancy of 800 nm between true depth and apparent
depth at the centre of a focal plane positioned 50 tm above from the coverslip surface, when

imaging in water with an oil immersion objective lens [168].

1.45 NA Oil Immersion Lens

Bead 1: Bead 2: Bead 3: Bead 4:

Fig. 3.4 DHPSFs at increasing axial depths. Example DHPSFs from 100 nm fluorescent
beads when imaged with a 1.45 NA Plan Apo TIRF oil immersion objective lens at a range
of axial depths. Fluorescent beads were suspended in 1% agarose solution (n ~1.33). Labels
represent the distance above the coverslip of each image plane. Scale bars are all 1 yum.

As the refractive index of biological samples is typically close to that of water (72,,47,=1.33,
NHeLa—cell ~=1.37 [169], Npovine—muscie—tissue =1.38 [170]), SA is introduced when imaging
away from the coverslip surface with an oil immersion objective lens. This has limited the
working range of DHPSF imaging to volumes at the coverslip surface, making it incompatible
with most aspects of eukaryotic cell imaging. Previously, the DHPSF had only been shown to
image smaller prokaryotes and the basal surface of eukaryotic cells [101, 100, 106, 103, 104].
However, in addition to recent developments in whole-cell imaging [82, 146], large-volume
imaging away from the coverslip with the DHPSF is motivated by biology. Many biological
processes in eukaryotes occur away from the coverslip surface, in the nucleus or cytoplasm,
outside of the axial range of previous DHPSF imaging methodologies. Interactions between
membrane proteins and coated-coverslip surfaces may also perturb resting-state dynamics
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and organisation [171, 150, 151]. In many cases the apical membrane may provide a more

physiological representation of membrane protein distributions.

3.3 Matching the Refractive Index of Media and Immer-

sion Liquid

The effect of refractive-index mismatch between immersion liquid and sample media on
imaging above the coverslip was identified by Hell et. al. in confocal microscopy [172, 173].
In this case, oil or glycerol was used as media to match the refractive index with the immersion
oil and reduce spherical aberration away from the surface. For biological samples it is more
convenient to employ a water-immersion objective lens in order to match the refractive
indexes, at the cost of some collecting power. Collecting power goes as NA?. The theoretical
difference in collecting power between a 1.45 NA and 1.2 NA lens is a factor 0.685 and
was measured to be 0.676 by 5,000 2D localisations of fluorescent bead PSFs at constant
excitation power. When imaging in aqueous media (e.g. agarose and most sample media)
with a water immersion objective lens, the form of the DHPSF is preserved further than
50 um above the surface (figure 3.5) due to the reduction of SA. Fixed biological samples
display a higher refractive index (typically ~1.4) and thus may be better matched by the
use of silicone oil immersion objective lenses (n;icone =1.41), however, in practise water
immersion lenses have proven suitable for imaging away from the coverslip in live and fixed

tissue samples.

3.4 Quantification of Aberration away from the Coverslip

The effect of SA away from the coverslip was investigated by imaging fluorescent beads
suspended in a gel solution with a refractive index close to water. The fluorescent beads
were scanned through the depth of focus of the objective lens at 50 nm intervals via a piezo
motor. A 1.45 NA oil immersion objective lens was used to image fluorescent beads with
a focal plane centred at the surface and 5 um, 15 um and 30 um above the surface. The
relation between the angle of the DHPSF and axial position of the stage was plot so that
an angle of 0 degrees corresponded to the mid-point of the focal plane (z = Oum) for three
repeats at each focal depth (figure 3.6). No localisations could be fit when the focal plane was

positioned 30 um above the coverslip. At 5 um above the coverslip the angle matches well
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1.20 NA Water Immersion Lens

Bead 1: Bead 2: Bead 3: Bead 4:

Fig. 3.5 DHPSFs at increasing axial depths. Example DHPSFs from 100 nm fluorescent
beads when imaged with a 1.20 NA Plan Apo water-immersion objective lens at a range of
axial depths. Fluorescent beads were suspended in 1% agarose solution (n ~1.33). Labels
represent the distance above the coverslip of each image plane. Scale bars are all 1 um.

to those recorded at the coverslip for negative depths (below the centre of the focal plane).
For positive depths (above the centre of the focal pane), the angle was significantly less when
imaging above the coverslip (at +1.5 um the angle was -63° when imaging at the coverslip
and -54° when imaging 5 um above the coverslip). This is consistent with theoretical and
experimental data presented by Ghosh ez. al. [168] for the case of increasing SA. When
imaging 15 pm above the coverslip, the curve flattens out further, deviating from the surface
case above and below the centre of the focal plane (the difference in angle was +15° and -12°
at +1.5 um and -1.5 um respectively). The rotation rate was reduced with increased distance
from the coverslip, corresponding to an increase in the depth of field as the apparent depth
and true depth are separated by SA, as shown in figure 3.3.
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Fig. 3.6 The effect of increased spherical aberration due to imaging above the coverslip with
a mismatch of refractive indices on the rotation of the DHPSF. A 1.45 NA oil immersion
lens was used to image fluorescent beads suspended in aqueous gel (n & ny,q4s¢r) at a range
of depths above the coverslip with the DHPSF in 50 nm axial steps throughout the depth of
focus. The angle between DHPSF lobes as a function of axial position within the depth of
focus is plot for three repeats of beads at the coverslip surface (red), 5 um above (blue) and
15 um above (green) the coverslip surface. An angle of 0° is taken to represent the centre of
the focal depth (z = 0 nm).
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A 1.2 NA water immersion objective lens was used to scan fluorescent beads suspended
in gel solution to better match the refractive indices of the immersion liquid and gel. The
focal plane was centred at the surface and 15 um, 30 um and 45 um above the coverslip
surface. The angle between the lobes of the DHPSF was plot against the axial position of
the stage so that an angle of 0 degrees corresponded to the mid-point of the focal plane (z=0
um) for three repeats at each focal depth (figure 3.7a). It was possible to fit the DHPSF at all
axial distances with no obvious deterioration of the form of the DHPSF by eye. The curves
plotted for all axial distances above the coverslip overlapped at all axial positions, indicating
that there was no significant distortion of the depth of focus with increased distance from the

coverslip.

The total 3D Cartesian error between each fluorescent bead was investigated using easy
DHPSF with a bead at the surface used as the calibration stack in order set thresholds to
identify localisations in the remaining bead data. The total Cartesian error was determined
at each 50 nm axial step for each bead using the mean position of localisations from the
respective image plane in x, y and z with the equation r = , /r} +r3 +r2, where r is the total
Cartesian error, and ry,, are the mean displacement in x, y and z respectively. The Cartesian
position of the bead at z =0 nm was considered as the origin in displacement calculations.
The produced plot of axial position and Cartesian error (figure 3.7b) showed significant
localisation errors increasing towards the periphery of the depth of focus, reaching ~100 nm
at the extremes. However, no significant differences in error were seen between beads at
different distances away from the coverslip. These errors are within the range expected for
non-fiducial corrected experiments and would likely be brought to within the localisation
precision limits should fiducially correction be implemented. This work was published in
2017 in the Biophysical Journal [147].
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Fig. 3.7 The effect of imaging above the coverslip with matched refractive indices on the
rotation of the DHPSF. A 1.27 NA water immersion lens was used to image fluorescent
beads suspended in aqueous gel (n = n,,4.r) at a range of depths above the coverslip with the
DHPSF in 50 nm axial steps throughout the depth of focus. (a) The angle between DHPSF
lobes as a function of axial position within the depth of focus is plot for three repeats of
beads at the coverslip surface (red), 15 um above (blue), 30 um above (green) and 45 um
above (purple) the coverslip surface. An angle of 0° is taken to represent the centre of the
focal depth (z = 0 nm). (b) Total Cartesian error as a function of axial depth the bead data
shown in (a). The bead located at the surface that was used to create templates for fitting in
easy DHSPF is highlighted (thick red line).
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3.5 Discussion

Reducing aberration is important for any imaging system in order to preserve image quality
across the sample as well as factors such as usable field-of-view (FOV). Aberration can be
particularly damaging for super-resolution techniques due to the small length scales being
investigated and thus many studies have focussed on its reduction, especially in 2D [174—
176]. Although a number of studies have been published addressing aberration in the DHPSF
system [167, 168] the field is still relatively unknown. The cause of the lateral-shifting
aberration was not previously known, as demonstrated by characteristic radially-increasing
lateral errors quantified but not reduced by Diezmann ef al. [167]. While the work presented
in this chapter focusses on the effect of Fourier plane translation on the DHPSEF, the cause
and solution apply to all PSF engineering techniques employing infinity-corrected optics. In
the case of the DHPSF, a reduction in this spatially-varying aberration reduces systematic
lateral and axial errors, extending the usable FOV so that the excitation geometry is now the
limiting factor [166]. Reducing this aberration is important for imaging employing successive
image-planes with the DHPSF. The lateral contraction at the bottom of the focal volume
would overlap with the lateral expansion at the top of the focal volume, resulting in potential
misalignment of up to ~400 nm for a radius of 21 um if the phase mask is positioned in the

centre of the two 4f lenses as opposed to the Fourier plane [166].

Infinity corrected optics are routinely employed in modern microscope setups as addi-
tional optics such as polarisers can be added into the emission path without effecting the
position of the image plane. This allows for more flexible microscope design but can have
unwanted effects for phase-modifying imaging modalities as the back focal plane of the
objective lens no longer aligns with the focal plane of the tube lens. This has the effect
of separating the conjugate back focal plane with the Fourier plane of the system. When
designing a microscope employing phase-modifying optics (as required for PSF engineering),
this separation should be measured to ensure optimal instrument performance. The exact
position of the Fourier plane is also dependent on the wavelength of light due to chromatic
aberration and thus optics should be moved accordingly when imaging at different wave-
lengths. The approximate position of the Fourier plane within a 4f system can be found
by eye by passing collimated light down the objective lens and minimizing the spot created
within the 4 f system. More precise alignment requires measurement of the rotation of the
DHPSF across the field of view to minimise relative motion between PSFs. It is possible to
envision an analysis tool that would identify and analyse the relative motion of DHPSFs from
fluorescent beads as they are scanned through the focal plane of the microscope. This could
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provide a quantitative metric on the alignment of the phase mask with the Fourier plane that

could be used to rigorously locate the optimal alignment of the system.

3.5.1 Consequences of Employing Water-Immersion Lenses

The reduction of SA away from the surface comes with trade-offs. The primary disadvantage
of employing a water immersion lens over an oil immersion lens is a sacrifice of collecting
power. As previously stated, a factor 0.685 reduction of signal is expected. Due to the
photon-splitting nature of the DHPSF this is of increased importance as it further limits
the sensitivity of the technique to low SNR samples. For newer bright organic dyes this is
typically not a limiting factor, however, for dimmer fluorescent proteins, such as GFP, this
reduction in signal can be critical. Another issue is the evaporation of the immersion media
for water immersion lenses. This can limit the duration of very long experiments (>~5
hours) and lead to additional focal drift. Immersion oils with a refractive index matched to
water can be used to eliminate this effect when long acquisitions are required. Advantages of
using water as an immersion liquid include ease of cleaning and a reduction in the relaxation
time when the focal plane is moved due to the reduced viscosity of water compared to oil.
The depth of focus of the DHPSF is affected by the NA of the objective lens (as well as by
the emission wavelength, 1). Ghosh et. al. calculate that the rate of rotation of the DHPSF is
proportional to ~ An, [168], so that swapping from a 1.45 NA oil immersion lens to a 1.27
NA water immersion lens should result in a 14% increase in rotation rate. However, a ~5%
reduction in rotation rate was observed for the data presented in figures 3.6&3.7 over a 3 um

axial range. This is likely due to unspecified differences between lens constructions.

Reducing SA away from the coverslip in biological samples by employing a water
immersion objective lens facilitates DHPSF imaging in a range of previously inaccessible
areas, such as the apical cell surface, the cytoplasm and nucleus of cells [147]. Whole-cell
imaging is also made possible by stitching together neighbouring image planes distributed
across large volumes. The true physiological state of protein dynamics on the cell membrane
can be investigated on the apical surface of cells, away from interactions with coated coverslip
surfaces that may have perturbative effects [171, 150, 151]. This advancement allows for
a greater range of biological processes to be investigated by the DHPSF, adding to the

versatility of the technique as a biophysical tool.

Applications of the DHPSF in technically demanding areas of cells, away from the

coverslip surface, are described and demonstrated in chapters 4 and 5.
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3.6 Methodology

Measurement of Error due to Fourier Plane Shift

In order to measure the localisation error caused by misalignment of the DHPSF phase mask
outside of the Fourier plane, fluorescent beads (T7279, ThermoFisher) were imaged across
the depth of focus at a range of lateral positions across the field of view. The same beads
were axially scanned through the focus with the phase mask placed in the midpoint between
the two lenses in the 4 f systems (the theoretical Fourier plane) and in the true Fourier plane.
The true Fourier plane was found by minimising lateral shift during rotation across the field
of view empirically in iterative steps. The lateral position of each bead at the middle of the
focus (z =0 nm) was taken as its origin and the total Cartesian distance from the origin for

each bead was recorded at each axial position as the error.

Imaging the DHPSF Away from the coverslip Surface

Fluorescent beads (T7279, ThermoFisher) were suspended in either agarose (A9414, Sigma)
or phytagel (P8169, Sigma) and imaged with the DHPSF with 561 nm excitation. For
suspension in agarose, a 1% solution of agarose in 2 mL of filtered (0.22 um Millex-GP
syringe filter unit, Millipore) phosphate-buffered saline (PBS) (2810305, MP Biomedical)
was heated until boiling and kept at 40°C until use. For suspension in phytagel, a 1%
solution of pytagel and 2 mL of filtered PBS was heated until boiling and kept at 70°C. For
both solutions, 0.5 L of a 1.8 x 10! particles/mL solution of fluorescent beads (T7279,
ThermoFisher) was added to 100 uL of gel solution at temperature. 50 uL of the mixture was
then deposited onto argon-plasma cleaned (PDC-002, Harrick Plasma) coverslips (22 x22
mm borosilicate, thickness No. 1, VW) and allowed to cool to room temperature. The slides
were then mounted onto the DHPSF instrument and the piezo stage was used to determine
the distance above the coverslip and scan the objective axially through the depth of focus.
Ten 30 ms exposures were recorded at each 50 nm step for all fluorescent beads at a range of
axial depths into the sample.
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Quantifying Signal Reduction Between Water and Oil Immersion Ob-

jective Lenses

Fluorescent beads on Poly-L-lysine (PLL) (molecular mass 150-300 kDa; P4832, Sigma)
coated coverslips were imaged without the DHPSF phase mask at the coverslip surface with
both a 1.45 NA oil immersion objective lens (1.45 NA CFI Apo TIRF 60x, Nikon) and a
1.20 NA water immersion objective lens (1.2 NA Plan Apo VC 60x, Nikon). Ten fields of
view were imaged in each case for at 30 ms exposure, collecting ten frames at each location.
PeakFit [136] was used to fit the observed 2D PSFs and extract the mean number of photons

detected per localisation.



Chapter 4

Single-Particle Tracking Applications of
the DHPSF

This chapter focusses on 3D tracking of individual proteins in areas previously inaccessible to
the DHPSF. The reduction of spherical aberration away from the surface described in chapter
3 facilitates tracking of single particles in live cells away from the coverslip. Single-particle
tracking experiments are presented for a range of target proteins, including membrane-bound,
cytoplasmic and nuclear proteins, for cell in suspension and adherent cells. Finally the
applicability of the DHPSF to single-molecule tracking is discussed.

Contributions

Dr Steven Lee and I designed all experiments presented in this chapter. I conducted all
experiments and analysed all data. All diffusion analysis and simulation code was written by
myself in MATLAB. Dr James McColl maintained T cell samples and assisted with T-cell
labelling. Dr Srinjan Basu and the Laue group provided all labelled ES cell samples and

helped to design the preliminary tracking experiments presented in figure 4.11.
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Named Publications Relating to this Chapter

* Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix
Point Spread Function. Alexander R. Carr, Aleks Ponjavic, Srinjan Basu, James
McColl, Ana Mafalda Santos, Simon Davis, Ernest D. Laue, David Klenerman and
Steve F. Lee. Biophysical Journal, 2017.

4.1 Tracking away from the Coverslip Surface

The DHPSF has previously been used to track mRNA labelled by association with the
fluorescent protein EGFP in yeast cells [101] as well as quantum dots diffusing in 80%
glycerol and at the coverslip surface of colon-derived cells [100]. These studies have been
confined to imaging at the coverslip surface or in high-n, media (1.44 n, for 80% glycerol)
to due to spherical aberration present when imaging away from the coverslip caused by a
mismatch in refractive index between the immersion liquid (1.52 n, for immersion oil) and
imaging sample (=1.33 n, for water-based media and cells). However, there is also strong
research interest in SPT in live cells away from the coverslip surface [177, 131, 113] for
which the DHPSF was previously incompatible due to increased spherical aberration. The
reduction of spherical aberration, when imaging away from the coverslip described in chapter
3, by matching the refractive index of the immersion media and sample, facilitates live-cell
SPT with the DHPSF across large volumes [147]. This enables SPT studies of protein motion
and binding kinetics at the apical surface of cells, away from potential interactions with
unphysiological surfaces. It also enables SPT studies in the nucleus of mammalian cells,

where 2D techniques typically perform poorly due to non-flat sample geometries.

4.2 3D Single-Particle Tracking Tools

Although a range of SPT tools are freely available for 2D localisation data, 3D-SPT tools
are not yet well established and distributed. The two most common diffusion-analysis tools
are mean-square displacement (MSD) [134] and jump-distance (JD) [178] analysis. Both
MSD and JD analysis determine diffusion coefficients by linking localisation data in time to

identify trajectories of individual fluorophores. A range of studies have focussed on dealing
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with aspects such as fluorophore blinking, platform drift and crossing/overlapping trajectories
[179-181].

MSD analysis calculates diffusion coefficients by plotting the mean-square displacement
of trajectories from their origin for a given time interval Ar [182—185]. The shape of the
MSD curves produced provides information on the nature of the diffusion. For example:
a linear correlation between MSD and Ar indicates free Brownian motion, a plateau in the
curve indicates confined diffusion and an increasing slope indicates directed motion such
as active transport [186, 187]. MSD analysis can be conducted on individual trajectories by
considering multiple start points or an ensemble of many trajectories to provide information
about the overall diffusion population. However, as the analysis generally averages over
all points within a trajectory transitions between diffusion states (such as a change from
Brownian motion to active transport or an increase in diffusion coefficicent) can be obscured
[188]. Similarly MSD analysis is not well suited to identifying subpopulations of diffusion
states, although it can still be used to separate large differences in diffusion populations.
MSD analysis becomes susceptible to inaccuracies when trajectories are short, as is often
the case when imaging fluorescent proteins, as multiple start points cannot be considered
from each trajectory [134]. As a rough guide, M. J. Saxton proposed that the maximum
time interval considered should not exceed one-quarter of the total number of steps within
a trajectory [134]. Therefore, if a minimum of four points are used to fit the MSD curve a

minimum trajectory length of 16 time steps is required.

When experimental conditions limit trajectory length, an alternative method to analyse
SPT data is jump distance (JD) analysis [178, 189—192]. In JD analysis, the distribution
of Cartesian distances between successive localisations (jumps) within all trajectories is
compared to a theoretically-derived probability function. By including multiple populations
with different diffusion coefficients and fractions into the probability function it is possible to
distinguish different diffusion subpopulations with greater accuracy than MSD methods. As
JD analysis does not consider individual trajectories it does not provide information on the
type of diffusion being exhibited (free, confined or active motion), additionally it provides
less-accurate estimates for absolute values of diffusion coefficient, compared to MSD, for the

majority of datasets as positional uncertainty errors are not averaged out within trajectories.

In this work, both MSD and JD analysis was extended to 3D-SMLM for 3D-SPT analysis
of DHPSF datasets. The input for both methods was designed to be a list of 3D coordinates
so that it is compatible with any 3D-SMLM technique or 2D-SMLM datasets by setting the

axial position to a fixed value. The number of dimensions exhibited by the motion is also an
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input parameter, altering the analysis to account for diffusion bound to a surface (2D motion
in a 3D space) or full 3D diffusion (3D motion in a 3D space). The diffusion analysis was
coded in MATLAB and is appended to this thesis.

4.3 Extending Mean-Squared Displacement Analysis to 3D

An algorithm performing MSD analysis on 3D localisation data was written in MATLAB by
extending a method previously published by Weimann et. al. [135] into three dimensions
(code available in appendix). However, unlike the previous code, the written analysis does
not include its own fitting functions but instead operates on input localisation data (rather
than raw image data). This makes the code applicable to localisation data from any SMLM

source, in either 2D or 3D.

In 2D, the MSD for a given time interval nAt is defined as:

l—n

MSD(nAt) = ZL LG4 ) — 2O+ DG+ 0 @.1)

Where [ is the trajectory length, At is the time step between successive image frames and

x and y are the 2D spatial coordinates of the particle.

In 3D this is extended to:

[—n

MSD(nAt) = IL Z x())P 4+ (i4+n) =y +[z(i+n) —z())> (4.2

Where x, y and z are the 3D spatial coordinates of the particle.

This MSD as a function of time interval, nAt, is related to the short-range diffusion
coefficient by:
MSD(nAt) = 2gDnAt +2qc° (4.3)

Where ¢ is the number of dimensions of diffusion present (3 for 3D diffusion or 2 for
membrane-bound diffusion), D is the diffusion coefficient and ¢ is the localisation precision
of the SMLM technique. In the case of 3D-SMLM, in which the lateral and axial localisation
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precisions are generally different, o is a convolution of the localisation precision in each
dimension.

In order to extract the diffusion coefficient of individual trajectories a linear fit was
conducted on the first four points of the MSD plot described by equation 4.3. Only trajectories
with >16 localisations were used in this analysis since the maximum time lag should not
exceed a quarter of the total trajectory length [134]. Ensemble diffusion coefficients were
determined by calculating the mean MSD for each time interval between all trajectories, with

errors given by the standard deviation.

4.3.1 Benchmarking Mean-Squared Displacement Analysis

In order to verify the results from the written MSD analysis algorithm, its performance
was tested on a 2D data set and compared to the output of the previously published MSD
code from Weimann et. al. For benchmarking purposes only, a 2D TIRF dataset of the
membrane-bound T-cell receptor (TCR) complex tagged with tetramethylrhodamine (TMR)
via a HaloTag diffusing on the basal surface of 12 Jurkat T cells sat onto passivating-coated
coverslips was passed to both codes with the output MSD curves compared (figure 4.1) (see
chapter 6 for a detailed introduction to T-cells and the adaptive immune response). For 2D
analysis the axial position of all localisations was input as 0 nm to satisfy the data input
format requirements of the code. The Weimann code output a 2D Diffusion coefficient of
0.046+0.002 um?/s and the written code output 0.04640.002um?/s. All points on the MSD
curves are within error and the calculated MSD curves agree well. The two lines do not
match perfectly, most likely due to minor discrepancies between the position lists produced
by each fitting protocol. The Weiman code includes its own fitting routines in MATLAB
whereas the Peakfit plugin for ImageJ [136] was used to fit the raw 2D dataset for the written
analysis code.

Next, the performance of the code was benchmarked against simulated 3D datasets (see
chapter 4 methodology for more details) across a range of diffusion coefficients expected from
biological samples (~0.1 um?/s for membrane-bound proteins and ~1 pm?/s for unbound
diffusion). The effect of trajectory length and localisation precision on the performance of
the analysis was investigated by distributing points randomly in space and displacing each
point in 3 dimensions by a distance randomly sampled from a normal distribution with a

width equal to the expected one-dimensional MSD for each frame, given by:
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Fig. 4.1 Benchmarking MSD analysis against previously published code. A 2D data set
of a membrane protein diffusing on the basal surface of Jurkat T cells was compared to a
previously published MSD analysis algorithm.

MSD = v2DAt (4.4)

For each time step an addition displacement was added to all dimensions to simulate the
effect of localisation precision of the instrument. This distance was sampled from a normal
distribution centred at zero with a width equal to the measured lateral localisation precision in
x and y and the measured axial localisation precision in z, for a simulated number of detected
photons (see chapter 2). Unless stated otherwise, the number of simulated time steps was
16 per trajectory and the number of photons was assumed to be 1,000. The recall of the

algorithm was calculated and compared to the simulated diffusion coefficients using:

D
Recall — calculated (45)

simulated

The effect of the number of tracks analysed on recall was investigated by simulating
trajectories with an experimentally determined localisation precision at a range of diffusion
coefficients (figure 4.2a). 20 simulations with a 30 ms time step (as used in the majority of
imaging experiments) were used to determine the mean recall value and standard deviation
at each number of trajectories. The mean error in recall (|1 — Recall|), was less than 0.02
after 100 trajectories are considered and the standard deviation of recall was below 0.05 after
200 trajectories were considered, for all simulated diffusion coefficients. This indicates that
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after 200 trajectories of minimal length (16 time steps) are analysed the algorithm is robust
for diffusion coefficients of as slow as 0.01 pm?/s, with fewer trajectories required for faster

diffusion coefficients.

The effect of localisation precision determined by the number of detected photons on
recall was investigated by simulating trajectories at a range of different diffusion coefficients
(figure 4.2b). 20 simulations of 400 trajectories with a 30 ms time step were used to determine
the mean recall and standard deviation at each number of detected photons. The mean error
in recall was below 0.02 after 100 detected photons, which is below the detection limit of
the microscope, for all simulated diffusion coefficients. The standard deviation of recall was
below 0.05 for simulated diffusion coefficients of >=0.1 um?/s at all considered detected
photon numbers. For a simulated diffusion coefficient of 0.01 gm?/s, ~500 detected photons
resulted in a standard deviation in recall of <0.05. This indicates that, at all experimentally
feasible detected photon numbers, analysing 400 trajectories of minimal length (16 time steps)
is robust for diffusion coefficients >=0.1 m?/s. For robust analysis of diffusion coefficients
as low as 0.01 um?/s a mean detected photons of >500 is required. This information was

used to define a minimum number of detected photons for tracking experiments presented in
this thesis of 500.

4.3.2 Identifying Bound and Unbound Trajectories

Additional functionality separating trajectories displaying bound/confined motion (e.g. static
particles) from unbound/Brownian diffusion was implemented into the diffusion analysis
code. Erroneous bound events are can be an issue in live-cell SPT experiments. By only
considering unbound motion for samples known to exhibit only free or partially confined
diffusion the impact of these erroneous trajectories can be reduced. This also acts as a
useful tool in separating diffusion populations in systems exhibiting both bound and unbound
motion, such as chromatin-remodelling proteins in embryonic stem cells [193], as the two
populations can be analysed separately. In order to separate bound and unbound trajectories
the individual MSD curves of all trajectories were compared to a linear fit to the first four
points. Trajectories whose MSD curve did not fit well to a linear fit, by measure of R? value,
were considered to be bound. Simulated trajectories were considered in order to determine
the threshold value of R? to best separate the two populations. 600 trajectories were simulated
as before for diffusion coefficients of 0 um?/s, 0.1 um?/s and 0.7 wm?/s, representing typical
values for bound, membrane diffusion and 3D unbound trajectories respectively, each with

axial and lateral localisation precisions centred at expected values for 500 detected photons.
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Fig. 4.2 Benchmarking MSD analysis against simulated 3D SPT trajectory data. (a) Mean
recall in simulated diffusion coefficients from 20 simulated datasets at a range of diffusion
coefficients as a function of the number of trajectories considered. (b) Standard deviation of
recall as a function of the number of trajectories considered. (c) Mean recall in simulated
diffusion coefficients from 20 simulated datasets at a range of diffusion coefficients as a
function of 3D localisation precision determined by the number of detected photons per
localisation. (d) Standard deviation of recall as a function of localisation precision.

For each trajectory the first four points of the MSD was fit with a linear function and the
R? value recorded. A cumulative histogram of R? for each population was created (figure
4.3). An R? value of 0.85 was determined to give the most accurate identification of diffusion

state, identifying >90% of unbound and bound trajectories correctly.
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Fig. 4.3 Separating bound and unbound trajectories by R? value of linear fit to individual
MSD curves. The fraction of simulated tracks from three diffusion populations that were
misidentified as a function of the threshold value of R? is plot. The dashed line at R> = 0.85
represents the optimal threshold used in later SPT analysis.

4.4 Extending Jump Distance Analysis into 3D

JD analysis in 2D and 3D was added into the written algorithm. For 2D JD, the method
provided by the previously Weimann code was followed [135]. For 3D, this method was
extended to account for the modified probability distribution of Brownian motion in 2D
compared to 3D. In 2D free-space diffusion the probability of a particle with a diffusion
coefficient D displacing a distance r in time 7 is given by:

P(rt) = ﬁe—’z/“” (4.6)

Thus the normalised cumulative probability distribution of jump distances in 2D is given
by [135]:

C(rt)=1—e " /40 (4.7)
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In 3D free-space diffusion the probability of a particle with a diffusion coefficient D

displacing a distance r in time t is given by:

2
P(rt) = Le—’2/40f (4.8)
(4mDr)>2

By integration, the normalised cumulative probability distribution of jump distances in

3D is given by:
8Dt r 2
= D —re /4D 4.
C(r7t> (47'L'Dl)% [\/(ﬂ’- l)erf(\/m) re ] ( 9)

Where erf() is the error function. Validation of equation 4.9 is shown for simulated 3D

trajectories with experimentally determined localisation precision in figure 4.4.

The cumulative distribution of jump distances extracted from 3D-SPT tracking data
is fit to a number of populations of equation 4.9 with different diffusion coefficients and
fractions. Up to three populations are considered by the written code with the fewest number

of populations that produces a good fit taken as the final answer.

4.4.1 Benchmarking Jump Distance Analysis

JD analysis is highly sensitive to localisation errors as, unlike in MSD analysis, the absolute
distance of each jump is considered without any information about direction. As a result,
when the localisation precision is comparable to the distance moved between each time
step significant overestimations of the diffusion coefficient can occur. The effect of localisa-
tion precision on jump distance analysis was investigated by simulating static trajectories
(see chapter 4 methodology for more details) with localisation precisions sampled from
experimentally determined values at a range of detected photon numbers (figure 4.5a). The
cumulative histograms of jump distances extracted from 20 repeats of ten particles at 300
time points separated by 30 ms (3,000 jumps) were fit to equation 4.9 in order to deter-
mine an idealised apparent diffusion coefficient. At 500 detected photons, a typical value
for DHPSF SPT experiments as a compromise between SNR and track length, a diffusion
coefficient of 0.035 um?/s was observed for a time step of 30 ms. The apparent diffusion
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Fig. 4.4 Validation of 3D jump distance probability distribution vs 2D distribution for
simulated trajectory data. 10,000 jump distances were simulated with a diffusion coefficient
of 0.5 um?/s and an experimentally determined localisation precision at 500 detected photons
(25 nm laterally and 50 nm axially). The diffusion coefficient was calculated to be 0.5575
wm?/s. (a) Cumulative histogram of simulated jump distances with fitted 3D (blue) and 2D
(red) distributions as described in equation 4.9 and 4.7, respectively (data, yellow, obscured
by 3D fit line). (b) Histogram of simulated jump distances with fitted 3D and 2D distributions
given by the gradient of the lines plot in (a).

coefficient fell to 0.01 um?/s by 1,700 detected photons, representing an ~10% error for
typical membrane-bound protein diffusion.

The effect of the number of jumps considered on recall was investigated by simulating
trajectories with an experimentally determined localisation precision at 500 detected photons
for a range of diffusion coefficients (figure 4.5b&c). 20 simulations with a 30ms time step
were used to determine the mean and standard deviation of recall with increasing number of

jumps. Due to the apparent diffusion coefficient quantified above for 500 detected photons
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and a 30 ms time step, JD analysis performed poorly in terms of mean recall for simulated
diffusion coefficients of 0.01 um?/s and 0.1 um?/s, achieving a mean recall of ~4.5 and
~21.5 respectively at all jump numbers considered. Faster simulated diffusion coefficients
were more accurately returned as the localisation precision constituted a smaller fraction of
the total movement between time steps. At simulated diffusion coefficients of 0.5 pm?/s
and 1 um?/s a mean recall of ~1.1 and ~1.05 were achieved at all number of jumps. The
standard deviation of recall was consistently below 0.05 after ~1,000 jumps for all but the
slowest diffusion coefficient (0.01 pm?/s), which stabilised at ~0.1 after ~2,000 jumps.
This analysis indicates that JD analysis is prone to systematic errors in diffusion coefficient
estimations when localisation errors comprise a significant fraction of the distance travelled

between time points but is relatively robust to the number of trajectories considered.

Next, the effect of localisation precision as a function of detected photons on recall was
investigated for 3000 simulated jumps (figure 4.5d&e). 20 repeats of ten particles each with
ten, 30 ms time steps at a range of simulated diffusion coefficients and experimentally deter-
mined localisation precision (see chapter 2) at a range of detected photon numbers. At higher
detected photons, the recall of JD analysis is improved for slow diffusion coefficients (0.01
pum?/s and 0.1 um?/s). However, for faster moving diffusion coefficients (0.5 um?/s and 1
(m?/s) the number of detected photons has very little influence on recall. This is unsurprising
as the localisation uncertainty comprises a greater fraction of the observed motion for slower
diffusion compared to faster diffusion. Therefore, a reduction in localisation uncertainty will
have a proportionally greater effect on the uncertainty of movement for slow diffusion as
the distances moved are comparable to the uncertainty. For fast diffusion the localisation
uncertainty is already insignificant at low detected photons compared to the total distance

moved so the improvement is small.
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Fig. 4.5 Benchmarking jump distance analysis on simulated 3D SPT trajectory data. (a)
The apparent diffusion coefficient measured by JD analysis on simulated static particles
with localisation uncertainty experimentally determined by the number of detected photons.
(b) Mean recall in simulated diffusion coefficient from 20 simulated datasets at a range of
diffusion coefficients as a function of the number jumps considered. (c) Standard deviation
of recall as a function of the number of jumps considered. (d) Mean recall in simulated
diffusion coefficients from 20 simulated datasets at a range of diffusion coefficients as a
function of the number of detected photons (colour scheme described in all other legends).
(e) Standard deviation of recall as a function of the number of detected photons.
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4.4.2 Identifying Diffusion Populations

One of the key benefits of JD analysis is its ability to resolve individual diffusion populations
that may be present within a sample. Up to three diffusion populations can be fit with the
analysis code. This could be extended to any combination of 2D and 3D diffusion populations
if necessary. The performance of the code in separating diffusion population was evaluated
with idealised simulated datasets comprised of populations with different diffusion coefficient
(figure 4.6). 20 repeats were conducted to find the mean and standard deviation of diffusion
coefficient and fraction assigned to each population at three different numbers of jumps
(1,000, 10,000 and 100,000). An experimentally determined localisation uncertainty was
included for 500 detected photons in order to emulate typical experimental conditions. Two
diffusion distributions were analysed, the first with equal fractions of 1 um?/s, 0.1 pm?/s
and 0.01 um?/s diffusing populations (figure 4.6a&b) and the second with equal fractions of
1 um?/s, 0.5 um?/s and 0.1 um?/s diffusing populations (figure 4.6c&d).

Fig. 4.6 (Following page.) Identifying diffusion populations in simulated 3D SPT trajectory
data. 20 datasets for two distributions of diffusion populations were simulated: D; = 1um?/s,
D; = 0.1um?/s and D3 = 0.01um?/s in equal fractions and Dy = 1um?/s, Dy = 0.5um?/s
and D3 = 0.1um?/s in equal fractions at 1,000, 10,000 and 100,000 jumps. (a) Mean and
standard deviation of diffusion coefficients and fractions for the first distribution output by
JD analysis. (b) Examples of one, two and three population fits to the simulated datasets for
the first distribution. Individual diffusion populations are labelled. (c) Mean and standard
deviation of diffusion coefficients and fractions for the second distribution output by JD
analysis. (d) Examples of one, two and three population fits to the simulated datasets for the
second distribution. Individual diffusion populations are labelled.
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The diffusion coefficients of the first distribution (figure 4.6a&b) were returned well
even at 1,000 considered jumps (D; = 1.05 iO.lOumz/s, f1=0.34+0.02, D, =0.11 £
0.04um?/s, f> =0.41+0.09, D3 = 0.07 +0.06um?/s, f3 = 0.26 4 0.10), with errors re-
ducing at high jump numbers. At all jump numbers the fraction of the second and third
population were overestimated and underestimated respectively, although the true value
was within error for the 1,000 jump case. This is likely due to the localisation uncertainty

appearing to increase the diffusion coefficient for slow-moving particles.

The second distribution (figure 4.6c&d) was less well identified with greater errors
for each measurement. At 1,000 total jumps the distribution was identified to be D; =
0.974+0.20um?/s, fi =0.5140.14, Dy = 0.25+£0.14um?/s, f, =0.37+0.08, D3 = 0.12+
0.04um?/s, f3 =0.134+0.11. However at greater jump numbers the distribution could be
better resolved with D; = 1.00 + 0.09,um2/s, f1=0.39+0.10, D, =0.48 + O.O9um2/s,
f>=0.30£0.08, D3 = 0.136 +0.005um?/s, f3 = 0.31£0.02 at 100,000 jumps.

Subfigures 4.6b&d show examples of one, two and three populations fit to both distribu-
tions for 10,000 jumps. For the first distribution (figure 4.6b), the three population fit matches
the simulated diffusion coefficients and fractions within the error expected (quantified in
figure 4.5a at 500 detected photons). The first overall distribution of JD does not match
well to either one or two populations. However, the second distribution (figure 4.6d) does
not match the simulated diffusion coefficients and fractions within expected errors and the
overall distribution is well represented by both two and three population fits. In this case
it would be difficult to judge from the data if two or three populations were present even
though the populations are more distinct than in the first distribution. This indicates that the
performance of the JD analysis could be influenced by the underlying distribution present in

the sample.

4.5 Implications of MSD and JD for 3D Single-Particle Track-

ing

The metrics of interest, the underlying truth of the system and the experimental data available
dictate whether MSD or JD is the better analysis tool. In both cases accuracy is improved as
more data is collected, however, the nature of the trajectory data can influence the accuracy of
JD and MSD differently. For example, if many short trajectories are collected, as if typically
the case for SPT of fluorescent proteins, JD analysis can be effective while MSD requires at
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least 16 time steps in each trajectory and may not be applicable. JD considers each time step

individually and thus is not affected by track length but rather the total number of jumps.

JD is prone to systematic errors when the localisation uncertainty is comparable to
the expected distance moved due to diffusion. This can limit its applicability to high-SNR
systems or fast moving targets. In MSD localisation uncertainty errors are averaged out within
trajectories, leading to a more uniform performance across the range of diffusion coefficients
expected from biological systems. In the majority of SPT experiments a compromise between
SNR (relating to localisation precision) and track length must be found. Once the minimum
number of photons required to be detected by the SPT instrument is reached, MSD analysis is
relatively more robust to the number of detected photons compared to JD analysis, allowing
for longer tracks to be recorded without sacrificing recall for most biologically relevant
diffusion coefficients. In 3D localisation errors are typically increased compared to 2D and
an additional dimension of error is present, decreasing the effectiveness of JD analysis more
significantly compared to MSD analysis.

JD analysis is better-suited to separating multiple populations of diffusion coefficient
that may be present in some biological systems. For example, JD analysis could provide
information on the ratio of membrane-bound to cytoplasmic instances of a protein within a
cell with less data compared to MSD analysis as each trajectory is sampled multiple times.
Given a sufficient number of trajectories, MSD analysis is capable of providing the same
information; however this is not always possible, especially if quantification is required for
individual cells. MSD analysis has the added advantage of providing information on the type
of motion exhibited by individual trajectories, identifying free diffusion, confined motion
and active transport. In this way additional diffusion populations can be identified that may
be hidden in JD analysis.

While many analysis tools are available for 2D SPT and there is an extensive list of
publications investigating many aspects of analysis [194, 195], the resources for 3D SPT
are comparatively lacking. For example, the effect of sampling error caused by motion blur
as a particle diffuses within the exposure time of the detector [196] and by the pixel-based
nature of camera detectors [197] on 2D MSD analysis have been studied but not yet extended
into 3D. With the recent emergence of 3D-SPT instrumentation, 3D analysis techniques will

follow in due time.

For the imaging conditions presented in the following applications, MSD analysis proves
more reliable at returning diffusion coefficients. JD analysis proved less reliable in practice,
with its performance varying depending on the underlying composition of the diffusion
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populations of idealised datasets. As a result, MSD analysis was chosen as the preferred
analysis tool in all presented applications. All algorithms described above are attached as

appendices.

The following sections describe the application of 3D SPT using the DHPSF in previously
inaccessible regions away from the coverslip surface (see chapter 3). To our knowledge, these

examples are the first implantation of the DHPSF for SPT away from surface in eukaryotes.

4.6 Single-Particle Tracking on the Apical Surface and in
the Cytoplasm of T cells

Previous SPT studies on T-cell membrane proteins have been conducted in 2D, either
focussing at the coverslip surface [198] or at the apical membrane on non-flat geometries
[199]. Imaging at the coverslip surface flattens out the membrane but potentially introduces
unwanted interactions between the proteins of interest and the surface [150, 151]. 2D
analysis of movement on non-flat surfaces may obscure the true behaviour of the target and
cause simple diffusion to show apparently complex patterns that can be misinterpreted for
incorrect conclusions [149]. The surface of T cells exhibits a wide range of complicated 3D
nanoscale structure including membrane ’ruffles’ and pseudopodia [200, 201], adding a 3D
component to the diffusion of membrane-bound proteins and necessitating the use of 3D SPT
techniques. The movement of cytoplasmic and nuclear proteins is also not well represented
by 2D projections due to the inherent 3D nature of cells and inhomogeneity in their internal

structure.

In order to demonstrate the SPT capabilities of the DHPSF in traditionally demanding
areas of cells, membrane-bound and cytoplasmic T-cell proteins were imaged on the top
~4 um of live Jurkat T cells sat on passivating IgG-coated coverslips (figure 4.7). The
membrane-associated T cell receptor (TCR) was imaged as it diffused over the nanostructure
of the apical surface of live Jurkat T cells and the intracellular protein Zap70 was imaged
inside live Jurkat T cells (figure 4.7b). Both proteins were tagged via a HaloTag ligand
labelled with TMR fluorescent dye. MSD analysis measured the mean diffusion coefficient
of the TCR to be 0.11040.007 ,umz/s (424 trajectories across 15 cells), whereas the mean
diffusion coefficient of Zap70 was measured to be 1.34 4-0.04um?/s (435 trajectories across
six cells). The precision of diffusion measurements was estimated by imaging static TCR
at the apical surface in fixed Jurkat cells and was found to be 0.008 4 0.002um?/s (132
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Fig. 4.7 SPT of membrane-bound and intracellular proteins in live human T cells. (a)
Schematic of experimental setup for 3D SPT of T-cell proteins away from the coverslip with
the DHPSF (top). A white light imaging of a live T cell viewed with the DHPSF phase-mask
is shown with example DHPSFs (bottom). (b) Representative side-on and top-down views of
trajectories of membrane-bound (TCR, left) and intracellular (Zap70, right) proteins at the
apical surface.

trajectories across 6 cells), agreeing well with the observed errors in live-cell TCR diffusion.
The MSD plot for the TCR fit well to a straight line, indicating free diffusion, whereas the
MSD plot for Zap70 fell below the straight line fit to the first four points of the MSD curve
at higher time intervals, indicating a degree of confinement, most likely corresponding to

confinement within the cell volume (figure 4.8).

The determined TCR diffusion coefficient is significantly higher than previously reported
values obtained from the apical surface of Jurkat T cells. James et. al. measured a diffusion
coefficient of 0.06 = 0.01um?/s for TCR by fluorescence correlation spectroscopy [199].
MSD analysis of a 2D x-y-projection of our 3D trajectory data reports a mean diffusion
coefficient of 0.064 & 0.004 /mum?/s, which is in good agreement with previously reported
values. No specific value for cytoplasmic Zap70 could be found for comparison although a
study by Sloan-Lancaster et. al. report cytoplasmic Zap70 to diffuse faster than 1 pm?/s, the
upper limit measurable by their FRAP instrument [202].



104 Single-Particle Tracking Applications of the DHPSF

a, 09
— TCR
0.8/ | — zap70 %
__ 07} [—TCR fixed }

(o]

= 0.67
305
O 04
< 03
0.2+
0.1} e
20 40 60 80 100120140160180200 20 40 60 80 100 120140160180 200
dT (ms) dT (ms)
b, 10
6 cells
n=435

100 ¢ 15 cells

/&’\ n= 24

>

Erwl | =

E 6 cells

107 X2

103
Q0
/\/'DQ/\ «(/‘6\9
&

Fig. 4.8 MSD analysis of membrane-bound, intracellular and static T cell proteins. (a) MSD
plots for Zap70 (intracellular) and TCR (membrane-bound) live and fixed with linear fits to
the first four points. A magnification highlighting the MSD curves for live and fixed TCR
diffusion is shown to the right. (b) Ensemble diffusion coefficients for Zap70 and TCR live
and fixed determined by MSD analysis (horizontal bars) with cell-to-cell variation (circles)
and total number of trajectories analysed. The size of the circles is proportional to the number
of trajectories obtained from the cell. Small circles represent cells with fewer trajectories
while large circles represent cells with many trajectories. The number of trajectories ranges
from ~30-140 per cell for Zap70 and ~5-40 for TCR due to cell-to-cell variation.
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4.6.1 3D Diffusion Measurements in Comparison to 2D Models for
Membrane Surfaces

In order to confirm the importance of 3D SPT compared to 2D for tracking membrane-bound
targets, trajectories were simulated on the top surface of smooth spheres with a diffusion
coefficient of 0.1 um?/s and experimentally determined localisation uncertainty (figure
4.9a&Db). 250 trajectories were simulated over five spheres, each with a 20 time steps. The
MSD of the trajectories was analysed in 3D and from a 2D projection to measure the apparent
difference in diffusion coefficient. The 3D MSD analysis reported a mean diffusion coefficient
of 0.103 +0.003um?/s while 2D MSD analysis reported a mean diffusion coefficient of
0.078 + 0.003um2/s. The ratio of 3D to 2D diffusion coefficient is 1.34 £ 0.02, which

represents a systematic error caused by the curvature of a sphere.

MSD analysis was conducted on a 2D projection of the live membrane-bound TCR data
presented in figure 4.8. 3D MSD analysis previously reported a mean diffusion coefficient
of 1.110/ pm0.007um?/s while 2D MSD analysis reported a mean diffusion coefficient of
0.064 +0.004um?/s (figure 4.9d). The ratio between 3D and 2D diffusion coefficient is
1.72£0.22, which is considerably larger than expected from diffusion on the top of a smooth
sphere. This increase originates from movement away from a spherical surface which can
be seen in figure 4.9¢ and is likely caused by ruffles and pseudopodia in the outer T cell
membrane. A previous study of T cell morphology via electron microscopy determined an
analogous ‘roughness factor’ of 1.8 to account for the effect of T-cell morphology in 2D
diffusion measurements [200], which has since been used to correct for 3D effects in T cell
membrane protein diffusion studies [203, 204]. This measurement is in good agreement
with the ratio between 2D and 3D diffusion measurements determined from the TCR dataset.
The current study represents a case where 3D SPT, facilitated by the DHPSF, is essential
for accurately representing protein dynamics in complex 3D environments. This work was
published in 2017 in the Biophysical Journal [147].
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Fig. 4.9 2D MSD analysis of 3D motion. (a) top-down and side-on views of simulated 3D
trajectories on the top surface of a sphere and corresponding 2D projection. (b) MSD plot
for simulated diffusion on a spherical surface analysed in 2D and 3D. (c) Representative
top-down and side-on view of membrane-bound 3D DHPSF trajectories from a 1 ym lateral
slice of the apical surface of a T cell. The thickness of the trajectories is rendered as ~100
nm to represent the worse-case localisation uncertainty. Unlike the simulated trajectories,
these trajectories are seen to exhibit significant radial movement, away from a model sphere.
(d) MSD plot for membrane-bound diffusion analysed in 2D and 3D. The ratio between 3D
and 2D diffusion coefficients is greater than expected from diffusion on a spherical surface.
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4.7 Single-Particle Tracking in the Nucleus of Embryonic
Stem Cells

In order to demonstrate the applicability of the DHPSF to SPT of nuclear proteins in
vivo and across cell types (suspension and adherent cells) we investigated the chromatin
remodeler CHD4, a nuclear protein known to play a critical role in embryonic stem cell
(ES) pluripotency as part of the larger nucleosome remodelling and deacetylase (NuRD)
complex [205]. A previous 2D SPT study showed that CHD4 occupies two diffusion states in
near-equal ratios: bound to chromatin and a fast-moving state [193]. The same study reported
that the removal of the nuclear protein methyl-CpG Binding Domain Protein 3 (MBD3)
resulted in a ~25% increase in the diffusion coefficient of the fast-moving population of
CHD4 compared to wildtype cells. Due to the limited nominal focal plane of conventional
2D SPT (~500 nm) and the fast 3D motion of nuclear proteins, this study was unable to
record trajectories with enough time points for MSD analysis. Instead JD analysis was used
to quantify the motion of a 2D-projection of the true motion. 3D SPT and the large depth of
field afforded by the DHPSF allow for longer trajectories to be collected and thus for more
robust and detailed MSD diffusion analysis to be conducted.

We used the DHPSF to track nuclear CHD4 tagged with HaloTag ligand labelled with
JF549 fluorescent dye in wildtype mouse ES cells and MBD3 null mouse ES cells (figure
4.10). As described in figure 4.3, MSD analysis was be used to identify freely-diffusing
trajectories with ~90% recall, allowing for the two populations of CHD4 diffusion to
be separated. The mean diffusion coefficient of unbound CHD4 was determined to be
0.60 £ 0.01um?/s in wildtype cells (851 trajectories over 58 cells) and 0.75 +0.03um?/s
in MBD3 null cells (1212 trajectories over 26 cells), exhibiting the same ~25% increase
previously reported [193]. Both MSD plots exhibited linearity for the first four points but fall
below the fit by the sixth time point (figure 4.10c), indicating a small degree of confinement
most likely caused by the boundary of the nucleus. The mean diffusion coefficient of bound
CHD4 by nature did not fit well to a straight line and thus no meaningful diffusion could be
measured. The bound diffusion coefficient of CHD4 was measured to be 0.06 +0.03um?/s
for wildtype cells and 0.07 +0.03um?/s MBD?3 null cells. This work was published in 2017
in the Biophysical Journal [147].

These results are being followed up in a study of additional components of the NuRD
complex by Dr Srinjan Basu in the Laue group (Biochemistry Department, University
of Cambridge). Structural links between components as well as how the entire complex
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Fig. 4.10 SPT of CHD4 nuclear protein using the DHPSF in live mouse ES cells. (a)
Schematic of experimental procedure for SPT in the nucleus of ES cells using the DHPSF.
(b) Side-on and top-down view of CHD4 trajectories from a ~4 um thick section within an
ES cell nucleus. The bound and unbound populations of CHD4 can clearly be seen. (¢) MSD
plot for unbound trajectories in wildtype and MBD?3 null cells with linear fit to the first four
points.

assembles and which sub-complexes exist are being probed by analysis of relative diffusion
coefficients and binding times in a range of knock-out cell lines. SPT data for the chromatin
remodeling complex constituent proteins CHD4, MBD3 and MTA was analysed by MSD
(figure 4.11).

For CHD4, wildtype cells and MBD3 and GATAD2A knock-out cells were imaged with
CHD4 labelled with PAJF549 via HaloTag ligand (figure 4.11a&d). In wildtype cells, the
mean diffusion coefficient of unbound CHD4 was determined to be 0.619 4 0.022um?/s
(2,539 trajectories) with an unbound fraction of 0.36. In MBD3 null cells, the mean diffusion
coefficient of unbound CHD4 was determined to be 0.73 £ 0.04um?/s (2,474 trajectories)
with an unbound fraction of 0.36, agreeing well with the data presented in figure 4.10. In
GATAD2A null cells, the mean diffusion coefficient of unbound CHD4 was determined to
be 0.554 +0.022um?/s (3,636 trajectories) with an unbound fraction of 0.32.

For MBD3, wildtype cells and CHD4 and GATAD2A knock-out cells were imaged
with MBD3 labelled with PAJF549 via HaloTag ligand (figure 4.11b&e). In wildtype cells,
the mean diffusion coefficient of unbound MBD3 was determined to be 0.60 +0.03um?/s
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(1,828 trajectories) with an unbound fraction of 0.31. In CHD4 null cells, the mean diffusion
coefficient of unbound MBD3 was determined to be 0.429 +0.018um?/s (909 trajectories)
with an unbound fraction of 0.31. In GATAD2A null cells, the mean diffusion coefficient
of unbound MBD3 was determined to be 0.711 +0.025um?/s (1,531 trajectories) with an

unbound fraction of 0.34.

For MTA3, another component of the NuRD complex, wildtype cells and CHD4,
GATAD2A and MBD3 knock-out cells were imaged with MTA3 labelled with PAJF549
via HaloTag ligand (figure 4.11d&f). In wildtype cells, the mean diffusion coefficient of
unbound MTA3 was determined to be 1.13 +0.08um?/s (94 trajectories) with an unbound
fraction of 0.28. In CHD4 null cells, the mean diffusion coefficient of unbound MTA3 was
determined to be 1.30 £ 0.05um?/s (145 trajectories) with an unbound fraction of 0.50. In
GATAD2A null cells, the mean diffusion coefficient of unbound MTA3 was determined to be
0.91 4 0.04m?/s (472 trajectories) with an unbound fraction of 0.45. In MBD3 null cells,
the mean diffusion coefficient of unbound MTA3 was determined to be 0.93 4 0.04pm?/s
(222 trajectories) with an unbound fraction of 0.53. For all MTA3 cells a low number of
trajectories were recorded, likely due to low expression of MTA3-HaloTag. Due to biological
variation a greater number of trajectories should be collected to accurately represent the
overall distribution.
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Fig. 4.11 3D SPT using the DHPSF for components of the NuRD complex in live embryonic
stem cells. (a-c) MSD plots for CHD4, MBD3 and MTA3 proteins for wildtype cells and a
range of knock-out cells. (d-f) Determined mean diffusion coefficient of unbound populations
of CHD4, MBD3 and MTA3. The fraction of trajectories determined to be unbound is plot
for each cell line.

4.8 Discussion

The presented applications show that the DHPSF can be used to perform 3D SPT in situations
where 2D SPT typically performs poorly: at the apical cell surface and in the nuclei of
living cells. Previously the DHPSF has been applied to tracking mRNA in Saccharomyces
cerevisiae in which MSD analysis was used to determine a mean diffusion coefficient of
0.040 um?/s [101]. This result, coupled with the presented measured diffusion coefficients,
demonstrates the ability of the DHPSF to track particles with a wide range of diffusion
coefficients.
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4.8.1 3D Single-Particle Tracking with the DHPSF for membrane-bound

targets

As shown, 2D projections can obscure components of motions associated with membrane
nanostructure when tracking membrane-bound targets, making it easy to draw erroneous
conclusions. For example, diffusion on the surface of microvilli orientated parallel to the
optical axis would appear static in 2D and could be misinterpreted as a binding event. In
the absence of membrane ruffles on the basal surface, it is possible to accurately represent
diffusion with 2D SPT when imaging at the coverslip surface. However, interactions with
unphysiological hard-coated surfaces can perturb the resting dynamics of membrane proteins
[150, 151, 171]. This effect is especially relevant for membrane-bound proteins with signifi-
cant extracellular domains such as the T-cell membrane proteins TCR and CD45 [206]. The
DHPSF provides an elegant solution for SPT of membrane-bound targets in their natural state
as it is capable of imaging large volumes away at the apical surface of biological samples on
non-flat geometries. Even tracking membrane-bound targets diffusing at the coverslip surface,

membrane ruffles may cause significant axial variation [151] that necessitate 3D-SPT.

4.8.2 3D Single-Particle Tracking with the DHPSF for cytoplasmic and

nuclear targets

Fast-moving 3D diffusion is also not well represented in 2D, as it is highly likely that the
target will leave the imaging volume during acquisition, dramatically shortening recorded
trajectories. When tracking CHD4 with the DHPSF, MSD analysis was able to show that the
diffusing population was largely freely diffusing as opposed to being actively transported
or confined. This observation was not possible in previous 2D experiments as only short
trajectories could be recorded [193] and provides additional information on the native

behaviour of the protein.

4.8.3 Advantages and disadvantages of the DHPSF for Single-Particle
Tracking

Compared to commonly implemented 3D SPT techniques, such as Astigmatism and Biplane
microscopy, the DHPSF offers an increased depth of field of ~4 um compared to ~500
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nm and consequently is capable of recording longer trajectories. Other 3D SPT techniques,
such as off-focus imaging [207] and Tetrapod-PSF engineering [113], are capable of imaging
over large depths of fields, achieving ~3 um and up to 20 um depths of field respectively.
These techniques also afford the ability to record long tracks with high precision at the
cost of an increased size of PSF and reduced signal collection. Astigmatism and Biplane
represent some of the smallest 3D PSFs while also providing the shallowest focal depth. The
DHPSF provides a compromise between PSF size and depth of field that is useful in a wide
range of SPT applications, occupying a ~5 fold larger area compared to 2D imaging (in
comparison the Tetrapod PSF can take up a ~200 fold larger area at the periphery of the depth
of field). Imaging techniques that increase the size of the PSF require fewer molecules to be
simultaneously fluorescent so that their PSFs don’t overlap, reducing the labelling density
that can be imaged and thus increasing the acquisition time to record the same number of
trajectories. Multifocus microscopy (MFM) has been demonstrated for 3D SPT [93, 208].
The ~4 um depth of field of MFM is comparable to that of the DHPSF while the size of
the PSF is comparable to Biplane imaging, allowing for higher densities of molecules to be
imaged compared to the DHPSF. In the case of MFM the trade-off is instead in field of view
as the image is split into nine components on the same detector, reducing the amount of data

that can be simultaneously collected.

As a PSF is spread over more pixels (as is required for extended depth of field 3D SPT) the
SNR is reduced as the photons are also spread out. Currently, brighter organic dyes provide
the best candidates for 3D SPT due to their increased quantum efficiency and photostability
compared to fluorescent proteins [69]. As more photons are required to localise a single
emitter when using the DHPSF compared to 2D SPT one must either sacrifice time resolution
(with longer exposure) or use higher laser activation powers (to excite more photons per unit
time and thus reduce trajectory length) to image the same samples. For the DHPSF, SPT
experiments with individual fluorescent proteins cannot currently employ MSD analysis due
to reduced track lengths. This limitation can be circumvented by tagging the target with
multiple fluorescent proteins. Thompson et. al. labelled mRNA-protein complexes with ~32
EGFP molecules for SPT with the DHPSF [101]. Another option is to employ JD analysis
for fluorescent protein SPT studies. As discussed above, JD analysis is currently less robust
for 3D localisation techniques due to the increased number of positional uncertainty errors

but is applicable to short trajectories.

The DHPSF is well suited to SPT in almost all situations so long as organic dyes can
be used. 3D SPT is beneficial compared to 2D SPT in all situations containing non-flat

geometries. In photon-limited imaging cases other 3D SPT techniques that sacrifice less
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SNR, such as astigmatism, may be better-suited than the DHPSF. With 3D SMLM techniques
becoming more widespread, 3D SPT is likely to become more prevalent, motivating the
development of more advanced diffusion analysis methods in the near future. Although not
yet explored, the DHPSF should be compatible with analysis methods such as motion-blur
analysis [209] that are routine for 2D SPT.
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4.9 Methodology

Simulating Trajectory Data

Idealised SPT trajectories were created in MATLAB by simulating a random walk. First
particles were randomly distributed in x, y and z. At each time step every particle was moved
in all dimensions by a distance sampled from a normal distribution centred at the expected
1D MSD given by: MSDp = 2Ddt. After the trajectory was created the position of each
simulated localisation was displaced in x, y and z by a distance sampled from a normal
distribution centred at O nm and with given by experimentally determined axial (for x and
y) and lateral (for z) localisation precision for a given number of detected photons. The
MATLAB code is attached in the appendix as part of the 3D tracking section.

2D SPT of TCR diffusing at the coverslip surface of T cells

Before imaging, ~ 10° T cells expressing TCR-3-HaloTag were labelled with Halo ligand-
TMR (G8251,Promega) for 30 minutes at 37°C. The cells were then subjected to three
washes in filtered (0.22 um Millex-GP syringe filter unit, Millipore) Phosphate-buffered
saline (PBS) (2810305, MP Biomedical) followed by 30 min incubation in T cell medium
(RMPI medium (11835-063, Life Technologies) supplemented with 10% fetal calf serum
(FBS, GE Healthcare), 1% sodium pyruvate (Sigma), 1% antibiotics (pen step, Sigma)
and 2% glutamin (Sigma). The cells were then centrifuged at 600x g for 2 minutes and
resuspended in 200 uL of filtered PBS. Meanwhile glass coverslips (24x50 mm borosilicate,
thickness No. 1, Brand) were cleaned with argon plasma (PDC-002, Harrick Plasma) for 10
min and coated with nonspecific immunoglobulin G (IgG) (IgG, Jackson Immunoresearch
Europe) for 30 min. The coverslips were washed three times with filtered PBS before 20-100
uL of labelled T cells added and allowed to settle on the surface for ~5 min.

The sample was imaged in 2D on the DHPSF platform with the phase mask removed
so that the 4 f system relayed the image plane onto the camera without affecting the PSF.
A 60x 1.45 NA oil-immersion objective lens (CFI Apo TIRF 60x Oil, Nikon) was used
to provide TIRF illumination with 561 nm laser excitation (200 mW, Cobalt Jive 100,
Cobalt). A quadband dichroic and longpasss and bandpass filters were used to separate the
emission signal (Di01-R405/488/561/ 635-25x36, and BLP02- 561R-25 and FF01-580/14-25,

respectively, Semrock) before the detector. An exposure time of 30 ms was used to track
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the position of the TCR until all fluorophores had photobleached. Fitting was conducted
using PeakFit (GDSC SMLM single-molecule plugins) [136] before the localisations were
analysed in the bespoke MSD analysis code in MATLAB.

3D SPT at the apical surface of T cells

Before imaging, ~ 10° T cells expressing TCR--HaloTag or Zap70-HaloTag were labelled
with 0.5-5 nM Halo ligand-TMR for 30 min at 37°C. The cells were then subjected to
three washes in twice filtered PBS (involving centrifugation at 600 x g for 2 min) followed
by 30 min incubation in T cell medium. The cells were then resuspended in 200 puL of
filtered PBS. The cells were imaged live or were fixed in 4% paraformaldehyde (Sigma) and
0.2% glutaraldehyde (Sigma) for 60 min at room temperature. Meanwhile glass coverslips
(24x50 mm borosilicate, thickness No. 1, Brand) were cleaned with argon plasma for 10
min and coated with nonspecific IgG for 30 min for live-cell imaging and Poly-L-lysine
(PLL) (molecular mass 150-300 kDa; P4832, Sigma) for 20 min for fixed-cell imaging. The
coverslips were washed three times with filtered PBS before 20-100 uL of labelled T cells

added and allowed to settle on the surface for ~5 min.

Samples were imaged on the DHPSF platform employing a 60x 1.20 NA water-immersion
objective lens (Plan Apo VC 60x, Nikon) as described in chapter 2. Continuous 561 nm
excitation was incident on the sample in HILO geometry with a power density of ~940
W/cm? measured before the objective lens by powermeter (PM 100D, ThorLabs). A quad-
band dichroic and longpasss and bandpass filters were used to separate the emission signal
(Di101-R405/488/561/ 635-25x36, and BLP02- 561R-25 and FF01-580/14-25, respectively,
Semrock) before the detector. An exposure time of 30 ms was used to image TCR in live and
fixed cells and an exposure time of 10 ms was used to image Zap70 until no more localisa-
tions were seen (typically <10,000 frames for all cases). DHPSF fitting was conducted with
easy-DHPSF [210] in MATLAB before localisation data was analysed in the bespoke MSD
analysis code in MATLAB.

3D SPT in the nucleus of ES cells

Two days before imaging, cells were passaged onto 35 mm glass-bottom dishes (No. 1.0,
MatTek) in phenol red-free serum and mLIF conditions as described in previous work (24).
The cells were incubated with 0.5-5 nM Halo ligand-JF549 (6147/5, Tocris) for 15 min,
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followed by two washes in filtered PBS. Cells were imaged in phenol-red free serum and
mLIF conditions containing 5-10 mM Trolox (53188-07-1, Sigma).

Samples were imaged on the DHPSF platform employing a 60x 1.20 NA water-immersion
objective lens (Plan Apo VC 60x, Nikon). Continuous 561 nm excitation was incident on the
sample in HILO geometry with a power density of ~500 W/cm?. A quadband dichroic and
longpasss and bandpass filters were used to separate the emission signal (Di01-R405/488/561/
635-25x36, and BLP02- 561R-25 and FF01-580/14-25, respectively, Semrock) before the
detector. An exposure time of 15 ms was used to record the motion of the labelled protein for
20,000 frames. DHPSF fitting was conducted with easy-DHPSF [210] in MATLAB before
localisation data was analysed in the bespoke MSD analysis code in MATLAB.

For the data presented in figure 4.11, cells were incubated with 5 nM Halo ligand-
PAJF549 (6149, Tocris) for 15 min, followed by 2 washes in filtered PBS. Cells were
imaged in in phenol-red free serum and mLIF conditions containing 5-10 mM Trolox. These
samples were imaged as described above but with simultaneous 561 nm (~500 W/cm?) and
405 nm (~50 W/cm?) lasers incident in HILO geometry to provide photoactivation of the
fluorophore. An exposure time of 20 ms was used to record the motion of the labelled proteins
for 20,000 frames. DHPSF fitting was conducted with easy-DHPSF [210] in MATLAB
before localisation data was analysed in the bespoke MSD analysis code in MATLAB.



Chapter 5

Imaging Applications of the DHPSF in
Eukaryotic Cells

This chapter focusses on the application of the DHPSF for 3D SMLM to previously inac-
cessible regions of biological samples. The reduction of spherical aberration away from the
surface, described in Chapter 3, facilitates single-molecule imaging and quantification in live
and fixed cells away from the coverslip. DHPSF imaging experiments, imaging away from
the coverslip surface, are presented to address questions in a range of biological samples
including suspension cells, adherent cells and tissue. Whole-cell imaging is demonstrated
with fitted 3D meshes used to visualise morphological changes upon T-cell activation. This
approach is extended to investigate the reorganisation of T-cell membrane proteins. These
were quantified and corrected for biases caused by cell morphology. Finally, quantification
of protein organisation is demonstrated in a number of other biological samples before the
applicability of the DHPSF to imaging is discussed.

Contributions

Dr Steven Lee and I designed all the experiments presented in this chapter, with input by
Dr Aleks Ponjavic for T-cell related experiments. All experiments were conducted and
analysed by myself. I fitted the cell meshes created the cell-specific special randomness
models in MATLAB and wrote the nearest-neighbour analysis code in MATLAB. Dr James
McColl assisted with T-cell labelling and maintained T-cell lines. Dr Aleks Ponjavic labelled
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T-cells with Alexa647 and made GLOX solutions periodically during STORM imaging
experiments. Dr Yu Zhang provided labelled and fixed HELA cell samples with expressing
(K-ras)-mEos3.2. Dr Yu Ye provided labelled and fixed HEK cell samples expressing
proteasome-mEos3.2. Vlad Anton, from the Seth Grant group provided labelled and fixed
mouse brain samples expressing PSD95-mEos3.2 and assisted with imaging by navigating
brain samples in a white-light imaging mode. All 3D figures were rendered by me in either
MATLAB or ViSP.

Named Publications Relating to this Chapter

* Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix
Point Spread Function. Alexander R. Carr, Aleks Ponjavic, Srinjan Basu, James
McColl, Ana Mafalda Santos, Simon Davis, Ernest D. Laue, David Klenerman and

Steve F. Lee. Biophysical Journal, 2017.

* A Cell-Topology Based Mechanism for Antigen Discrimination by T Cells. Ricardo
A. Fernandes*, Kristina A. Ganzinger*, Justin Tzou, Peter Jonsson, Steven F Lee,
Matthieu Palayret, Ana Mafalda Santos, Alexander R. Carr, Aleks Ponjavic, Veronica
T. Chang, Charlotte Macleod, B. Christoffer Lagerholm, Alan E. Lindsay, Omer
Dushek, Andreas Tilevik, Simon J. Davis, David Klenerman. (In submission at Nature

Immunology)

5.1 Imaging Large Volumes in 3D with the DHPSF

Although other 3D-SMLM techniques have used to study biological systems away from the
coverslip surface [131], the majority of previous imaging studies employing the DHPSF have
been limited to imaging at the coverslip surface. Tubulin-PA-GFP has been imaged at the
basal surface of Rat Kangaroo Kidney EpithelialPtK1 cells [103], microtubules labelled with
secondary antibody-Alexa647 have been imaged over the bottom ~1 pm of African green
monkey kidney BSC-1 cells [106] and eYFP, PAmCherry1 and Nile Red have been imaged
in the bacterium Caulobacter crescentus at the coverslip surface [104, 105]. More recently
DHPSF imaging has been conducted above the coverslip surface with an oil-immersion lens
and light-sheet excitation confinement, imaging a ~6 um thick volume in human HeLa cells
without aberration correction [108]. As described in chapter 3, spherical aberration present
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when imaging above the coverslip degrades the DHPSF, reducing localisation precision
and affecting the rotation rate of the lobes as a function of axial depth. Reducing spherical
aberration by matching the refractive index of the immersion media of the objective lens to
the sample facilitates robust SMLLM deep into biological samples and as a consequence, a
greater range of biological samples and questions can be probed with the DHPSF. A number
of applications of the DHPSF for imaging away from the coverslip areas are demonstrated
and are presented organised by biological sample type into three groups: 1) suspension cells
(T cells), 2) adherent cells and 3) tissue sections.

5.2 3D Imaging in T Cells

T cells are a type of lymphocyte (white blood cell) that are central to adaptive immunity.
CD4* T cells initiate the adaptive immune response by recognising spcific foreign particles
(antigens) presented by major histocompatibility complexs (MHCs) on the surface of antigen
presenting cells (APCs) with a highly variable T-cell receptor (TCR) on the cell surface
[211-213]. The TCR is comprised of two hetero-dimers of cluster of differentiation 3
(CD3) co-receptor that associates with TCR-a, TCR-f3 chains and a {-chain to form the
TCR complex. Another protein involved in T-cell signalling is cluster of differentiation 28
(CD28), a T-cell specific membrane protein that promotes cell proliferation and survival.
The spatial distribution of T-cell membrane proteins is known to play a key role in initiating
and sustaining an immune response [206, 214-216], with a single TCR-MHC complex
being capable of triggering a response [217]. Therefore, it is imperative to develop imaging
methodologies that are capable of recording these distributions at the single-molecule level
and under physiological conditions. The aim of this work was to demonstrate the applicability
of the DHPSF to investigate the protein distributions across whole-cell volumes as well as to
visualise the underlying morphology of the plasma membrane. To this end, immortalised
CD4* Jurkat T cells were used to demonstrate the methodology. For a more-detailed
introduction to T-cells and the adaptive immune response see chapter 6.

The localisation precision of the DHPSF (~10-25 nm laterally and ~20-60 nm axially)
allows for individual fluorescently-labelled proteins to be resolved within biological samples
below the diffraction limit. The membrane-bound TCR-f was expressed in Jurkat T cells
with a HaloTag. This was labelled with Halo ligand-TMR and imaged on the surface of
fixed T cells on a coverslip surface. Thus, individual TCR molecules could be resolved
(figure 5.1), facilitating super-resolution mapping of protein organisation. To demonstrate
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the compatibility of the DHPSF with large-volume imaging, whole T cells were imaged in

multiple image planes.

a, 1 b,

Diffraction-limited! Super-resolved
I

Fig. 5.1 The DHPSF is capable of resolving individual labelled proteins below the diffraction
limit. Jurkat cells expressing TCR-HaloTag were labelled with Halo ligand-TMR and imaged
with the DHPSF. A comparison between diffraction-limited (a) and super-resolved (b)
rendering of two isolated clusters of localisations originating from individual TCR molecules
separated by ~300 nm. Scale bar is 300 nm.

5.2.1 Imaging Multiple Image Planes within a Sample

Due to the large depth of field of the DHPSF, extended structures can be imaged with a single
imaging plane. However, eukaryotes are typically larger than ~4 um and, thus, in order
to image a whole cell multiple focal planes must be acquired. As discussed in chapter 3,
reducing spherical aberration away from the coverslip by matching the refractive index of
immersion media and sample allows for extended imaging with the DHPSF >50 yum into
biological samples [147]. This, coupled with reducing spatially varying aberration resulting
from Fourier-plane misalignment [166], enables super-resolution imaging of whole-cell
samples by stitching together successive image planes within the sample.

The lateral position of successive image planes relative to each other was examined by
measuring the apparent displacement of fluorescent beads suspended above the coverslip
surface in Phyta gel solution with refractive index equal to water. Approximately 200 beads,
sampled across multiple ~100 um wide fields of view, were imaged each in two image
planes. The beads were positioned towards the top of the depth of field and imaged for 100
frames at 30 ms. The objective lens was then moved 2.5 um towards the sample, so that

the beads were within the detection volume, and the same beads were imaged again for 100
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frames. This process was repeated 60 times with an average of 3.3 fluorescent beads in each

field of view.
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Fig. 5.2 Lateral offset between successive image planes is comparable to expected localisation
errors. A histogram of the measured Cartesian lateral offset for fluorescent beads imaged in
successive image planes axially separated by 2.5 um. A 1D Gaussian function was fit to the
data (red line) in order to extract the centre position and width.

The mean position of each bead was compared between successive image planes with
the Cartesian distance between the two plotted as a histogram (Figure 5.2). A 1-dimensional
Gaussian function was fitted to this distribution to extract the centre position and width. It
was determined that an axial offset of 2.5 pum resulted in a 9.1 £4.4 nm lateral displacement.
This value is comparable to the lateral localisation precision of the DHPSF and less than
expected lateral errors for a single image plane in the Fourier plane-aligned DHPSF platform
measured in chapter 3 [166]. Assuming this error is systematic and axially linear; a total
lateral displacement of 55 nm would be expected between the basal and apical surfaces of a
typical T cell (~15 um thickness). Although this may not be the case, this error would be

small compared to the volume being imaged.

When imaging a single plane, the localisation density recorded within the sample falls
to zero at the periphery of the depth of field due to the form of the DHPSF and in part to
a reduction in collection efficiency of the objective lens. In order to achieve the most-flat
localisation density across volumes spanning multiple image planes the optimal axial offset
between planes was investigated by imaging fluorescently labelled proteins in fixed Jurkat T

cells. The density of localisations recorded from a single plane was measured by imaging the
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membrane-bound protein TCR labelled with TMR via a HaloTag in the central plane of five
Jurkat T cells (figure 5.3). The central plane was chosen as it exhibits the lowest geometric
variation in membrane area across the depth of field, assuming a spherical cell. The axial
distribution of localisation density correlated well to the axial intensity distribution calibrated
by easy-DHPSF (figure 5.3b). This is to be expected as the ability to localise PSFs is directly
related to the number of detected photons above background. It should be noted that the
distribution varies depending on the alignment of the DHPSF and is not identical between

experiments.

An approximation of the density distribution, removing noise at the centre of the depth of
field (shown in figure 5.3a), was used as an example image plane to determine the optimal
axial offset between image planes. The sum of two identical approximate distributions
was plotted with a relative offset between the two of 2-5 um in 500 nm steps. The mean
localisation density from a 4 um section including the interface between the two approximate
image planes was plotted as a function of the offset (figure 5.3c). A relative localisation
density of one indicates a flat localisation density between at the interface of the two planes.
An axial offset of 3-3.5 um (or ~75% of the working depth of field) between successive
image planes was found to give the most-flat localisation density at the interface between
planes with a <10% change in localisation density. In all experiments employing multiple
image planes, an offset between successive image planes of 3 um was chosen unless an

offset of 3.5 um would reduce the total number of image planes.

5.2.2 Whole-Cell Imaging of T cells

Jurkat T cells expressing the membrane protein CD28 fused to mEos3.2 wer was investigated
across entire Jurkat T cells to demonstrate the capability of the DHPSF for mammalian
whole-cell imaging. Whole-cell super-resolution imaging of Jurkat T cells was achieved
by imaging between three and five axial planes separated by 3 um across the sample by
translation of the objective lens with a piezo stage (figure 5.4). Jurkat T cells expressing
the membrane protein CD28 fused to mEos3.2 were fixed in suspension and imaged on the
coverslip in a PALM mode with HILO laser excitation on the DHPSF platform (figure 5.5).
Approximately 20,000 frames were acquired at 100 ms exposure (as described in chapter
2), corresponding to an expected maximum drift of 89+8 nm. Imaging conditions were
optimised so that mEos3.2 fluorescence events typically lasted 1-2 frames, with very few
events lasting >5 frames (0.5 s). Approximately 5,000 localisations were collected across

a single T cell, after filtering for repeat localisations of the same fluorescence event (see
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Fig. 5.3 Optimal axial offset between successive image planes to reduce localisation density
variation. (a) Localisation density of TCR-TMR localisations across a single image plane
from five cells with average (red) and approximate (black) distributions. (b) Number of
photons detected from a single DHPSF across the depth of field during DHPSF calibration
by easy-DHPSF. (c) Relative localisation density across a 4 yum thick section at the interface
of two successive simulated image planes as a function of axial offset between planes. The
highlighted green area indicates the optimal range of axial offset achieving the most-flat
localisation density.

chapter 5 methodology for a detailed description) in time (0.5 s) and space (500 nm), with
each CD28 molecule expected to be localised 2.8 times due to the fluorescence intermittency
of mEos3.2 [65]. This is significantly lower than the number of CD28 molecules expected
on Jurkat T cells (~20,000, determined by fluorescence-activated cell sorting (FACS) by the
Davis group). The overall detection efficiency is related to a number of factors including:
mEos3.2 folding efficiency (40% [65]), the fraction of the cell volume that is being imaged at
one time (assuming that the entire cell is illuminated by both activation and excitation lasers,
~25%) and the detection efficiency of the imaging system. The combination of the first two
factors leads to the estimate that 1/10 of CD28 molecules would be localised by an idealised
microscope, ie ~2,000 CD28 molecules per cell, corresponding to 5,600 localisations after
mEos3.2 blinking. This figure is close to the recorded localisations (4,910) and thus the
detection efficiency of the DHPSF can be determined to be ~90% for mEos3.2, although
varying expression levels of CD28-mEos3.2 between cells make this a crude estimation.
Imaged whole T cells appear largely spherical with no obvious large-scale organisation of
CD28 (figure 5.5b). A localisation density can be estimated assuming a sphere with radius
6.5 um and a roughness factor of 1.8 [200], as determined by electron microscopy, to be ~5
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Water Immersion
Objective lens

Fig. 5.4 Schematic diagram of experimental procedure for whole-cell imaging with a water-
immersion objective lens. A 60x 1.2 NA water immersion objective lens was mounted on
a piezo stage. Localisations are collected from 3-5 axial planes across the cell sample and
recombined into a single large-volume reconstruction.

localisations/mum?. This localisation density is not enough to resolve any fine structure of
the plasma membrane of the T cells.

Fig. 5.5 (Following page.) Super-resolution whole-cell reconstructions of CD28 membrane
protein labelled with mEos3.2 in Jurkat T cells using the DHPSF. (a 1) Highlighted Jurkat T
cell expressing CD28-mEos3.2 imaged with the DHPSF (4,910 localisations). Localisations
are colour coded by axial height from the coverslip and rendered with isotropic 3D Gaussian
distributions with experimentally measured localisation precision for ~350 photons detected.
(aii) Top-down and side-on views of the localisations presented in (a i) rendered with 100 nm
localisation precision for visibility. Scale bars in (a) are 4 um. (b) Additional reconstructions
of whole-cell CD28-mEos3.2 localisation data. Top down (b 1) and side-on (b ii) views are
rendered with 200 nm localisation precision for visibility. Scale bars in (b) are 5 um.
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A key advantage of SMLM techniques compared to other SR imaging methodologies is
the ability to provide quantitative information about the spatial distribution of the target at
the single-molecule level within the sample. To demonstrate the importance of 3D-SMLM
for T cell membrane-protein imaging the distribution of nearest neighbour (NN) distances
between CD28 molecules was investigated. Repeat localisations of the same fluorophore
were removed by filtering in space and time. The CD28 localisation data presented in figure
5.5a was filtered for repeat localisations of the same mEos3.2 molecule within a radius
of 1200 nm acquired within three seconds of each other to account for the fluorescence
intermittency of mEos3.2. The NN distance between the remaining CD28 localisations was
then calculated and plotted as a cumulative histogram (figure 5.6). 27% of CD28 molecules
were revealed to be <250 nm apart, with 63% <500 nm apart. This measurement highlights
the advantage of SMLM techniques compared to confocal microscopy and other diffraction-
limited techniques for quantification of protein distributions at the single-protein level as
when using diffraction-limited techniques a significant fraction of proteins would not be able
to be resolved.
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Fig. 5.6 Cumulative histogram of the nearest neighbour distance between CD28 molecules
across whole Jurkat T cells. ~3,000 CD28 molecules were recorded. The two dashed lines
indicate distances of 250 nm and 500 nm with the corresponding fraction labelled.

5.2.3 Visualisation of Large-Scale Membrane Reorganisation over Whole
T Cells

T cells have been shown to undergo morphological changes [171] and redistribution of

membrane proteins [218, 206, 216] upon immunological stimulation. A key protein in this



5.2 3D Imaging in T Cells 127

process is the TCR. Immunologically-activating antibodies (OKT3) bind to CD3 subunits of
the TCR, cross linking TCR complexes and activating the T cell and causing a reorganisation
of the T-cell membrane [211, 219, 212]. The DHPSF was used to resolve the distribution of
the TCR across whole Jurkat T cells imaged in 3-5 axial planes at distict time points during
immunological activation. Fixed Jurkat T cells expressing TCR--HaloTag were labelled
with TMR-Halo ligand and fixed at three time points during immunological activation: 1)
resting (i.e. in solution in the absence of OKT3), 2) after 5 min contacting an OKT3-coated
surface and 3) after 10 min contacting an OKT3-coated surface. The three samples were
imaged on the DHPSF platform.

The approximate position of the outer membrane of each cell was determined by fitting
3D meshes to the localisation data (figure 5.7). Using functions included in Meshlab software
(http://meshlab.sourceforge.net), the 3D localisation datasets were converted into an object
mesh. For each point 50-200 neighbours, depending on localisation density, were considered
to estimate a normal vector perpendicular to the surface. These points and their normals were
then used to build a surface using the Poisson surface reconstruction approach [220, 221],
which solves an approximate indicator function of the object by fitting its gradient to the input
normal. Meshes checked by eye and then uniformly sampled, creating an even distribution
of vertices for simplicity. More detailed instructions are provided in the methodology section
at the end of this chapter. To demonstrate this methodology, a mesh was fitted to the CD28-
mEos3.2 whole-cell data presented in figure 5.5a. The accuracy of these meshes is related to
the localisation density. At relatively low sampling densities, as is the case for the presented
CD28 dataset, this approach is able to distinguish large-scale morphology but not resolve
membrane nanostructure such as dynamic finger-like protrusions (i.e. pseudopodia) and
ruffles that have been observed by other optical microscopy techniques [89]. In the dataset
presented in figure 5.7 some localisations are observed >1 um away from the cell mesh, most
likely corresponding to long pseudopodia or internal stores but could also be accounted for
in part by erroneous localisations resulting from overlapping DHPSFs. Internal localisations
do not affect mesh fitting as the Poisson surface reconstruction approach initially estimates
the mesh volume to contain all points before shrinking it down for the best fit. As such,
this approach is applicable to estimating volumes from membrane-bound and intracellular
localisation datasets.

The mean position of the outer membrane of fixed Jurkat T cells was extracted by fitting
meshes to whole-cell TCR localisation datasets from the three time points (figure 5.8). These
cell meshes were used to visualise large-scale morphological changes during T cell activation.

Although five cells were imaged for each time point, due to the low-throughput of the mesh
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Fig. 5.7 Mesh fitting to whole-cell localisation data. Whole-cell CD28 localisation data
was fit with a mesh to approximate the outer membrane surface. Individual CD28-mEos3.2
localisations are rendered as grey spheres and the fitted cell mesh coloured axially for
visibility. The inset highlights a 1.5 pm thick section of the mesh following localisation data.

fitting process only the highest localisation density dataset in each condition was fitted with a
mesh. The produced cell meshes validate the methodology and allowed for quantification to
be conducted on a cell by cell basis. Substantial morphological differences were observed
between resting T cells (fixed in suspension) versus those fixed after contacting activating-
coated surfaces. In suspension, the cell mesh appeared smooth and spherical, whereas cells
that had been contacting the surface for 5 min had less uniform cell meshes that exhibited
flattening and extension of the basal surface. Much larger spreading was seen for cells
contacting the surface for 10 min. For the three time points, the vertex densities of the cell
meshes presented in figure 5.8 were 5.1, 4.9 and 2.8 vertices/um? with 0.4, 0.7 and 0.8
localisations per vertex, respectively.
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Fig. 5.8 Visualisation of large-scale morphological changes of Jurkat T cells on activating-
coated surfaces by mesh fitting to whole-cell 3D localisation data. (a) Meshes were fitted to
DHPSF whole-cell TCR localisation datasets of three Jurkat T cells tagged with HaloTag-
TMR. Cells were fixed in solution (left, 1,149 localisations), 5 min after contacting an
OKT?3-coated surface (centre, 2,495 localisations) or 10 min after contacting an OKT3-
coated surface (right, 2,397 localisations). Large-scale reorganisation of the outer membrane
caused by immune-response triggering and the formation of an immunological synapse is
visualised at three distinct stages. Side-on (b) and top-down (c) views are provided. Cells
are coloured by axial position and the flat grey surface represents the coated coverslip of
the experiment. The cell fixed in suspension has been rendered away from the coverslip to
emphasize its resting state.
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5.2.4 Quantification of Large-Scale Reorganisation over Whole T Cells

A key advantage of SMLM methodologies compared to imaged-based SR techniques is
the ability readily obtain quantitative metrics. This is demonstrated by quantifying the
reorganisation of the TCR across entire Jurkat T cells. The accuracy of the cell meshes
was determined by analysis of the CD28 localisation dataset and corresponding cell mesh
presented in figure 5.7. While a significant fraction of CD28 molecules are observed
internally due to degradation/creation machinery and internal stores, there should be no
CD28 molecules observed extracellularly. Any CD28 molecules that are observed outside
the mesh must therefore related to membrane structure that is not resolved by the mesh rather
than internal sources. By considering only CD28 molecules located outside of the cell mesh,
a membrane-bound fraction can be isolated and used to determine the precision of the fitted
mesh. After filtering for repeat localisations of the same fluorophore in space (500 nm) and
time (1 s), a cumulative histogram was created from the distance from each CD28 molecule
located outside of the cell mesh to the nearest cell-mesh vertex (figure 5.9). ~95% of these
CD28 molecules were located <1 um from the cell mesh. A distance of 1 um from the
corresponding cell mesh was chosen as a threshold to separate membrane-associated and
intracellular molecules

Fig. 5.9 (Following page.) Quantification of membrane-bound and intracellular TCRs during
T-cell activation. Cumulative histograms of distance away from fitted cell meshes for the three
cells presented in figure 5.8. The grey dashed lines at 1,000 nm indicate the threshold used
to estimate membrane-bound localisations. The distribution of the TCR differs significantly
between the resting cell (blue lines) and the two activated cells (red and orange lines). (a)
Cumulative histogram of the distance from the corresponding cell mesh for extracellularly
localised CD28 localisation data presented in 5.7. (b) Cumulative histogram of the distance
from the mesh of all TCR molecules to the corresponding cell meshes. (c¢) Cumulative
histogram of the distance from the mesh including only TCR molecules localised inside the
mesh as a fraction of total number of detected TCR molecules. (d) Cumulative histogram
of the distance from the mesh including only TCR molecules localised outside the mesh
as a fraction of total number of detected TCR molecules. (e¢) Cumulative histograms of
the distance from the mesh of intracellular TCR molecules as a fraction of the number of
detected TCR molecules determined to be inside the fitted mesh. (f) Cumulative histograms
of the distance from the mesh of extracellular TCR molecules as a fraction of the number of
detected TCR molecules determined to be outside of the fitted mesh.
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Cell-surface meshes were used to quantify the membrane-bound and cytoplasmic fractions
of localised TCR molecules at distinct time points during immunological activation (figure
5.9). The localisation datasets were filtered in space (500 nm) and time (1 s) to remove repeat
localisations of the same fluorophore. The distance from each remaining localisation to the
nearest vertex in the corresponding cell mesh was used to separate membrane-bound and
cytoplasmic TCR molecules. A cumulative histogram of these distances was created for each
of the three cells presented in figure 5.8. For the resting cell, 65% of all TCR molecules
were determined to be membrane-associated. For the two activated cells, fixed after 5 and
10 min, 72% and 74% of all TCR molecules were determined to be membrane-associated
respectively (figure 5.9b). The fraction of all localisations over 1 gm from the mesh inside
the volume (intracellular localisations) decreased in the case of the activated cells compared
to the resting cell. 17% and 13% of TCR molecules were localised intracellularly after 5
and 10 minutes on an activating surface respectively, compared to 30% in the resting cell
(figure 5.9¢). The fraction of all localisations over 1 um from the mesh outside the volume
increased in the activated cells compared to the resting cell. 9% and 12% of TCR molecules
were localised after 5 and 10 minutes on an activating surface respectively, compared to 4%
in the resting cell (figure 5.9d). These ‘extracellular’ TCR molecules are likely associated
with pseudopodia longer than 1 gm known to be present on the outer membrane of human
T cells [201]. Although n=1, these data are consistent with previous studies supporting the
notion that immunological stimulation causes intracellular TCRs held in internal stores to be
recruited to the outer membrane in Jurkat T cells [222, 223]. This is likely to be an active

process as the T cell attempts to form an immunological synapse [224, 225].

5.2.5 Cell-Specific Complete Spatial Randomness Models

Changes in cell morphology can affect the observed distribution of proteins, creating artefacts
that can be misinterpreted as reorganisation or obscuring true reorganisation events. For
example, the distribution of inter-protein distances across whole cell SMLM datasets is highly
dependent on the shape of the cell itself. Mostly round cells have a uniform axial distribution
of inter-protein distance due to their symmetry, while other morphologies result in non-trivial
axial distributions. Cell-surface meshes can be used to decouple protein organisation from
morphology in quantitative analysis. Additional quantification of TCR reorganisation during
T-cell activation was conducted by correcting the distribution of inter-TCR distances for cell
morphology changes.
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To calculate the inter-protein distances within the whole-cell TCR datasets an algorithm
was written in MATLAB. First, repeat localisations originating from the sample fluorophore
were removed by filtering in space (500 nm) and time (1 s). For each remaining localisation,
the distance to all other localisations was calculated and used to create a histogram. The peak
value of these histograms, representing the modal inter-protein distance, was recorded. The
mean and standard deviation of this inter-protein distance was plotted as a function of axial
depth within the sample in 500 nm steps for all localisations in the three samples (figure
5.10a-¢).

In order to correct for cell shape, cell-specific complete spatial randomness models were
created from the cell meshes. For each cell, a model distribution representing localisation
data of proteins distributed entirely on the outer membrane (no intracellular protein) was
created by randomly sampling a number of vertices equal to the number of unique TCRs
observed from the cell mesh. Each point was randomly translated by between -250 nm and
250 nm with equal probability to determine error limits. An additional displacement was
sampled from a normal distribution in all dimensions to represent localisation uncertainty.
This displacement was centred by the measured localisation precisions laterally and axially
for the mean number of detected photons from the dataset (~1,350 photons with 100 ms
exposure corresponding to ~15 nm laterally and ~30 nm axially). The inter-protein distance
analysis was conducted on 1,000 instances of model datasets for each cell, taking the mean
and the 5th and 95th percentiles to create error limits. The deviation of the true inter-protein
distance from the model inter-protein distance provides information about how well the
membrane-bound model fits as a whole (figure 5.10d-f).
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Fig. 5.10 (Previous page.) Correcting for the effect of morphology on inter-protein distance
distribution. (a-c) Inter-protein distribution as a function of axial depth for the three cells
presented in figure 8. Membrane-bound CRS model inter-protein distributions from the
corresponding cell meshes are plot with Sth and 95th percentile error limits (blue and red
solid lines). (d-f) Deviation from the membrane-bound CSR model of inter-protein distance
distributions for the three cells as a function of axial depth. (g) Side-on view of cell meshes
presented in figure 8 coloured axially by deviation of inter-protein distance from a CSR
model of a membrane-bound protein; with yellow indicating no deviation from model system,
and red/black indicating a reduction in peak inter-protein distance compared to the model
system. Stripes are observed as the deviation of inter-protein distance varies across the axial
depth of the cells, however these are within error as shown in d-f. (h) Mean and standard
deviation of inter-protein distance deviation from CSR model of inter-protein distance over
the entire cell for each cell shown in (g).

The overall inter-protein distance distribution of the TCR was found to be significantly
smaller from that predicted by the membrane-bound CSR model, implying that a significant
fraction of the TCR was localised intracellularly. In contrast, the mean inter-protein distri-
bution of the TCR in both activated cells overlapped substantially with the corresponding
membrane-bound CSR models, indicating a reduction in the intracellular fraction upon acti-
vation (figure 5.10h). These results support the analysis of membrane-bound and cytoplasmic
TCR fractions presented in figure 5.9. The cell meshes were coloured axially with the
calculated inter-protein distance deviation from the relevant CSR model (figure 5.10g). In all
three cells, no significant axial dependence of the inter-protein distance distribution was seen
(figure 5.10a-g), indicating that this is a global effect rather than a directed process, recruiting
the TCR to the immunological synapse. This analysis demonstrates that the DHPSF can
resolve relatively small redistributions of molecules across whole cells, such as the transfer
of proteins from the cytosol to the cell surface. In the case of low-expressing proteins (e.g.,
the TCR), a small number of molecules moving from the cell cytoplasm to the cell membrane
could significantly affect the overall distribution. This work was published in 2017 in the
Biophysical Journal [147].
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5.2.6 STORM Imaging of CD45 Resolves Membrane Nanostructure

The nano-scale organisation of proteins on the surface of T cells is known to play an important
role in immunological triggering [218, 206]. Cluster of differentiation 45 (CD45) is a
membrane-bound tyrosine phosphatase that dephosphorylates the TCR in order to maintain a
low net level of TCR posphorylation [226, 216]. Upon T-cell activation CD45 is excluded
from contacts with coated surfaces [227] and between cells [216, 228, 229]. Membrane
pseudopodia are thought to play a role in T cell activation, scanning multiple contacts at once.
Exclusion of CD45 at the tip of T cell pseudopodia upon contact with an antigen-presenting
cell 1s hypothesised to lead to immunological triggering when the exclusion zone is >200
nm in radius (‘A cell-topography based mechanism for antigen discrimination by T cells’
currently in submission at Nature Immunology). It is unknown if such exclusion exists
at the end of membrane pseudopodia prior to contact. A methodology was developed to
investigate this by imaging CD45 on the apical membrane surface of Jurkat T cells fixed in
suspension in a resting state. In order to resolve individual pseudopodia, STORM labelling
was chosen to repeatedly sample individual proteins and thus increase the localisation density
and reduce the effect of the detection efficiency that may lead to missed events. Pseudopodia
are expected to be of ~250 nm diameter and so should be resolvable by the DHPSF given
sufficient localisation density, providing information on the existence of pre-exclusion zones

at the tip of pseudopodia.

Jurkat T cells were labelled with Alexa647-CD45 antibodies (Gap8.3, anti-CD45) and
imaged in a STORM mode in a GLOX STORM buffer (figure 5.11). Constant 641 nm
and 405 nm illumination was incident in a HILO configuration at ~1 kW/cm? and 0.1
kW/cm? respectively. 100 nm gold nanoparticles were used for fiducial correction. 240,000
frames were recorded for three cells with an exposure time of 30 ms with 220,000+£80,000
localisations recorded per cell. Acquisitions were limited to ~2 hours due to degradation of
the GLOX buffer when exposure to oxygen present in the air. This applications highlights the
reduced localisation density required to achieve isolated emitters with the DHPSF compared
to other techniques that employ a smaller PSF. However, the increased depth of field allows
for large psuedopodia to be imaged in a single focal plane.
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Fig. 5.11 (Previous page.) STORM imaging of CD45 on the apical surface of Jurkat T cells
with the DHPSF. (a) ~4 um thick section of the CD45 imaged at apical surface of a Jurkat
T cell. Localisations are coloured axially for visibility. (b) Individual pseudopodium from
(a) highlighted with a 250 nm section at the tip rendered in an end-on view (dashed yellow
circle). No obvious segregation is observed. (c-e) Individual pseudopodium from other
Jurkat T cells. (f) Additional highlighted pseudopodia from (a) highlighted with a 250 nm
section at the tip rendered in an end-on view (dashed yellow circle). No obvious segregation
is observed. (g) An individual pseudopodium rendered side-on and end-on with a 300 nm
section shown. All scale bars are 500 nm.

Membrane nanostructure of pseudopodia could be resolved due to the increased local-
isation density caused by the increased expression of CD45 compared to the TCR and by
repeat blinking events observed in STORM. Pseudopodia were observed to be ~250-300
nm in diameter which agrees well with previous EM data [201, 200] but did not appear
hollow, as would be expected. This could be due to the presence of structure below the
localisation precision of the DHPSF platform or a lack of rigidity in the membrane causing
a small amount of motion relative to the cell body. No obvious segregation zones were
seen at the tip of pseudopodia, regardless of pseudopodia length, and the CD45 appeared
largely uniformly distributed across the outer membrane. This result, combined with 2D
imaging displaying a lack of CD45 segregation at very early stage contacts (data not shown
but included in submitted manuscript), support the idea that CD45 is not excluded from the
tips of pseudopodia in resting T cells. This observation is compatible with previous studies
indicating that CD45 exclusion is a cause rather than a consequence of T-cell triggering
[226, 227, 216].

5.3 3D Imaging in Adherent Cells

In order to demonstrate the applicability of the DHPSF to 3D-SMLM in a wide-range of
biological samples, imaging was conducted in adherent cell types in addition to the suspension
cells previously presented. Adherent cells do not permit coverslip cleaning immediately prior
to imaging, increasing non-specific background and thus typically represent a more difficult

system to image than suspension cells.
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5.3.1 Imaging the 3D Distribution of K-ras in HeLLa Cells

The overall distribution of specific proteins within a cell has traditionally been difficult to
determine at the single molecule level as reduced depths of field do not always cover a signif-
icant fraction of the sample and thus require focal-plane scanning to collect a representative
image. Without excitation confinement matched to the depth of field, fluorophores outside
of the imaging volume are photobleached and thus cannot be detected. Most 3D-SMLM
techniques require narrow (~500 nm) excitation confinement to match their depth of field in
order to achieve adequate localisation density. The large depth of field of the DHPSF allows
for the distribution of specific proteins across a significant fraction of individual cells to be

simultaneously imaged, reducing the need for image-plane scanning in quantitative studies.

Ras proteins are small GTPases that exist in inactive GDP-bound and active GTP-bound
states and regulate cell proliferation and differentiation by signalling though a number of
pathways [230]. Three isoforms of Ras are expressed in human cells: K-ras, H-ras, N-
ras. Ras protein malfunction is common in tumorigenesis with K-ras mutation observed
in 86% of cases in humans [231]. K-ras attaches to the inner leaflet of plasma membrane
through a C-terminal membrane anchor. On the plasma membrane, K-ras proteins diffuse
laterally as monomers and dimers and assemble into higher order oligomers and nanoclusters
[232]. Recent evidence suggests that in healthy cells K-ras is in part organised in specific
nanodomains on the plasma membrane, furthermore, changes in the membrane potential were
inferred to lead to spatial reorganisation of K-ras [233, 234]. However, the complete picture
of the distribution of K-ras on the outer membrane and the inner endomembrane remains
unclear. It has been proposed that K-ras nanoclusters provide platforms for effector binding
and signal transduction, thus promoting cell proliferation and survival [235]. Understand
the spatiotemporal distribution of K-ras across the cell has the potential to inform the
development of new targeting strategies that may have significant therapeutic implications.

In order to investigate the distribution of K-ras proteins across HeLa cells, the DHPSF
was used to perform 3D-SMLM of (K-ras)-mEos3.2 across a ~3.5 m section in the central
plane of HeLa cells (figure 5.12). 200 nm gold nanoparticles were added to the sample
to act as fiducial markers. The gold nanoparticles stuck to the cells without requiring
additional coating and were washed out of solution before imaging. Cells were imaged for
~100,000 frames with 100 ms exposure and constant low-power 405 nm illumination until
no more mEo0s3.2 was observed. Large-scale structures were observed (figure 5.12c¢), most
likely corresponding to K-ras distributed on the outer membrane and components of the

endomembrane.
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Fig. 5.12 DHPSF imaging of K-ras shows 3D organisation within HeLa cells. (a) K-ras
distribution through ~3.5 um thick section in the central plane of a Hela cell. Repeat
localisations of the same fluorescence event were filtered. Localisations are rendered with
100 nm precision for visibility and coloured as a function of axial position. (b) Highlighted
area from (a) (blue-dashed box). Localisations are rendered with experimentally determined
precision of ~25 nm laterally and ~50 nm axially. (c) Highlighted large-order cluster of
K-ras (pink-dashed box from (b)).
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The redistribution of K-ras upon a change in membrane potential was investigated by
imaging HeLa cells before and after membrane depolarisation caused by the addition of
potassium. The plasma membrane of dividing and onocogenically transformed cells, that
exhibit increased proliferation, are more depolarised than quiescent cells [230]. Therefore,
membrane depolarisation is expected to result in an increased level of K-ras clustering in

wildtype cells, increasing the promotion of proliferation and survival.

In order to investigate this hypothesis, 12 cells were imaged in control conditions and 9
cells stimulated by high potassium potassium (100 mM) were imaged as described above.
Repeat localisations were removed. In order to investigate small-scale clustering, the number
of localisations within 100 nm of each localisation within a 4 um x 5 um area from each
cell was investigated. To enable direct comparison, the localisation density in each region
was matched to the lowest density region (1,595 per um? laterally) by considering the first
31,900 localisations recorded from each region (the minimum number recorded for any
region). The fraction of localisations was plotted as a function of the number of neighbouring
localisations within 100 nm (figure 5.13). Stimulated cells were observed to have more
neighbours than the control condition. This result indicates that membrane depolarisation
results in increased K-ras nanocluster formation. As dividing and oncogenic cells exhibit
membrane depolarisation relative to quiescent cells, this result is consistent with the notion
that K-ras nanoclusters promote cell proliferation and survival. This could be studied further

by investigating oncogenic mutant cells with the same methodology, as a positive control.
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Fig. 5.13 Number of nearest neighbours within 100 nm of K-ras localisations in HeLa cells.
20 um? areas of localisations from control cells (no potassium in buffer, 12 cells) and
stimulated cells (high potassium in buffer, 9 cells) were analysed. The localisation density
was matched (1,595 localisations per 20 m?) and the number of neighbours within 100 nm
of each localisation was plot as a fraction of the total number of localisations.
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5.3.2 Imaging the 3D Distribution of Proteasomes in HEK Cells

Another application that benefits from the increased depth of field of the DHPSF is imaging
the 3D distribution of the proteasome across a significant fraction of human embryonic
kidney (HEK) cells. The proteasome is a large multi-subunit protease involved in proteolysis
as a key part of the cell degradation machinery [236, 237]. Despite its importance, the
cellular distribution is less well studied and published data suggests that the proteasome
distribution may be distinctive based on cell type and cell cycle phase [238]. The proteasome
was observed to be distributed throughout the nucleus and cytoplasm in mammalian cells
in 2000 [239]. However, this organisation was not studied at the single-molecule level,
reducing the potential for quantitative analysis. Using the DHPSF, the distribution of the
proteasome was imaged through a central plane of HEK cells expressing proteasome subunits
(proteasome core-particle subunit (Prel) and proteasome regulatory-particle subunit (RPN1))
fused to mEos3.2.

Two separate subunits of the proteasome labelled with mEos3.2 were imaged across
a ~4 um thick section towards the top of fixed adherent HEK cells (figure 5.14). HILO
illumination of 561 nm and 405 nm lasers was constantly incident on the sample to image
in a PALM mode. Fluorescent nanodiamonds were added to the fixed sample prior to
imaging for fiducial tracking as they were found to provide a higher SNR compared to
gold nanoparticles. The nanodiamonds stuck to the cells without additional coating and
were washed out of solution prior to imaging. For the three cells presented in figure 5.14,
200,000 frames were acquired with a 50 ms exposure time. Between 16,000 and 20,000
localisations were recorded from each cell after filtering for repeat localisation in time (0.5
s) and space (300 nm). Proteasomes were observed to be distributed across the entire cell
in both labelling conditions, agreeing with 2D imaging of the same cell types conducted
by Dr Yu Ye on a separate super-resolution instrument. No obvious order was seen in the
localisation data in any case. Proteasomes were observed ubiquitously within the nucleus
and cytoplasm, agreeing with previously published data [238]. Changes in density were
seen within the centre of the cells in all cases, potentially corresponding to a reduced density
within the nucleus compared to the cytoplasm. However, in these experiments, this could
not be confirmed as no nuclear staining was implemented. Two-colour imaging of the
proteasome and the nuclear envelope could allow for the relative concentrations between
the two environments to be compared in future studies, providing an appropriate labelling

strategy is developed to image the nuclear envelope.
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Fig. 5.14 DHPSF imaging of proteasomes shows the 3D distribution in HEK cells. (a)
Proteasome core-particle subunit (Prel) tagged with mEos3.2 was imaged through a ~4 um
thick volume towards the apical surface of a HEK cell. 15,878 localisations were recorded
after spatial and temporal filtering. A highlighted region is shown with localisations rendered
with experimentally determined precision (~25 nm laterally and ~50 nm axially). (b&c)
Two cells expressing proteasome regulatory particle subunit (RPN1) tagged with mEos3.2
were imaged. 17,275 and 20,020 localisations were collected respectively after spatial and
temporal filtering. In (a-c) whole cell volumes, localisations are rendered with 100 nm
FWHM for visibility. Scale bars for (a-c) are 10 pm and 500 nm in the highlighted region
from (a). All localisations are coloured axially from O ym (blue) to 4 um (red).
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5.4 Quantifying Cluster Size and Shape in Mouse Brain

Tissue

Tissue slices represent a more physiological sample for the majority of biological systems but
have traditionally proven challenging to image. Background fluorescence is increased due to
the increased sample thickness compared to cells cultured adherently or in suspension and the
pre-defined sample geometry is typically less compatible with specialised sample chambers
often required for light-sheet excitation confinement techniques. To demonstrate the ability
of the DHPSF to image in tissue samples without complex sample preparation, postsynaptic
density protein 95 (PSD95) fused to mEos3.2 was imaged in fixed brain tissue samples
taken from transgenic mice. In the brain, signal transduction occurs at synapses between
two neurons via the release of signalling molecules (neurotransmitters) from the presynaptic
neurone, which bind and activate receptors on the postsynaptic neurone (figure 5.15a). These
receptors are held in place by a dense protein scaffold known as the postsynaptic density
(PSD) (containing PSD95). A previous 2D-SMLM study of ~100,000 synapses in transgenic
mice showed that PSD95 exists in nanoclusters that make up a basic structural unit of the
excitatory synapse [122]. PSDs were observed to be up to 600 nm in diameter and comprised
of 1-3 nanoclusters of ~100 nm diameter. However, the 3D structure and organisation of
the PSDs was not determined. These length scales are within the localisation precision
of the DHPSF and thus additional information on PSD structure could be obtained with
its application. Additionally, due to the large depth of field compared to 2D-SMLM and
robust counting potential of the DHPSF many more synapses can be simultaneously imaged,

although acquisition rate is reduced due to the increased size of the DHPSF on the detector.
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Fig. 5.15 Schematic of experimental set up for imaging fixed tissue slices. (a) Schematic of
fixed brain slice on a coverslip (top) with highlighted region in the hippocampus containing
individual synapses (middle) and a simplified cartoon of a synapse showing the postsynaptic
density (bottom). (b) Side-on view of experimental set up using VAEM excitation to image
mEo0s3.2 molecules (star shapes) at the bottom ~4 um of fixed brain tissue slices. Tissue
samples with up to 18 um thickness were imaged, although in practise any thickness slice is
compatible with the set up.

Tissue samples expressing PSD95-mEo0s3.2 with thicknesses ranging from 18 um to 6
um were imaged with the DHPSF in a PALM mode with VAEM [59] excitation. A water
immersion lens was chosen over an oil immersion lens as it better matched the expected
refractive index of the brain sections (typically ~1.4). Although spherical aberration was
expected, the form of the DHPSF remained robust when imaging at the top surface of 18
um thick brain sections. In order to reduce any unwanted aberration-induced effects, focal
planes were placed at the bottom of the brain sections so that the coverslip surface was in
the periphery (see figure 5.15b). The background signal and number of detected photons
per localisation was quantified under identical imaging conditions for 18 um, 8 um and 6
um thick brain sections (figure 5.16). Initial detected background photon values were ~26
photons/pixel, ~17 photons/pixel and ~17 photon/pixel respectively. After 250 seconds
the background had fallen to ~17 photons/pixel, ~12 photons/pixel and ~11 photons/pixel
respectively. However, for 6 um thick sections holes in the brain sections could be seen

by white-light illumination in some areas. The number of detected photons from 15,000
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localisations recorded from the bottom ~4 pm of each section thickness was unchanged with
all samples resulting in ~460=£150 photons per localisation, corresponding to a localisation
precision of ~25 nm and ~50 nm laterally and axially (see chapter 2). These data indicate
that thinner tissue samples result in better imaging conditions although the difference between
8 um and 6 um thickness is marginal and 6 pm thick sections proved less reliable to create.

Ideally tissue sections should be as thin as possible without compromising structural integrity.
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Fig. 5.16 Quantifying background and detected photons in tissue samples of varying thick-
ness. (a) Detected background photons per pixel over 250 seconds under identical imaging
conditions for 18 um thick (blue), 8 um thick (red) and 6 um thick (green) tissue samples.
(b) Mean and standard deviation of detected photons for 15,000 mEos3.2 localisations under
identical imaging conditions for 18 pum thick (blue), 8 um thick (red) and 6 um thick (green)
tissue samples.

In these preliminary experiments individual synapses could be seen (figure 5.17). No
fiducial correction was implemented so it is likely that the focus drifted by ~40 nm (see
chapter 2) over the acquisitions (250 seconds). In future experiments, fiducial correction
should be employed as extended acquisition times are required to image all PSD95-mEo0s3.2
within the image volume. Figure 5.17 shows a ~65 um x 65 ym x 3.4 um volume of PSD95-
mEo0s3.2 imaged in the CA1 radiatum region of the hippocampus from an 8 pm thick mouse
brain section. An exposure time of 50 ms was used and 10,247 localisations were recorded
in 250 seconds across ~1,200 PSDs. Individual PSDs appeared to be ~100 nm laterally in
diameter, agreeing well with previous data [122]. Due to a lack of fiducial correction axial
measurements were less reliable and PSDs appeared axially elongated, indicating a degree of
focal drift. This work was used to optimise imaging conditions for future brain-slice data

collection.
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Fig. 5.17 PSD95-mEos3.2 in the CAl radiatum imaged in fixed mouse-brain tissue with
the DHPSF. (a) 10,247 localisations from a ~65 um x 65 um x 3.4 um image volume
within the CA1 radiatum. Localisations were rendered with a 200 nm FWHM for visibility.
Grid lines and scale bar are 10 um. (b) Highlighted 10 ym x 10 ym x 3.4 um volume
from (a). Individual post-synaptic densities can be clearly seen across the depth of field.
Localisations are rendered with a 100 nm FWHM for visibility. Scale bar is 1 um. (c&d)
Individual post-synaptic densities highlighted from (b) plot with radius equal to the expected
lateral localisation precision of the DHPSF (25 nm). The structures are ~100 nm in diameter
laterally. A lack of fiducial correction makes axial measurement inaccurate but localisations
are seen over ~250 nm axially for both cases.
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5.5 Discussion

3D super-resolution imaging is gaining popularity with the recent emergence of techniques
such as lattice light-sheet enabled SIM [89, 240] and increased publications from 3D-SMLM
[83, 82, 208, 241]. The work presented in this chapter demonstrates that the DHPSF is
applicable to a wide range of imaging studies away from the coverslip, where 2D methods
typically perform poorly. We show that the DHPSF is compatible with imaging suspension
cells, adherent cells and tissue samples and is compatible with a number of imaging modalities
including PALM and STORM. We also employed a range of labelling strategies including:
expression of fluorescent proteins, HaloTag ligands and antibody labelling with either 561
nm or 641 nm laser excitation. We achieved the first implementation of the DHPSF for
large-volume imaging with multiple image planes covering whole eukaryotic cells [147],

which has since been extended to higher localisation densities [108].

Three different biological systems were investigated: Firstly, whole T-cell volumes
were imaged with minimal aberration by employing a water-immersion objective lens. In
addition to observing morphological changes, T-cell protein redistribution was quantified
upon immunological stimulation across entire T cells and compared to cell-specific model
distributions. High-resolution topological maps of the apical surface of fixed T cells were
created by STORM imaging of membrane-bound CD45 with antibody labelling, allowing
for membrane nanostructure to be investigated. Secondly, the overall distribution of spe-
cific proteins was imaged across ~4 um thick sections of fixed adherent cells in a single
image plane using a photoactivatable fluorescent protein. This enabled quantification of the
redistribution of K-ras protein upon changes in membrane potential in HeLa cells and in
HEK cells the localisation of the proteasome within cells was determined. Finally, individual
post-synaptic densities could be resolved deep into fixed mouse-brain tissue samples by
imaging PSD95-mEo0s3.2 in a PALM mode. In all of the presented cases HILO or VAEM
excitation proved sufficient excitation confinement to facilitate single-molecule imaging. As
a result, imaging is compatible with almost all sample geometries as a single objective lens
can be used for excitation and emission collection.

In theory the DHPSF provides a slightly worse localisation precision compared to Biplane
3D-SMLM methods at low SNR [92], although it is more consistent though the depth of
field. Astigmatism 3D-SMLM is expected to result in the worst localisation precision of
the three techniques in all dimensions at all SNR levels [92]. However fitting routines for

Astigmatism and Biplane are more developed than the single method available for the DHPSF.
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Astigmatism and Biplane are currently more robust to fitting in noisy datasets as they do not
require template matching or user-defined thresholds for individual datasets. The result of
this is that Astigmatism and Biplane are more likely to achieve a localisation precision closer
to their theoretical limits in difficult to image samples compared to the DHPSF. Consequently,
the DHPSF should be reserved for imaging high-SNR samples or for situations that require
an extended depth of field, as in the applications presented in this chapter. As mentioned
in chapter 2, additional DHPSF fitting methods are in development that should improve its
performance and applicability for low-SNR samples.

Advantages of the DHPSF for 3D Imaging

A key feature of SMLM is quantification. 3D techniques provide more information on the
position of individual fluorophores compared to 2D techniques, which facilitates more robust
quantification, at the cost of increased experimental complexity. The DHPSF exhibits a
more consistent localisation precision across the depth of field compared to Astigmatism
and Biplane 3D SMLM techniques [92], allowing for more reliable quantification across the
depth of field. One example in which this could be important is quantifying the size of PSD95
nanocluster in brain tissue. Homogenous nanoclusters would appear homogeneously sized
across the depth of field for the DHPSF. Whereas a ~10 nm increase in localisation precision
at the focal periphery is expected for both Astigmatism and Biplane [92] and would cause
nanoclusters to appear ~20 nm larger in diameter at the periphery compared to those located
at the centre of the focal plane. Multifocus microscopy (MFM) gains axial information
by comparing the 2D PSF between multiple image planes, as in Biplane, suggesting that
it will exhibit a similar axial distribution of localisation precision, although this not been

investigated.

The increased depth of field of the DHPSF (~4 pm) compared to other commonly used
3D SMLM techniques (~500 nm for astigmatism and Biplane) affords the advantage of
collecting more data from a single image plane. This allows for extended structures to be con-
tained in a single image plane (e.g. entire pseudopodia spanning several micrometres on the
apical surface of T cells) and for a significant fraction of a cell to be imaged simultaneously,
reducing the need for imaging multiple planes within a cell and avoiding the increase in
experimental and analytical complexity associated with stitching together successive frames.
This was especially important for imaging K-ras and proteasomes in adherent cells as a
single DHPSF image plane covered ~50% of a typical cell volume, whereas other methods

would be expected to cover ~6-7%. The increased depth of field also enabled ~8 times more
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PSDs to be imaged in a single image plane compared to the previous 2D study, reducing the
number of acquisitions required accordingly to properly catalogue PSD subtypes. Although
other Tetrapod PSFs offer an even larger depth of field (<20 pm) [113], this comes at the cost
of increased localisation uncertainty and PSF size, reducing working imaging concentrations.
The DHPSF represents a compromise between depth of field and PSF size that is well suited

to the majority of cell imaging and track applications.

Light-sheet illumination has been combined with the DHPSF to increase SNR [107]
and has recently been demonstrated for cell imaging [108]. The DHPSF is particularly
well-suited to imaging with simple light-sheet systems which typical have an axial thickness
of 2-3 um [61]. The comparable depth of field of the DHPSF allows for all simultaneous
fluorescence events across the sample to be recorded as out-of-focus fluorophores are not
excited. This has the effect of increasing localisation density and facilitating accurate
stoichiometry measurements in PALM experiments (depending on the activation efficiency
and blinking kinetics of the fluorophore). To achieve the same conditions with typical
3D-SMLM techniques ultra-thin excitation geometries could be employed at the cost of
significant technical complexity. Bessel and Airy beam light-sheet methodologies [87, 242]
offer a comparable thickness to 2D, Astigmatism and Biplane methods, although additional
excitation maxima can be present outside of the depth of field, reducing the counting

efficiency of the experiment.

5.5.1 Disadvantages and Difficulties of the DHPSF for 3D Imaging

As the DHPSF occupies a significantly greater area on the detector compared to the PSFs of
Astigmatism, Biplane and MFM techniques, a lower density of emitting fluorophores can
be simultaneously imaged before their PSFs begin to overlap and can no longer be resolved.
Consequently, a relative sacrifice of either localisation density (by reducing labelling density)
or acquisition duration must be made. For most cases it is preferable to increase acquisition
time by increasing the fraction of time that fluorophores spend in their ‘dark’ state. In
PALM this can be achieved by reducing the intensity of the activation illumination, so long
as thermal activation is not limiting. In STORM this can be achieved, depending on the
fluorophore, by optimising the composition of the buffers and/or reducing the activation
intensity. For PAINT reducing the concentration of the probe in the buffer reduces the
fraction of time that each target is visible and thus increases the ‘dark’ state. As shown in

chapter 2, the DHPSF is ~5-fold larger compared to an analogous 2D PSF. As a general
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rule, for optimal density localisations rates should be reduced by this factor compared to 2D

experiments.

Another factor that must be considered when using 3D-SMLM is the reduction of signal
compared to 2D imaging. For the DHPSF, this is in part due to the photons comprising a
2D PSF being split into the two lobes of the DHPSF as well as due to transmission losses
from the additional optics creating the DHPSF transformation. This effect is exacerbated in
the presented applications by the use a water-immersion objective lens instead of a high-NA
oil-immersion objective lens, which is expected to result in a factor 0.685 reduction in
collecting power (see chapter 3). In practice ~43% of the 2D PSF photons were observed
in each lobe. Additionally, water-immersion lenses collect background signal from a larger
volume, further reducing SNR. The result of these factors is that samples with low signal
or high background can be more difficult to image compared to 2D, requiring careful
experimental optimisation or the introduction of narrower excitation confinement. This
is especially true for PAINT imaging, due to the increased background signal caused by
freely-diffusing fluorophores in solution, or when imaging fluorescent proteins. However,
modern organic dyes are generally bright enough for DHPSF-SMLM outside of PAINT,
providing the background fluorescence of the sample is low. This can be optimised with
the fixation protocol as well as imaging buffer composition (especially in STORM). For all
examples shown, formaldehyde-paraformaldehyde fixation provided the lowest background
signal compared to methanol-ethanol fixation. For imaging at the basal surface of low-SNR
samples, where spherical aberration is not an issue, an oil-immersion lens can be employed
to increase signal and reduce background.

Data processing is another disadvantage of the DHPSF compared to more standard
Gaussian fitting used in 2D SMLM, Astigmatism, Biplane and MFM techniques. The only
published DHPSF fitting method (easy-DHPSF [137]) is computationally expensive and not
compatible with batch processing due to template fitting and user-defined thresholds. As
a result, processing raw datasets is time consuming and can limit productivity in studies
requiring long acquisitions of large regions, as is the case for the proposed study of PSD95 in
the mouse brain hippocampus. Acceleration of the fitting process and removing the need for
user-defined thresholds would drastically improve throughput in future studies and represents

a key step towards wide-spread adoption of the DHPSF.

A less fundamental limitation of the DHPSF is its sensitivity to phase-mask alignment.
The position of the phase mask must be optimised to reduce lateral movement as the DHPSF

is scanned axially before every experiment. This makes the platform less user friendly but
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also makes experiments that require the phase mask to be changed or removed when imaging
the same sample difficult. For example, in the current form of the instrument, experiments
employing sequential two-colour DHPSF imaging with one detector are not possible and
swapping from DHPSF imaging to 2D can only be achieved once per sample as swapping
back would require the DHPSF to be recalibrated. For samples with fiducial markers, a single
fiducial could be used to recalibrate the DHPSF although this would take additional time
and add complexity. The ideal solution is to ensure that the phase mask is in precisely the
same position before and after being swapped so that the form of the DHPSF is maintained
and recalibration is not required. Automation of the phase-mask alignment process would
significantly increase usability but would require motorised mountings which are currently
not in place on the platform. This limitation applies to all PSF-engineering techniques
requiring direct measurement of the PSF for calibration such as Astigmatism and Tetrapod
PSFs.

5.5.2 Potential Improvements to Current Instrumentation

As discussed above, the potential to swap in and out DHPSF phase masks mid-experiment
without the need to recalibrate the form of the DHPSF would be useful. In the current set
up the phase mask is mounted on a 3-axis translation stage to allow for its position to be
adjusted manually. A robust turret system mounted on a 3-axis translation stage could allow
for separate phase masks to be swapped in and out of the emission path, facilitating sequential
multicolour and 2D imaging on the same detector. However, the stability of the transition
would have to be measured. Another potential solution would be to position the phase mask
with large travel range and precise movement stages (e.g. walker piezo stages). These stages
would be able to return to previously determined positions with high repeatability so that the
DHPSF exhibits the same form. Again, the reproducibility of the system would need to be
thoroughly tested before use.

When imaging white-light through the DHPSF phase mask the image appears distorted
as each point is subject to the double-helix phase transformation. This can make it difficult to
identify specific areas of the sample and can obscure fine detail that could provide information
about the condition of individual cells. The ability to swap between 2D and 3D imaging
would also be useful for a number of other applications such as aligning bulk labelling of
cellular structures (e.g. nuclear envelope staining, lysosome staining etc.) with 3D-SMLM
data sets. This could be achieved with a single detector without moving the phase mask by

diverting the emission to an alternative path. As the emission path is particularly sensitive to
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phase distortions, ultra-flat mirrors should be used. At least one additional lens would also be
required to compensate for the increased path length so that the image planes of both paths
coincide on the detector. If this system can be implemented in stable and easy-to-use manner
the usability of the instrument would be greatly increased as experiments could be optimised
in a 2D mode before swapping to the more challenging DHPSF mode.

Currently the DHPSF instrument is set up to facilitate simultaneous two-colour imaging
with two detectors and two phase masks sharing the first lens of their respective 4f systems
(see figure 2.4 in chapter 2). At the time of writing this has not been fully exploited due to
issues controlling both EMCCD cameras with micromanager making data acquisition unsta-
ble. In order for simultaneous two-colour imaging to be realised on the current instrument
data handling from two cameras must be properly implemented. Correction for chromatic
aberration must also be applied. As gold nanoparticles and nanodiamonds are fluorescence
across a broad wavelength range, multiple fiducial markers in the field of view would allow
for direct aberration correction and drift correction. Simultaneous two-colour imaging with
the DHPSF has been demonstrated by the Moerner lab [105], but in practice the presented

multicolour cell imaging was achieved sequentially.

Fiducial markers are often a consideration for 3D imaging. When imaging away from
the surface it becomes more complicated to position fiducial markers within the imaging
volume without their PSFs overlapping with areas of interest within the sample. In the work
presented in this chapter, fiducial markers were added to fixed adherent cell samples and
naturally stuck to the surface of cells. Free markers diffusing in the solution were then
washed away so that they did not interfere with imaging. The added concentration was
tuned so that typically there was ~1 marker per field of view after washing. The sample was
then manually searched for areas to image in which the cells looked healthy and a fiducial
marker was present that did not obstruct the area of interest. Depending on the condition of
the sample this sometimes took a considerable amount of time. Data acquisition could be
improved by positioning fiducial markers away from the surface and away from the cells or
in a gel matrix (depending on the pore size relative to the fiducial markers). Another solution
implemented by the Moerner group is using a large depth-of-field PSF to periodically image
fiducial markers placed on the surface, out of the DHPSF image plane [108]. In this approach
a programmable deformable mirror is used in place of the phase mask to swap between
DHPSFs and Tetrapod PSFs at the expense of signal transmission as deformable mirrors only
operate on one lateral polarisation axis. The same effect could be achieved without this loss

of signal with multiple imaging paths.
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5.5.3 Concluding Remarks

The applications presented in this chapter demonstrate the ubiquity of the DHPSF for SMLM
imaging away from the surface in a range of cell types and labelling methodologies. For
all experiments the methodology best-suited to obtain the desired information should be
chosen. For 3D SR imaging studies this decision is based partly on the labelling methods
available (e.g. organic dyes or fluorescent proteins), which affect the SNR of the sample,
and the nature of the question being asked. If dynamic processes need to be visualised, a
methodology with sufficient time resolution must be used. Deterministic 3D-SR techniques
generally offer greater time resolution compared to SMLM and are thus better suited to
following changing systems. 3D-STED offers video-rate imaging with similar resolution
to 3D-SMLM techniques but is less compatible with quantification, especially relating to
stoichiometry measurements. Experimental complexity should also be taken into account
when deciding which technique to use. Deterministic SR typically requires more complex
instrumentation in the excitation path compared to wide-field 3D-SMLM, which typically
use collimated laser excitation with little or no additional optics. Astigmatism is the easiest
3D-SMLM technique to implement in the emission path as it requires a single astigmatic
lens. Other techniques such as Biplane, MFM and iPALM require precise alignment of path
lengths to achieve axial localisation. The DHPSF lies in between these two categories in
complexity, requiring a simple 4f system consisting of two lenses and a phase mask. The ~4
um depth of field of the DHPSF and MFM enable imaging of many structures in a single
image place, reducing the experimental complexity associated with focal-plane scanning for

structures larger than ~500 nm axially.

A number of projects utilising the DHPSF have been planned including: 1) 3D tracking
and imaging of K-ras proteins in normal and K-ras mutant cell types, 2) 3D organisation of
proteasomes relative to membrane structure under membrane polarisation and 3) 3D imaging
of the distribution of PSDs across the hippocampus in mice brain sections. Another two
DHPSF platforms are being built in the department in collaboration with the Lee group to
address more specific questions.

A more detailed application of the technique to address T-cell protein clustering relative

to membrane nanostructure is demonstrated in chapter 6.
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5.6 Methodology

Measuring Lateral Shift Between Axial Planes

Fluorescent beads (T7279, ThermoFisher) were suspended in phytagel (P8169, Sigma)and
imaged with the DHPSF with 561 nm excitation. A 1% solution of pytagel and 2 mL of
filtered (0.22 um Millex-GP syringe filter unit, Millipore) phosphate-buffered saline (PBS)
(2810305, MP Biomedical)) was heated until boiling and kept at 70°C. 0.5 uL of a 1.8 x 10!
particles/mL solution of 0.1 um fluorescent beads was added to 100 uL of gel solution at
temperature. 50 uL of the mixture was then deposited onto argon-plasma cleaned (PDC-002,
Harrick Plasma) coverslips (22 <22 mm borosilicate, thickness No. 1, VWR) and allowed to
cool to room temperature. The slides were then mounted onto the DHPSF instrument and the
piezo stage was used to determine the distance above the coverslip and move the objective
axially by 2.5 um. 100 frames were acquired at each image plane before moving to the next.
This was repeated 60 times, acquiring a total of 12,000 frames at 30 ms exposure. DHPSF
fitting was conducted with easy-DHPSF [210] in MATLAB.

Imaging CD28-mEo0s3.2 in T cells

Before imaging ~10° T cells expressing CD28-mEos3.2 were centrifuged at 600x g for 2
min and suspended in 1 mL of fixing solution (filtered PBS with 4% formaldehyde (Sigma)
and 0.2% glutaraldehyde (Sigma)). The cells were left at room temperature for 60 min before
washing three times in filtered PBS involving centrifugation. The cells were resuspended in
200 uL of filtered PBS. Meanwhile, glass slides (22x22 mm borosilicate, thickness No. 1,
VWR) were argon-plasma cleaned and coated with poly-L-lysine (PLL) (molecular mass
150-300 kDa; P4832, Sigma) for 30 min. The slides were washed three times in filtered PBS
with 20-100 uL of filtered PBS left on each slide. 20 uL of the fixed cells was then added

and allowed to settle for ~5-10 min.

The sample was imaged on the DHPSF platform employing a 60x 1.20 NA water-
immersion objective lens (Plan Apo VC 60x, Nikon). Continuous 561 nm and 405 nm
excitation was incident on the sample in HILO geometry with a power density of ~1 kW/cm?
and ~5 W/cm? respectively. A quadband dichroic and longpasss and bandpass filters were
used to separate the emission signal (Di01-R405/488/561/ 635-25x36, and BLP02- 561R-25
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and FF01-580/14-25, respectively, Semrock) before the detector. An exposure time of 100
ms was used. DHPSF fitting was conducted with easy-DHPSF [210] in MATLAB.

Imaging TCR-TMR in T cells

Before imaging, ~10° T cells expressing TCR-3 HaloTag-tagged proteins were labelled
with 0.5-5 nM Halo ligand-TMR (G8251,Promega) for 30 min at 37°C. The cells were then
subjected to three washes in filtered PBS.

To image resting T cells, the cells were fixed in suspension in 4% paraformaldehyde
and 0.2% glutaraldehyde for 60 min. Before imaging, the T cells were centrifuged and
resuspended in 200 uL of filtered PBS. To image fixed cells during immunological triggering
events, argon-plasma-cleaned slides (24 x50 mm borosilicate, thickness No. 1, Brand) were
coated with activating OKT3 (10 mM/mL; Davis group, Weatherall Institute for Molecular
Medicine, University of Oxford) for 20 min. Labelled live cells were added to the surface
and allowed to settle for 5 or 10 min before the media was removed and replaced with 200
UL of fixing solution for 60 min. The glass slides were then gently washed with filtered PBS.

The samples were all imaged on the DHPSF platform employing a 60x 1.20 NA water-
immersion objective lens (Plan Apo VC 60x, Nikon). Continuous 561 nm excitation was
incident on the sample in HILO geometry with a power density of ~940 W/cm?. A quadband
dichroic and longpasss and bandpass filters were used to separate the emission signal (Di01-
R405/488/561/ 635-25x36, and BLP02-561R-25 and FF01-580/14-25, respectively, Semrock)
before the detector. An exposure time of 100 ms was used. DHPSF fitting was conducted
with easy-DHPSF [210] in MATLAB.

Whole-Cell Scanning

To image whole cells, the focal plane was axially scanned through the sample in 3-3.5 um
steps via the piezo-mounted objective. 100 frames were acquired at each position before
moving to the next position. This process was repeated until no more localisations were
observed, typically ~50 times. The recorded localisations were offset axially by the distance
to their respective image plane. In this case no fiducial correction was used as the expected
drift was judged to be small compared to the distances being investigated.
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Mesh Fitting to Localisation Data

Using a standard method and functions included in Meshlab (http://meshlab.sourceforge.net)

3D localisation data was converted into an object mesh via the following steps:

1. Import localisation data as point cloud into meshlab from ‘.xyz’ file type

2. Create normals to each localisation

The built in ‘Compute Normals for Point Set’ function in the ‘Normals, Curvatures
and Orientation’ tab of the ‘Filters’ menu was used. An input number of neighbours

ranging between 50 and 200 depending on localisation density.

3. Reconstruct a surface mesh using the Poisson surface approach

The built in ‘Surface Reconstruction: Poisson’ function in the ‘Remeshing, Simplifi-
cation and Reconstruction’ tab of the ‘Filters’ menu was used. Typically, an ‘Octree
Depth’ of 10, a ‘Solver Divide’ of 6, a ‘Samples per Node’ of 1 and a ‘Surface Offset-
ting’ of 1 were selected but these parameters were adjusted slightly between datasets

for best results.

4. Uniformly sample the mesh

The built in ‘Uniform Mesh Resampling’ function in the ‘Remeshing, Simplification
and Reconstruction’ tab of the ‘Filters’ menu was used

GLOX STORM Buffer Preparation

GLOX STORM buffer was prepared by adding 50 mg/ml glucose (Sigma), 0.02-0.05 mg/ml
catalase (Sigma), 0.8 mg/ml glucose oxidase (Sigma) and 7 mg/ml MEA (Sigma) to filtered
PBS. GLOX solution was prepared and filtered (0.22 um Millex-GP syringe filter unit,
Millipore) immediately prior to imaging and used for a maximum of two hours before fresh
buffer was made.

Imaging CD45-Alexa Flour 647 in T cells

~10° T cells were labelled with 200 nM Alexa Fluor 647 (A20006, ThermoFisher) CD45
antibodies (Gap8.3, anti-CD45; Davis group, Weatherall Institute for Molecular Medicine,
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University of Oxford) on ice for 25 minutes. Cells were then washed three times in filtered
PBS (involving centrifugation). Labelled T cells were fixed in 4% paraformaldehyde and
0.2% glutaraldehyde for 60 minutes at room temperature. The fixed cells were washed three
times in filtered PBS and suspended in GLOX STORM buffer. Coverslips (22x22 mm
borosilicate, thickness No. 1, VWR) were coated with PLL (molecular mass 150-300 kDa;
P4832, Sigma) for 10 minutes, before a 1:100 dilution of 100 nm gold nanoparticles (753688,
Sigma) was added for 2 minutes. Coverslips were washed three times with filtered PBS and
50 uL of the fixed cells were placed onto the coated coverslips and allowed to settle. The
sample was imaged with a 1.27 NA 60x water-immersion objective lens (Plan Apo VC 60x,
Nikon). A quadband dichroic and longpasss and bandpass filters were used to separate the
emission signal (Di01-R405/488/561/ 635-25x36, and BLP02-647R-25 and FF01-675/67-25,
respectively, Semrock) before the detector. Fixed T cells were imaged for 200,000 frames
with continuous 640 nm and 405 nm HILO excitation and a 30 ms exposure. DHPSF fitting
was conducted with easy-DHPSF [210] in MATLAB. After reconstruction, a rolling-mean of

the fiducial marker’s position over 50 frames was used to correct for drift in x, y and z.

Imaging (K-ras)-mEos3.2 in HeLa Cells

Fixed HeLa cells samples expressing (K-ras)-mEo0s3.2 were provided in filtered PBS by
Dr Yu Zhang. The buffer was replaced with a 1:20 dilution of 200 nm gold nanoparticles
(746657, Sigma) in filtered PBS and left for ~30 seconds. The sample was carefully washed
three times with filtered PBS before 1 mL of filtered PBS was added to the sample.

The sample was imaged on the DHPSF platform employing a 60x 1.27 NA water-
immersion objective lens (Plan Apo VC 60x, Nikon). Continuous 561 nm and 405 nm
excitation was incident on the sample in HILO geometry with a power density of ~1.2
kW/cm? for 561 nm. An initial power density of ~5 W/cm? was used for 405 nm that was
manually increased by changing optical density filters to maintain a relatively consistent
localisation rate. A quadband dichroic and longpasss and bandpass filters were used to
separate the emission signal (Di01-R405/488/561/ 635-25x36, and BLP02-561R-25 and
FFO01-580/14-25, respectively, Semrock) before the detector. An exposure time of 100 ms
was used. Typically 100,000-120,000 frames were recorded, depending on the number of
mEos3.2 events. DHPSF fitting was conducted with easy-DHPSF [210] in MATLAB. After
reconstruction, a rolling-mean of the fiducial marker’s position over 50 frames was used to

correct for drift in x, y and z.



5.6 Methodology 159

Imaging Proteasomes-mEo0s3.2 in HEK cells

Fixed HEK cells expressing proteasome-mEos3.2 were provided in filtered PBS by Dr Yu
Ye. Two different proteasome subunits tagged with mEos3.2 were analysed 1) core-particle
subunit (Prel) and 2) regulatory-particle subunit (RPN1). The buffer was replaced with a
1:100 dilution of fluorescent nanodiamonds (798134, Sigma) in filtered PBS and left for 2
minutes. The sample was carefully washed three times with filtered PBS before 1 mL of
filtered PBS was wazzed onto the sample.

The sample was imaged on the DHPSF platform employing a 60x 1.27 NA water-
immersion objective lens (Plan Apo VC 60x, Nikon). Continuous 561 nm and 405 nm
excitation was incident on the sample in HILO geometry with a power density of ~1.2
kW/cm? for 561 nm. An initial power density of ~5 W/cm? was used for 405 nm that was
manually increased by changing optical density filters to maintain a relatively consistent
localisation rate. A quadband dichroic and longpasss and bandpass filters were used to
separate the emission signal (Di01-R405/488/561/ 635-25x36, and BLP02-561R-25 and
FF01-580/14-25, respectively, Semrock) before the detector. An exposure time of 50 ms was
used. Typically ~200,000 frames were recorded, depending on the number of mEos3.2 events.
DHPSEF fitting was conducted with easy-DHPSF [210] in MATLAB. After reconstruction, a
rolling-mean of the fiducial marker’s position over 50 frames was used to correct for drift in

x,yand z.

Imaging PSD95-mEos3.2 in Fixed Mouse Brain Sections

Fixed brain slices were sectioned with a range of thicknesses and placed onto coverslips (24
x 50 mm borosilicate, thickness No. 1, Brand) by Vlad Anton in Edinburgh. Samples were
dried and frozen. Before imaging, samples were defrosted and 1 mL of filtered PBS was
added on top of the section. The sample was left for 10 minutes to equilibrate. The sample
was then placed on the DHPSF platform and imaged with a 60x 1.27 NA water-immersion
objective lens (Plan Apo VC 60x, Nikon). White-light illumination allowed Vlad Anton to
navigate to specific regions of the hippocampus. Once an area was found, continuous 561
nm and 405 nm excitation was incident on the sample in VAEM geometry with a power
density of ~1 kW/cm? and ~5 W/cm? respectively. The focal plane was placed so that the
coverslip surface was at the periphery to reduce spherical aberration. A quadband dichroic and

longpasss and bandpass filters were used to separate the emission signal (Di01-R405/488/561/
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635-25x36, and BLP02-561R-25 and FF01-580/14-25, respectively, Semrock) before the
detector. An exposure time of 50 ms was determined to provide optimal conditions. A range
of buffers were tested for maximum SNR. Optimal conditions were found when ~1 mL of
filtered PBS made from D,O was added on top of the brain sections due to an increase in
quantum yield of fluorophores in heavy water [243, 244]. For each region, 5,000 frames
were collected before moving laterally to a new area. DHPSF fitting was conducted with
easy-DHPSF [210] in MATLAB.



Chapter 6

Quantifying the Distribution of the
T-Cell Receptor in the Presence of
Membrane Nanostructure on Jurkat and
Primary T Cells

This chapter describes work done to image and quantify the clustering state of the T-cell
Receptor (TCR) in an immortalised CD4 " cell line (Jurkat) and primary CD4* T cells with
the DHPSF 3D super-resolution microscope away from the coverslip surface. High-density
whole-cell imaging of the outer membrane of Jurkat T cells was achieved using PAINT
imaging and labelled via wheat germ agglutinin tagged with photoativatable-JaneliaFluor549
(PA-JF549). Finally, sequential multi-target imaging of the position of the TCR and the outer
membrane of Jurkat and primary T cells facilitates quantification of the clustering state of
the TCR on the complicated 3D topography of resting T cells, fixed in suspension, using the

spatial point statistics tool - Ripley’s K analysis, applied in all three dimensions.

Contributions

Dr Steven Lee, Dr Aleks Ponjavic, Dr Mafalda Santos and I designed all experiments
presented in this chapter. All DHPSF experiments were conducted by me. Dr Aleks Ponjavic

wrote the autofocus script in beanshell used for maintaining a constant focal plane within the
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sample. Antibody and fabs labelling was conducted by Dr Aleks Ponjavic in Cambridge or
by Dr Mafalda Santos in the Weatherall Institute of Molecular Medicine in Oxford. HaloTag
antibodies and fabs were provided by the Davis group. Dr Mafalda Santos provided fixed
and labelled primary cells from the Davis group. I rendered all presented SMLM datasets in
ViSP or MATLAB and wrote all clustering analysis code in MATLAB. PA-JF549 conjugated
to a HaloTag ligand was a kind gift from Dr Marco di Antonio.

6.1 Introduction to the Molecular Basis of T-Cell Activa-

tion

All organisms are constantly under attack by parasites and pathogens. Different solutions to
the problem of protecting against disease have evolved including the passive barriers [245]
(e.g. skin in mammals and exoskeletons in insects) and selective apoptosis in plants [246].
Animals have developed a complex defence mechanism, the immune system, to protect
against foreign elements such as parasites or infection with pathogens. To function properly,
the immune system must be able to detect and destroy a wide range of pathogens that may
attack the organism by very different mechanisms. Therefore, in complex organisms the
immune system has evolved many components and, as the immune system is by nature

destructive, the fundamental challenge is to distinguish self from non-self.

All vertebrates share a common immune system comprised of two complementary
branches; the innate immune system and the adaptive immune system. The innate immune
system is classified by an unspecific and immediate generic response to pathogens. This
can be achieved by pathogen-associated pattern recognition [247] or distress signals from
damaged or stressed cells that can trigger a local inflammatory response that aims to contain
and clear infection [248]. The innate immune system does not confer long-lasting immunity
against specific pathogens but instead acts without memory in future infections. In con-
trast, the adaptive immune system, which is discussed in detail below, confers long-lasting
immunity.
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6.1.1 The Adaptive Inmune System

The adaptive immune system is characterised by its specificity, its delayed effect (~4 days
post infection), its increased strength compared to the innate immune system and its memory
of past infection, allowing for a quicker response against future infections. An adaptive
immune system based on lymphocytes appeared roughly 500 million years ago in jawless
fish. These lymphocytes have since divided into two distinct populations of T and B cells in
all higher vertebrates [249].

Although often described as separate, the adaptive and innate immune systems are inter-
dependent parts of the same system. For example, after detection and phagocytosis of a
pathogen, antigen-presenting cells (APCs) of the innate immune system present short peptide
fragments from the lysis of pathogens on major histocompatibility complexes (MHCs) present
on their plasma membrane. These specific peptide fragments are recognised by T cells in the

adaptive immune response, initiating a specific response against the infection.

The two populations of lymphocyte of the adaptive immune system express specific
antigen recognition complexes on their surfaces, respectively known as the B-cell receptor
and T-cell receptor (TCR) but occupy different roles in the response to pathogens. B cells are
involved in the humoral response. Once a B cell is activated by recognition of its specific
antigen (and after binding of a CD4™" T cell) proliferation and differentiation into plasma cells
is stimulated. These plasma cells manufacture and release specific monoclonal antibodies

into the extracellular fluid that bind to the specific antigen and neutralise pathogens [249].

T cells serve a number of functions in the cell-mediated response; they can recognise and
kill cells expressing non-self antigens on their surface and stimulate other cell types associated
with the adaptive immune response [249]. Each T cell expresses a single unique variation
of TCR that recognises and bind to MHC molecules presenting a different specific non-self
antigen fragment. The type of MHC molecule that is bound determines the subtype of T cell
[211]. CD8™ T cells bind to class I MHC molecules presenting their complementary antigen
fragment that are expressed on the surface of almost all cells within the body as they report the
range of proteins that are being degraded by their internal machinery. Upon binding, activated
CDS8™ T cells kill cells that are infected with the specific pathogen by inducing programmed
cell death. CD4™" T cells bind to class Il MHC molecules presenting their complementary
antigen fragment that are expressed on the surface of professional APCs. Activated CD4™

T cells can stimulate other processes by releasing a range of cytokines. These cytokine
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signals include activating macrophages, stimulating the maturation of complementary B cells,

recruiting neutrophils and stimulating activation of complementary CD8" T cells [211].

Due to their essential role as effectors and orchestrators within the immune response,
T cells remain a key area of interest. Dysfunction of the adaptive immune system by
misrecognition as self as non-self or vice versa can lead to auto-immune disease or a
failure to respond to potentially deadly infection. Therefore, understanding the mechanisms

governing the activation process has major relevance for the design of immune-therapeutics.

6.1.2 The T-Cell Receptor

The T-cell receptor (TCR) plays a key role in the T-cell activation process and the decision, at
a single-cell or even single-protein [250, 217] level, whether to initiate an immune response.
While the stoichiometry of the TCR is still not yet fully understood [251], it is known to be
comprised of several subunits (figure 6.1): a highly variable hetero-dimer of TCR-af3, that is
responsible for antigen recognition and whose intracellular domain is almost non-existent, as
well as three invariant transmembrane proteins collectively known as cluster of differentiation
3 (CD3) [252]. These CD3 proteins include two hetero-dimers, CD3€d and CDYe, that
contain a single intracellular immunoreceptor tyrosine-based activation motif (ITAM), and
the homo-dimer CD3{ {, that contains six ITAMs [253]. TCR ITAM phosphorylation by
tyrosine kinases, such as Lymphocyte-specific protein tyrosine kinase (Lck), is known to be
essential in the initiation of downstream signalling and the eventual initiation of an adaptive
immune response [254].

The TCR is capable of transducing a signal across the membrane with an unmatched
combination of specificity and sensitivity [255]. It has been suggested the a single TCR-
MHC binding event can lead to immune-response triggering [256-258, 217], even in the
presence of the 10°-10° non-complementary MHC molecules that are present on the surface
of APCs [250]. Although the ligand recognition and the later stages of the adaptive immune
response (e.g. the formation of the immunological synapse and downstream signalling) are
well described, a consensus of the mechanisms resulting in TCR phosphorylation has not yet
been reached [219].
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Fig. 6.1 The T-cell receptor complex (TCR) is comprised of TCR-o 8 hetero-dimer (magenta),
CD3ed and CD3ye hetero-dimers (navy) and CD3{{ homo-dimer (red). The TCR is a
transmembrane complex with eight intracellular immunoreceptor tyrosine-based activation
motifs (ITAMs) (rounded rectangles).

6.1.3 Molecular Models for TCR Triggering

Three models describing the signal transduction upon formation of the TCR-MHC complex
have been proposed; aggregation, conformational change and kinetic-segregation. The
evidence supporting each of these models is reviewed in detail in ref. [219].

Aggregation of TCR complexes following TCR-MHC binding could lead to enhanced
phosphorylation as their cytoplasmic ITAM domains are held in close-proximity, facilitating
cross-phosphorylation or the recruitment of tyrosine kinases. Indeed, artificial aggregation
of TCRs by soluble antibodies such as OKT3 which binds CD3g, has been demonstrated to
elicit T-cell activation [259]. However, surface densities of complementary MHC ligands on
APCs are not sufficient to form significant aggregates and the TCR is capable of triggering in
the presence of very few MHCs [256-258, 217]. The presence of clusters formed of 10-100
TCRs is well documented after TCR triggering [214, 260], however if this is a cause or a
consequence of TCR triggering and if TCR clusters exist in the resting cell remains unclear.

Conformation change describes the mechanism by which many ligands interact with
receptors [261]. In this model, the binding of a ligand to a receptor stabilises an alternative
conformation of the receptor that exposes some catalytic motif that was hidden in the initial
conformation or results in autophosphorylation. However, in the case of the TCR this is
unlikely to describe the activation process as the TCR lacks intrinsic tyrosine kinase domains
for autophosphorylation [226]. There is some evidence of a conformation change of the
TCR-o chain upon MHC binding [262], however, it is not clear how this change could affect
the phosphorylation of ITAMs on the CD intracellular domains of the CD3 components. An
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additional conformation-change model involving receptor deformation caused by binding
forces has been proposed [263]. This force-driven change is postulated to expose CD3¢e
ITAMs that could be hidden within the lipid bilayer of the plasma membrane, increasing
TCR phosphorylation.
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Fig. 6.2 Schematic cartoon of the kinetic segregation model. In the resting state (top), the
TCR is constantly phosphorylated and dephosphorylated by freely diffusing Lck and CD45
in the T-cell plasma membrane, achieving a low net level of TCR phosphorylation (stars).
When the TCR binds to an MHC complex on the surface of an antigen-presenting cell, a
close contact in formed (bottom). This excludes phosphatases with a large extracellular
domain (CD45) but not kinases with a small extracellular domain (Lck), resulting in a local
increase in TCR phosphorylation and thus TCR triggering.

The kinetic-segregation model was proposed by Davis et. al. in 1996 [264] as an
alternative explanation to the aggregation model of TCR triggering. The kinetic segregation
model states that physical redistribution of receptors on the surface of T cells leads to a
segregation of membrane proteins based on the sizes of their extracellular domains that
inhibits normal signal transduction across the membrane (figure 6.2). In a resting T cell, the
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TCR is continuously phosphorylated and dephosphorylated by free kinase and phosphatases
proteins in the T cell membrane, such as Lck and CD45 respectively. The result is a low
but stable level of TRC phosphorylation. When a TCR complex binds to an MHC on the
surface of an APC, the membranes of the T cell and APC are held in close proximity by small
adhesion proteins such as CD2, forming close-contact zones [206]. Membrane proteins with
large extracellular domains, such as CD45 [265], cannot enter the close-contact zone while
molecules with small or no extracellular domain, such as Lck, are less affected. CD45 is no
longer able to dephosphorylate the TCR, resulting in a local net phosphorylation and, in turn,
triggering of the immune response via ’downstream’ signalling with the recruitment of Zap70
[212]. Recently, key predictions of the kinetic-segregation model have been demonstrated
including: the requirement for CD45 and Lck segregation in reconstituted systems [215],
ligand-independent TCR triggering [227] and the presence of CD45 exclusion zones in
activating cell contacts [216].

6.2 The Spatial Distribution of the T-Cell Receptor

The spatial distribution of the TCR upon T-cell activation has been well studied [266-268].
Post-activation, TCR clusters form and are transported towards the immunological synapse
by filamentous actin [269]. However, the spatial distribution of the TCR in the resting T cell

is not well defined.

Recently there have been a number of 2D single-molecule localisation microscopy
(SMLM) studies aiming to investigate the clustering state of the TCR on the plasma membrane
of resting T cells [52]. Hu et. al. reported that the TCR exists in clusters of approximately
5-15 molecules by dSTORM at coverslip surfaces [121]. Pageon et. al. determined that
the 70% of TCRs are associated with clusters comprised of ~20 TCRs per cluster and ~20
clusters per um? by PALM imaging at the basal surface of CD4" T cells. However this study
was conducted on T cells contacting poly-L-lysine (PLL) coated surfaces, which have been
shown to promote T-cell activation [150], potentially resulting in a redistribution towards
clustering. Another study by Rossboth et. al. employing label-density-variation SMLM
[270] and STED microscopy determined that the TCR is randomly distributed in resting
CD4™ T cells, and does not form nanoclusters until after activation. Additionally, the TCR
was observed to be monomeric at the apical cell surface of CD4™ T cells by two-colour
coincidence detection (TCCD) [199]. There is also a recent focus on the functional role of

T-cell membrane nanostructure in immune-response triggering [271, 171]. One study by
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Jung et. al. reported that the TCR is not randomly distributed across the plasma membrane

but rather is preferentially located in membrane protrusions [201].

It is clear that the spatial distribution and redistribution of the TCR plays a fundamen-
tal role in immune-response triggering. These conflicting reports highlight the need for
additional investigation into the resting state of the T-cell membrane.

6.3 Imaging the Spatial Distribution of T-Cell Membrane
Proteins with the DHPSF

As discussed in chapter 5, clustering is not necessarily well represented by 2D imaging as
axial structure within the sample can cause artefacts. Interactions with coated surfaces can
influence the behaviour of membrane proteins [150, 151]. Thereofore, in order to investigate
the stoichiometry of T-cell membrane proteins in the resting state 3D-SMLM techniques
are required. Recent developments 3D cluster identification [127, 125] demonstrate the
applicability of 3D-SMLM for quantification of the clustering state of proteins on non-flat
geometries. The extended depth of field of the DHPSF compared to the majority of 3D-
SMLM techniques, its robust counting ability (demonstrated in chapter 5) and the reduction
of spherical aberration away from the surface make it an ideal candidate to measure the
distribution of proteins in traditionally difficult to image areas of biological samples, away
from coated surfaces. Duel labelling of T-cell membrane proteins and the position of the outer
membrane can be used to disentangle the effect of cell morphology on perceived clustering,
facilitating unbiased quantification of 3D clustering. We have developed methodology to
address these factors, both of which are described below.

As shown before, the DHPSF is capable of observing the majority of expected fluores-
cence events within a sample, however, other factors can prevent this from representing the
entire distribution. In PALM, the activation/folding efficiency of the fluorophore used can
result is <50% of the protein of interest being localised [64]. In STORM, multiple fluores-
cence events are observed from each fluorophore with a distribution of ‘blinks’ spanning an
order of magnitude [65]. This makes counting unreliable as individual fluorophores at the
tail of this distribution can be mistaken as clusters. In low-expression proteins (such as the
TCR), the presence of a few erroneous clusters can have a significant effect on the overall

distribution.
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The newly developed photoactivatable-JaneliaFluor (PA-JF) fluorophores report an acti-
vation efficiency (the fraction of fluorophores that photoactivate into an emissive state) of
<50% in solution, which can be increased depending on its environment, and display a mean
of 1.4 fluorescence events per fluorophore [69]. The activation efficiency is increased to
~90% and ~76% for PA-JF549 and PA-JF646 respectively when bound to a HaloTag [69],
making these fluorophores well-suited for imaging the majority of the population of interest

with a sample, providing they can be attached to a HaloTag.

In order to image the membrane-bound TCRs of T cells, antibody/antigen-binding
fragment (fab) labelling was chosen as it allows for imaging in primary cells and reduces
the fraction of localisations observed from intracellular proteins unrelated to membrane
organisation. This required antibodies/fabs to be created with a HaloTag, limiting the
application of the methodology. TCR-fabs binding to CD3 domains expressing a HaloTag
were created by the Davis group to test the methodology and quantify the distribution of
the TCR. Additional HaloTag-fabs for CD2 and CD45 T-cell membrane proteins are under
construction by the Davis lab and will be investigated in future projects. With these TCR-fabs
the distribution of the TCR across ~4 um thick sections of Jurkat and primary T cells can be

imaged with high efficiency.

Fiducial markers are required to track stage drift in three dimensions for long acquisition
times. Typically this is achieved by attached non-bleaching markers, such reflecting gold
nanoparticles [272] or fluorescent nanodiamonds [201], to the coverslip surface with Poly-L-
Lysine (PLL). When imaging away from the surface these markers are not within the field
of view and thus complicated methodologies are required to periodically check the position
of the marker. This can be achieved by moving the focal plane between the sample and the
coverslip surface, although this may introduce additional errors due to relaxation effects after
movement and the viscosity of the immersion liquid. Another solution is to swap the PSF to a
larger depth of focus PSF such as the Tetrapod PSF periodically during imaging to include the
coverslip surface in the depth of field [108]. This approach requires a programmable spatial
light modulator to implement and, like the previous example, does not provide continuous
tracking of stage drift as the fiducial markers are only imaged periodically. The ideal solution
should include stable fiducial markers within the image plane of the sample, away from the
coverslip. This can be achieved by suspending fiducial markers in an agarose gel solution.
However, the pore size of the agarose matrix is ~100 nm [273] so smaller fiducial markers,
such as nanodiamonds which are typically ~3 nm, are not trapped. Even larger, 200 nm,
gold nanoparticles were prone to motion within the agarose gel when reflecting high-power

illumination, most likely due to heating and optical forces. Fiducial markers are also prone
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to adhering to cell membranes in live and fixed cells, obscuring data collection. As a result,
suspension of fiducial markers in agarose was deemed not reliable for long acquisition lengths

and an alternative solution was found.
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Fig. 6.3 Cartoon schematic of experimental set up for imaging T cells away from the coverslip
surface with fiducial markers. 50 um agarose beads were coated with fluorescent nanodi-
amonds and immobilised within an agarose gel along with the T cells. HILO illumination
allowed for multiple fiducial markers to be imaged simultaneously with T-cell samples.

A novel solution for immobilising fiducial markers within the imaging volume when
imaging away from coverslip surface was found. 50 um diameter agarose beads were coated
with fluorescent nanodiamonds, and attached using PLL. These labelled beads were added to
cell samples and allowed to settle on the coverslip surface. The beads would not adhere to the
surface but instead remained mobile. The sample was heated to 37°C and the imaging buffer
was diluted with a 1:1 solution of 2% agarose. Once allowed to settle again, the mixture was
cooled to room temperature to immobilise the agarose beads within the ~1% agarose gel.
The resulting sample contained fluorescent nanodiamonds distributed on the surface of the
agarose beads, up to 50 um away from the surface (figure 6.3). Cells that were sat near to an
agarose bead (visible by white-light illumination) typically had at least one isolated fiducial

marker within the field of view, allowing for extended acquisitions to be conducted.

The stability of the fiducial markers was measured by imaging two nanodiamonds

attached to two different agarose beads for 2.5 hours. One image with 30 ms exposure time
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was recorded every 300 ms. The rolling mean position of the first fiducial marker from 50
frames was used to correct for stage drift at each frame. A 1D Gaussian function was fit to a
histogram of the position of the same fiducial marker, after correction, to extract the standard
deviation for x, y and z, corresponding to the localisation precision of the DHPSF. Then the
rolling mean position of the second marker from 50 frames was used to correct for stage
drift. Another 1D Gaussian function was fit to a histogram of the position of the first marker,
after correction, to extract the standard deviation for x, y and z. The difference between the
two values should relate to the relative stability between the two fiducial markers (figure 6.4).
The procedure was repeated, correcting the second marker by the position of the first. The
mean axial and lateral precision was with self-correction was measured to be 12 nm and 16
nm respectively, agreeing well with the measured localisation precision of the DHPSF (see
chapter 2). The mean axial and lateral precision with correction by a second marker was
measured to be 17 nm and 20 nm respectively. The increased width of the second-corrected
distributions could be related to movement of the agarose beads within the agarose matrix
that they are set in. This result indicates that the agarose beads are stable within the gel to
~5 nm over 2.5 hours, providing sufficient fiducial correction even for very long acquisitions
(>10 hours).
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Fig. 6.4 Measuring the stability of fiducial markers suspended away from the coverslip
surface. In the setup described in figure 6.3, the position of two fiducial markers on separate
agarose beads was used to track for stage drift. The position of each bead was adjusted by a
rolling mean of 50 sequential positions of itself (blue curve) and of the second marker (red
curve). A Gaussian function was fit to a histogram of the x-position (a) and z-positions (b)
of a fiducial marker after the two separate drift corrections to extract a precision for each
distribution. The difference between the two relates to the stability of the fiducial markers
relative to each other.
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6.3.1 Imaging the TCR on the Outer Membrane of T Cells

The TCR was labelled with anti-CD3 fabs fused to PA-JF549 and imaged in a PALM mode,
at the top surface of Jurkat T cells that were fixed in suspension and suspended in 1% agarose
gel (figure 6.5). Constant 561 nm and 405 nm illumination was incident in a HILO geometry.
Fluorescent nanodiamonds were used for drift correction and were implanted as illustrated in
figure 6.3. Typically >30,000 frames were acquired with an exposure time of 30 ms until no
more fluorescent events were observed. 3,400£900 localisations of the TCR were recorded
from a single image plane after filtering for repeat localisations of the same fluorophore
in space (500 nm) and time (1 second). Jurkat T cells express 20,000 — 40,000 copies of
the TCR (determined by FACs in the Davies group). Approximately 25% of the cell is
contained within the imaging volume and the activation efficiency of PA-JF549 is ~90%
when bond to a HaloTag [69], predicting that ~4,500 - 9,000 localisations of the TCR should
be possible. The reduction in observed TCR molecules may be caused by dissociation of the
fabs during the labelling, washing and fixation protocol. Other factors that could affect this
include the labelling efficiency of the fab with PA-JF549, which could not be determined
by Ultraviolet-visible spectroscopy (UV-Vis) as the absorption of the non-fluorescent forms
of PA-JF549 coincide with that of the fabs, and the true activation efficiency of PA-JF549,

which has been shown to be highly variable and sensitive to local environment [69].

6.4 Imaging T-cell Membrane Nanostructure

A number of labelling methods to image the position of the outer membrane of T cells
with high localisation density have previously been demonstrated. Fluorophores have been
attached to lipids that are inserted into the membrane [274], however, this requires live-cell
labelling that may perturb the resting state of the T cell. Lipophilic dyes such as Di(L,0,D)
and CellMask deliver relatively uniform membrane labelling by interacting with the lipid
bilayer [275], however, these dyes typically have a low quantum yield and thus do not lend
themselves well to SMLM. Lectins, such as wheat germ agglutinin (WGA), non-specifically
crosslink sugars on the membrane proteins. Fluorescently-labelled WGA has been used as
a membrane probe, achieving >10° localisations from a single-cell membrane via PAINT
labelling [82].

A drawback of PAINT labelling is increased background signal due to unbound fluo-

rophores present in the imaging buffer. This can be counteracted with the use of environ-
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Fig. 6.5 PALM imaging the TCR on the apical surface of Jurkat T cells with the DHPSF. (a)
A ~4 um thick section imaged at the apical surface of a Jurkat T cell labelled by anti-CD3
fabs fused to PA-JF549. (n=3,721) (a i&ii) top-down and side-on views of the cell presented
in (a). (b-d) Additional examples of TCR imaged at the surface of Jurkat T cells (n=2,635,
4,557 and 2730 respectively). All localisations are coloured axially across the 4 um depth of
focus of the DHPSF and are rendered with 100 nm FWHM for visibility. Ticks and grid lines
are 1 um.

mentally sensitive probes that changes their absorption/emission upon binding to the target
of interest (e.g. Nile Red binds to hydrophobic regions and modifies it’s emission spectra
depending on the hydrophobicity of the local environment [S1] and FRET-PAINT involves
labelling the target with both donor and acceptor fluorophores, resulting in FRET energy

transfer and emission when both are bound to the target of interest [71, 72]). Without such
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labelling strategies, the increased background fluorescence makes PAINT-based imaging
impractical for large-volume imaging techniques such as the DHPSF without narrow exci-
tation confinement. Low fluorophore concentrations are required so that individual bound
fluorescence events can be distinguished above background, reducing the localisation rate
and extending acquisition to unfeasible lengths in order to obtain sufficient labelling density.
Light-sheet excitation confinement reduces the excitation geometry to a similar size to the

focal depth of the DHPSF but increases experimental complexity, reducing throughput.

By employing a photoactivatable fluorophore in PAINT labelling and confining the activa-
tion and excitation geometry, out of focus fluorescence can be reduced without reducing the
concentration of probes in the imaging buffer as only fluorophores close to the focal plane are
likely to be activated and fluoresce. Thus, the majority of fluorophores within the sample do
not contribute to background. This variant of PAINT, referred to as photoactivatable-PAINT
(PA-PAINT), allows for fast localisation rates with minimal background by employing HILO
illumination for both activation and excitation lasers. This technique achieves approximately
one localisation of WGA-(PA-JF549) per frame across the top ~4 um of fixed T-cell mem-
brane surfaces with signal-to-noise ratio (SNR) >5 for a 30ms exposure time (figure 6.6), an
equivalent of ~30 localisations per second. PA-PAINT facilitates high-density labelling of
specific targets with large-volume 3D-SMLM imaging techniques with minimal additional

experimental complexity compared to PALM.

The outer membrane of primary T cells that were fixed in suspension was labelled with
WGA tagged with PA-JF549 in a PA-PAINT mode, at the top surface of Jurkat T cells
suspended in 1% agarose gel (figure 6.7). Constant 561 nm and 405 nm illuminations were
incident in a HILO geometry. Fluorescent nanodiamonds were used for drift correction and
were implanted as described illustrated in figure 6.3. During long acquisitions, the focal
plane is prone to drifting outside of the initial field of view. In order to maintain a stable
focal plane within the sample a bespoke autofocus script was implanted in beanshell. This
script checked the axial position of a fiducial marker every 10 seconds and corrected any
stage drift in 20 nm steps by controlling the piezo drive that the objective lens was mounted
on. 100,000 frames were acquired with an exposure time of 30 ms. 96,742 localisations were

recorded from the cell presented in figure 6.7.



6.4 Imaging T-cell Membrane Nanostructure 175

6000} SNR=10 4000}
3 3
) )
4000} 3000}
+— +—
= £
c c
2 =
£ 2000; £ 2000;

1000

5 10 15 20 25 30
Distance (pixels) Distance (pixels)

o

0 5 10 15 20 25 30

Fig. 6.6 Example DHPSFs for PA-PAINT imaging of WGA-(PA-JF549) at the apical surface
of Jurkat T cells. Localisations can be seen spanning the entire depth of focus of the DHPSF.
(a-d) Representative 30 ms exposure acquisitions of the outer membrane of Jurkat T cells
labelled with WGA-(PA-JF549) via PAINT and imaged with continuous HILO illumination
with 561 nm and 405 nm lasers. Two line profiles of typical DHPSF lobes are shown with
corresponding SNR. Signal and noise are defined as the intensity above background and the
variation in background, respectively.
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Fig. 6.7 PA-PAINT imaging the apical membrane surface of primary T cells with the DHPSF.
(a) A ~3.3 um thick section imaged at the apical surface of a primary T cell labelled WGA-
(PA-JF549). (n=96,742) (b&c) top-down and side-on views of the cell presented in (a). All
localisations are coloured axially across a 3.3 um thick section and are rendered with 40 nm
FWHM laterally and 60 nm axially, representing the measured localisation for the DHPSF.
Ticks and grid lines are 1 um.
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Membrane nanostructure is clearly visible with pseudopodia observed with a ~300 nm
diameter and a range of lengths. The observed thickness of the outer membrane was ~200
nm. Although the plasma membrane is expected to be just a few nanometers thick [276],
WGA binds to glycoprotein sugars that can be >100 nm long [277] resulting in an increased
thickness being observed. A small fraction of WGA localisations were observed within
the cell volume as WGA 1is capable of permeating the outer membrane. This fraction was
significantly higher in stressed/unhealthy cells (determined by increased autofluorescence),
perhaps indicating the presence of holes in the membrane after fixation. Example line profiles

of a 300 nm axial section of the outer membrane are presented in figure 6.8.
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Fig. 6.8 Membrane thickness by PA-PAINT imaging with the DHPSF. (a) A ~3.3 um
thick section imaged at the apical surface of a primary T cell labelled WGA-(PA-JF549).
(n=96,742) (b) 300 nm axial section of membrane highlighted in (a). (c) Line profiles across
the membrane as shown in (b). All localisations are coloured axially across a 3.3 pum thick
section and are rendered with 40 nm FWHM laterally and 60 nm axially, representing the
measured localisation for the DHPSF. Ticks and grid lines are 1 um in (a) and 100 nm in (b).
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6.4.1 Whole T-Cell Membrane Imaging with High Density

The topology of the outer membrane of whole Jurkat T cells that were fixed in suspension
was determined by imaging WGA tagged with PA-JF549 in a PA-PAINT mode. Jurkat cells
were suspended in agarose with fiducial markers as described in figure 6.3. Similarly to
the data presented in chapter 5, entire cell volumes were imaged in multiple focal planes
separated axially by ~3 um. Typically Jurkat cells required 3-4 image planes to cover their
volume. Each sequential focal plane shared at least one fiducial marker so that the localisation
data taken from neighbouring planes could be aligned after drift correction. 200,000 frames
were recorded from each image plane with a 30 ms exposure time, corresponding to a total
acquisition time of 6 hours and 40 minutes to image four planes. 1,399,455 localisations
were recorded across the entire cell presented in figure 6.9 at a rate of ~60 localisations per
second.

Nanoscale features were observed across the entire surface of fixed Jurkat cells with
some cells exhibiting large scale protrusions, as seen in figure 6.9. The presence of this
nanostructure gives the appearance of changes in surface localisation density in 2D rep-
resentations of the 3D data. Dynamic videos of the cell data presented in figure 6.9 are
included in the digital appendix of this thesis, along with additional reconstructions. A 300
nm thick section at the centre of the cell is presented in figure 6.10 with highlighted regions
of nanostructure. In this case pseudopodia appeared mostly hollow (figure 6.10b) and are
seen with length >2 um. There is a small amount of intracellular WGA localisations, most
likely corresponding to internal membrane labelled by WGA molecules that have passed
through the outer membrane. The same effect was seen in a previous study using PAINT
labelling of fluorescently tagged WGA [82].
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Fig. 6.9 Whole-cell PA-PAINT imaging of the outer membrane surface of Jurkat T cells,
fixed in solution, with the DHPSF. (a) WGA-(PA-JF549) localisations from a ~10.5 yum
axial volume spanning an entire Jurkat T cell (1.4 x 10° localisations). (b&c) Top-down and
side-on views of the cell presented in (a). All localisations are coloured axially across the
~10.5 um thick axial volume of the cell. Localisations are rendered with 40 nm FWHM

laterally and 60 nm FWHM axially, representing the localisation precision of the DHPSF.
Ticks and gridlines are spaced 1um apart.
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Fig. 6.10 A 300 nm thick section of the outer membrane surface of Jurkat T cells, fixed in
solution, with the DHPSF. (a) WGA-(PA-JF549) localisations from a 300 nm axial section
from the centre of the entire Jurkat T cell presented in figure 6.9 (70,361 localisations.
(b&c) Highlighted regions from (a) that include membrane nanostructure. Localisations are
rendered with 40 nm FWHM laterally and 60 nm FWHM axially, representing the localisation
precision of the DHPSF. Ticks and gridlines are spaced 1um apart in (a) and 100 nm apart in
(b&eo).
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6.4.2 Imaging the Morphology of Jurkat T Cells Contacting PLL-Coated
Surfaces

The outer membrane of Jurkat T cells contracting PLL-coated coverslips was imaged with
the same PA-PAINT methodology and fiducial markers set up as previously described. In
this case, Jurkat T cells were fixed after 10 minutes contacting a PLL-coated coverslip.
Agarose beads coated with fluorescence nanodiamonds were then added to the sample and
immobilised in an agarose gel. This experiment continues the work presented in chapter 5,
observing morphological changes exhibited by T cells upon adhesion coated surfaces, but
with high density sampling of the position of the outer membrane.

Typically Jurkat cells required 3-4 image planes to cover their volume. Each sequential
focal plane shared at least one fiducial marker so that the localisation data taken from
neighbouring planes could be aligned after drift correction. 200,000 frames were recorded
from each image plane with a 30 ms exposure time, corresponding to a total acquisition
time of 6 hours and 40 minutes to image four planes. 955,748 localisations were recorded
across the entire cell presented in figure 6.11 at a rate of ~40 localisations per second.
Large-scale membrane reorganisation was observed targeted towards the PLL-coated surface.
Less nanoscale structure was observed away from the surface compared to Jurkat cells that
were fixed in solution. This could indicate that the cells are perturbed from their resting
state even when imaging away from the contact between cell and PLL-coated surface. A
thin layer of membrane is observed to spread out across the surface, extending beyond the
radius of the cell volume. This data supports recent publications suggesting that contact with
PLL-coated surface can perturb the resting state of T cells [150, 151]. Dynamic videos of
the cell data presented in figure 6.11 are included in the digital appendix of this thesis, along

with additional reconstructions.

Fig. 6.11 Figure on following page. Whole-cell PA-PAINT imaging of the outer mem-
brane surface of Jurkat T cells fixed after 10 minutes contacting a PLL-coated surface. (a)
WGA-(PA-JF549) localisations from a ~12 pum axial volume spanning an entire Jurkat
T cell (1x10° localisations). (b&c) Top-down and side-on views of the bottom 4 pm of
the cell presented in (a). (d) Highlighted region from (b) showing large scale membrane
reorganisation targeted towards the PLL-coated surface. Localisations are coloured axially
across the ~12 pum thick axial volume of the cell in (a-c) and over a 4 um axial depth in
(c). Localisations are rendered with 40 nm FWHM laterally and 60 nm FWHM axially,
representing the localisation precision of the DHPSF. Ticks and gridlines are spaced 1um
apart.
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Fig. 6.11 Figure caption on previous page.
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6.5 Multiplexed Imaging of the TCR and Outer T-Cell Mem-

brane

Multi-target imaging can be achieved by labelling with multiple types of fluorophore that
can be imaged simultaneously or sequentially, depending on the geometry of the microscope
platform. This has been previously demonstrated for the DHPSF by the Moerner group
[104, 105]. However, multi-colour imaging requires the correction of chromatic aberrations
for datasets to be aligned and increased spectral filtering is required to prevent cross-channel
fluorescence being detected. The protocol presented in figures 6.6-6.11 for labelling the outer
membrane of T cells does not require cell labelling prior to imaging as the fluorescent probes
are present in the imaging buffer, which can be added or replaced during image acquisition.
As aresult, it is compatible with sequential multi-target imaging of the TCR and the outer
membrane by employing the same fluorophore for both targets. This eliminates the need for
chromatic aberration correction and does not increase background signal as the fluorophores
are not present within the sample together. Therefore, the position of the TCR can be imaged
in a PALM mode for labelled cells, before WGA-(PA-JF549) is added to the imaging buffer
for PA-PAINT imaging, creating two 3D-SMLM datasets.

As the WGA binds irreversibly to sugars in the membrane, it must be imaged last so that
the two populations can be separated. Typically the position of the TCR was imaged on the
apical surface of multiple cells with fiducial markers present within the image. The position
of the stage was recorded so that the same cells could be found later. After all cells were
imaged to completion and no more fluorescent events were observed, WGA-(PA-JF549) was
added to the imaging buffer and allowed to equilibrate for at least 30 minutes. The three cells
were then imaged under the same imaging conditions to localise the position of the outer
membrane. The position of the fiducial markers was used to align to two datasets to create
multi-target 3D-SMLM datasets of the top ~4 um of T cells fixed in solution.

The TCR on the outer membrane of Jurkat and primary cells was labelled with anti-
CD3 fabs fused to PA-JF549 and cells were suspended in 1% agarose gel with fluorescent
nanodiamonds fiducial markers immobilised away from the coverslip surface, bound the
surface of 50 um agarose beads, as described in figure 6.3. Constant 561 nm and 405 nm
illumination was incident in a HILO geometry and the sample was imaged in a PALM mode.
Typically >30,000 frames were acquired for each cell with an exposure time of 30 ms, until
no more fluorescence events were seen. After all cells were imaged, WGA-(PA-JF549) was
added to the imaging buffer and allowed to equilibrate for at least 30 minutes. The position of
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the outer membrane was then imaged for all cells in turn in a PA-PAINT mode with the same
561 nm and 405 nm HILO illumination. During these acquisitions the position of the focal
plane was maintained an autofocus script in beanshell controlling a piezo drive mounted
under the objective lens. 100,000 frames were acquired for each cell with an exposure time
of 30 ms. For each cell, both datasets were filtered for repeat localisations of the same
fluorophore in space (500 nm) and time (1 second) and were corrected for stage drift and

aligned with the position of the fiducial marker.
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Fig. 6.12 Multi-colour imaging of the TCR (red) and outer membrane (green) in Jurkat and
primary T cells. Both targets were labelled with PA-JF549 and were imaged sequentially.
(a&b) The position of the TCR relative to the apical membrane surface of two representative
Jurkat T cells that were fixed in solution, with corresponding localisation numbers. (c&d) The
position of the TCR relative to the apical membrane surface of two representative primary T
cells that were fixed in solution, with corresponding localisation numbers. WGA Localisa-
tions are rendered with 40 nm FWHM laterally and 60 nm FWHM axially, representing the
localisation precision of the DHPSF. TCR localisations are rendered with 100 nm FWHM
for visibility. Ticks and gridlines are spaced 1pm apart.
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These datasets allow for relation between membrane nanostructure and protein distri-
bution to be investigated. A recent study determined that ~90% of TCRs were located at
the tips of membrane protrusions in primary T cells fixed in suspension by variable-angle
TIRF [201]. Such a distribution should be visible by eye but was not observed in any T cells
imaged by our methodology. For both Jurkat and primary cells the distribution of the TCR
was not obviously correlated to membrane nanostructure. A small fraction of pseudopodia
are observed without any TCR localisations in their vicinity (figure 6.12). Primary T cells
appeared to be roughly half the diameter of Jurkat T cells but expressed a similar number
of TCR localisations after filtering for repeat localisations of the same fluorescence event.
3,400+800 TCR localisations were recorded from primary T cells (5 cells) and 3,300+1,300
TCR localisations were recorded from Jurkat T cells (4 cells). The primary T cells used in
this experiment were measured to express ~ 13,000 copies of the TCR (measured by FACs
in the Davis group). As the primary cells were smaller than Jurkat T cells (a radius of ~4
um) a greater fraction of the cell could be simultaneously imaged. Combining this with the
activation efficiency of PA-JF549 results in an estimation of 5,850 possible localisations of
the TCR from a single field of view with the DHPSF. This localisation efficiency (0.58+0.14)
matches well with that observed for Jurkat T cells (0.4940.19 assuming a copy number of
30,000). The reduction in imaging efficiency compared to that described in chapter 5 could be
in part due to dissociation of the anti-CD3 fabs during labelling, washing and fixation as well
as the localisation efficiency of the DHPSF for PA-JF549. A higher density of pseudopodia
was also seen on the outer membrane of primary cells compared to Jurkat cells, but this was

not quantified.

These dataset facilitate quantitative analysis of the distribution of the TCR at the outer
surface of primary and Jurkat T cells. The clustering state of the TCR remains a contested
topic, with multiple publications attempting to quantify its distribution by 2D imaging
methods in recent years [268, 121, 278]. The large depth of field of the DHPSF make it
capable of imaging a significant fraction of T-cell membrane surfaces, enabling quantification
of the TCR on non-flat surfaces that may represent more physiological conditions. The next
section of this chapter describes the work done in quantifying the clustering state of the TCR

in primary and Jurkat T cells.
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6.6 Quantification of Clustering of the TCR

In order to extract clustering information from the datasets, a code employing Ripley’s
K analysis on 3D-SMLM data was written in MATLAB (code available in appendix. As
described in chapter 1, Ripley’s K analysis compares the number of localisations within a
radius, r, of each localisation. This is compared to a model distribution using the general

equation:

L(r)—r= —r (6.1)

Where N(r) is the mean number of localisations within a radius r from each localisation
and M(r) is the mean number of localisations within a radius r from a complete spatial
randomness (CSR) model distribution. If the measured distribution is randomly distributed,
N(r) = M(r) and equation 6.1 becomes: L(r) —r = V12 — r = 0. For clustered distributions
L(r)—r>0and L(r) — r < 0 for anti-clustered distributions.

In many 2D studies employing Ripley’s K analysis [145, 118], CSR model distributions
are defined by the geometry of the system. For example, when considering flat a circular area
at the coverslip surface the model distribution is given by the measured localisation density,
p, and the area being considered. Therefore, M(r) = p7r? and thus:

L(r)—r= —r (6.2)

However, when imaging away from the coverslip the geometry of the system is not
necessarily prior knowledge and the model CSR distribution may not fit the recorded data,
leading to artefacts in Ripley’s K analysis. In order to accommodate non-standard 3D
geometries, the written analysis code requires the input of model distributions of point data
in order to calculate M(r).
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6.6.1 Benchmarking Ripley’s K Analysis in 3D

The performance of the analysis was tested on against model data sets representing 3D-SMLM
localisation data of a membrane-associated protein on the top surface of a spherical cell. CSR
‘unclustered’ distributions were simulated by placing points at random on the top ~2 um of
a sphere with 4.5 um radius. In all simulated cases, all points were displaced by a distance
sampled from a normal distribution with width equal to the worst case localisation precision
expected from the DHPSF (30 nm laterally and 60 nm axially). Clustered distributions were
simulated in the same way but with the addition of randomly placed groups of localisations to
represent clusters. These clusters contained a defined number of points that were placed with
uniform random probability within a set radius of the centre position in order to represent
cluster size with a flat profile. 5,000 points were simulated to represent typical datasets for
TCR imaging with PA-JF549. 20 clusters of 100 nm diameter, each containing 20 points
(corresponding to 8% of points), were incorporated into the CSR distributions to represent

‘clustered’ distributions. An example distribution is plotted in figure 6.13a.

Ten simulations of clustered and unclustered distributions containing 5,000 points were
passed to the written algorithm as N(r) and M(r) respectively to calculate L(r). The mean
and standard deviation of L(r) was plot as L(r) — r. The mean and standard deviation of
L(r) was plotted for ten simulations with unclustered distributions as both N(r) and M(r)
(figure 6.13b). An increase in L(r) — r was seen for the clustered distribution compared to the
unclustered distribution, indicating that the additional clusters were identified by the analysis.
L(r) — r for the clustered distribution peaked at ~130 nm corresponding to a combination
of cluster size (100 nm) and simulated localisation uncertainty (30 nm laterally and 60 nm
axially). This result indicates that Ripley’s K analysis is capable of identifying low-levels of
clustering (<10% of molecules) in model 3D-SMLM datasets.

The algorithm was then tested on data with a range of clustering values. The effect of the
total number of points on perceived clustering was investigated by simulating distributions
with 20 clusters, each with 20 points and a diameter of 100 nm with at different number
of overall points, changing the fraction of points within a cluster. Values ranging from 4%
of points in clusters (10,000 points) to 40% of points in clusters (1,000) were chosen with
ten repeats for each used to define a mean and standard deviation of L(r) — r (figure 6.14).
Distributions with a larger fraction of points within clusters (lower total number of points for
the same number of clusters) reported greater clustering. Only the 4% clustered case could

not be identified as significantly clustered.
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Fig. 6.13 Simulated clustered distribution and corresponding Ripley’s K analysis. (a) A
model distribution was simulated with 5,000 points on the top surface of a 4.5 um radius
sphere, containing 20 clusters of 100 nm diameter and 20 points. (b) Mean and standard
deviation of Ripley’s K analysis for 10 repeats of the clustered distribution shown in (a).
L(r) —r of a CSR distribution is also plot ("Unclustered’).

The effect of the number of clusters on perceived clustering was investigated by simulating
distributions with different numbers of clusters, each containing 20 points and with a radius
of 100 nm. In this case, the total number of points was kept constant at 5,000. Values ranging
from one cluster (0.4% of points in clusters) to 100 clusters (40% of points in clusters) were
chosen with ten repeats for each used to define a mean and standard deviation of L(r) —r
(figure 6.14b&c). As before, distributions with a larger fraction of points within clusters
(more clusters for the same number of total points) reported greater clustering. However, in
this case clustering could be identified with just 2% of points in clusters. This indicates that
factors other than the fraction of points in clusters have some effect on the ability to identify
clustering.

The effect of the number of points in each cluster on perceived clustering was investigated
by simulating distributions with 20 clusters of 100 nm diameter with different number of
points per cluster (all clusters within a simulation had an equal number of points per cluster).
The total number of points was kept constant, varying the fraction of points within a cluster.
Values ranging from 2 points per cluster (0.8% of points in clusters) to 100 points per cluster
(40% of points in clusters) were chosen with ten repeats for each used to define a mean
a standard deviation L(r) — r (figure 6.14d&e). Unsurprisingly, distributions with a larger
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fraction of points within clusters reported greater clustering. In this case clustering was
marginally above noise for 4% of points in clusters (10 points per cluster). However, a cluster

size of 10 would likely be identified if a larger fraction of points occupied clusters.

The analysis presented in figure 6.14a indicates that the fraction of points in clusters
is a key parameter for identifying clustering within a distribution. In all cases a clustered
fraction of ~8% allowed for clustering to be identified. However, the difference in L(r) —r
for each of the three cases investigated at the same clustering fraction hint that the number
of points per cluster and density of clusters can also have a significant effect on analysis.
Ripley’s K typically reports a length scale that clustering occurs on, although this appears
to be a convolution of the true cluster size and uncertainty in positional measurement. In
any case, Ripley’s K analysis provides a robust metric to identify clustering but does not
provide a complete description of the type of clustering present. Therefore it will be suitable

for addressing the relative clustering state of the TCR at the surface of T cells.
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Fig. 6.14 Ripley’s K analysis on a range simulated clustering values. (a) L(r) — r for a range
of total number of points for simulated distributions with 20 clusters, each with 20 points
and a diameter of 100 nm with fraction of points in clusters noted. (b) L(r) — r for a range
of total number of clusters for simulated distributions with 5,000 points, each cluster has
20 points and a diameter of 100 nm. The fraction of points in clusters is noted. (c) Zoom
in of (b), highlighting lower clustering values. (d) L(r) — r for a range of number of points
within individual clusters for simulated distributions with 5,000 points including 20 clusters
with a diameter of 100 nm. The fraction of points in clusters is noted. (e) Zoom in for (d),
highlighting lower clustering values.
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The analysis was tested against a dataset with clustering parameters based on a previous
study of the distribution of the TCR by PALM imaging conducted by Pageon et. al. (For
CD3{ on the basal surface of Jurkat T cells on PLL-coated coverslips: 84+9 nm cluster
diameter was approximated to 100 nm, ~70% of molecules in clusters, ~20 molecules per
cluster and ~20 clusters per m?) [278]. In order to maintain the observed cluster density
(~70% of molecules in clusters and ~20 pm~2), ~28,500 localisations were required on
the simulated surface area (~50 um?), which is significantly more than were recorded for
the TCR by PA-JF549. 10 instances of model datasets were created and a 4 x4 um? area
was analysed to reduce computing costs (figure 6.15a&b). These distributions were then
subsampled to produce datasets containing 5,000 points for comparison with our recorded
TCR datasets (figure 6.15c&d). Clustering could be identified in both distributions, indicating
that 3D-SMLM is compatible with Ripley’s K analysis for protein distributions expected
on the surface of T cells. Both the complete and sub-sampled distributions exhibit the
same form of L(r) — r, with both peaking at 120 nm. The form of the L(r) — r distribution
remained constant when subsampling the model distribution to 1,000 points, which is below
the minimum number of TCR localisation recorded from any cell in the later analysis (2,573).
The error bars between clustered and unclustered distributions started to overlap at all r values
for subsampled distributions with fewer than 300 points, which is an order of magnitude

fewer points than recorded from a comparable area on the T cells.
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Fig. 6.15 Simulated clustered distribution with experimentally determined parameters for
the TCR and corresponding Ripley’s K analysis. (a) A model distribution was simulated
following previous measurements of the TCR [278]. (a) Example model distribution with
a density of 20 clusters per um? and each cluster containing 20 molecules with a 100 nm
diameter. 70% of molecules are cluster-associated. (b) Mean and standard deviation of
Ripley’s K analysis for 10 repeats of the clustered distribution shown in (a). L(r) — r of the
corresponding unclustered distribution is also plot. (c¢) Subsampled model distribution from
(a). 5,000 points were randomly chosen and analysed. (d) Mean and standard deviation of
Ripley’s K analysis for 10 repeats of the subsampled clustered distribution shown in (a) and
a subsampled distribution with 1,000 points. L(r) — r of the corresponding (subsampled)

unclustered distribution is also plot.
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6.6.2 Comparing Model Distributions for Ripley’s K Analysis

In order to fairly compare SMLM distributions by Ripley’s K analysis the geometry of
the ‘unclustered” model distribution must match that of the sample. This is especially true
for membrane-bound distributions on non-flat surfaces. Model distributions that do not
accurately follow the shape of the surface will miscalculate the surface area and thus the
density of points will not match if the same numbers of points are simulated and the L(r) —r

curve will be affected.

In order to probe the effect of mis-matched distribution geometries ‘unclustered” CSR
distributions were compared between a flat surface and a flat surface with 500 nm long and
300 nm diameter hollow cylinders representing typical membrane pseudopodia at a density
of one ‘pseudopodia’ per um? (figure 6.16a). 10 simulations were conducted to obtain the
mean and standard deviation of L(r) — r in the case of matched surface density of points (100
points per um?, determined from TCR-(PA-JF549) datasets) between unclustered models
and matched total number of points (3,000 points on a 30 um? area for the flat surface)
between unclustered models. These were compared to the L(r) — r of a distribution matching
the geometry of the initial simulation (figure 6.16b&c). The two approximated distributions
(with no ‘pseudopodia’ and surface density or total number of points matched to the initial
distribution) did not correctly report an unclustered distribution at the size ranges that typical
clustering should be observed (~100 nm). Instead, matching the surface density of points
caused the analysis to report clustering at all length scales (0.02-1 um). Matching the
total number of points had the opposite effect, causing the analysis to report anti-clustering
from 0.02 um to ~0.5 um, above which error bars overlap with the true distribution. Only
comparison with a distribution that matched the geometry of the system of interest faithfully
reported an unclustered distribution with L(r) — r close to zero. This analysis indicates that,
when investigating non-flat or complicated geometries, knowing the underlying geometry of
the sample is crucial for accurate identification of clustering. This is especially true for T
cells as they are known to exhibit significant 3D membrane structure at comparable length
scales to reported TCR clustering clustering [201]. Indeed, in the data presented in figures
6.7-6.12, pseudopodia and other nanostructure is observed at length scales below 1 um. This
is not the case when imaging the basal surface of T cells sat onto adherent coated surfaces
(e.g. PLL and OKt3), in which case the geometry is flat (see figure 6.11). In these cases, the

surface itself may cause membrane-protein clustering [150, 151].
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Fig. 6.16 Comparing simulated unclustered distributions with axial structure to flat-surface
approximations. (a) Representative distribution of unclustered points distributed onto a
surface with one pseudopodia per um? and 100 points per um?. Pseudopodia are represented
as 500 nm long and 300 nm wide hollow cylinders. (b) Mean and standard deviation of
L(r) — r plotted for 10 simulated repeats with comparison to a flat model distributions
with equal surface density of points (blue) and equal total number of points (red). These
were compared to the mean and standard deviation of 10 repeats of L(r) — r of the same
distribution compared to a model distribution with correct geometry (yellow). (c) Zoom in
for (b), highlighting lower clustering values.



6.6 Quantification of Clustering of the TCR 197

6.6.3 Quantification of the TCR Clustering State on PLL-Coated Sur-

faces

In order to test the capability of the DHPSF in combination with PA-JF549 labelling as a tool
to probe the clustering state of membrane proteins, previous Ripley’s K measurements of
the Jurkat T cells fixed on PLL-coated coverslips were repeated. Jurkat T cells labelled with
anti-CD3 fabs fused to PA-JF549 and allowed to drop onto PLL-coated coverslips and were
fixed after 10 minutes. The TCR was then imaged on the DHPSF instrument as described
before to create localisation datasets of the position of the TCR. Localisations were filtered
in space (500 nm) and time (1 second) to remove repeat localisations of the same fluorophore.
Rectangular areas contacting the PLL-coated coverslip were cropped out of the localisation
data (figure 6.17a) and compared to ten CSR distributions of the same size and number of
points on a plane to calculate L(r) — r. The mean and standard deviation between five cells
was plot and the simulated CSR distributions were used to create an unclustered control
(figure 6.17b).
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Fig. 6.17 TCR clustering in Jurkat T cells at PLL-coated surfaces. (a) Representative
localisation data of the TCR on the bottom ~4 pum of fixed Jurkat T cells contacting PLL-
coated surfaces for 10 min. Localisations are rendered with ~200 nm diameter for visibility.
Top-down (left) and side-on (right) views are shown. A region corresponding to an area of
the T-cell outer membrane that is contacting the PLL-coated surface was cropped out for
Ripley’s K analysis (magenta region, bottom right). (b) Mean and standard deviation of
L(r) — r for TCR molecules contacting PLL-coated surfaces (4 cells).
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These results repeat the findings of a previous study investigating the clustering state
of the TCR on coated surfaces by Pageon er. al. [278]. In this previous study, Jurkat
T cells expressing CD3({ fused to the fluorescent protein PSCFP2 were imaged in a 2D-
PALM mode via TIRF illumination. In this study, many more localisations were recorded
compared to the data presented in figure 6.17, likely due to a lack of filtering for repeat
localisation of the same fluorophore. None the less, the computed L(r) — r distributions for
the TCR (both via labelling of the CD3 co-receptor) match well (for a direct comparison
of the two L(r) — r distributions see appendix A). Both distributions peak at an L(r) —r
of ~40. This peak occurs at ~100 nm in the previous study and ~150 nm in our data,
likely due to the increased localisation uncertainty of the DHPSF compared to 2D SMLM
and the presence of an additional localisation error (x, y and z compared to just x and y).
This analysis demonstrates that the DHPSF is capable of identifying clustering in real-cell
imaging, providing an appropriate CSR model can be produced.

6.6.4 Quantification of the TCR Clustering State away from Coated
Surfaces

In order to implement Ripley’s K analysis for membrane-bound proteins away from the
coverslip the geometry of the surface must be known. As shown in figure 6.16, nanostructure
of similar size-order to the expected clustering must be accounted for in order to achieve
reliable clustering identification. This makes approximations of overall cell shape, like those
shown in chapter 5 figure 5.7, unsuitable for creating CSR distributions. Therefore, it is
imperative that the position of the outer membrane is identified with suitable precision to
resolve membrane nanostructure. As shown in chapter 5, this can be achieved in T cells
with single-colour imaging by STORM labelling as each fluorophore is localised multiple
times, increasing the recorded localisation density. However, this fluorescence intermittency
is prone to create clustering artefacts, making it less suitable for stoichiometry analysis.
Another solution is duel-labelling of the protein of interest and the outer membrane of the
cell. This allows for the position of the membrane to be directly determined, creating an
unbiased view of cell morphology that is independent of the expression and labelling density
of the protein of interest. As shown in figure 6.12, this can be achieved with sequential
imaging of the protein of interest, in a PALM mode via a photoactivatable fluorophore, and
the outer membrane, in a PA-PAINT mode via fluorescently labelled WGA.
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The WGA datasets serve as an ‘unclustered’ control distribution for Ripley’s K analysis,
sharing the same topology as the TCR dataset. However, a fraction of the control locali-
sations are observed within the cell volume as WGA can pass through the membrane and
label intracellular membranes and sugars [82]. This fraction varies between cells but was
always small compared to the outer-membrane-bound localisations for healthy T cells. As
demonstrated in figure 6.16, the model distribution must closely match the geometry of the
target distribution and thus internal WGA localisations should not be considered. In order to
separate the membrane-bound and internal populations, WGA datasets were filtered by prox-
imity to TCR localisations. A threshold was based on the density of localisations in the TCR
dataset so that the membrane was fully represented, without holes, in low-density datasets.
As no ordering is expected to be present in the TCR dataset at ~1 yum, L(1um) — lum
should go to zero for appropriate-geometry distributions. It was found that a threshold of
at least three TCR localisations occurring within a distance defined by five times the modal
nearest neighbour distance in the corresponding TCR dataset resulted in a unpatchy WGA
distributions and a lack of perceived clustering at ~1 um for all cells. After proximity
filtering, WGA distributions were randomly subsampled to match the number of localisations
observed in the corresponding TCR datasets for use as a model distribution. For each cell, the
mean of 10 instances of these model distributions were used to define M(r) when calculating
L(r) —r. The mean and standard deviation of 10 instances of subsampled WGA distributions

defining N(r) and M(r) were used define an unclustered control.

The clustering state of the TCR was investigated on the surface of Jurkat T cells by
sequential imaging of the TCR and the outer membrane in the presence of fiducial markers,
as previously described in section 6.5. The TCR was labelled with anti-CD?3 fabs tagged
with PA-JF549 before fixation in solution, representing the resting state of the T cell. After
the position of the TCR was imaged in a PALM mode, the outer membrane of the cells
was labelled with WGA and imaged in a PA-PAINT mode, both with HILO activation and
excitation illumination. The two datasets were aligned by their position relative to a single
fiducial marker present in both acquisitions. The mean and standard deviation of L(r) —r
between three cells was plotted for the TCR and WGA (figure 6.18b).
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Fig. 6.18 TCR clustering in Jurkat T cells away from coated surfaces. (ai) Representative
TCR localisation data on the apical surface of Jurkat T cells fab-labelled with PA-JF549
and fixed in suspension. Localisations are coloured axially across the depth of focus of the
DHPSF. (aii) TCR and membrane-bound WGA localisations of the cell presented in (ai).The
WGA distribution was sub-sampled to provide an unclustered control for Ripley’s K analysis.
(b) Mean and standard deviation of L(r) — r for TCR and WGA molecules on the surface of
Jurkat T cells (n=3).
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The results presented in figure 6.18 indicate that the TCR is less clustered on the mem-
brane of Jurkat T cells when fixed in solution, in a resting state, (blue curve) compared to
when fixed contacting PLL-coated surfaces (yellow curve). This is unsurprising as PLL has
been shown to perturb the resting dynamics of the TCR [151] and can lead to immunological
activation [150]. The distribution of the TCR on resting Jurkat T cells was significantly
clustered between 100 nm and 300 nm compared to WGA on the outer membrane (red curve).
Both PLL and resting L(r) — r curves peak at ~100 nm, likely corresponding to the limit of
detection due to the localisation precision of the DHPSF in three dimensions. This analysis
represents a case in which 3D imaging is essential as flat surfaces can have a perturbative
effect on the resting state of protein distributions. When imaging away from surface, the
intrinsic 3D nature of the outer membrane is not well captured by 2D-projections but is

required for direct comparisons of model distributions.

6.6.5 Quantification of the TCR Clustering State in Primary T Cells

The clustering state of the TCR on the surface of primary T cells fixed in suspension was
investigated by sequential imaging of the TCR and outer membrane in the presence of fiducial
markers (figure 6.19a). Primary T cells were isolated from healthy donors via a CD4+ T-Cell
isolation kit, before being labelled with anti-CD3 fabs tagged with PA-JF549 and fixed in
solution by Dr Mafalda Santos in the Weatherall Institute of Molecular Medicine in Oxford.
The cells were then put on ice and transported to the Department of Chemistry in Cambridge
for imaging. The position of the TCR was imaged in a PALM mode before the position of
the outer membrane was imaged in a PA-PAINT mode with HILO activation and excitation
geometry. The two datasets were aligned by their relative position to a fiducial marker present
in both acquisitions. The mean and standard deviation of L(r) — r between three resting
cells was plotted for the TCR and WGA (figure 6.19b). Another batch of primary T cells
were incubated with anti-TCRaf3 and secondary antibodies during CD3-fab labelling in an
attempt to promote TCR clustering. These cells were imaged with the same protocol and the
mean and standard deviation of L(r) — r between three antibody-stimulated cells was plotted
for the TCR and WGA (figure 6.19c).
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Fig. 6.19 TCR clustering on resting and antibody-stimulated primary T cells. (a) Repre-
sentative TCR and WGA localisation data on the apical surface of Primary T cells fixed in
suspension. Localisations are coloured axially across the depth of focus of the DHPSF. (b)
Mean and standard deviation of L(r) — r for TCR and WGA molecules on the surface of
resting Jurkat T cells (n=3). (c) Mean and standard deviation of L(r) — r for TCR and WGA
molecules on the surface of Jurkat T cells incubated with anti-TCRo 8 antibodies (n=3). (d)
Comparison of L(r) — r for TCR molecules on the surface of Jurkat T cells (resting and at
PLL-coated surfaces) and primary T cells (resting and antibody-stimulated).
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These results suggest that the clustering state of the TCR is not significantly different
between Jurkat and primary T cells. The mean peak of L(r) — r is at ~10 in primary
cells, which is lower than observed for Jurkat cells (~17), although the error limits overlap.
Stimulation by primary and secondary antibodies did not have a dramatic effect on the
L(r) — r distribution in primary cells. In stimulated cells a larger L(r) — r peak of ~18 was
observed but this change was not significant. For stimulated cells, L(r) — r peaked at a lower
distance (~100 nm compared to ~190 nm for resting primary cells). This is likely within
error but could indicate an increase in low-order clustering caused by the antibodies. Longer
incubation with the antibodies may result in larger clusters being formed but it seems that the
current protocol does not lead to large clusters formation. Figure 6.19 shows the L(r) —r
curves for the TCR in Jurkat cells, at PLL-coated surfaces and in a resting state, and primary
cells in a resting state and stimulated by antibodies. Although the n numbers are small, this
analysis indicates that the resting state of the TCR is not significantly different between the
three conditions fixed in solution, with all three exhibiting a low level of clustering observed
between 100-300 nm that is less than previously reported at PLL-coated surfaces [278]. The
distribution of the TCR on the outer membrane of resting Jurkat and primary T cells did not
appear significantly different.

It is possible to estimate the typical number and size of clusters present in the datasets
by adding simulated clusters to the WGA distributions and comparing the resulting L(r) — r
curves. A single WGA dataset from a resting primary cell was used to create simulated cluster
distributions. For each repeat, this distribution was randomly subsampled to match the number
of TCR localisations recorded for the same cell (4,580). A number of points were chosen at
random to act as the centre of clusters. Around these points a number of additional points
were added with a random distribution within a radius of 50 nm to simulate clusters. The final
distribution was then randomly subsampled back to the original number of points (4,580) and
compared to another subsampled instance of the overall WGA distribution without additional
clusters. The mean of 10 repeats of L(r) — r was plot for a range distributions with the
L(r) — r distribution of TCR in primary cells overlaid for comparison (figure 6.20. The effect
of the number of points per cluster on L(r) — r was investigated by simulating 10 clusters
with a number of points ranging from 2-50 molecules per cluster (figure 6.20c). The effect of
the number of cluster added on L(r) — r was investigated by simulating a range of clusters
from 1-50, each with 10 points (figure 6.20d).

As shown in figure 6.14, the composition of the clustering distribution can have a
significant effect on the form of the observed L(r) — r curve for the same geometry, however,

in all cases increased clustering was observed as a larger fraction of the total points were
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included in clusters. The same trend was seen when simulating additional clusters in WGA
data when changing both the number of clusters and the number of points per cluster (figure
6.20c&d). Simulating 10 additional clusters containing between ~10 and 20 points matched
well to the L(r) — r distribution for the TCR in Jurkat and primary T cells. This corresponds
to clustering of ~3-7% of TCR molecules. Simulating additional clusters with 10 points
per cluster matched the L(r) — r distribution for the TCR in Jurkat and primary cells when
~5-30 clusters were added. This corresponds to clustering of ~3-10% of TCR molecules.
Although these data are not sufficient to draw accurate conclusions on the size and number
of TCR clusters present on resting T cells, a rough estimate for the fraction of clustered
molecules that would result in the same L(r) — r distribution on the same geometry can be
made to be ~0.03-0.10. This value is significantly less than predicted by a previous study
that determined that a fraction of ~0.70 of TCR molecules are clustered by PALM imaging
of PSCFP-2 fluorescent protein at PLL-coated surface [278]. This could in part be explained
by the reduced fluorescence intermittency and clustering of PA-JF549 compared to PSCFP-2
[69, 279] and as repeat localisation of the same fluorescence event are filtered out of our

datasets prior to Ripley’s K analysis.
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Fig. 6.20 Estimation of TCR clustering parameters by simulation of clustering in WGA
data. (a) Mean and standard deviation of L(r) — r for TCR and WGA molecules on the
surface of resting Jurkat T cells. (b) Mean and standard deviation of L(r) — r for TCR and
WGA molecules on the surface of resting primary T cells. (c¢) L(r) — r curves for WGA
distributions from resting primary cells with 10 additional clusters randomly placed on the
outer membrane with varying number of molecules per cluster. The L(r) — r distribution of
TCR on resting primary T cells is overlaid in black. (d) L(r) — r curves for WGA distributions
from resting primary cells with additional clusters containing 10 points randomly placed
on the outer membrane with varying number of added clusters. The L(r) — r distribution of
TCR on resting primary T cells is overlaid in black.
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6.7 Discussion

The DHPSF allows for direct observation of a significant fraction of biological samples to
be imaged in a single focal plane. We have shown 3D-SMLM imaging of membrane-bound
targets in Jurkat and primary T cells by fab labelling and imaging in a PALM mode. The
DHPSF reports localisation of approximately 50% of the expected number of localisations
of the TCR. As shown in figure 6.15, Ripley’s K analysis should be capable of quantifying
the clustering state of a protein even in subsampled distributions. Therefore the DHPSF
is expected to be compatible with direct observation and quantification of the distribution
of membrane-bound proteins on T cells. We have also shown high-density imaging of the
outer membrane of Jurkat and primary T cells by PA-PAINT imaging of WGA tagged with
a photoactivatable fluorophore. The combination of these two methodologies allow for the
spatial distribution of important proteins involved with immunological activation of T cells

to be directly imaged in the resting state.

6.7.1 PAINT Imaging with the DHPSF

The DHPSF is compatible with high-density large-volume imaging in a PAINT mode, as
demonstrated by WGA PAINT labelling of the outer membrane of whole Jurkat T cells.
Approximately one million localisations were recorded across whole-cell volumes. To our
knowledge this is the first example of PAINT imaging with the DHPSF. This was achieved
without complicated excitation-confinement techniques, with HILO illumination. This was
facilitated by the use of a photoactivatable fluorophore in a new methodology referred to
as PA-PAINT. Compared to PAINT imaging, PA-PAINT has the advantages of reducing
background fluorescence and providing the ability to control the localisation rate with
the power density of the 405 nm activation illumination. The reduction in background
fluorescence occurs as, when using HILO illumination or other excitation-confinement
techniques, fluorophores outside of the depth of focus are unlikely to be fluorescently active.
This reduces the need for ultra-thin excitation confinement in order to employ 3D SMLM
techniques, significantly reducing experimental complexity. The activation efficiency of
the chosen photoactivatable fluorophore is not important as PAINT labelling provides a

theoretically infinite number of fluorescent events the target distribution.

PA-PAINT provides an elegant solution for background reduction and control of lo-

calisation rate for implementations of PAINT labelling in which a fluorophore is bound
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to the labelling probe. The SNR of DNA-PAINT [39] imaging was also improved with
the introduction of photoactivatable fluorophores for PA-DNA-PAINT imaging in neuronal
cells. PA-PAINT as a general methodology enables PAINT labelling strategies to be em-
ployed for 3D-SMLM techniques without the need for additional excitation-confinement
techniques. This allows for standard sample geometries to be imaged in 3D with high SNR

and experimentally-feasible localisation rates.

6.7.2 High-Density Whole-Cell Imaging of Jurkat Morphology

The whole-cell membrane imaging presented in figures 6.9 and 6.11 are examples of imag-
ing facilitated by PA-PAINT. In this imaging, significant differences in morphology were
observed between Jurkat T cells that were fixed in a resting state in suspension compared to
those fixed after contacting PLL-coated coverslip surface. Resting Jurkat cells displayed an
increased number of small pseudopodia compared to regions of the membrane away from
the surface in Jurkat cell contacting PLL surfaces. Large-scale spreading of the membrane
was observed at the contact between Jurkat cells and the PLL-coated surface. This could be
attributed to the charge interaction between the PLL and membrane acting to pull the cell
towards the surface. A similar spreading out was observed in Jurkat T cells at activating-
coated surface in chapter 5 as well as in literature [171]. These data are consistent with
recent publications that report that PLL-coated surfaces perturb the resting state of T cells
[150, 151]. We believe that that is the first example of high-density DHPSF imaging of whole
eukaryotic cells, achieving image quality that is in-line with the current state of 3D-SMLM
[82, 146].

Dynamic 3D rendering of the datasets presented in figures 6.9 and 6.11 are presented
in the digital appendix of this thesis. In collaboration with Imagination, a creative agency
specialising in virtual reality (VR), we are developing a stand-alone program to visualise
3D-SMLM datasets in VR titled "Project LUME’. Project LUME allows the user to explore
datasets intuitively in an truly 3D environment. Examples of this are also attached in the
digital appendix of this thesis. Project LUME will be freely distributed upon completion as a
tool for any groups outputting 3D-SMLM datasets.
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6.7.3 Multi-Target Imaging with the DHPSF

Sequential DHPSF imaging of the TCR and outer membrane in Jurkat and primary T cells was
presented. The same fluorophore was used to label both targets, eliminating aberration caused
by the differing emission spectra of different fluorophores. However, there is not reason that
the DHPSF cannot be used for multi-target imaging employing multiple fluorophores, as
previously demonstrated by the Moerner group [105].

Two-colour SMLM datasets of the position of the TCR and outer membrane were aligned
by their position relative to fiducial markers that were present in both sequential acquisitions,
creating a map of the TCR relative to membrane structure over a ~4 tm section of Jurkat and
primary T cells. The high localisation density of the membrane dataset was able to resolve
membrane nanostructure such as pseudopodia, that was not obvious from the TCR dataset
alone. Pseudopodia were mostly observed with co-localised TCR molecules, although some
pseudopodia were observed without TCR localisations. This suggests that the presence of

the TCR is not necessary for pseudopodia to occur.

As shown in chapter 5, it is possible to fit mesh surfaces to 3D localisation datasets. The
high-density of WGA localisations should allow for fitted meshes to resolve nanostructure
and act as super-resolved volumetric representation of the cell volume. In this case, it
would be possible to quantitatively describe and identify membrane nanostructure, separating
pseudopodia from the cell body. Unfortunately, current methodologies developed for fitting
volumes to point location datasets (e.g. LIDAR mapping of real-world spaces) struggle to
fit the outer membrane due to erroneous localisations that are present in the datasets. In
these cases the fitted meshes either contain a large amount of noise, over fitting to sparse
points outside the cell volume, or do not resolve membrane nanostructure but provide an
approximation of the overall cell shape. Work continues towards robust and accurate mesh
fitting to 3D-SMLM datasets, although a method that is compatible with batch processing of
multiple cells has not yet been accomplished.

6.7.4 Quantification of Clustering in 3D by Ripley’s K Analysis

Ripley’s K analysis was implemented for analysis of 3D-SMLM datasets in MATLAB. The
input of these functions were datasets containing the x, y and z coordinates of the distribution
of interest and an ’unlclustered’ distribution of the same geometry. The relative density of

the number of localisations within a sphere or radius r from each point was then compared
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between the two distributions to create a plot of L(r) — r. Simulated clustered and unclustered
distributions on the apical surface of a sphere with a range of clustering parameters were
used to verify the analysis. The fraction of points within clusters was identified as a key
metric for cluster identification, although other factors such as the number of clusters and
number of points per cluster were observed to affect the ability of Ripley’s K analysis to
identify clustering. Simulated distributions with as low as 4% of clustered points could be

identified as significantly different from unclustered distributions.

The analysis was tested on a model distribution of the TCR on the surface of T cells
using clustering parameters determined by a previous 2D study of TCR clustering at PLL-
coated surfaces in Jurkat T cells [278]. In this case, Ripley’s K analysis was able to identify
clustering from randomly subsampled datasets with as low as 500 points across a ~50 um?
area surface, corresponding to an approximately six-fold lower density than observed in
recorded TCR datasets. Thus Ripley’s K analysis was verified to be a suitable tool for
identifying clustering in 3D, even low-expression targets such as the TCR.

It was determined that the geometry of the distribution of interest can have a significant
effect on the ability to identify clustering by Ripley’s K analysis, as the number of neighbours
within a set distance of a point is closely related to the geometry. A mismatch in geometry
between input distributions can lead to perceived clustering or anticlustering of CSR distri-
butions and thus the unclustered control distribution used for comparison should follow the
same underlying geometry as the distribution of interest. This consideration is especially
important for imaging away from the coverslip where the intrinsic 3D nature of biological
samples makes it unlikely that flat geometries are present. At the coverslip, the presence of
ruffles in the membrane can lead to misidentification of clustering states. This effect can
be reduced by adhering the outer membrane of cell samples to the coverslip to create an
artificial flat surface, however, this may affect the behaviour of surface proteins [150, 151].
Even in fixed cells contacting PLL-coated surfaces, distortion of the outer membrane was

observed as the bottom of cells was flattened out by the charge attraction to the surface.

The ability of the DHPSF to image above the coverslip surface without significant
spherical aberration (see chapter 3) allows for the distribution of membrane-bound proteins
to be studied under more physiological conditions, away from interactions with coated-
surfaces. Membrane nanostructure was typically observed to be on the order of 500 nm,
which is comparable to the depth of focus of other commonly-used 3D-SMLM techniques
(~500 nm for Astigmatism and Biplane). As a result, these techniques would not be

capable of representing the apical surface of T cells in a single image plane, requiring focal-
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plane scanning methodologies to faithfully reconstruct the morphology of the T-cell outer
membrane. Due to the increased depth of focus of the DHPSF compared to these techniques,
a significant fraction of the T-cell outer membrane could be captured by a single image
plane, reducing experimental complexity. By implementing duel-labelling of the TCR and
the outer membrane the geometry of outer membrane could be determined independently
to the position of the TCR. This reduces biases in model-distribution geometry that may
be caused by potential preferential distribution of the TCR relative to certain regions of
the membrane and decouples the localisation density of the TCR from the geometry of

unclustered distributions for comparison in Ripley’s K analysis.

6.7.5 Quantification of the Clustering State of the TCR in Jurkat and
Primary T Cells

The clustering state of membrane-bound TCRs was quantified at the apical surface of Jurkat
and primary T cells by Ripley’s K analysis of dual-labelling 3D-SMLM datasets of the
position of the TCR relative to WGA bound to the outer membrane. The position of the TCR
was input to the written analysis as the distribution of interest. The position of WGA was
randomly subsampled to match the localisation density and input as an unclustered control.
WGA data is expected to be unclustered as WGA binds to N-Acetylglucosamine residues
that are highly abundant across T-cell membrane proteins. A study of the carbohydrate
pattern on Vero kidney epithelial cells labelled by WGA and imaged by dSTORM in 2D
observed that WGA bound to the outer membrane in nanoscale regions that were obviously
visible by eye [280]. However, no such regions were observed in any recorded WGA dataset
and uniform membrane labelling by WGA was reported but not quantified by another study
employing WGA for high-density imaging of membrane surfaces by 3D-SMLM [82]. The
clustering state of WGA 1is expected to remain constant between Jurkat and the primary T
cells as they exhibit a similar distribution of membrane-protein expression, allowing for a
direct comparison between Jurkat and primary T-cell samples. Once mesh fitting to WGA
datasets is achieved, it will be possible to simulate a true CSR distribution with geometry
matched to the T-cell outer membrane. This will facilitate an unbiased unclustered model
distribution for use in Ripley’s K analysis, decoupling the L(r) — r of the TCR from potential
clustering that may be present in the distribution of WGA.

The performance of the methodology and analysis was verified by imaging the TCR at the
coverslip surface of Jurkat T cells contacting PLL-coated surfaces, repeating a previous study
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employing Ripley’s K analysis of 2D PALM imaging of the TCR [278]. The results of this
study were reproduced, with significant clustering of the TCR observed and corresponding

L(r) — r curves closely matching (see appendix A).

A significant increase in TCR clustering was observed between TCR at PLL-coated
surfaces and on cells fixed in suspension. A low but significant level of clustering was
observed in T cells fixed in suspension. It has been theorised that PLL can compress
pockets between PLL-coated surfaces and the outer T-cell membrane caused by membrane
nanostructure [151], artificially clustering nearby molecules as the membrane is pulled into
close contact with the surface. Additionally, PLL-coated surfaces have been shown to have an
activating effect on T cells by immobilisation of the TCR [150], which is known to result in
membrane-protein redistribution towards clustering [218, 206, 216]. Our results support the
notion that PLL-coated surfaces can cause a redistribution of T-cell membrane proteins from
the resting state. Imaging T cells away from coated surfaces may provide more physiological
conditions for the study of mechanisms relating to immune-response triggering. Although
this is not always possible, the DHPSF represents a suitable tool for imaging and tracking

applications in non-flat geometries.

Primary T cells fixed in suspension were observed to exhibit a comparable level of TCR
clustering to Jurkat T cells fixed in suspension. This suggests that the distribution of TCR
on the surface of Jurkat cells is a good representation of that in primary cells. In both cases,
the L(r) — r of the TCR was significantly different to WGA, indicating increased clustering.
Incubation with primary and secondary TCR antibodies during fab-(PA-JF549) labelling did
not have a significant effect on perceived clustering of the TCR. This is not entirely surprising
as there is no evidence in literature to suggest that large-scale clusters would be created. It
has been shown that the phosphorylation of 1-2 TCR molecules can initiate immunological
triggering in T cells [258], suggesting that it is possible for early-stage immunological
activation to occur without the formation of large TCR clusters. It is possible that longer
incubation times would lead to large-scale clustering, although when this was attempted T
cells became stressed or did not survive, increasing intrinsic background fluorescence when

imaging to unmanageable levels.

Ideally, additional T-cell membrane proteins would be imaged with the same methodology
to provide additional controls and more information on the overall protein distribution of the
outer T-cell membrane. Monomeric proteins such as CD2 could provide a useful unclustered
control sample. Unfortunately, the necessity of a HaloTag to increase the activation efficiency
of PA-JF549 limits the available antibodies and fabs that can be used. Currently, we only have
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access to anti-CD?3 fabs fused to a HaloTag, however, the Davis group is working to produce
additional HaloTag-fabs to label CD2 and CD45. It would also be extremely useful to image
a known clustered control to calibrate the performance of the methodology. Clathrin-coated
pits on the outer membrane could serve as a clustered control that is compatible with WGA

membrane imaging, providing they can be labelled by a HaloTag.

6.7.6 Advantages and Disadvantages of the Methodology and Future
Plans

The imaging methodology presented in this chapter is the able to record the distribution of
membrane proteins, away from unphysiological coated surfaces, relative to membrane nanos-
tructure. Employing a photoactivatable organic dye (PA-JF549) over current photoactivatable
fluorescent proteins provides high SNR PALM imaging of a significant fraction of labelled
proteins (estimated to be ~90% [69]). This should facilitate robust stoichiometry measure-
ments of cluster size, however, the activation efficiency of PA-JF549 is known to be sensitive
to its environment. In order to determine the activation efficiency under the experimental
conditions presented, a target of known stoichiometry should be imaged under the same
conditions. However, this also requires a HaloTag to be present for a fair comparison to be
made. We are currently searching for a suitable target of known stoichiometry to calibrate
the detection efficiency of the methodology in order to facilitate absolute stoichiometric
measurements. A potential candidate is the nuclear pore complex, which is comprised of
eight identical subunits [281].

PALM imaging is advantageous for the study of clustering and stoichiometry compared
to STORM as it is less prone to over-counting artefacts caused by repeated florescence events
from each fluorophore. In STORM imaging, each fluorophore exhibits multiple fluorescence
events before photobleaching as it switches between emissive and nonemissive states. The
number of events depends on the imaging conditions and follows a normal distribution that
can span an order of magnitude [41]. In low-stoichiometry samples, it is impossible to
decouple the number of targets present within the localisation precision from the blinking
kinetics of the fluorophore as the variation in events is comparable to the number of molecules.
Although photoactivatable fluorophores can display fluorescence intermittency, significantly
fewer fluorescence events are observed compared to STORM imaging (a mean of 2.8 events
are observed from individual mEos fluorescent proteins [65] and a mean of 1.4 events are
observed for PA-JF549 [69]). A recent study employing dSTORM imaging of AlexaFluor647
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estimated that the TCR was clustered at the surface of naive lymph node-resident T cells with
approximately 10 TCRs per cluster [121]. The average number of events per antibody was
measured to be ~20, however, in some cases individual antibodies were observed to exhibit
>100 fluorescent events. Although ~50% of the number of expected TCR localisations
were observed by our methodology, individual clusters of ~10 proteins should be able to be
identified by the DHPSF providing a sufficient fraction of the overall distribution is clustered.
However, the analysis presented in figure 6.20 estimates that ~10% of TCRs are clustered,
making this unlikely to be distinguishable above the background unclustered population.

Quantification of the outer-membrane morphology should allow for robust analysis of
the spatial distribution of membrane-bound protein. Such analysis may provide information
on the functional role of the membrane nanostructure for T-cell immune-response triggering.
Mesh fitting of WGA datasets in order to represent cell volumes is the current focus of this
project. As previously mentioned, a recent study determined that ~90% of membrane-bound
TCR molecules were associated with membrane nanostructure in primary T cells [201]. In
this study, primary T cells were labelled with anti TCRa 8 antibodies tagged with Alexa647
and fixed in suspension. After fixation, the outer membrane was fluorescently stained at
bulk concentration. The position of the outer membrane was determined with diffraction-
limited imaging laterally and sub-diffraction precision axially by variable-angle TIRF. The
TCR was then imaged by 2D in two axial planes by TIRF illumination.This methodology
allows for the position of the TCR to be inferred relative to membrane nanostructure but
may lead to biases towards detection of fluorophores closer to the coverslip. In contrast the
methodology presented for duel-imaging of the TCR and outer membrane in this chapter
directly measures both the position of the TCR and membrane nanostructure in 3D under the
same imaging conditions. This allows for unbiased measurement of the relative density of
TCR molecules associated with membrane nanostructure and the cell body. We have not yet
been able to automate nanostructure identification to quantify the relative density between
the two populations. By eye, the TCR appears homogeneously distributed across the outer
membrane, with no obvious preferential association with nanostructure in Jurkat and primary
T cells. Accurate mesh fitting to WGA datasets should allow for regions of nanostructure to
be identified by local curvature of the fitted mesh. If this is realised, the relative density of
TCR localisations could be directly quantified between the two regions using the fitted mesh

as a measure of membrane area.

The key drawback of the presented labelling methodology is the requirement of a HaloTag
to increase the activation efficiency of PA-JF549. In high expression targets or PAINT
labelling the activation efficiency of the fluorophore is less important. However, for low-
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expression targets such as the TCR, high detection efficiency is necessary to properly repre-

sent the population.

Another issue with the methodology is low throughput caused by a reduced field of view
from HILO illumination and extended acquisition times for PA-PAINT. This is exacerbated
by the increased size of the DHPSF compared to other imaging PSFs as a lower localisation
density is required for isolated PSFs to occur. Due to the excellent brightness of PA-JF549
compared to other photoactivatable fluorophores, the photon-splitting nature of the DHPSF
and the reduced collection efficiency of water-immersion objective lenses compared to
oil-immersion objective lenses was not a limiting factor. Experiments were optimised to
provide maximum SNR by tuning the excitation power density so that PA-JF549 molecules
were typically emissive for one frame after activation. A mean and standard deviation of
2,900-£700 photons were detected from each PA-JF549 molecule from the imaging conditions
presented in this chapter, corresponding to an expected localisation precision of ~10-12 nm
laterally and ~20-27 nm laterally (see chapter 2). However, for initial WGA PAINT imaging
without a photoactivatable fluorophore, the increased depth of focus of the DHPSF compared
to 2D imaging caused a significant increase in detected background, making traditional
PAINT labelling impractical.

A novel method to improve the SNR of PAINT imaging with the use of a photoactivatable
fluorophore and HILO excitation was demonstrated. For the applications demonstrated in
this chapter, the activation efficiency of the fluorophore was not important as the activation
illumination power density could be increased to tune the localisation rate to optimal levels.
Therefore, no HaloTag was required to increase activation efficiency of PA-JF549 and
standard NHS ester labelling of WGA was sufficient. The improvement in SNR was not
quantified as in order to achieve low enough background signal for DHPSF imaging by
traditional PAINT less than one localisation per second was observed, making high-density
imaging unfeasible. PA-PAINT allowed for >30 localisations per second to be recorded from
a single T cell with minimal background signal. In fact, the factor limiting localisation rate
was overlapping PSFs rather than SNR.



216 Quantifying the Distribution of the TCR

6.8 Concluding Remarks

The work presented in this chapter represents the first implementation of the DHPSF for
high-density imaging and quantification of the spatial distribution of proteins in eukaryotic
cells. We have developed a methodology capable of localising a significant fraction of
the total number of T-cell membrane proteins relative to 3D membrane nanostructure in a
single focal plane. Fiducial markers immobilised on the surface of agarose beads facilitate
multi-target imaging away from the coverslip with extended acquisition times by continuous
drift correction and the alignment of multiple datasets, without the need for the focal plane to

be moved.

This methodology allows for quantification of the clustering state of T-cell membrane
proteins on non-flat surfaces, away from the influence of unphysiological coated surfaces.
The datasets produced are compatible with quantification of the relationship between the
spatial distribution of the membrane-bound proteins and membrane nanostructure, once

membrane nanostructure identification can be automated.

Further imaging of T-cell membrane-bound targets is planned once additional antibodies
including HaloTags are completed. This will provide a more complete description of the

resting-state surface distribution of T cells.
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6.9 Methodology

Preparation of WGA-(PA-JF549)

WGA (L9640, sigma) was labelled with PA-JF549-NHS ester (6149, Tocris). 100 uM
PA-JF549-NHS ester was added to 26 uM WGA in filtered (0.22 um Millex-GP syringe
filter unit, Millipore) phosphate-buffered saline (PBS) (molecular mass 150-300 kDa; P4832,
Sigma) was supplemented with 0.1 M sodium bicarbonate (Sigma). The solution was reacted

at room temperature for 2 hours in darkness. Labelled WGA was then separated using a
Bio-Spin P-6 gel column (Bio-Rad).

Preparation of TCR Fab-(PA-JF549)

UCHT-1 (anti CD3) — HaloTag fab at was diluted to 40 uM in filtered PBS before incubation
with 200 uM Halo ligand-(PA-JF549) (gift from Marco di Antonio) for 1 hour in room
temperature and in darkness. Labelled fab was then separated using a Bio-Spin P-6 gel

column (Bio-Rad).

Sample Preparation with Fiducial Markers Immobilised above the Cov-

erslip

100 uL of 50 um diameter agarose beads (20349, ThermoFisher) were incubated with
poly-L-lysine (molecular mass 150-300 kDa; P4832, Sigma) in a 1:1 ratio for 10 minutes.
The beads were centrifuged at 1500x g for 1 min) and washed three times with filtered PBS.
The beads were then incubated with fluorescent nanodiamonds (798134, Sigma) in a 1:1
ratio for 10 minutes at room temperature. The labelled beads were then washed three times

with PBS via centrifugation and were resuspended in 100 pL of PBS.

Coverslips (2222 mm borosilicate, thickness No. 1, VWR) were heated to 37°C. 3 uLL
of labelled agarose beads and 25 uL of labelled cells were added and allowed to equilibrate.
50 uL a 1% solution of pre-warmed agarose in filtered PBS was added to the coverslip and
allowed to settle for 10 minutes. The sample was then cooled to room temperature before 50
uL of filtered PBS was added on top of the set agarose.
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Imaging the TCR in Jurkat and Primary T Cells

~10° T cells were labelled with 200 nM of the labelled TCR-(PA-JF549) fabS on ice for
25 minutes. Cells were then washed three times in filtered PBS (involving centrifugation).
Labelled T cells were fixed in 4% paraformaldehyde (Sigma) and 0.2% glutaraldehyde
(Sigma) for 60 minutes at room temperature. The fixed cells were washed three times in
filtered PBS and suspended in filtered PBS. This was conducted in Cambridge for Jurkat T
cells and Oxford, by Dr Mafalda Santos, for primary T cells. Fixed primary T cells were
transported to Cambridge on ice and imaged over the next 1-2 days. Immediately prior to

imaging, cells were then added to samples with fiducial markers as described above.

The sample was imaged with a 1.27 NA 60x water-immersion objective lens (Plan Apo
VC 60x, Nikon). A quadband dichroic and longpasss and bandpass filters were used to
separate the emission signal (Di01-R405/488/561/ 635-25x36, and BLP02-561R-25 and
FFO01-580/14-25, respectively, Semrock) before the detector. Fixed T cells were imaged for
until no more fluorescence events were observed, typically >30,000 frames with continuous
561 nm (at a power density of ~5 kW/cm?, measured before the objective lens) and 405 nm
HILO excitation and a 30 ms exposure. DHPSF fitting was conducted with easy-DHPSF
[210] in MATLAB. After reconstruction, a rolling-mean of the fiducial marker’s position

over 50 frames was used to correct for drift in x, y and z.

Imaging WGA on the Out Membrane by PA-PAINT

The sample was prepared as above with or without labelling the TCR. If the TCR was labelled,
WGA imaging was conducted after TCR imaging as described above. 50 um of a 1:500
dilution of WGA-(PA-JF54) in filtered PBS was added on top of the T-cell sample contained
within agarose with immobilised fiducial markers. The sample was left to equilibrate for at
least 30 minutes. The sample was then imaged with a 1.27 NA 60x water-immersion objective
lens (Plan Apo VC 60x, Nikon). A quadband dichroic and longpasss and bandpass filters
were used to separate the emission signal (Di01-R405/488/561/ 635-25x36, and BLP02-
561R-25 and FF01-580/14-25, respectively, Semrock) before the detector. 100,000 frames
with continuous 561 nm (at a power density of ~5 kW/cm?, measured before the objective
lens) and 405 nm HILO excitation and a 30 ms exposure were recorded for duel-labelling
experiments. The axial position of the focal plane was maintained relative to a fiducial

marker via a piezo motor controlled by an auto-focus script written by Dr Aleks Ponjavic
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in beanshell. DHPSF fitting was conducted with easy-DHPSF [210] in MATLAB. After
reconstruction, a rolling-mean of the fiducial marker’s position over 50 frames was used
to correct for drift in x, y and z and align the dataset to the corresponding TCR dataset for
duel-labelling experiments.

Whole-Cell Membrane Imaging by PA-PAINT

~10° Jurkat T cells were fixed in 4% paraformaldehyde and 0.2% glutaraldehyde for 60
minutes at room temperature. The fixed cells were washed three times in filtered PBS and
suspended in filtered PBS. The unlabelled cells prepared as described above, with fluorescent

nanodiamonds immobilised above the surface.

The sample was then imaged with a 1.27 NA 60x water-immersion objective lens (Plan
Apo VC 60x, Nikon). A quadband dichroic and longpasss and bandpass filters were used
to separate the emission signal (Di01-R405/488/561/ 635-25x36, and BLP02-561R-25 and
FF01-580/14-25, respectively, Semrock) before the detector. Continuous 561 nm (at a power
density of ~5 kW/cm?, measured before the objective lens) and 405 nm HILO excitation
was incident on the sample. The focal plane was axially scanned through the sample in 3-3.5
um steps via the piezo-mounted objective, with each position containing at least one fiducial
marker. 200,000 frames were acquired at 30 ms exposure at each position before moving to
the next position. The axial position of the focal plane was maintained relative to fiducial
markers via a piezo motor controlled by an auto-focus script written by Dr Aleks Ponjavic
in beanshell. DHPSF fitting was conducted with easy-DHPSF [210] in MATLAB. After
reconstruction, a rolling-mean of the fiducial marker’s position over 50 frames was used to
correct for drift in x, y and z. The resulting localisations were aligned across the whole cell

by their position relative to fiducial markers that were present in sequential focal planes.






Chapter 7

Conclusion

7.1 Thesis Summary

This thesis has described the development and characterisation of a microscopy platform
implementing 3D localisation microscopy with a double-helix point spread function (DHPSF)
for application in mammalian cell samples. In chapter 2, the stability of the instrument was
measured under experimentally relevant conditions and compatible illumination geometries
and labelling methods were developed. Chapter 3 describes the quantification of aberration
caused by Fourier-plane misalignment and spherical aberration present when imaging away
from the coverslip surface, and the development of methods to reduce these effects facilitate

large-volume imaging with the DHPSF.

After optimisation the platform was applied to imaging large eukaryotic cell volumes.
This demonstrated, for the first time, the application of both single-particle tracking (SPT)
and super-resolution imaging modalities to non-flat geometries and to traditionally technically
demanding areas of biological samples. A number of different biological questions were

addressed and presented in chapters 4-6.

In chapter 4 2D diffusion analysis methods were extended for use with 3D SPT. Tracking
of targets at the apical membrane of T cells and within the nucleus of embryonic stem cells
demonstrated the capability of the DHPSF for tracking applications [147]. This was the first
application of the DHPSF for SPT in mammalian cells.

In chapter 5 a range of super-resolution imaging and quantification applications are

presented. These applications include whole-cell membrane-protein quantification in T
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cells, cytoplasmic-protein imaging in HeLLa and HEK cells and imaging synaptic proteins
in mouse-brain slices. These studies were facilitated by the extended depth of field of the

DHPSF compared to typical 3D single-molecule localisation microscopy (SMLM) methods.

Finally, chapter 6 describes quantification of the organisation of the T-cell receptor (TCR)
on the outer membrane of Jurkat and primary T cells. The extended depth of focus of the
DHPSF enabled clustering analysis to be conducted in a physiologically relevant environment,
away from flat coated-surfaces. Duel-labelling of the TCR and the outer membrane allowed
for the effect of surface morphology to be separated from perceived clustering by Ripley’s
K analysis. This analysis showed that the TCR is less clustered in the resting state than
previously reported [52, 278, 121].

7.2 Concluding Discussion

This work represents a number of key steps in the development of the DHPSF as a technique.
Previously, the DHPSF had only been used to investigate volumes directly adjacent to
coverslip surfaces in biological samples [101, 100, 106, 103, 105, 104]. Although the effect
of spherical aberration had been investigated by Ghosh and Preza [168], its influence had not
been mitigated for biological imaging, limiting the potential applications of the DHPSF. By
applying the findings of Hell et. al. (1993) on the effect of refractive index mismatch between
objective lens immersion liquid and sample media on spherical aberration [172, 173], a simple
solution to reduce spherical aberration in the DHPSF was identified. A water-immersion
objective lens was employed to reduce this refractive index mismatch, and thus spherical
aberration, facilitating imaging deep into biological samples with the DHPSF for the first

time.

Single-Particle Tracking

The first application of the DHPSF to SPT in mammalian cells was demonstrated [147].
Imaging away from the surface allowed membrane proteins to be tracked as they diffuse over
the complex topography of the apical membrane surface of T cells, which often exceeds
the depth of field of common 3D-SMLM techniques such as Biplane and Astigmatism
(~500 nm). Nuclear proteins are notoriously difficult targets for SPT due to their fast

3D diffusion, often resulting in the protein of interest leaving the depth of field before
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sufficiently long track lengths can be recorded. 2D-SPT studies in the nucleus have been
able to quantify residence time of binding events [154, 177] but have struggled to accurately
measure diffusion coefficients. I have demonstrated that the DHPSF is capable of recording
extended trajectories that are compatible with MSD analysis for typical nuclear-protein
diffusion coefficients. The comparable depth of field of Multifocus Microscopy (MFM) has
also been shown to facilitate nuclear-protein tracking in mammalian cells [93]. Compared to
Astigmatism and Biplane methods, the large depth of field of the DHPSF and MFM represent
some of the most well-suited solutions for 3D-SPT away from coverslip surfaces, sacrificing

imaging density or field of view, respectively.

Single-Molecule Localisation Microscopy

In this work I have presented the first example of whole-cell imaging in mammalian cell
samples with the DHPSF [147]. Previous DHPSF publications relied on single image planes,
without stitching together neighbouring planes. The increased depth of field of the DHPSF
compared to Astigmatism and Biplane reduced the number of planes required to cover
an entire cell volume by approximately 8-fold. Recently, whole-cell 3D-SMLM has been
demonstrated with a 4Pi single-molecule switching nanoscopy (W-4PiSMSN) methodology
across a range of cell samples [146]. Since the work presented in chapter 5, multiple DHPSF
image planes have been recorded with light sheet illumination to image large volumes (~6
um) in HeLa cells [108].

I have also presented the first implementation of the DHPSF for 3D-SMLM in tissue
samples by imaging the synaptic protein PSD95 in mouse brain slices. Imaging in tissue
samples can be preferable as they represent a more physiological environment than cultured
cells. Now that the DHPSF has been shown to be compatible, it can be considered for a

wider range of biological studies in which the increased depth of field may be beneficial.

A novel variant of PAINT labelling employing photoactivatable (PA) fluorophores was
also presented in the form of PA-PAINT. PA-PAINT reduces background signal that arises
from excited unbound fluorophores, significantly increasing the achievable localisation rate.
As aresult, PAINT methodologies become compatible with large-volume imaging techniques
such as the DHPSF without the need for complicated excitation geometry confinement. This
methodology would also be compatible with DNA-PAINT labelling, increasing single-to-
noise ratio (SNR) and acquisition speed similarly to FRET-PAINT methodologies [72, 71].
PA-PAINT facilitated high-density whole-cell imaging of the outer membrane of Jurkat T
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cells, bringing the DHPSF closer to some of the most sophisticated large-volume 3D-SMLM
publications [82, 146].

The diverse applications presented in this thesis (SPT of membrane-bound, cytoplasmic
and nuclear proteins as well as membrane-protein quantification in T cells, cytoplasmic-
protein imaging in HeLLa and HEK cells and imaging synaptic proteins in mouse-brain tissue)
demonstrate the ubiquity of the DHPSF when combined with a water-immersion objective

lens to investigate biological samples.

Quantification of Resting Clustering State of the T-Cell Receptor

In this work, the T-cell receptor (TCR) was determined to be less clustered than previously
thought in resting Jurkat and primary T cells, which has implications for the mechanism
behind immune-response triggering. Previous studies claimed that the TCR existed in a
clustered state in resting T cells [121, 268, 278] and was located preferentially at the tips of
membrane protrusions [201]. In the analysis presented in chapter 6, which used duel labelling
of the TCR and the outer membrane to distinguish the effect of surface morphology from
perceived clustering, the TCR was found to be less clustered than previously reported. The
DHPSF analysis is supported by a recent study published by Rossboth ez. al. (2018), which
employed a range of super-resolution techniques to determine that the TCR is randomly
distributed on the plasma membrane of resting CD4™ T cells [282]. Together these studies
challenge the accepted paradigm of the resting T cell and have lead to the hypothesis that the
random distribution of the TCR on the surface of help T cells would increase the likelihood
of antigen recognition by maximising TCR-MHC on rates [282].

The methodology developed in chapter 6 was applied to the TCR but is equally compat-
ible with investigating the clustering state of other T-cell membrane proteins. In fact, the
methodology is applicable to cell types with an abundance of N-Acetylglucosamine present
on the outer membrane to bind wheat-germ agglutinin (WGA). This work demonstrates that
the underlying geometry of the distribution must be taken into account in order to provide
accurate clustering metrics. A general approach to measure both the morphology of the
outer membrane and the protein distribution across a significant portion of the cell without
chromatic aberration is outlined, providing a platform to investigate protein distributions
across a range of biological samples.
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7.3 Future Perspectives

DHPSF Perspectives

While improvements in optical resolution are limited by current fluorescent probes and
labelling methodologies, the development of improved cluster analysis and data fitting
routines are areas where the DHPSF method could be progressed. As discussed in chapter
6, quantification of clustering analysis could be improved with the implementation of true
complete spatial randomness (CSR) distributions that follow the morphology of the system.
Such a distribution should follow the morphology of the system in order to be able achieve
unbiased clustering metrics. Currently WGA localisations are considered as an unclustered
control but CSR models could potentially be generated by mesh fitting to WGA localisation
datasets.

Additionally, descriptive cluster analysis could be employed to better quantify the size
and stoichiometry of nanoclusters that are present in certain membrane-protein distributions.
The 3D Bayesian cluster analysis approach demonstrated by Griffie et. al. [127] should
be compatible with the current methodology by considering WGA datasets as data specific
unclustered models. This approached would also be improved by the creation of CSR model
distributions from WGA datasets.

Another area with room for improvement is in fitting of raw DHPSF datasets. Currently,
the only freely available fitting tool is easy-DHPSF [137]. Easy-DHPSF is slow compared to
2D fitting routines and does not include batch processing. User-defined thresholds are also
required which can introduce bias between datasets. As discussed in chapter 2, new fitting
methods outperformed easy-DHPSF at the 2016 Single-Molecule Localization Microscopy
Symposium but have yet to be published or distributed.

Finally, the DHPSF method, like other super-resolution technologies, is limited by the
availability of suitable fluorophores and labelling methods. Brighter and more photo-stable
fluorophores allow for longer tracks to be recorded in SPT experiments and more robust
statistical methods to be implemented. For PALM, developing photoactivatable fluorophores
with high and reliable activation efficiency will allow for more accurate stoichiometry studies
to be conducted. PA-JF549 has been demonstrated to achieve an activation efficiency of
90% [69] but is highly sensitive to its environment, limiting its application to targets that

can be labelled with a HaloTag. Photoactivatable fluorophores that are insensitive to their
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environment would expand the breadth of stoichiometry applications that could be probed
by the DHPSF. For (d)STORM, recent developments in fluorophores that display inherent
blinking behaviour, such as HMSiR [283], reduces the need for specific and typically toxic
buffer solutions, facilitating live-cell STORM imaging [284]. Although these fluorophores
have not yet been applied with the DHPSF, they could provide elegant solutions for tracking
slow-evolving processes, such as the development of the immunological synapse in T cells,
in 3D.

Biological Perspectives

A number of interesting problems in T-cell biology remain, such as the distribution of
membrane-bound proteins on the surface of resting T cells or how the clustering state
of the TCR evolves during activation. The DHPSF platform could be used to determine
the observed clustering state of a range of T-cell membrane proteins. Initially, imaging of
controls, including known monomers (e.g. CD2 [285]) and dimers (e.g. CD28 [199]) controls
would enable quantification of the performance of analysis methods, isolating the perceived
clustering caused by the photophysics of the fluorophore. Then, HaloTag antibodies for
membrane-bound proteins, such as CD45, L-selectin and Linker for Activation of T cells
(LAT), could be investigated to provide a more complete description of the surface of resting
T cells.

The methodology could be used to track the evolution of the clustering state of the TCR
(and other proteins) during T-cell activation by fixing T cells at different time points during
activation. This could be achieved by activating T cells in solution with activating antibodies
such as OKT3 or by contacting activating-coated surfaces. A comparison between these two
cases could provide information on the importance of an immunological synapse for T-cell

signalling.

Extending the methodology using photoactivatable DNA-PAINT (PA-DNA-PAINT)
would facilitate the investigation of the distribution of many different targets in the same
sample by Exchange-PAINT [162]. This would allow for direct comparison between the
distributions of multiple membrane proteins on single cells. T cells have been shown to be
highly sensitive to their environment and activation state, therefore more-complete maps
of protein distribution across individual cells would provide insight into the origin of their

heterogeneity.
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Other biological applications include investigating the distribution of K-ras relative to the
outer membrane of HeLa cells. Membrane-associated K-ras plays a key role in regulating cell
proliferation and differentiation by acting as a switch for growth factors in the environment.
An increase in the membrane-bound fraction of K-ras may indicate increased proliferation,
as exhibited by cancerous cells. This hypothesis could be tested by quantification of the
fraction of membrane-bound K-ras by sequentially imaging the outer membrane with WGA

and the distribution of labelled K-ras in wildtype and cancerous-mutant cells.

Final Remarks

Looking forward more generally, the DHPSF will undoubtedly be applied to an increasing
number of biological studies as it becomes more widely adopted. The work in this thesis
supports its broad applicability and demonstrates some of the advantages afforded by the large
depth of field. Currently the main factors limiting its adoption are the relative complexity of
the additional optics compared to Astigmatic 3D-SMLM methods and slow data fitting. Once
commercial solutions for the implementation of the DHPSF transformation are perfected
and fitting routines are improved, the technique could become as common as Astigmatic and
Biplane 3D SMLM.
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Appendix A

Supplementary Figures

A.1 Comparison of Ripley’s K Analysis

Comparison of L(r) — r curves for the TCR fixed at the surface of Jurkat T cells fixed after
contacting a Poly-L-Lysine (PLL) coated coverslip surface.
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Fig. A.1 Ripley’s K analysis for the TCR compared to previously published data. (a) L(r) —r
curve for the TCR at PLL-coated coverslips recorded with 2D-SMLM (blue), adapted from
Pageon et. al. [278]. Errors are given by the standard error of the mean. (b) L(r) — r curve
for the TCR at PLL-coated coverslips recorded with 3D-SMLM via the DHPSF. Errors are
given by standard deviation.






Appendix B

MATLAB Code

B.1 3D MSD and JD Analysis

Main

Main Tracking Code:

Iommmmm e Parameters----------————————————- %
minloc=4; %minimum number of localisations needed in a track
q=6; %dimension factor (2% number of dimensions)
npop=2; Jnumber of populations for JD analysis (up to 3)
dt=0.02; %Camera exposure in s

nbins=50; Jnumber of bins in histgram

nbinsJD=50; Jnumber of bins for JD analysis

maxdist=5%266%(4/3); Y%estimate for maximum distance moved by particle (nm)

skip=3; Jnumber of frames that can be skipped
fitn=4; Jnumber of msd points to be fit in analysis
h-—-—-—- create test positions and find tracks------- b

intensity=500; %intensity in photons for calibrated error
numloc=10; %number of localisations per simulated track
numpar=5000;

%  poslist=f_randomwalk(0.1,dt,numpar,numloc,intensity);

% poslist=[poslist;f_randomwalk(0.7,dt,numpar,numloc,intensity)];
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%  poslist=[poslist;f_randomwalk(2,dt,numpar,numloc,intensity)];
%  poslist=sortrows(poslist,4);
%  poslist=f_randomwalkfixed(0,dt,numloc,xyprec,zprec);
%  track=f_gettracks(poslist,maxdist,minloc,skip);
% %fill missing localisations in tracks with average positions
[filledtrack,strack]=f_fillTracks(track,skip,16);
% % %calculate JDs

[JD,JDall, JDav]=f_jumpDist (strack,nbinsJD,10,1);
% %JD analysis

D_JD=f_JDfitting(JDall,dt,q,npop,nbinsJD);
% hAverage JD analysis
D_JDav=f_JDfitting(JDav,dt,q,npop,nbinsJD);
hcalculate MSD curves (or single points if not enough points (<7) )
msd=f_3dmsd(filledtrack) ;
splot msd curves and calculate Diffusion constants (n>3 for curve fitting)
[Dmsd, sigma,D_msd,Dmsdtot,msddata,msdfit]=f_3dDmsd(msd,dt,q,0,0);
remember output msdfit must be divided by q for D
to plot fit use: plot(1:6, ((q*D_msd*dt)*(1:6)+msdfit.p2))
[Dmsd,sigma,D,Dmsdtot ,msddata,msdfit,unfilmsddata,unfilmsdfit,Dmsdrej,R]=f_3dDmsdN (ms
sfixed sample. it only fits the first 3 points on the msd.
%fit D and sigma to histogram and analyse

[Dmean,Derr]=f_3dDhist (Dmsd,nbins) ;

[Dmeanrej,Derrej]=f_3dDhist (Dmsdrej,nbins);
[Dmeanl,Derri]=f_3dDhist(Dmsdtot,nbins); %include unfiltered D too

[Precision,PrecisionErr]=f_3dDhist(sigma,nbins-5);

Functions

function [msdtrack, tracl= f_fillTracks(trac,skip,minloc)
%»fill in missing frames with average position

hinput tracks from 3D tracking program in the format
hlx,y,z,t] where t is the frame number, not the actual time
Jremove tracks that have gaps longer than user defined skip
clear temptrac

k=1;
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for i=1:size(trac,2)
flag=1;
/check if blinking
if(size(trac{i},1)/(max(trac{i}(:,4))-min(trac{i}(:,4))+1)<1)
location=1;
for j=2:size(trac{i},1)
%»if the difference in time steps is larger than user defined or
%less than 1, dont take track
if trac{i}(j,4)-trac{i}(j-1,4)>skip || trac{i}(j,4)-trac{i}(j-1,4)<1
flag=0;
1if j-location > minloc
temptrac{k}=trac{i}(location:j-1,:);
k=k+1;
end
location=j;
end
end
end
if flag
temptrac{k}=trac{i};
k=k+1;
end
end
trac=temptrac,
clear temptrac
for i=1:size(trac,2)
%»add in missing frames with average of position between localisations
hcheck if binking occurs
if(size(trac{i},1)/(max(trac{i}(:,4)) -min(trac{i}(:,4))+1)<1)
hinitiate msdtrack with only time column
msdtrack{i}=zeros(max(trac{i}(:,4))-min(trac{i}(:,4))+1,4);
msdtrack{i}(:,4)=min(trac{i}(:,4)) :max(trac{i}(:,4));
for j=1:size(trac{il},1)
%fill known positions into msdtrack
msdtrack{i} (find (msdtrack{i}(:,4)==trac{i}(j,4)),:)=trac{i}(j,1:4);

end
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%»find empty rows and fill with average positions
for j=1:size(msdtrack{i},1)
if msdtrack{i}(j,1)==0
%get number of empty rows
nempty=find (msdtrack{i}((j+1) :size (msdtrack{i},1),1)~=0,1);
hcalculate difference between previous and future steps
hand divide by number of missing steps
dx=(msdtrack{i} (j+nempty, 1) -msdtrack{i}(j-1,1))/(nempty+1);
dy=(msdtrack{i} (j+nempty,2)-msdtrack{i}(j-1,2))/(nempty+1);
dz=(msdtrack{i} (j+nempty,3)-msdtrack{i}(j-1,3))/(nempty+1);
%£ill in missing rows
for k=1:nempty
msdtrack{i} (j+k-1,1)=msdtrack{i}(j-1,1)+(k*dx);
msdtrack{i} (j+k-1,2)=msdtrack{i}(j-1,2)+(kx*dy);
msdtrack{i}(j+k-1,3)=msdtrack{i}(j-1,3)+(k*dz);
end
end
end
else
msdtrack{i}=trac{i};
end
end

end

function [D_JD] = f_JDfitting(JDall, dt, q, npop,nbinsJD)
%fit Jump distance analysis (JDall, dt, number of populations)
if nargin<3
npop=1;
end
hset guess parameters depending on number of populations fit
switch npop
case 1
prompt={’Guess 1 population D (um~2/s):’};
title=’Parameter Guessing’;
def (1)={"0.1"3;
answer=inputdlg(prompt,title,1,def);
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if isempty(answer)
error (’User cancelled the program’)
end
param_guess (1) = str2num(answer{1});
param_guess(2)= 1;
param_guess(1l) = 0.1;
case 2
prompt={’Guess population 1 D (um~2/s):’,’Population 1 fraction:’,...
’Population 2 D (um~2/s)’,’Population 2 fraction’};
title=’Parameter Guessing’;
def (1)={"0.1"3;
def(2)={"0.7"};
def(3)={’0.02"1};
def (4)={"0.3"};
answer=inputdlg(prompt,title,1,def);
if isempty(answer)

error (’User cancelled the program’)

end
param_guess (1) = str2num(answer{1});
param_guess(2) = str2num(answer{2});
param_guess(3) = str2num(answer{3});
param_guess (4) = str2num(answer{4});
otherwise
prompt={’Guess population 1 D (um~2/s):’,’Population 1 fractiomn:’,...

’Population 2 D (um~2/s)’,’Population 2 fraction’,...
’Population 3 D (um~2/s)’,’Population 3 fraction’};

title=’Parameter Guessing’;

def(1)={°0.1};

def(2)={’0.7};

def (3)={’0.02"};

def (4)={°0.2};

def (5)={0.002};

def(6)={’0.1"};

answer=inputdlg(prompt,title,1,def);

if isempty(answer)

error (’User cancelled the program’)



260 MATLAB Code

end
param_guess (1) = str2num(answer{1});
param_guess(2) = str2num(answer{2});
param_guess(3) = str2num(answer{3});
param_guess(4) = str2num(answer{4});
param_guess(5) = str2num(answer{5});
param_guess(6) = str2num(answer{6});
end
clear D
if g==4
%analyse 1 popluation
D{1}=f_JDfitpopl1(JDall,dt,q,param_guess,nbinsJD);
%analyse 2 populations
if npop>1
D{2}=f_JDfitpop2(JDall,dt,q,param_guess,nbinsJD) ;
end
%analyse 3 populations
if npop>2
D{3}=f_JDfitpop3(JDall,dt,q,param_guess,nbinsJD);
end
end
if q==6
% analyse 1 popluation
D{1}=f_3DJDfitpop1(JDall,dt,q,param_guess,nbinsJD) ;
%analyse 2 populations
if npop>1
D{2}=f_3DJDfitpop2(JDall,dt,q,param_guess,nbinsJD) ;
end
% analyse 3 populations
1f npop>2
D{3}=f_3DJDfitpop3(JDall,dt,q,param_guess,nbinsJD) ;
end
end
D_JD=D;

end
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function [Dout] = f_JDfitpopl(JDall,dt,q,param_guess,nbinsJD)
if g==6
disp(’This is not the right JD for 3D’);

end

JD=JDall/1000; Y%convert to um

x=sort(JD)’; hsort list of jump distances
y = 1:1:1length(x);

y = y/max(y);

%hdefine tolerance of fit

opt = optimset (’TolX’,1e-10,’TolFun’,1le-10,’MaxFunEvals’,2000);
%Fit x to prob function of JD (laura paper)

Dfit=1sqnonlin(@(D) D(2)*(l-exp(-x.~2/(q*D(1)*dt)))-y, [param_guess(1),1]1,[0,0.9], [
%Plot fit onto data

G=Dfit (2)*(1-exp(-x.~2/(q*Dfit (1) *dt)));

figure() ;subplot(3,1,2);plot(x,y)

hold all;

plot(x,G);

xlabel (’Jump Distance (um)’)

ylabel (’Frequency’)

#Fit analysis

residual=y-G;

SAM=y-mean(y) ; %hsquare about mean

SSE=sum(residual."2);

SST=sum(SAM."2) ;

R2=1-(SSE/SST) ; %R~2

shift=residual(length(G));

%Plot residual

subplot(3,1,3);plot(x,residual)

hold on;

plot(x,zeros(length(x),1)’)

ylabel(’Residual’)

xlabel (’Jump Distance [um]’)

subplot(3,1,2);

legend (’JD hist data’,strcat(’Fit (R"2=’,num2str(R2,3),’)’),’Location’,’southeast’)
%plot normal hist

JDbin=(max(JD)-min(JD))/nbinsJD;
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JDhistbins=min (JD) :JDbin:max(JD)-JDbin;

JDhist=hist (JD,JDhistbins)

JDx=min (JD) :0.001 :max (JD) ;

JDG=Dfit (2)*(1-exp(-JIDx.~2/(q*Dfit (1)*dt)));

JDG=diff (JDG)*length(JD)*length (JDx)/nbinsJD;

subplot(3,1,1)

bar (JDhistbins, JDhist, ’FaceColor’,[0.95 0.95 0.95], ’EdgeColor’,’k’);
hold on;

plot (JDx(1:end-1),JDG) ;

ylabel (’Frequency’);

xlabel (’Jump Distance [um]’);

legend (°JD hist data’,strcat(’Fit (R~2=’,num2str(R2,3),’)’));
title(strcat (’Jump Distance: D=’ ,num2str((Dfit(1)),3),’> um~2/s’));
Dout=Dfit(1);

end

function [Dout] = f_3DJDfitpop3(JDall,dt,q,param_guess,nbinsJD)
if q"=6
disp(’This is not the right JD, this is for 3D’);

end
JD=JDall/1000; Y%convert to um
x=sort(JD)’; hsort list of jump distances

y = 1:1:1length(x);

y = y/max(y);

hdefine tolerance of fit

opt = optimset (’TolX’,1le-10,’TolFun’,1e-10,’MaxFunEvals’,2000);

%Fit x to prob function of JD (laura paper)

Dfit=1sgnonlin(@(D) D(2)*(((8*pi*D(1)*dt)/(4*pi*D(1)*dt)~(3/2))*...
((sqrt(pi*D (1) *dt)*erf(x./sqrt(4xD(1)*dt)))-...
(x.xexp(-x.72/(4xD(1)*dt)))))+. ..

D(4)* (((8*pi*D(3)*dt)/(4xpi*D(3)*dt)~(3/2))*...
((sqrt(pi*D(3) *dt)*erf (x./sqrt(4*D(3)*dt)))-...

(x.*%exp(-x.72/(4xD(3)*dt)))))+. ..

D(6)* (((8*pixD(5)*dt)/(4*pi*D(5)*dt)~(3/2))*...
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((sqrt(pi*D(5) *dt) *erf (x./sqrt(4*xD(5)*dt)))-. ..
(x.xexp(-x.72/(4*xD(5)*dt))))) ...

-y, [param_guess], [0,0,0,0,0,0],[4,1,0.6,1,0.8,1],0pt);

%Plot fit onto data

G1=Dfit (2)* (((8*pixDfit (1) *dt)/(4xpi*Dfit (1)*dt)~(3/2))*...
((sqrt (pi*Dfit (1) *dt)*erf(x./sqrt(4*xDfit(1)*dt)))-...
(x.*exp(-x.72/(4*xDfit (1) *dt)))));

G2=Dfit (4)* (((8*pi*Dfit(3)*dt)/(4xpi*Dfit(3)*dt)~(3/2))*...
((sqrt(pi*Dfit(3)*dt)*erf(x./sqrt(4xDfit(3)*dt)))-...
(x.%exp(-x.72/(4*%Dfit (3)*dt)))));

G3=Dfit (6)* (((8*pi*Dfit (5)*dt)/ (4*pi*Dfit(5)*dt)~(3/2))*...
((sqrt (pi*Dfit (5)*dt) *xerf (x./sqrt (4*xDfit(5)*dt)))-. ..
(x.*exp(-x.72/(4xDfit (5)*dt)))));

G=G1+G2+G3;

Jnormalise fractions

f1 = Dfit(2)/(Dfit(2)+Dfit (4)+Dfit(6));

f2 = Dfit(4)/(Dfit(2)+Dfit (4)+Dfit(6));

£f3 = Dfit(6)/(Dfit(2)+Dfit (4)+Dfit(6));

Dfit (2)=f1;

Dfit (4)=£f2;

Dfit(6)=£3;

figure() ;subplot(3,1,2);plot(x,y)

hold all;

plot(x,G);

plot(x,G1);

plot(x,G2);

plot(x,G3);

xlabel (’ Jump Distance (um)’)

ylabel (’Frequency’)

hold off;

%Fit analysis

residual=y-G;

SAM=y-mean(y) ; %square about mean
SSE=sum(residual."2);

SST=sum(SAM."2);
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R2=1-(SSE/SST) ; WR~2

hshift=residual (length(G));

%Plot residual

subplot(3,1,3);plot(x,residual)

hold on;

plot(x,zeros(length(x),1)’)

ylabel(’Residual’)

xlabel (’ Jump Distance [um]’)

subplot(3,1,2);

legend(’JD hist data’,strcat(’Total Fit (R"2=’,num2str(R2,3),’)’),...
’Population 1°,’Population 2’,’Population 3’,’Location’,’southeast’);

%plot normal hist

JDbin=(max (JD)-min(JD)) /nbinsJD;

JDhistbins=min(JD) :JDbin:max(JD)-JDbin;

JDhist=hist (JD,JDhistbins);

JDx=min (JD) :0.001 :max (JD) ;

JDG1=Dfit (2)* (((8xpi*Dfit (1)*dt)/ (4*pi*Dfit(1)*dt)~(3/2))*...
((sqrt(pi*Dfit(1)*dt)*erf (IDx./sqrt (4*Dfit(1)*dt)))-...
(JDx.*exp(-JDx."2/(4*Dfit (1)*dt)))));

JDG2=Dfit (4)* (((8xpi*Dfit (3)*dt)/ (4*pi*Dfit(3)*dt)~(3/2))*...
((sqrt (pi*Dfit (3)*dt) *xerf (IDx./sqrt (4*xDfit (3)*dt)))-. ..
(JDx.*exp(-JDx.~2/(4*Dfit (3)*dt)))));

JDG3=Dfit (6)* (((8*pi*Dfit (5)*dt)/(4xpi*Dfit(5)*dt)~(3/2))*...
((sqrt(pi*Dfit (5)*dt)*erf (IDx./sqrt (4*Dfit(5)*dt)))-...
(JDx.*exp(-JDx.~2/(4*Dfit (5)*dt)))));

JDG1=diff (JDG1)*length (JD)*length(JDx) /nbinsJD;

JDG2=diff (JDG2) *length (JD)*length(JDx) /nbinsJD;

JDG3=diff (JDG3) *length(JD)*length(JDx) /nbinsJD;

JDG=JDG1+JDG2+JDG3;

subplot(3,1,1)

bar (JDhistbins, JDhist, >FaceColor’,[0.95 0.95 0.95], ’EdgeColor’,’k’);

hold on;

plot (JDx(1:end-1),JDG);

plot (JDx(1:end-1),JDG1);

plot (JDx(1:end-1),JDG2);

plot (JDx(1:end-1),JDG3);
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ylabel (’Frequency’);

xlabel (’Jump Distance [um]’);

legend (’JD hist data’,strcat(’Total Fit (R~2=’,num2str(R2,3),’)’),...
’Population 1°,’Population 2’,’Population 3’);

title(strcat(’Jump Distance: D1=’,num2str((Dfit(1)),3),...
> um~2/s, f1=’ ,num2str((Dfit(2)),2),’, D2=’ ,num2str ((Dfit(3)),2),...
‘um~2/s, £2=’ ,num2str((Dfit(4)),2),’, D3=’ ,num2str ((Dfit(5)),2),...
‘um~2/s’)) ;

Dout=Dfit;

end

function msd = f_3dmsd(track)
hcalculate MSD curves
susing method defined by Qian et al and Saxton (see laura’s paper for refs)
clear msd
%loop over all tracks
for i=1:size(track,?2)
huse floor fuction to calcualte number of time steps analysed
Jno more than 1/4 of track length
l=size(track{i},1);
if 1>7

hanalyse all n

for n= 1:min([floor(size(track{il},1)/4),61)

%calculate msd for nxdt

msdsum=0;
for j=1:(1-n)
msdsum=msdsum + (... %x"2 + y~2 +z"2

((track{i}(j+n,1)-track{i}(j,1))*(track{i}(j+n,1)-track{i}(j,1))) ...
+...
((track{i}(j+n,2) -track{i}(j,2) ) *(track{i} (j+n,2)-track{i}(j,2)))...
+...
((track{i}(j+n,3)-track{i}(j,3)) *(track{i} (j+n,3)-track{i}(j,3)))...
)

end

msd{iY(n)= (1/(1-n)) * msdsum * 10~-6; % & convert to um~2 (from nm~2)
end
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else
hanalyse just n=1 if there are not enough points in track

%h(no curve fitting needed)

n=1;
%calculate msd for nxdt
msdsum=0;
for j=1:(1-n)
msdsum=msdsum + (... %x"2 + y~2 +z"2
((track{i}(j+n,1)-track{i}(j,1))*(track{i}(j+n,1)-track{i}(j,1))) ...
+...
((track{i}(j+n,2)-track{i}(j,2))*(track{i}(j+n,2)-track{i}(j,2))) ...
+...
((track{i}(j+n,3) -track{i}(j,3))*(track{i}(j+n,3)-track{i}(j,3)))...
)3
end

msd{i}(n)= (1/(1-n)) * msdsum * 10°-6; % & convert to um~2 (from nm~2)
end
end

end

function [Dout,sigmaout,Dfil,Dtot,msddata,msdfit,unfilmsddata,unfilmsdfit,Drej,R] = £
hcalculate Diffusion constant in um~2/s from msd curves

5 MSD= 4% D * ndt + 4 x sigma~2

htest if good fit to straight line (indication of free diffusion)

hInputs: (msds, exposure time, diffusion coefficient, include all D[1/0], plot fits[1
%hinclude all D = 1 to analyse all calcualted msds, even those without

Jenough points to plot a curve

hplotfit = 1 to plot fits during running

%»if no arguments assume fuction not wanted
if nargin < 6
plotfit =0;
end
if nargin < 5
allD =0.5;

end
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k=1; %initialise counter of D
g=1; %initialise precision counter
w=1; %initialise filtered msd counter
u=1;
t=1;
r=1;
clear filteredmsd
clear rejectedmsd
rmin=0.85; Jminiumum accepted r square value
%hcalculate mean msd curve
for i=1:size(msd,2)
maxn(i)=size(msd{i},2);
end
maxn=max (maxn) ;
hgroup MSDs from same ndt
clear groupmsd
for i=1:maxn
groupmsd{i}=0;
end
for i=1:size(msd,2)
for j=1:size(msd{il},2)
groupmsd{j}=[groupmsd{j};msd{i}(j)];
end
end
for i=1:size(groupmsd,2)
groupmsd{i}=groupmsd{i}(2:size (groupmsd{i}t,1),:);
end
%hcalculate mean for each ndt
for i=1:size(groupmsd,2)
meanmsd (i) =mean (groupmsd{il}) ;
semmsd (i)=std(groupmsd{i}) /sqrt(length(groupmsd{i})); %Calculate SEM
end
%linear fit to mean msd curve
[meanfit,meanfiterr]=fit( ((1:fitn)’*dt), (meanmsd(1l:fitn))’,’polyl’);
%plot overall MSD curve

figure
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plot (((0:size(meanmsd,2)+1))*dt, ...
((meanfit.pl)*(((0:size(meanmsd,2)+1))*dt))+meanfit.p2,’r’)
hold on
errorbar ((((1:size(meanmsd,2)))*dt) , (meanmsd) , (semmsd),’bo’)
title(strcat(’Unfiltered MSD Curve D=’ ,num2str((meanfit.pl/q),3),’> um~2/s’));
xlabel(’Time (s)’);
ylabel (’MSD (um~2)’);
legend(strcat (°’Fit r~2 = ’,num2str(meanfiterr.rsquare,3)), ...
A1l Data (with SEM)’,’Location’,’northwest’);
%hloop over msds
for i=1:size(msd,2)
hcheck size (minimum for fitting? n>=37)
if size(msd{i},2)>=4
»fit straight line (convert n into times too)
[msdfit,fiterr]=fit( (((1:size(msd{i},2))’)*dt), (msd{i})’,’polyl’);
%calculate D from gradient (m = q * D)
D = msdfit.pl / q;
hcalculate sigma from offset (convert to nm from um)
sigma = sqrt(abs(msdfit.p2) / q) * 1000; htake positive intercept
%If fit accepted add to output
if fiterr.rsquare > rmin && D > O
Dout (k)=D;
k=k+1;
sigmaout (g)=sigma;
g=g*l;
filteredmsd{w}=msd{i};
w=w+1;
else
rejectedmsd{t}=msd{i};
t=t+1;
Drej(r)=D;
r=r+1;
end
Dtot (u)=D;
R(u)=fiterr.rsquare;

u=u+i;
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%hinclude option to plot curves and fits
Tk sk kksoksok ok kbbb ok xRk kkmake this nicer pleasexskskkkxkx
1f plotfit™=0
plot(msdfit, (((1:size(msd{i},2)))*dt), (msd{i}))
hold off
title(’MSD Curve’);
xlabel (°Time (s)’);
ylabel (’MSD (um~2)’);
legend(’Data’,strcat(’r~2 = ’,num2str(fiterr.rsquare,3)),’Location’, northwest’)
pause(1);
end
else
hinclude option to include single point msds
Jthis needs more testing...
if allD"=0
D = ( mean(msd{i}) - (4*xdtxdt) )/(q * dt);
Dout (k)=D;
k=k+1;
end
end
%close msd loop
end
hre-analyse overall msd using only fits that were accepted
for i=1:size(filteredmsd,?2)
maxn(i)=size(filteredmsd{i},2);
end
maxn=max (maxn) ;
hgroup MSDs from same ndt
clear groupmsd
for i=1:maxn
groupmsd{i}=0;
end
for i=1:size(filteredmsd,2)
for j=1:size(filteredmsd{il},2)
groupmsd{j}=[groupmsd{j};filteredmsd{i}(j)1;
end
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end
for i=1:size(groupmsd,?2)
groupmsd{i}=groupmsd{i} (2:size(groupmsd{i}t,1),:);
end
%hcalculate mean for each ndt
for i=1:size(groupmsd,2)
filmeanmsd(i)=mean(groupmsd{il}) ;
filsemmsd(i)=std(groupmsd{i})/sqrt(length(groupmsd{i})); %Calculate SEM
end
%linear fit to mean msd curve
[filfit,filfiterr]=fit( ((1:fitn)’*dt),filmeanmsd(l:fitn)’,’polyl’);
%plot filtered MSD curve
figure
plot (((0:size(filmeanmsd,2)+1))*dt,. ..
((filfit.p1)*(((0:size(filmeanmsd,2)+1))*dt))+£filfit.p2,’r’)
hold on
errorbar ((((1:size(filmeanmsd,2)))*dt), (filmeanmsd), (filsemmsd), ’bo’)
title(strcat(’Filtered MSD Curve D=’ ,num2str((filfit.pl/q),3),’> um~2/s’));
xlabel(’Time (s)’);
ylabel (’MSD (um~2)’);
legend(strcat (°Fit r~2 = ’ ,num2str(filfiterr.rsquare,3)),...
’Filtered Data (with SEM)’,’Location’,’northwest’);
hre-analyse overall msd using only fits that were rejected
if exist(’rejectedmsd’)
for i=1:size(rejectedmsd,?2)
maxn(i)=size(rejectedmsd{i},?2);
end
maxn=max (maxn) ;
hgroup MSDs from same ndt
clear groupmsd
for i=1:maxn
groupmsd{i}=0;
end
for i=1:size(rejectedmsd,?2)
for j=1:size(rejectedmsd{il},2)
groupmsd{j}=[groupmsd{j};rejectedmsd{i}(j)];
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end
end
for i=1:size(groupmsd,2)
groupmsd{i}=groupmsd{i}(2:size (groupmsd{i}t,1),:);
end
%hcalculate mean for each ndt
for i=1:size(groupmsd,2)
rejmeanmsd (i)=mean(groupmsd{il}) ;
rejsemmsd(i)=std(groupmsd{i})/sqrt(length(groupmsd{i})); %Calculate SEM
end
%linear fit to mean msd curve
[rejfit,rejfiterr]=fit( ((1:fitn)’*dt),rejmeanmsd(1l:fitn)’,’polyl’);
%plot rejected MSD curve
figure
plot (((0:size(rejmeanmsd,2)+1))*dt, ...
((rejfit.p1)*(((0:size(rejmeanmsd,2)+1))*dt))+rejfit.p2,’r’)
hold on
errorbar ((((1l:size(rejmeanmsd,2)))*dt), (rejmeanmsd) , (rejsemmsd), ’bo’)
title(strcat(’Rejected MSD Curve D=’ ,num2str((rejfit.pl/q),3),’> um~2/s’));
xlabel (°Time (s)’);
ylabel (’MSD (um~2)’);
legend(strcat (°Fit r~2 = ’ ,num2str(rejfiterr.rsquare,3)),...
’Filtered Data (with SEM)’,’Location’,’northwest’);
else
Drej=0;
end
Dall=meanfit.pl/q;
Dfil=filfit.pl/q;
msddata=[(((1:size(filmeanmsd,2)))*dt) ;filmeanmsd;filsemmsd] ;
unfilmsddata=[(((1l:size(meanmsd,2)))*dt) ;meanmsd;semmsd] ;
msdfit=filfit;
unfilmsdfit=meanfit;
end

function [Diff,Derr] = f_3dDhist(D,nbins)

#Fit Hisogram and calculate overall diffusion constant
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hcreate histogram
dbin=(max(D)-min(D)) /nbins;
dhistbins=min(D) :dbin:max (D) -dbin;
dhist=hist(D,dhistbins);
splot just histogram
figure
bar (dhistbins,dhist);
title(strcat(’Histogram of D calculated by MSD n = ’,num2str(size(D,2))));
xlabel(’D (um~2/s)’);
ylabel(’Counts’);
pause(1);
4D by mean
Dpos=D(D(:)>0);
Diff=mean(Dpos) ;
Derr=std(Dpos) ;
#Calculate D by fitting a single gaussian
try
dgauss=fit(dhistbins’,dhist’,’gaussl’);
Diff=dgauss.bl; Jmiddle of gaussian
Derr=confint (dgauss) ;
Derr=dgauss.bl-Derr(1,2);
%plot histgram with fit gaussian
plot(dgauss,dhistbins,dhist);
grid on;
xlabel(’D (um~2/s)’);
ylabel(’Counts’);
pause(1);
catch
plot(dhistbins,dhist);
legend(’:,(?);
Diff=0;
Derr=0;
end

end
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B.2 Simulating Trajectories

function [poslist] = f_randomwalk(D,dt,n,nt,intensity)

%#Simulate random walk of particles in 3D

»n = 1000; Jnumber of paritcles is xn*yn*zy
W = 1; hdiffusion constant
%dt = 30E-3;

hcalculate localisation precision useing fit curves from agave
hy=Ae~ (-intensity/t)+c

xynoise=(25.3%exp(-intensity/967))+8.5;
znoise=(59.1xexp(-intensity/977))+18;

poslist=[0,0,0,1];

x = rand(n,1)*100; hinitate points in x,y&z

y = rand(n,1)*100;

z = rand(n,1)*100;

for i = 1:nt  Ytime loop
x = x+trandn(n,1)*sqrt (2*D*dt); %move each particle
y = y+randn(n,1)*sqrt(2«D*dt); %by a distribution centred
z = z+randn(n,1)*sqrt(2«D*dt); %at the rmsd

%plot diffusions

hplot3(x(:),y(:),z(:),’ro’)

hpause(0.1)

t(1:(n))=1i;

poslist=[poslist;(x(:)*1000), (y(:)*1000),(z(:)*1000),t(:)];
end
poslist=poslist(2:size(poslist,1),:);
%Add localisation precision
poslist(:,1:2)=poslist(:,1:2)+normrnd(0,xynoise,length(poslist),2);
poslist(:,3)=poslist(:,3)+normrnd(0,znoise,length(poslist),1);
end

B.3 3D Ripley’s K Analysis

function [Lr,r] = f_Ripley(dat,modeldat)
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r=[10:10:190,200:50:1000] ;

hget N(r)

[Nr,Nstd]l=f_Nr(dat,r);

%simulate CRS on sphere based on data
% csrdat=f_createCSR(dat);

% [Mr,Mstd]l=f_Nr(csrdat,r);

hget model distribution from wga M(r)
[Mr ,Mstd]=f_Mr (dat,modeldat,r,1);
Lr=sqrt ((Nr.*(r.~2))./(Mr));

end

function [Nr, Nstd] = f_Nr(dat,Rrange)
n=size(dat,1);
h = waitbar(0, ’Getting N(xr)...’);
k=0;
hloop over r
for r=Rrange
k=k+1;
waitbar (k/length(Rrange), h, ’Getting N(r)...’);
hloop over localisations
for i=1:n
x=ones(n,1)*dat(i,1:3); %posisiton of first localisation
x=(dat(:,1:3) - x)."2;
x=sqrt(sum(x’)’); %cartesian distance to localisations in range
N(i,k)=sum(x<r)-1; %-1 to account for localisation to itself
end
end
close(h)
h = waitbar(1l, ’Calculating other things’);
Nr=mean (N) ;
Nstd=std(N) ;
close(h)

end

function [Mr, Mstd] = f_Mr(dat,modeldat,Rrange,nrep)

hget ideal distribution from sampling wga data with same density of
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%localsiation data
h = waitbar(0, ’Getting M(r)...’);
%Rrange=100:500:15000;
n=size(dat,1);
Jnrep=3;
for rep=1:nrep
%hsample model data without replacement
Jirandom sampling
samp=modeldat (randperm(size(modeldat,1),n),:);
hsequential sampling
% nstart=randi([1 (size(modeldat,1)-n+1)],1,1);
% samp=modeldat(nstart:nstart+n-1,:);
waitbar((rep-1)/nrep, h, ’Getting M(r)...’);
k=0;
%hloop over r
for r=Rrange

k=k+1;

%loop over localisations
for i=1:n
x=ones(n,1)*samp(i,1:3); %posisiton of first localisation
x=(samp(:,1:3) - x)."2;
x=sqrt(sum(x’)’); ’cartesian distance to localisations in range
M(i,k)=sum(x<r)-1; %-1 to account for localisation to itself
end
end
M=mean (M) ;
if rep==
Mr=M;
else
Mr=[Mr;M];
end
end
close(h)
h = waitbar (1, ’Calculating other things’);
if nrep>1
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Mstd=std (Mr) ;
else
Mstd=zeros(size(Mr));
end
Mr=mean (Mr,1);
close(h)

end

function [Lr, Lstd] = f_Lr(dat,modeldat,Rrange)
hget ideal distribution from sampling wga data with same density of
%localsiation data
h = waitbar(0, ’Getting L(r)...’);
J#Rrange=100:500:15000;
n=size(dat,1);
nrep=3;
for rep=1:nrep
%hsample model data without replacement
samp=modeldat (randperm(size (modeldat,1) ,n),:);
waitbar((rep-1)/nrep, h, ’Getting L(r)...’);
k=0;
hloop over r
for r=Rrange
k=k+1;
%loop over localisations
for i=1:n
x=ones(n,1)*samp(i,1:3); %posisiton of first localisation
x=(samp(:,1:3) - x).72;
x=sqrt(sum(x’)’); J%cartesian distance to localisations in range
L(i,k)=sum(x<r)-1; %-1 to account for localisation to itself
end
end
L=mean(L) ;
if rep==
Lr=L;
else
Lr=[Lr;L];
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end

end

close(h)

h = waitbar (1, ’Calculating other things’);
if nrep>1

Lstd=std(Lr);

end

Lr=mean(Lr) ;
close(h)
end

function [out] = f_simClusters(points,clusters,clusterR,clusterN)

r = 8000;

x0 = 8700;
y0 = -3500;
z0 = 4800;

% points = 3000;
% clusters
% clusterR

20; %Number of clusters

20; %radius of cluster

% clusterN = 10; ’points in cluster
points = points - (clusters * clusterl);
theta = rand(points,1)*2%pi;

phi = acos(1-0.4*rand(points,1));

xs = (sin(phi)*r) .*cos(theta)-x0;

ys = (sin(phi)*r) .*sin(theta)-y0;

zs

cos(phi)*r-z0;

% % rem = find(zs<-2000);

% % xs(rem)=[1;

h % ys(rem)=[1;

% h zs(rem)=[];

%Generate random points for clusters
theta = rand(clusters,1)*2xpi;

phi = acos(1-0.4*rand(clusters,1));

xc = (sin(phi)*r) .*cos(theta)-x0;
yc = (sin(phi)*r) .*sin(theta)-y0;
zc = cos(phi)*r-z0;
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for i = 1:clusters

xes = xc(i)+rand(clusterN,1)*2xclusterR-clusterR;
yes = yc(i)+rand(clusterN,1)*2xclusterR-clusterR;
zes = zc(i)+rand(clusterN,1)*2xclusterR-clusterR;

xs = [xs;xes];

ys
VAS]

[ys;yes];

[zs;zes];

end

%Add precision

xs = xs+randn(length(xs),1)*30; %Std = 50
ys = ys+trandn(length(ys),1)*30; %Std = 50
zs = zs+randn(length(zs),1)*60; %Std = 50

out=[xs,ys,zs];

out(:,1)=out(:,1)-min(out(:,1));

out(:,2)=out(:,2)-min(out(:,2));

out (:,3)=out(:,3)-min(out(:,3));

% dlmwrite([’simTest3.3d’],[xs ys zs ones(length(xs),1) (1:length(xs))’],’delimiter’,
hplot3(xs,ys,zs,’.”)

% plot(theta,phi,’.’)

function datclust = f_addClusters(dat,nclust,npclust,rclust)
ntot=size(dat,1);
1f ntot<nclust*npclust
disp(’too many clusters, data unchanged’)
datclust=dat;
else
%sremove localisations to incorporate cluster
datclust=dat (randperm(ntot,ntot-(nclust*npclust)+nclust),:);
for i=1:nclust
cen=datclust (randperm(ntot- (nclust*npclust),1),1:3);
clust = [cen(l)+rand(npclust-1,1)*2*rclust-rclust,...
cen(2)+rand(npclust-1,1)*2*rclust-rclust,...
cen(3)+rand(npclust-1,1)*2*rclust-rclust];
datclust=[datclust(:,1:3);clust];
end

end
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end

function out = f_simFingersPlane(den,denfin,radiusl,heightl,xyprec,zprec)
sFunction simulating localisation data on two finger-like structures on a
sflat membrane surface with known localisation precision in xy &z.
houtput is [x,y,z] positions of localistion data
if nargin "=6
error(’Just put the right arguments in please’)
end
% den=1000; %density of points per um~2
% xyprec=0;
% zprec=0;
%»if standard plane is too small then dynamically change size
planex=5000; %dimensions of plane in nm
planey=6000;
hcalculate number of localisations needed
nplane = round(den * (planex/1000)*(planey/1000)); %number of points on plane
nfinger = floor(((planex/1000)*(planey/1000))*denfin) * round(den * (height1/1000)
ntot=nplane+nfinger;
nfin=round(den * (height1/1000) * 2 * pi * (radius1/1000)); %number of each finger
hinitialise localisation
localisations=zeros(ntot,3);
%place points on flat plane
localisations(1:nplane,1)=(planex*rand(nplane,1));
localisations(1:nplane,2)=(planey*rand(nplane,1));
localisations(1:nplane,3)=1000; %add lum postive z position
for f=1:floor(((planex/1000)*(planey/1000))*denfin)
cen2x=randperm(planex,1);
cen2y=randperm(planey,1);
hcut out circle and move localisations up by heightl
localisations(((localisations(1l:nplane,1)-cen2x) .72 +...
(localisations(1l:nplane,2)-cen2y)."2 < radius1~2),3)=...
localisations(((localisations(1l:nplane,1)-cen2x) .72 +...
(localisations(1l:nplane,2)-cen2y)."2 < radius1~2),3)+heightl;
hplace points on walls of cylinder
theta=2*pi*rand(nfin,1);
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[localisations(nplane+((f-1)*nfin)+1:nplane+(f*nfin),1),...
localisations(nplane+((f-1)*nfin)+1:nplane+(f*nfin),2)] =...
sph2cart (theta,0,radiusl);

Jmove Xy to correct position

localisations(nplane+((f-1)*nfin)+1:nplane+(f*nfin),1)=...
localisations(nplane+((f-1)*nfin)+1:nplane+(f*nfin),1)+cen2x;

localisations(nplane+((f-1)*nfin)+1:nplane+(f*nfin),2)=...
localisations(nplane+((f-1)*nfin)+1:nplane+(f*nfin),2)+cen2y;

localisations(nplane+((f-1)*nfin)+1:nplane+(f*nfin),3)=heightl*rand(nfin,1)+1000;

end

%kick localisations by precision in xy and z
localisations(:,1)=localisations(:,1)+normrnd(0,xyprec,ntot,1);
localisations(:,2)=localisations(:,2)+normrnd(0,xyprec,ntot,1);
localisations(:,3)=localisations(:,3)+normrnd(0,zprec,ntot,1);
out=localisations;

end
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