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TARGETING INTERVENTIONS IN NETWORKS

ANDREA GALEOTTI, BENJAMIN GOLUB, AND SANJEEV GOYAL

Abstract. We study games in which a network mediates strategic spillovers and externalities

among the players. How does a planner optimally target interventions that change individuals’

private returns to investment? We analyze this question by decomposing any intervention

into orthogonal principal components, which are determined by the network and are ordered

according to their associated eigenvalues. There is a close connection between the nature of

spillovers and the representation of various principal components in the optimal intervention.

In games of strategic complements (substitutes), interventions place more weight on the top

(bottom) principal components, which reflect more global (local) network structure. For

large budgets, optimal interventions are simple – they involve a single principal component.

1. Introduction

We study games among agents embedded in a network. The action of each agent – e.g.,

a level of investment or effort – directly affects a subset of others, called neighbors of that

agent. This happens through two channels: spillover effects on others’ incentives, as well

as non-strategic externalities. A utilitarian planner with limited resources can intervene

to change individuals’ incentives for taking the action. Our goal is to understand how the

planner can best target such interventions in view of the network and other primitives of the

environment.

We now lay out the elements of the model in more detail. Individuals play a simultaneous-

move game with continuous actions. An agent’s action confers standalone benefits on that

agent independent of anyone else’s action, but it also creates spillovers. The intensity of

these spillovers is described by a network, with the strength of a link between two individuals

reflecting how strongly the action of one affects the marginal benefits experienced by the

other. The effects may take the form of strategic complements or strategic substitutes. In
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2 TARGETING INTERVENTIONS IN NETWORKS

addition to standalone benefits and incentive spillovers, there may be positive or negative

externalities imposed by network neighbors on each other.1 Before this game is played, the

planner can target some individuals and alter their standalone marginal benefits from status

quo levels. The cost of the intervention is increasing in the magnitude of the change and is

separable across individuals. The planner seeks to maximize the utilitarian welfare under

equilibrium play of the game, subject to a budget constraint. Our results characterize the

optimal intervention policy, showing how it depends on the network, the nature of spillovers,

the status quo incentives, and the budget.

An intervention on one individual has direct and indirect effects on the incentives of others.

These effects depend on the network and on whether the game features strategic substitutes

or complements. For example, suppose the planner increases a given individual’s standalone

marginal benefits to effort, thereby increasing effort by the targeted individual. If actions are

strategic complements, this will push up the incentives of the targeted individual’s neighbors.

That will increase the efforts of the neighbors of these neighbors, and so forth, creating

aligned feedback effects throughout the network. In contrast, under strategic substitutes, the

same intervention will discourage the individual’s neighbors from exerting effort. However,

the effect on those neighbors’ neighbors will be positive – i.e., in the same direction as the

effect on the targeted agent. This interplay between spillovers and network structure makes

targeting interventions a complex problem.

At the heart of our approach is a particular way to organize the spillover effects in terms

of the principal components, or eigenvectors, of the matrix of interactions. Any change in

the vector of standalone marginal returns can be expressed in a basis of these principal

components. This basis has three special properties: (a) when standalone marginal returns

are exogenously changed in the direction of a principal component, the effect is to change

equilibrium actions in the same direction; (b) the magnitude of the effect is a multiple of the

magnitude of the exogenous change, and the multiplier is determined by an eigenvalue of

the network corresponding to that principal component; (c) the principal components are

orthogonal, so that the effects along various principal components can be treated separately.

The three properties we have listed permit us to express the effect of interventions on actions,

and on welfare, in a way that facilitates a simple characterization of optimal interventions.

Our main result, Theorem 1, characterizes the optimal intervention in terms of how similar

it is to various principal components – or, in other words, how strongly represented various

1This framework encompasses a number of well-known economic examples from the literature: spillovers
in educational/criminal effort (Ballester, Calvó-Armengol, and Zenou, 2006), research collaboration among
firms (Goyal and Moraga-Gonzalez, 2001), local public goods (Bramoulle and Kranton, 2007), investment
games and beauty contests (Angeletos and Pavan, 2007; Morris and Shin, 2002), and peer effects in smoking
(Jackson et al., 2017).
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principal components are in it.2 Building on this characterization, Corollary 1 describes

how the nature of the strategic interaction shapes which principal components figure most

prominently in the optimal intervention. The principal components can be ordered by

their associated eigenvalues (from high to low). In games of strategic complements, the

optimal intervention is most similar to the first principal component – the familiar eigenvector

centrality – and progressively less similar as we move down the principal components. In

games of strategic substitutes, the order is reversed: the optimal intervention is most similar

to the last principal component. The “higher” principal components capture the more global

structure of the network: this is important for taking advantage of the aligned feedback

effects arising under strategic complementarities. The “lower” principal components capture

the local structure of the network: they help the planner to target the intervention so that it

does not cause crowding out between adjacent neighbors: this is an important concern when

actions are strategic substitutes.

We then turn to the study of simple optimal interventions, i.e., ones where the relative

intervention (change in the standalone marginal benefit) for each node is determined by a

single network statistic of that node, and invariant to other primitives such as status quo

incentives. Propositions 1 and 2 show that for large enough budgets the optimal intervention

is simple: in games of strategic complements, the optimal intervention vector is proportional

to the first principal component, while in games of strategic substitutes, it is proportional

to the last one.3 Moreover, the network structure determines how large the budget must be

for optimal interventions to be simple. In games of strategic complements (substitutes), the

important statistic is the gap between the top (bottom) two eigenvalues. When this gap is

large, even at moderate budgets the intervention is simple.

Theorem 1 obtains in a setting where the planner knows the status quo standalone marginal

benefits of all individuals. Our methods can also be used to study optimal interventions in a

setting where the planner does not know these benefits but knows only their distribution.

In such a setting, the impact of an intervention on expected social welfare is determined

by how it alters the first and second moments of the benefits distribution. Propositions 3

and 4 characterize optimal interventions and show that the key insights about the order of

targeting of principal components extend.

We now place the paper in the context of the literature. The intervention problem we

study concerns optimal policy in the presence of externalities. Research over the past two

decades has deepened our understanding of the empirical structure of networks and the

2We use the standard notion of cosine similarity: the similarity of two vectors is the cosine of the angle
between them in the plane they jointly define.
3In similarity terms, this means that the optimal intervention has a cosine similarity of nearly 1 to the
first or last principal component (depending on the case), and a similarity of nearly 0 to all other principal
components.
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theory of how networks affect strategic behavior.4 This has led to the study of how policy

design should incorporate information about networks. Network interventions are currently

an active subject of research not only in economics but also in related disciplines such as

computer science, sociology and public health.5 The main contribution of this paper is

methodological. It lies in (i) using the principal components approach to decompose the effect

of an intervention on social welfare and (ii) using the structure afforded by this decomposition

to characterize optimal interventions. Of special interest is the close relation between the

strategic structure (complements or substitutes) and the appropriate principal components

to target.6

The rest of the paper is organized as follows. Section 2 presents the optimal intervention

problem. Section 3 sets out how we apply a principal component decomposition to our game.

Section 4 characterizes optimal interventions. Section 5 studies a setting where the planner

has incomplete information about agents’ standalone marginal returns. Section 6 concludes.

Appendix A contains the proofs of the main results. The Online Appendix presents the

proofs of Propositions 3 and 4 and discusses a number of extensions.

2. The model

We consider a simultaneous-move game among individuals N = {1, . . . , n}, where n ≥ 2.

Individual i chooses an action, ai ∈ R. The vector of actions is denoted by a ∈ Rn. The

payoff to individual i depends on this vector, a, the network with adjacency matrix G, and

other parameters, described below:

Ui(a,G) = ai

(
bi + β

∑

j∈N
gijaj

)

︸ ︷︷ ︸
returns from own action

− 1

2
a2i
︸︷︷︸

private costs
of own action

+Pi(a−i,G, b)︸ ︷︷ ︸
pure externalities

. (1)

The private marginal returns from increasing the action ai depend both on i’s own action,

ai, and on others’ actions. The coefficient bi ∈ R corresponds to the part of i’s marginal

return that is independent of others’ actions, and is thus called i’s standalone marginal return.

The contribution of others’ actions to i’s marginal return is given by the term β
∑

j∈N gijaj.

Here gij ≥ 0 is a measure of the strength of the interaction between i and j; we assume that

for every i ∈ N , gii = 0 – there are no self-loops in the network G. The parameter β captures

4See, for example, Goyal, Moraga, and van der Leij (2006), Ballester, Calvó-Armengol, and Zenou (2006),
Bramoullé, Kranton, and d’Amours (2014), and Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2010)
5For a general introduction to the subject, see Rogers (1983), Kempe, Kleinberg, and Tardos (2003), Borgatti
(2006), and Valente (2012). Within economics, a prominent early contribution is Ballester, Calvó-Armengol,
and Zenou (2006); recent contributions include Banerjee, Chandrasekhar, Duflo, and Jackson (2013), Belhaj
and Deroian (2017), Bloch and Querou (2013), Candogan, Bimpikis, and Ozdaglar (2012), Demange (2017),
Fainmesser and Galeotti (2017), Galeotti and Goyal (2009), Galeotti and Rogers (2013), Leduc, Jackson, and
Johari (2017), and Akbarpour, Malladi, and Saberi (2017).
6Online Appendix Section OA2.1 presents a discussion of the relationship between principal components and
other network measures that have been studied in the literature.
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strategic interdependencies. If β > 0, then actions are strategic complements; if β < 0, then

actions are strategic substitutes. The function Pi(a−i,G, b) captures pure externalities – that

is, spillovers that do not affect the best response. The first-order condition for individual i’s

action to be a best response is:

ai = bi + β
∑

j∈N
gijaj.

Any Nash equilibrium action profile a∗ of the game satisfies

[I − βG]a∗ = b. (2)

We now make two assumptions about the network and the strength of strategic spillovers.

Recall that the spectral radius of a matrix is the maximum of its eigenvalues’ absolute values.

Assumption 1. The adjacency matrix G is symmetric.7

Assumption 2. The spectral radius of βG is less than 1,8 and all eigenvalues of G are

distinct (the latter condition holds generically).

Assumption 2 ensures that (2) is a necessary and sufficient condition for a solution, and also

ensures the uniqueness and stability of the Nash equilibrium.9 Under these assumptions, the

unique Nash equilibrium of the game can be characterized by

a∗ = [I − βG]−1b. (3)

The utilitarian social welfare at equilibrium is given by the sum of the equilibrium utilities:

W (b,G) =
∑

i∈N
Ui(a

∗,G).

The planner aims to maximize the utilitarian social welfare at equilibrium. She does this

by changing the status quo standalone marginal returns b̂, to new values, b, subject to a

budget constraint on the cost of her intervention. The timing is as follows. The planner

moves first and chooses her intervention, and then individuals simultaneously choose actions.

The incentive-targeting (IT) problem is given by

max
b

W (b,G) (IT)

s.t.: a∗ = [I − βG]−1b,

K(b, b̂) =
∑

i∈N

(
bi − b̂i

)2
≤ C,

7We extend our analysis to more general G in the Online Appendix Section OA3.2.
8An equivalent condition is for |β| to be less than the reciprocal of the spectral radius of G.
9See Ballester et al. (2006) and Bramoullé et al. (2014) for detailed discussions of this assumption and the
interpretation of the solution given by (3).
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where C is a given budget. The function K is an adjustment cost of implementing an

intervention. The marginal costs of altering the bi are separable across individuals and

increasing in the magnitude of the change for each individual. For discussions of the

adjustment costs and extensions on more general planner cost functions, see the Online

Appendix Section OA3.3. In the Online Appendix Section OA3.4, we study a setting in

which a planner provides monetary payments to individuals that induce them to change their

actions. We show that the resulting optimal intervention problem has the same mathematical

structure as the one we study in our basic model.

We present two economic applications to illustrate the scope of our model. The first

example is a classical investment game, and the second example is a game of providing a

local public good.

Example 1 (The investment game). Individual i makes an investment ai at a cost 1
2
a2i . The

private marginal return on that investment is bi + β
∑

j∈N gijaj, where bi is individual i’s

standalone marginal return and
∑

j∈N gijaj is the aggregate local effort. The utility of i is

Ui(a,G) = ai

(
bi + β

∑

j∈N
gijaj

)
− 1

2
a2i .

The case with β > 0 reflects investment complementarities, as in Ballester et al. (2006). Here,

an individual’s marginal returns are enhanced when his neighbors work harder; this creates

both strategic complementarities and positive externalities. The case of β < 0 corresponds

to strategic substitutes and negative externalities; this can be microfounded via a model of

competition in a market after the investment decisions ai have been made, as in Goyal and

Moraga-Gonzalez (2001). A manager who observes the network of strategic interactions—for

instance, which agents work together on joint projects—can intervene by changing levels of

monitoring or encouragement relative to a status quo level.

It can be verified that the equilibrium utilities, Ui(a
∗,G), and the utilitarian social welfare

at equilibrium, W (b,G), are as follows:

Ui(a
∗,G) =

1

2
(a∗i )

2 and W (b,G) =
1

2
(a∗)T a∗.

Example 2 (Local public goods). We next consider a local public goods problem in a

framework that follows the work of Bramoulle and Kranton (2007), Galeotti and Goyal

(2010), and Allouch (2015, 2017). In a local public goods problem, each agent makes a costly

contribution, which brings her closer to an ideal level of public goods but also raises the

levels enjoyed by her neighbors. Examples include (i) contributions to improve physical

neighborhoods, such as residents clearing snow or workers keeping areas on a factory floor

clean and safe and (ii) knowledge workers acquiring non-rival information (e.g., about job

applicants) that can be shared with colleagues. In example (i), the network governing
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spillovers is given by physical proximity, while in example (ii) it is given by organizational

overlap. To be concrete about the nature of interventions, in example (i), agents receive

some level of municipal services at the status quo. They augment it with their own effort,

and benefit (with a discount) from the efforts contributed by neighbors. A city councilor (in

the municipal example) who observes the network structure of physical proximity among

houses can intervene to change the status quo allocation of services, tailoring it to improve

incentives.

Formally, suppose that if each i contributes effort ai to the public good, then the amount

of public good i experiences is

xi = b̃i + ai + β̃
∑

j∈N
gijaj,

where 0 < β̃ < 1. The utility of i is

Ui(a,G) = −1

2
(τ − xi)2 −

1

2
a2i ,

where b̃i < τ .

We now interpret these formulas. The optimal level of public good in the absence of any

costs is τ ; this can be thought of as the maximum that can be provided. Individual i has

access to a base level b̃i of the public good. Each agent and can expend costly effort, ai, to

augment this base level, and receive b̃i + ai. If i’s neighbor j expends effort, aj, then i has

access to an additional β̃gijaj units of the public good, where β̃ < 1.

This is a game of strategic substitutes and positive externalities. Performing the change of

variables bi = [τ − bi]/2 and β = −β̃/2 (with the status quo equal to b̂i = [τ − b̃i]/2) yields

a best-response structure exactly as in condition (2). The aggregate equilibrium utility is

W (b,G) = − (a∗)T a∗.

These two canonical examples share a technically convenient property:

Property A. The aggregate equilibrium utility is proportional to the sum of the squares

of the equilibrium actions, that is, W (b,G) = w · (a∗)T a∗ for some w ∈ R, where a∗ is the

Nash equilibrium of the network game.

Online Appendix Section OA2.2 discusses a network beauty contest game inspired by

Morris and Shin (2002) and Angeletos and Pavan (2007) which also satisfies this property.

While Property A facilitates analysis, it is not essential. Online Appendix Section OA3.1

extends the analysis to cover important cases where this property does not hold.
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3. Principal components

This section introduces a basis for the space of standalone marginal returns and actions in

which, under our assumptions on G, strategic effects and the welfare function of interest to

the planner both take a simple form.

Fact 1. If G satisfies Assumption 1, then G = UΛUT, where:

1. Λ is an n× n diagonal matrix whose diagonal entries Λ`` = λ` are the eigenvalues of G

(which are real numbers), ordered from greatest to least: λ1 ≥ λ2 ≥ · · · ≥ λn.

2. U is an orthogonal matrix. The `th column of U , which we call u`, is a real eigenvector

of G, namely the eigenvector associated to the eigenvalue λ`, which is normalized in the

Euclidean norm: ‖u`‖ = 1.

For generic G, the decomposition is uniquely determined, except that any column of U is

determined only up to multiplication by −1.

An important interpretation of this diagonalization is as a decomposition into principal

components. First, consider the symmetric rank-one matrix that best approximates G in the

squared-error sense—in other words, the vector u such that
∑

i,j∈N
(gij − uiuj)2

is minimized. The minimizer turns out to be a scaling of the eigenvector u1. Now, if we

consider the “residual” matrix G(2) = G − u1(u1)T, we can perform the same rank-one

approximation and obtain the second eigenvector u2. Proceeding further in this way gives us

a sequence of vectors that constitute an orthonormal basis. At each step, the next vector

generates the rank-one matrix that best summarizes the remaining structure in the matrix

G.10

Figure 1 illustrates some eigenvectors/principal components of a circle network with 14

nodes and with links all having equal weight given by 1. For each principal component, the

color of a node indicates the sign of the entry of that node in that principal component (the

color red means negative), while the size of a node indicates the absolute value of that entry.11

A general feature that is worth noting is that the entries of the top principal components

(with smaller values of `) are similar among neighboring nodes, while the bottom principal

components (with larger values of `) tend to be negatively correlated among neighboring

nodes.12

10See Spielman (2007), especially subsection 16.5.1, on this interpretation. For book-length treatments of
spectral graph theory, see Cvetkovic et al. (1997) and Chung and Graham (1997).
11The circle network is invariant to rotations (cyclic permutations) of the nodes and so the eigenvectors are
determined only up to a rotation.
12For a formal treatment of this, see Davies et al. (2001) and Urschel (2018).
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Figure 1. (Top) Eigenvectors 2, 4, 6. (Bottom) Eigenvectors 10, 12, 14.

3.1. Analysis of the game using principal components. For any vector z ∈ Rn, let

z = UTz. We will refer to z` as the projection of z onto the `th principal component, or the

magnitude of z in that component. Substituting the expression G = UΛUT into equation

(2), which characterizes equilibrium, we obtain

[I − βUΛUT]a∗ = b.

Multiplying both sides of this equation by UT gives us an analogue of (3) characterizing the

solution of the game:

[I − βΛ]a∗ = b ⇐⇒ a∗ = [I − βΛ]−1b.

This system is diagonal, and the `th diagonal entry of [I − βΛ]−1 is 1
1−βλ` . Hence, for every

` ∈ {1, 2, . . . , n},
a∗` =

1

1− βλ`
b`. (4)

The principal components of G constitute a basis in which strategic effects are easily described.

The equilibrium action a∗` in the `th principal component of G is the product of an amplification

factor (determined by the strategic parameter β and the eigenvalue λ`) and b`, which is

simply the projection of b onto that principal component. Under Assumption 2, for all ` we

have 1 − βλ` > 0.13 Moreover, when β > 0 (β < 0), the amplification factor is decreasing

(increasing) in `.

We can also use this to give a formula for equilibrium actions in the original coordinates:

a∗i =
n∑

`=1

1

1− βλ`
u`ib`.

We close with a definition that will allow us to describe optimal interventions in terms of a

standard measure of their similarity to various principal components.

13Assumption 2 on the spectral radius implies that βΛ has no entries larger than 1.
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Definition 1. The cosine similarity of two nonzero vectors z and y is

ρ(z,y) =
z · y
‖z‖‖y‖ .

This is the cosine of the angle between the two vectors in the plane determined by y and z.

When ρ(z,y) = 1, vector z is a positive scaling of y. When ρ(z,y) = 0, vectors z and y are

orthogonal. When ρ(z,y) = −1, vector z is a negative scaling of y.

4. Optimal interventions

This section develops a characterization of optimal interventions and studies their properties.

We begin by dispensing with a straightforward case of the planner’s problem. Recall

that under Property A, the planner’s payoff as a function of the equilibrium actions a∗ is

W (b,G) = w · (a∗)T a∗. If w < 0, the planner wishes to minimize the sum of the squares of

the equilibrium actions. In this case, when the budget is large enough, that is, C ≥ ‖b̂‖2, the

planner can allocate resources to ensure that individuals have a zero target action by setting

bi = 0 for all i. It follows from the best-response equations that all individuals choose action

0 in equilibrium, and so the planner achieves the first-best.14 The next assumption implies

that the planner’s bliss point cannot be achieved, so that there is an interesting optimization

problem:

Assumption 3. Either w < 0 and C < ‖b̂‖, or w > 0.

Let b∗ solve the incentive-targeting problem (IT), and let y∗ = b∗ − b̂ be the vector of

changes in individuals’ standalone marginal benefits at the optimal intervention. Furthermore,

let

α` =
1

(1− βλ`)2
and note that a∗` =

√
α`b` is the equilibrium action in the `th principal component of G (see

equation (4)).

Theorem 1. Suppose Assumptions 1–3 hold and the network game satisfies Property A. At

the optimal intervention, the similarity between y∗ and principal component u`(G) satisfies

the following proportionality:

ρ(y∗,u`(G)) ∝ ρ(b̂,u`(G))
wα`

µ− wα`
, ` = 1, 2, . . . , n, (5)

where µ, the shadow price of the planner’s budget, is uniquely determined as the solution to

n∑

`=1

(
wα`

µ− wα`

)2

b̂
2

` = C (6)

14In the local public good application (recall Example 2) w = −1, and so when C ≥ ‖b̂‖, the optimal

intervention satisfies b∗i = 0. Recalling our change of variables there (bi = [τ − b̃]/2), the optimal intervention
in that case is to modify the endowment of each individual so that everyone accesses the optimal level of the
local public good without investing personally.
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and satisfies µ > wα` for all `, so that all denominators are positive.

We briefly sketch the main argument here and interpret the quantities in the formula.

Define x` = (b`− b̂`)/b̂` as the change of b`, relative to b̂`. By rewriting the principal’s objective

and budget constraints in terms of principal components and plugging in the equilibrium

condition (4), we can rewrite the maximization problem as

max
x

W (b,G) =
n∑

`=1

wα`(1 + x`)
2b̂

2

` s.t.
n∑

`=1

b̂
2

`x
2
` ≤ C.

If the planner allocates a marginal unit of the budget to principal component `, the condition

for equality of the marginal return and marginal cost (recalling that µ is the multiplier on

the budget constraint) is

2b̂
2

` · wα`(1 + x`)︸ ︷︷ ︸
marginal return

= 2b̂
2

` · µx`︸ ︷︷ ︸
marginal cost

.

It follows that wα`

µ−wα`
is exactly the value of x` at which the marginal return and the marginal

cost are equalized.15 Rewriting x` in terms of cosine similarity, that equality implies

wα`
µ− wα`

= x∗` =
‖y∗‖ ρ(y∗,u`(G))

‖b̂‖ ρ(b̂,u`(G))
.

Rearranging this yields the proportionality expression (5) in the theorem. The Langrange

multiplier µ is determined by solving the simple equation (6). Now, given µ, the similar-

ities ρ(y∗,u`(G)) determine the direction of the optimal intervention y∗. The magnitude

of the intervention is found by exhausting the budget. Thus Theorem 1 provides a full

characterization of the optimal intervention.

Next, we discuss the formula for the similarities given in expression (5). The similarity

between y∗ and u`(G) measures the extent to which principal component u`(G) is represented

in the optimal intervention y∗. Equation (5) tells us that this is proportional to two factors.

The first factor, ρ(b̂,u`(G)), is a status quo effect corresponding to the similarity between

the `th principal component and the status-quo vector b̂. This factor summarizes how much

the initial condition influences the optimal intervention for a given budget. The intuition

here is that if a given principal component is strongly represented in the status quo vector of

standalone incentives, then – because of the convexity of welfare in the principal component

basis – changes in that dimension have a particularly significant effect.

The second factor, wα`

µ−wα`
, is determined by two quantities: the eigenvalue corresponding to

u`(G) (via α` = 1
1−βλ` ), and the budget C (via the shadow price µ). To focus on this second

15It can be verified that the ratio for every ` ∈ {1, . . . , n− 1}, x`/x`+1 is increasing (decreasing) in β for the
case of strategic complements (substitutes): thus the intensity of the strategic interaction shapes the relative
importance of different principal components.
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factor, wα`

µ−wα`
, we define the similarity ratio of u`(G) to be the fraction

r∗` =
ρ(y∗,u`(G))

ρ(b̂,u`(G))
.

Theorem 1 shows that, as we vary `, the similarity ratio r∗` is proportional to wα`

µ−wα`
. It follows

that the similarity ratio is greater, in absolute value, for the principal components ` with

greater α`. Intuitively, those are the components where the intervention makes the largest

change relative to the status quo profile of incentives. The ordering of these coefficients

corresponds to the eigenvalues in a way that depends on the nature of strategic spillovers:

Corollary 1. Suppose Assumptions 1–3 hold and the network game satisfies Property A. If

the game is one of strategic complements (β > 0), then |r∗` | is decreasing in `; if the game is

one of strategic substitutes (β < 0), then |r∗` | is increasing in `.

In some problems there may be a nonnegativity constraint on actions, in addition to

the constraints in problem (IT). Note that as long as the status quo actions b̂ are positive,

this constraint will be respected for all C less than some Ĉ, and so our approach will give

information about the relative effects on various components for interventions that are not

too large.

4.1. Small and large budgets. The optimal intervention takes especially simple forms in

the cases of small and large budgets. From equation (6), we can deduce that the shadow

price µ is decreasing in C. For w > 0, it follows that an increase in C raises wα`

µ−wα`
and that

the principal components with larger α` become larger in relative terms as well; in other

words, if w > 0 and α` > α`′ , then r∗`/r
∗
`′ is increasing in C.16 For simplicity of exposition,

we suppress the dependence of outcomes on C in the following statement, but note that y∗

and thus the r∗` are all functions of C.

Proposition 1. Suppose Assumptions 1–3 hold and the network game satisfies Property A.

Then the following hold:

1. As C → 0, in the optimal intervention,
r∗`
r∗
`′
→ α`

α`′
.

2. As C →∞, in the optimal intervention

2a. If the game has the strategic complements property, β > 0, then the similarity of

y∗ and the first principal component of the network tends to 1, ρ(y∗,u1(G))→ 1.

2b. If the game has the strategic substitutes property, β < 0, then the similarity of y∗

and the last principal component of the network tends to 1, ρ(y∗,un(G))→ 1.

This result can be understood by recalling equation (5) in Theorem 1. First, consider the

case of small C. When the planner’s budget becomes small, the shadow price µ tends to ∞.17

16Analogously, when w < 0, wα`

µ−wα`
and r∗` /r

∗
`′ are both decreasing in C.

17As costs are quadratic, small relaxation in the budget around zero can have a large impact on aggregate
welfare.
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Figure 2. An example of optimal interventions with large budgets

Equation (5) then implies that the similarity ratio of the `th principal component becomes

proportional to α`. Turning now to the case where C grows large, the shadow price converges

to wα1 if β > 0, and to wαn if β < 0 (by equation (6)). Plugging this into equation (5), we

find that in the case of strategic complements, the optimal intervention shifts individuals’

standalone marginal returns (very nearly) in proportion to the first principal component

of G, so that y∗ →
√
Cu1(G). In the case of strategic substitutes, on the other hand, the

planner changes individuals’ standalone marginal returns (very nearly) in proportion to the

last principal component, namely y∗ →
√
Cun(G).18

Figure 2 depicts the optimal intervention when the budget is large – in particular, for

C = 500. We consider an 11-node undirected network with binary links containing two hubs,

L0 and R0, that are connected by an intermediate node M ; the network is depicted in Figure

2(A). The numbers next to the nodes are the status quo standalone marginal returns. Payoffs

are as in Example 1. For the case of strategic complements, we set β = 0.1, and for strategic

substitutes we set β = −0.1. Assumptions 1 and 2 are satisfied and Property A holds. The

top-left of Figure 2(B) illustrates the first eigenvector, and the top-right depicts the optimal

intervention in a game with strategic complements. The bottom-left of Figure 2(B) illustrates

the last eigenvector, and the bottom-right depicts the optimal intervention when the game

has strategic substitutes. The node size represents the size of the intervention, |b∗i − b̂i|; its

color represents the sign of the intervention (with green signifying a positive intervention and

red indicating a negative intervention).

18When individuals’ initial standalone marginal returns are zero (b̂ = 0), we can dispense with the approxi-

mations invoked for a large budget C. Assuming that G is generic, if b̂ = 0 then, regardless of the level of
C, the entire budget is spent either (i) on changing b1 (if β > 0) or (ii) on changing bn (if β < 0). To see

this, consider the proof of Theorem 1 and set b̂ = 0 in the maximization problem (IT-PC), the principal
component version of (IT). Note that if the allocation is not extreme, then the effort can be reallocated
profitably among the principal components without changing the cost.
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In line with part 2 of Proposition 1, for large C, the optimal intervention is guided by

the “main” component of the network (corresponding to the largest or smallest eigenvalue).

Under strategic complements, this is the first eigenvector of the network, which corresponds

to individuals’ eigenvector centrality.19 Intuitively, by increasing the standalone marginal

return of each individual in proportion to his eigenvector centrality, the planner targets the

individuals in proportion to their global contributions to strategic feedbacks, and this is

welfare maximizing.

Under strategic substitutes, optimal targeting is determined by the last eigenvector of

the network, corresponding to its smallest eigenvalue. This network component contains

information about the local structure of the network: it determines the way to partition

the set of nodes into two sets so that most of the links are across individuals in different

sets.20 The optimal intervention increases the standalone marginal returns of all individuals

in one set and decreases those of individuals in the other set. The planner wishes to target

neighboring nodes asymmetrically, as this reduces possible crowding-out effects that occur

due to the strategic substitutes property.

4.2. When are interventions simple? We have just seen examples illustrating how, with

large budgets, the intervention is simple: approximately proportional to just one principal

component – the top or bottom one. After defining simplicity formally, our final result in this

section characterizes how large the budget must be for this approximation to be a close one.

Definition 2 (Simple interventions). An intervention is simple if, for all i ∈ N ,

• bi − b̂i =
√
Cu1i when the game has the strategic complements property (β > 0),

• bi − b̂i =
√
Cuni when the game has the strategic substitutes property (β < 0).

Let W ∗ be the aggregate utility under the optimal intervention, and let W s be the aggregate

utility under the simple intervention.

Proposition 2. Suppose w > 0, Assumptions 1 and 2 hold, and the network game satisfies

Property A.

1. If the game has the strategic complements property, β > 0, then for any ε > 0, if

C > 2‖b̂‖2
ε

(
α2

α1−α2

)2
, then W ∗/W s < 1 + ε and ρ(y∗,

√
Cu1) >

√
1− ε.

2. If the game has the strategic substitutes property, β < 0, then for any ε > 0, if

C > 2‖b̂‖2
ε

(
αn−1

αn−αn−1

)2
, then W ∗/W s < 1 + ε and ρ(y∗,

√
Cun) >

√
1− ε.

19Online Appendix Section OA2.1 presents a discussion of eigenvector centrality.
20The last eigenvector of a graph is useful in determining the bipartiteness of a graph and its chromatic
number. Desai and Rao (1994) characterize the smallest eigenvalue of a graph and relate it to the degree of
bipartiteness of a graph. Alon and Kahale (1997) relate the last eigenvector to a coloring of the underlying
graph, that is, a labeling of nodes by a minimal set of integers such that no neighboring nodes share the
same label.
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Proposition 2 gives a condition on the size of the budget beyond which (a) simple interven-

tions achieve most of the optimal welfare and (b) the optimal intervention is very similar to

the simple intervention. This bound depends on the status quo standalone marginal returns

and the structure of the network.

We first discuss the dependence on the status quo benefits. Observe that the first term on

the right-hand side of the inequality for C is proportional to ‖b̂‖. This inequality is therefore

easier to satisfy when the status quo standalone marginal returns are smaller, in the sense of

having a smaller norm. The inequality is harder to satisfy when these marginal returns are

large and/or heterogeneous.21

Next, consider the role of the network. Recall that α` = (1− βλ`)−2; thus if β > 0, the

term α2/(α1 − α2) of the inequality is large when λ1 − λ2, the “spectral gap” of the graph,

is small. If β < 0, then the term αn−1/(αn−1 − αn) is small when the “bottom gap” of the

graph, the difference λn−1 − λn, is small.

We now examine what network features affect these gaps, and illustrate with examples,

depicted in Figure 3. The obstacle to simplicity is a strong dependence on the status quo

standalone marginal benefits. This dependence will be strong when two different principal

components in the network offer similar amplification (all else equal) of interventions in that

component. Which of these principal components receives the planner’s focus will depend

strongly on the status quo. In such networks, interventions will not be simple for reasonable

budgets. The merit of Proposition 2 is to show that small spectral or small bottom gap

capture this property of the network. Figure 3 illustrates the role of the network structure in

shaping the rate (in terms of the size of the budget C) at which the optimal intervention

converges to a simple intervention as we vary C. Under strategic complements, the optimal

intervention converges to a simple one faster (as we vary C) in a network that has a large

spectral gap. Under strategic substitutes, the optimal intervention converges to a simple one

faster (as we vary C) in a network that has a large bottom gap.

We now describe which network properties, at a more intuitive level, correspond to having

small and large spectral gaps. First, consider the case of strategic complements. A standard

fact is that the two largest eigenvalues can be expressed in terms of the corresponding

eigenvectors as follows:

λ1 = max
u:‖u‖=1

∑

i,j∈N
gijuiuj λ2 = max

u : ‖u‖=1
u·u1=0

∑

i,j∈N
gijuiuj.

Eigenvector u1 = arg maxu:‖u‖=1

∑
i,j∈N gijuiuj (corresponding to λ1) assigns the same sign

– say, positive – to all nodes in the network. Clearly, eigenvector u2 must assign negative

values to some of the nodes (as it is orthogonal to u1). In the network on the left side of

21Recall that ‖ 1n b̂‖2 is equal to the sum of
(

1
n

∑
i∈N b̂i

)2
(the squared mean of the entries of b) and the sum

of squared deviations of the entries of the vector b̂ from their mean.
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Figure 3. Spectral gap, bottom gap, and optimal interventions

Figure 4(A) any such assignment will result in many adjacent nodes having opposite-sign

entries of u2; as a result, many terms in the expression for λ2 will be negative, and λ2 will be

much smaller than λ1, leading to a large spectral gap. In the network on the right side of

4(A), u2 will have positive-sign entries for nodes in one community and negative-sign entries

for nodes in the other community. Because there are few edges between the communities, λ2

turns out to be almost as large as λ1. This will yield a small spectral gap. Thus, spectral

gap measures the level of “cohesiveness” of the network, and it is this property that dictates

fast convergence to simple interventions.22

Turning next to strategic substitutes, recall that the smallest two eigenvalues, λn and λn−1,

can be written in terms of the corresponding eigenvectors as follows:

λn = min
u:‖u‖=1

∑

i,j∈N
gijuiuj λn−1 = min

u : ‖u‖=1
u·un=0

∑

i,j∈N
gijuiuj. (7)

22See Hartfiel and Meyer (1998), Levin et al. (2009), and Golub and Jackson (2012) for discussions and
further citations to the literature on spectral gaps.
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This tells us that λn is far to the left on the real number line23 when the eigenvector

un = arg minu:‖u‖=1

∑
i,j∈N gijuiuj (corresponding to λn) assigns opposite signs to most pairs

of adjacent nodes. In other words, the last eigenvalue is small when nodes can be partitioned

into two sets and most of the connections are across sets, and thus λn is minimized in

a bipartite graph. The second-smallest eigenvalue of G reflects the extent to which the

next-best eigenvector (orthogonal to un) is good at solving the same minimization problem.

Hence, the bottom gap of G is small when there are two orthogonal ways to partition the

network into two sets so that, either way, the “quality” of the bipartition, as measured by∑
i,j∈N gijuiuj, is similar.

We illustrate Proposition 2 with a comparison of the two graphs in Figure 4(C). The

left-hand graph is bipartite: the last eigenvalue is λn = −3 and the second last eigenvalue is

λn−1 = −1.64. By contrast, in the graph on the right of Figure 4(C), the bottom eigenvalue

λn = −2.62, while the second lowest is λn−1 = −2.30. This yields a much smaller bottom

gap.24 This difference in bottom gap is reflected in optimal targeting policy in Figure 4(D): in

the graph with large bottom gap, the optimal intervention puts little weight on the eigenvector

un−1 for a relatively small budget; it takes a much larger budget under a small bottom gap.

We conclude by noting the influence of the status quo standalone marginal returns in

shaping optimal interventions for small budgets. For a small budget C, the cosine similarity

of the optimal intervention for non-main network components can be higher than the one for

the main component. This is true when the status quo b̂ is similar to some of the non-main

network components; see Figures 4(B) and Figure 4(D).

5. Incomplete information

In the basic model, we assumed that the planner knows the standalone marginal returns

of every individual. This section extends the analysis to settings where the planner does

not know these parameters. For ease of exposition, we focus on network games that satisfy

Property A.

Formally, fix a probability space (Ω,F ,P). The planner’s belief over states is given by P.

This represents the planner’s uncertainty, given all her information. The planner has control

over the random vector (r.v.) B, that is, a function B : Ω→ Rn. The choice of B determines

the cost of intervention. A realization of the random vector is denoted by b. This realization

is common knowledge among individuals when they choose their actions. Thus, the game

23The eigenvalue is in fact negative, as a consequence of the assumption that gii = 0 for all i: The trace of G
is zero, and therefore its eigenvalues sum to 0. By the Perron-Frobenius Theorem, the maximum eigenvalue
of the nonnegative matrix G is positive, so the minimum one must be negative.
24Intuitively, because un does not correspond to a perfect bipartition, it is easier for a vector orthogonal to
un to achieve a similarly low value of

∑
i,j∈N gijuiuj .
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individuals play is one of complete information.25 We also define a function K that gives the

cost K(B) of implementing the random variable B.26

We solve the following incomplete-information intervention problem:

choose r.v. B to maximize E [W (b;G)] (IT-G)

s.t. [I − βG]a∗ = b,

K(B) ≤ C.

Note that the intervention problem (IT) under complete information is a special case of a

degenerate r.v. B: one in which the planner knows the vector of standalone marginal returns

exactly and implements a deterministic adjustment relative to it.

To guide our modeling of the cost of intervention, we now review the features of the

distribution of B that matter for aggregate welfare. For network games that satisfy Property

A, we can write:

E [W (b;G)] = wE[(a∗)T a∗] = wE[aTa] = w
n∑

`=1

α`
(
E[b`]

2 + Var[b`]
)
. (8)

In words, welfare is determined by the mean and variance of the realized components b`;

these in turn are determined by the first and second moments of the chosen random variable

B. In view of this, we will consider intervention problems where the planner can modify the

mean and the covariance matrix of B, and the cost of intervention depends only on these

modifications.

5.1. Mean shifts. We first consider an intervention where there is an arbitrarily distributed

vector of standalone marginal returns and the planner’s intervention shifts it in a deterministic

way. Formally, fix a random variable B̂, called the status quo, with typical realization b̂. The

planner’s policy is given by b = b̂+y, where y ∈ Rn is a deterministic vector. We denote the

corresponding random variable by By. In terms of interpretation, note that implementing

this policy does not require knowing b̂ as long as the planner has an instrument that shifts

incentives.

Assumption 4. The cost of implementing r.v. By is

K(By) =
∑

i∈N
y2i ,

and K(B) is ∞ for any other random variable.

25It is possible to go further and allow for incomplete information among the individuals about each other’s
bi. We do not pursue this substantial generalization here; see Golub and Morris (2017) and Lambert et al.
(2018) for analyses in this direction.
26The domain of this function is the set of all random vectors taking values in Rn defined on our probability
space.
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In contrast to the analysis of Theorem 1, the vector b̂ is a random variable. But we take the

analogue of the cost function used there, noting that in the deterministic setting this formula

held with y = b− b̂.

Proposition 3. Consider problem (IT-G) with the cost of intervention satisfying Assumption

4. Suppose Assumptions 1 and 2 hold and the network game satisfies Property A. The optimal

intervention policy B∗ is equal to By∗ , where y∗ is the optimal intervention in the deterministic

problem with b = E[b̂] as the status quo vector of standalone marginal returns.

5.2. Intervention on variances. We next consider the case where the planner faces a

vector of means, fixed at b̄, and, subject to that, can choose any random variable B. The

difference in the expected welfare for two different interventions B and B̃ depends only on

the variance–covariance matrix of B and B̃. Thus, the planner effectively faces the problem

of intervening on variances. We prove a result on optimal intervention for all cost functions

satisfying certain symmetries.

Assumption 5. The cost function satisfies two properties: (a) K(B) = ∞ if Eb 6= b̄; (b)

K(B) = K(B̃) if b̃− b̄ = O(b− b̄), where O is an orthogonal matrix. Analogous to our other

notation, we use b̃ for realizations of the random vector with distribution B̃.

Part (a) is a restriction on feasible interventions, namely a restriction to interventions that

are mean–neutral. Part (b) means that rotations of coordinates around the mean do not affect

the cost of implementing a given distribution. This assumption gives the cost a directional

neutrality, which ensures that our results are driven by the benefits side rather than by

asymmetries operating through the costs. For example, let ΣB be the variance–covariance

matrix of the random variable B. In particular, σBii is the variance of bi. Suppose that the

cost of implementing B with Eb = b̄ is a function of the sum of the variances of the bi:

K(B) =

{
φ
(∑

∈N σ
B
ii

)
if Eb = b̄

∞ otherwise.
(9)

The cost function (9) satisfies property (a) of Assumption 5. Moreover, it satisfies property

(b) of Assumption 5 because
∑

i∈N σ
B
ii = trace ΣB; this trace is the sum of the eigenvalues of

ΣB, which is invariant to the transformation defined in (b).27

Proposition 4 (Variance control). Consider problem (IT-G) with the cost of intervention

satisfying Assumption 5. Suppose Assumptions 1 and 2 hold and the network game satisfies

Property A. Let the optimal intervention be B∗. We have the following:

27When we look at the variance–covariance matrix of b̃ defined by b̃− b̄ = O(b− b̄), the variance–covariance
matrix becomes OΣOT, and this has the same eigenvalues and therefore the same trace.
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1. Suppose the planner likes variance (i.e., w > 0). If the game has strategic complements

(β > 0), then Var(u`(G) · b∗) is weakly decreasing in `; if the game has strategic

substitutes (β < 0), then Var(u`(G) · b∗) is weakly increasing in `.

2. Suppose the planner dislikes variance (i.e., w < 0). If the game has strategic

complements (β > 0), then Var(u`(G) · b∗) is weakly increasing in `; if the game has

strategic substitutes (β < 0), then Var(u`(G) · b∗) is weakly decreasing in `.

We now provide the intuition for Proposition 4. Shocks to individuals’ standalone marginal

returns create variability in the players’ equilibrium actions. The assumption that the

intervention is mean neutral (part (a) of Assumption 5) leaves the planner to control only the

variances and covariances of these marginal returns with her intervention. Hence, the solution

to the intervention problem describes what the planner should do to induce volatilities in

actions that maximize the ex-ante expected welfare.

Suppose first that investments are strategic complements. Then a perfectly correlated

shock in individual standalone marginal returns is amplified by strategic interaction. In

fact, the type of shock that is most amplifying (at a given size) is the one that is perfectly

correlated across individuals, with the magnitude of a given individual’s shock proportional

to the first principal component (his eigenvector centrality). These shocks are exactly what

b∗1 = u1(G) · b∗ captures. Hence, this is the dimension of volatility that the planner most

wants to increase if she likes variance in actions (w > 0) and most wants to decrease if she

dislikes variance in actions (w < 0).

If investments are strategic substitutes, then a perfectly correlated shock does not create

a lot of variance in actions: The first-order response of all individuals to an increase in

their standalone marginal returns is to increase investment, but that in turn makes all

individuals decrease their investment somewhat because of the strategic substitutability with

their neighbors. Hence, highly positively correlated shocks do not translate into high volatility.

The shock profiles that create most variability in actions are the ones in which neighbors have

negatively correlated shocks. A planner that likes variability in actions will then prioritize

such shocks. Because the last eigenvector of the system is correlated with those shocks that

have opposite effects on neighbors, this is exactly the type of volatility that is of greatest

concern, and this is what the planner will focus on most.

Example 3 (Illustration in the case of the circle). Figure 1 depicts six of the eigenvec-

tors/principal components of a circle network with 14 nodes. The first principal component

is a positive vector and so B projected on u1(G) captures positively correlated shocks across

all players. The second principal component (top left panel of Figure 1) splits the graph into

two sides, one with positive entries and the other with negative entries. Hence, B projected

on u2(G) captures shocks that are highly positively correlated on each side of the circle

network, with the two opposite sides of the circle being anti-correlated. As we move along
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the sequence, we can see that B projected on the `th eigenvector represents shocks that are

more and more local. At the extreme, B projected on u14(G), (bottom-right panel of Figure

1) captures the component of shocks that is perfectly anti-correlated across neighbors.28

6. Concluding remarks

We study the problem of a planner who seeks to optimally target incentive changes in

a network game. Our framework allows for a broad class of strategic and non-strategic

spillovers across neighbors. The main contribution of the paper is methodological: we show

that principal components of the network of interaction provide a useful basis for analyzing

the effects of an intervention. This decomposition leads to our main result: there is a close

relation between the nature of the game (complements or substitutes) and the weight that

different principal components receive in the optimal intervention. To develop these ideas in

the simplest way, we have focused on a model in which the matrix of interaction is symmetric,

the costs of intervention are quadratic, and the intervention itself takes the form of altering

the standalone benefits. In the Online Appendix we relax these restrictions and develop

extensions of our approach to non-symmetric matrices of interaction, to more general costs

of intervention, and to environments where interventions occur via monetary incentives for

activity. We also relax Property A, a technical condition which facilitated our basic analysis,

and cover a more general class of externalities.

We briefly mention two further applications. In some circumstances, the planner seeks

a budget-balanced tax/subsidy scheme in order to improve the economic outcome. In an

oligopoly market, for example, a planner could tax some suppliers, thereby increasing their

marginal costs, and then use that tax revenue to subsidize other suppliers. The planner will

solve a problem similar to the one we have studied here, with the important difference that

she will face a different constraint, namely, a budget-balance constraint. In ongoing work,

Galeotti et al. (2018) show that the principal component approach that we employed in this

paper is useful in deriving the optimal taxation scheme and, in turn, in determining the

welfare gains that can be achieved in supply chains.

We have focused on interventions that alter the standalone marginal returns of individuals.

Another interesting problem is the study of interventions that alter the matrix of interaction.

We hope this paper stimulates further work along these lines.

28As usual in this example, a generic G will not be perfectly symmetric and so a particular orientation of
these eigenvectors will be selected.
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Appendix A. Proofs

Proof of Theorem 1. We wish to solve

max
b

waTa

s.t.: [I − βG]a∗ = b,
∑

i∈N
(bi − b̂i)2 ≤ C.

We transform the maximization problem into the basis given by the principal components of

G. To this end, we first rewrite the cost and the objective in the principal components basis,

using the fact that norms do not change under the orthogonal transformation UT. (The

norm symbol ‖ · ‖ always refers to the Euclidean norm.) Letting y = b− b̂,

K(b, b̂) =
∑

i∈N
y2i = ‖y‖22 =

n∑

`=1

y2
`

and

waTa = w‖a‖2 = w‖a‖2 = waTa.

By recalling that, in equilibrium, a∗ = [I − βΛ]−1b, and using the definition α` = 1
(1−βλ`(G))2

,

the intervention problem (IT) can be rewritten as:

max
b

w
n∑

`=1

α`b
2
` (IT-PC)

s.t.
n∑

`=1

y2
`
≤ C.

We now transform the problem so that the control variable is x where x` = y`/b̂`. We obtain

max
x

w
∑

` = 1nα`(1 + x`)
2b̂

2

`

s.t.
n∑

`=1

b̂
2

`x
2
` ≤ C

Note that, for all `, α` are well-defined (by Assumption 1) and strictly positive (by genericity

of G). This has two implications.29

29Note that if Assumption 3 does not hold (that is, w < 0 and
∑n
`=1 b̂

2

` ≤ C) then the optimal solution is
x∗` = −1 for all `. This is what we ruled out with Assumption 3, before Theorem 1.
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First, at the optimal solution x∗ the resource constraint problem must bind. To see this,

note that Assumption 3 says that either w > 0, or w < 0 and
∑n

`=1 b̂
2

` > C. Suppose that at

the optimal solution the constraint does not bind. Then, without violating the constraint, we

can slightly increase or decrease any x`. If w > 0 (resp. w < 0) the increase or the decrease

is guaranteed to increase (resp. decrease) the corresponding (x` + 1)2 (since the α` are all

strictly positive).

Second, we show that the optimal solution x∗ satisfies x∗` ≥ 0 for every ` if w > 0,

and x∗` ∈ [−1, 0] for every ` if w < 0. Suppose w > 0 and, for some `, x∗` < 0. Then

[−x∗` + 1]2 > [x∗` + 1]2. Since w > 0 and every α` is positive, we can raise the aggregate

utility without changing the cost by flipping the sign of x∗` . Analogously, suppose w < 0. It

is clear that if x∗` < −1, then by setting x` = −1 the objective improves and the constraint

is relaxed; hence, at the optimum, x∗` ≥ −1. Suppose next that x` > 0 for some `. Then

[−x∗` + 1]2 < [x∗` + 1]2. Since w < 0 and every α` is positive, we can improve the value of the

objective function without changing the cost by flipping the sign of x∗` .

We now complete the proof. Observe that the Lagrangian corresponding to the maximiza-

tion problem is

L = w
n∑

`=1

α`(1 + x`)
2b̂` + µ

[
C −

n∑

`=1

b̂
2

`x
2
`

]
.

Taking our observation above that the constraint is binding at x = x∗, together with the

standard results on the Karush–Kuhn–Tucker conditions, the first-order conditions must hold

exactly at the optimum with a positive µ:

0 =
∂L
∂x`

= 2b̂
2

` [wα`(1 + x∗`)− µx∗` ] = 0. (10)

We take a generic b̂ such that b̂` 6= 0 for all `. If for some ` we had µ = wα` then the right-hand

side of the second equality in (10) would be 2b̂
2

`wα`, which, by the generic assumption we

just made and the positivity of α`, would contradict (10). Thus, the following holds with a

nonzero denominator:

x∗` =
wα`

µ− wα`
,

and the Lagrange multiplier µ is therefore pinned down by

n∑

`=1

w2b̂
2

`

(
α`

µ− wα`

)2

= C.

Note finally that

ρ(y∗,u`(G)) =
y∗ · u`(G)

‖y∗‖‖u`(G)‖ =
y∗
`√
C

=
b̂`x
∗
`√
C

=
‖b̂‖√
C
ρ(b̂,u`(G))x∗` ∝` ρ(b̂,u`(G))x∗` .

�
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Proof of Proposition 1. Part 1. From expression 6 of Theorem 1, it follows that if C → 0

then µ→∞. The result follows by noticing that

r∗`
r∗`′

=
α`
α`′

µ− wα′`
µ− wα`

.

Part 2. Suppose that β > 0. Using the derivation of the last part of the proof of Theorem 1,

we write:

ρ(y∗,u`(G)) =
‖b̂‖√
C
ρ(b̂,u`(G))x∗` ,

with x∗` = wα`

µ−wα`
. From expression 6 of Theorem 1, it follows that if C →∞ then µ→ wα1.

This implies that x∗` → α`

α1−α`
for all ` 6= 1. As a result, if C →∞ then ρ(y∗,u`(G))→ 0 for

all ` 6= 1. Furthermore, we can rewrite expression 6 of Theorem 1 as

n∑

`=1

(
‖b̂‖ρ(b̂,u`(G))

x∗`√
C

)2

= 1,

and therefore

lim
C→∞

n∑

`=1

(
‖b̂‖ρ(b̂,u`(G))

x∗`√
C

)2

= lim
C→∞

(
‖b̂‖ρ(b̂,u1(G))

x∗1√
C

)2

= 1,

where the first equality follows because x∗` → α`

α1−α`
for all ` 6= 1. The proof for the case of

β < 0 follows the same steps, with the only exception that if C →∞ then µ→ wαn. �

Proof of Proposition 2. We first prove the result on welfare and then turn to the result on

cosine similarity.

Welfare. Consider the case of strategic complementarities, β > 0. Define by x̃ the simple

intervention, and note that x̃1 =
√
C/b̂1 and that x̃` = 0 for all ` > 1. The aggregate utility

obtained under the simple intervention is:

W s =
n∑

`=1

b̂
2

`α`(1 + x̃`)
2 = b̂

2

1α1x̃1(x̃1 + 2) +
n∑

`=1

α`b̂
2

` .

The aggregate utility at the optimal intervention is

W ∗ =
n∑

`=1

b̂
2

`α`(1 + x∗`)
2 = b̂

2

1α1x
∗
1(x
∗
1 + 2) +

n∑

`=2

b̂
2

`α`x
∗
`(x
∗
` + 2) +

n∑

`=1

α`b̂
2

`

Hence

W ∗

W s
=
b̂
2

1α1x
∗
1(x
∗
1 + 2) +

∑n
`=1 α`b̂

2

`

b̂
2

1α1x̃1(x̃1 + 2) +
∑n

`=1 α`b̂
2

`

+

∑n
`=2 b̂

2

`α`x
∗
`(x
∗
` + 2)

b̂
2

1α1x̃1(x̃1 + 2) +
∑n

`=1 α`b̂
2

`

≤ 1 +

∑n
`=2 b̂

2

`α`x
∗
`(x
∗
` + 2)

b̂
2

1α1x̃1(x̃1 + 2) +
∑n

`=1 α`b̂
2

`

as x̃1 ≥ x∗1
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≤ 1 +

∑n
`=2 b̂

2

`α`x
∗
`(x
∗
` + 2)

b̂
2

1α1x̃21

summands in denominator are positive

= 1 +

∑n
`=2 b̂

2

`α`x
∗
`(x
∗
` + 2)

α1C
b21x̃

2
1 = C; see below

≤ 1 +
2α1 − α2

α1

‖b̂‖2
C

(
α2

α1 − α2

)2

see calculation below

≤ 1 +
2‖b̂‖2
C

(
α2

α1 − α2

)2

.

The fact b21x̃
2
1 = C, used above, follows because the simple policy allocates the entire budget

to changing b1. The inequality after that statement follows because

n∑

`=2

b̂
2

`α`x
∗
`(x
∗
` + 2) ≤ α2

n∑

`=2

b̂
2

`x
∗
`(x
∗
` + 2) ordering of the α`

≤ α2x
∗
2(x
∗
2 + 2)

n∑

`=2

b̂
2

` Corollary 1

≤ α2
wα2

µ− wα2

(
wα2

µ− wα2

+ 2

) n∑

`=2

b̂
2

` Theorem 1

≤ α2
wα2

wα1 − wα2

(
wα2

wα1 − wα2

+ 2

)
‖b̂‖2

=

(
α2

α1 − α2

)2

(2α1 − α2) ‖b̂‖2

Hence, the inequality

C >
2‖b̂‖2
ε

(
α2

α1 − α2

)2

is sufficient to establish that W ∗
W s < 1 + ε. The proof for the case of strategic substitutes

follows the same steps; the only difference is that we use αn instead of α1 and αn−1 instead

of α2.

Cosine similarity. We now turn to the cosine similarity result. We focus on the case of

strategic complements. The proof for the case of strategic substitutes is analogous. We start

by writing a useful explicit expression for

ρ(∆b∗,
√
Cu1) =

(b∗ − b̂) · (
√
Cu1)

‖b∗ − b̂‖‖
√
Cu1‖

=
(b∗ − b̂) · (u1)√

C
, (11)

where the last equality follows because, at the optimum, ‖b∗ − b̂‖2 = C. At the optimal

intervention, by Theorem 1,

b∗` − b̂` =
wα`

µ− wα`
b̂`;
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now, using the definition b = UTb, we have that

b∗i − b̂i = w
n∑

`=1

ui`
α`

µ− wα`
b̂`

and therefore

(b∗ − b̂) · u1 =
∑

i

n∑

`=1

u1iu
`
i

wα`
µ− wα`

b̂` =
n∑

`=1

wα`
µ− wα`

b̂`(u
1 · u`) =

wα1

µ− wα1

b̂1

Hence, using this in equation 11, we can deduce that

ρ(∆b∗,u1) =
1√
C

wα1

µ− wα1

b̂1 ≥
√

1− ε iff

(
wα1

µ− wα1

)2

b̂
2

1 − C(1− ε) ≥ 0. (12)

The following lemma shows that the inequality after the “if and only if” follows from our

hypothesis that

C >
2‖b̂‖2
ε

(
α2

α1 − α2

)2

,

and thus establishing it completes the proof.

Lemma 1. Assume

C >
2‖b̂‖2
ε

(
α2

α1 − α2

)2

.

Then (
wα1

µ− wα1

)2

b̂
2

1 ≥ C(1− ε) (13)

Proof of Lemma 1. Note that

C >
2‖b̂‖2
ε

(
α2

α1 − α2

)2

=⇒ εC > ‖b̂‖2
(

α2

α1 − α2

)2

,

and therefore

C(1− ε) < C − ‖b̂‖2
(

α2

α1 − α2

)2

. (14)

But then we have the following chain of statements, explained immediately after the display:
(

wα1

µ− wα1

)2

b̂
2

1 − C(1− ε) ≥
(

wα1

µ− wα1

)2

b̂
2

1 − C + ‖b̂‖2
(

α2

α1 − α2

)2

=

(
wα1

µ− wα1

)2

b̂
2

1 −
n∑

`=1

(
wα`

µ− wα`

)2

b̂
2

` + ‖b̂‖2
(

α2

α1 − α2

)2

= ‖b̂‖2
(

α2

α1 − α2

)2

−
n∑

`=2

(
wα`

µ− wα`

)2

b̂
2

`

=

(
α2

α1 − α2

)2 n∑

`=1

b̂
2

` −
n∑

`=2

(
wα`

µ− wα`

)2

b̂
2

` > 0.



The first inequality follows from substituting the upper bound on C(1− ε), statement (14)

above, which we derived from our initial condition on C. The equality after that follows

by substituting the condition on the binding budget constraint at the optimum, which we

derived in Theorem 1. The next equality follows by isolating the term for the first component

in the sum and by noticing that that cancels with the first term. The next equality follows by

noticing that ‖b̂‖2 = ‖b̂‖2. The final inequality follows because, from the facts that µ > wα1

and that α1 > α2 > · · · > αn, we can deduce that for each ` > 1

wα`
µ− wα`

<
wα`

wα1 − wα`
=

α`
α1 − α`

<
α2

α1 − α2

�

This concludes the proof of Proposition 2. �



ONLINE APPENDIX:
ADDITIONAL PROOFS, DISCUSSION AND EXTENSIONS FOR

TARGETING INTERVENTIONS IN NETWORKS

Throughout the online appendix, we refer often to sections, results, and equations in the
main text and its appendix using the numbering established there. The numbers of sections,
results, and equations in this online appendix are all prefixed by OA to distinguish them.

A note on notation. Throughout this appendix, when i appears as the index of summation
without further specification, the summation runs over the set N of nodes. When ` appears
as the index of summation, the summation runs of the set ` = 1, . . . , n.

OA1. Additional Proofs

Proof of Proposition 3. Using expression (8), we can write the dependence of E [W (b;G)] on
intervention By as follows:

E [W (b;G)] = w
∑

`

α`

({
E[b̂`] + y

`

}2

+ Var[b`]

)
.

Choosing y to maximize this is identical to the problem analyzed in the deterministic setting
in the proof of Theorem 1. Thus, defining x` = y

`
/b`, with b` = E[B̂`], it satisfies the same

conditions at the optimum as those derived in Theorem 1. �
Proof of Proposition 4. Given Assumption 5, without loss of generality we can normalize
b̄ = 0. Using expression (8) and normalization, we obtain that if the optimal solution is B∗
the expected welfare obtained is

E [W (b∗;G)] = w
∑

`

α`Var(b∗`).

Note that the random variable B∗ can be written as UTB∗, and so the variance–covariance
matrix of the random variable B∗ is ΣB∗ = UTΣB∗U , where recall that ΣB∗ is the variance–
covariance matrix of the random variable B∗.

We consider the case of w > 0 and β > 0; the proof of the other cases is analogous and
therefore omitted. The expected welfare is a weighted sum of the variances of the principal
components, Var(b∗`) = Var(u`(G) · b∗), and the weight α` on the variance of principal
component ` of G is an increasing function of its eigenvalue λ`, because β > 0.

Suppose that the claim in Proposition is violated, that is, there exists a `, `′ such that
` < `′ and Var(b∗`) < Var(b∗`′). We construct an alternative intervention that has the same
cost and does strictly better. Take the permutation matrix (and therefore an orthogonal
matrix) P such that Pkk = 1 for all k 6∈ {`, `′} and P``′ = P`′` = 1. Define B∗∗ = OB∗
with O = UPUT. Clearly, O is orthogonal, as U and P are both orthogonal. Hence, by
Assumption 5, K(B∗) = K(B∗∗). Furthermore, the matrix

ΣB∗∗ = PΣB∗P
T

Date Printed. November 12, 2019.
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and so Var(b∗∗k ) = Var(b∗k) for all k 6∈ {`, `′} and Var(b∗∗` ) = Var(b∗`′) > Var(b∗∗`′ ) = Var(b∗`).
Since α` > α`′ intervention B∗∗ does strictly better than B∗, a contradiction to our initial
hypothesis that B∗ was optimal. �
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OA2. Discussion

We discuss the relation of principal components of the matrix of interactions with other
related networks statistics (Session OA2.1). We then provide a different economic exam-
ple, which complements those in our main text, inspired by beauty context games (Session
OA2.2).

OA2.1. Principal components and other network measures. First principal compo-
nent and eigenvector centrality: For ease of exposition, let the network be connected, that
is, let G be irreducible. By the Perron–Frobenius Theorem, u1(G) is entry-wise positive;
indeed, this vector is the Perron vector of the matrix, also known as the vector of indi-
viduals’ eigenvector centralities. Thus, our results of Section 4 imply that, under strategic
complementarities, interventions that aim to maximize the aggregate utility should change
individuals’ incentives in proportion to their eigenvector centralities.

It is worth comparing this result with results that highlight the importance of Bonacich
centrality. Under strategic complements, equilibrium actions are proportional to the individ-
uals’ Bonacich centralities in the network (Ballester et al., 2006).1 Within the Ballester et al.
(2006) framework, it can easily be verified that if the objective of the planner is linear in
the sum of actions, then under a quadratic cost function the planner will target individuals
in proportion to their Bonacich centralities (see also Demange (2017)). Bonacich centrality
converges to eigenvector centrality as the spectral radius of βG tends to 1; otherwise the
two vectors can be quite different (see, for example, Calvó-Armengol et al. (2015) or Golub
and Lever (2010)).

The substantive point is that the objective of our planner when solving the interven-
tion problem (IT) is to maximize the aggregate equilibrium utility, not the sum of actions,
and that explains the difference in the targeting strategy. Indeed, our planner’s objective
(under Property A) can be written as follows (introducing a different constant factor for
convenience):

∑

i

ui ∝
1

n

∑

i

a2i = ā2 + σ2
a,

where σ2
a is the variance of the action profile and a is the mean action. Thus, our planner

cares about the sum of actions and also their diversity, simply as a mathematical consequence
of her objective. This explains the reason why her policies differ from those that would be
in effect if just the mean action were the focus. To reiterate this point, we finally note that
if we consider problem (IT) but we assume that the cost of intervention is linear, that is,

K(b, b̂) =
∑

i |bi − b̂i|, then the optimal intervention will target only one individual (see
the discussion in Online Appendix Section OA3.3); note that the targeted individual is not
necessarily the individual with the highest Bonacich centrality.
Last principal component: We have shown that in games with strategic substitutes, for
large budgets interventions that aim to maximize the aggregate utility target individuals
in proportion to the eigenvector of G associated to the smallest eigenvalue of G, the last
principal component.

There is a connection between this result and the work of Bramoullé et al. (2014). Bramoullé
et al. (2014) study the set of equilibria of a network game with linear best replies and strategic

1For a different economic context in which eigenvector centrality reflects equilibrium outcomes, see also
Elliott and Golub (2018).
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substitutes. They observe that such a game is a potential game, and they derive the potential
function explicitly. From this, they can deduce that the smallest eigenvalue of G is crucial
for whether the equilibrium is unique, and it is also useful for analyzing the stability of a
particular equilibrium.2 The basic intuition is that the magnitude of the smallest eigenvalue
determines how small changes in individuals’ actions propagate, via strategic substitutes, in
the network. When these amplifications are strong, multiple equilibria can emerge. Relat-
edly, when these amplifications are strong around an equilibrium, that equilibrium will be
unstable.

Our study of the strategic substitutes case is driven by different questions, and delivers
different sorts of characterizations. We assume that there is a stable equilibrium which
is unique at least locally, and then we characterize optimal interventions in terms of the
eigenvectors of G. In general, all the eigenvectors – not just the one associated to the
smallest eigenvalue – can matter. Interventions will focus more on the eigenvectors with
smaller eigenvalues. When the budget is sufficiently large, the intervention will (in the
setting of Section 4) focus on only the smallest-eigenvalue eigenvector. As discussed in
Section 4, the network determinants of whether targeting is simple can be quite subtle. To
the best of our knowledge, these considerations are all new in the study of network games.

Nevertheless, at an intuitive level there are important points of contact between our intu-
itions and those of Bramoullé et al. (2014). In our context, as discussed earlier, our planner
likes to move the incentives of adjacent individuals in opposite directions. The eigenvector
associated to the smallest eigenvalue emerges as the one identifying the best way to do this
at a given cost, and the eigenvalue itself measures how intensely the strategic effects am-
plify. This “amplification” property involves forces similar to those that make the smallest
eigenvalue important to stability and uniqueness in Bramoullé et al. (2014).
Spectral approaches to variance control: Acemoglu et al. (2016) give a general analysis of
which network statistics matter for volatility of network equilibria. Baqaee and Farhi (2017)
develop a rich macroeconomic analysis relating network measures to aggregate volatility.
Though both papers note the importance of eigenvector centrality in (their analogues of)
the case of strategic complements, their main focus is on how the curvature of best responses
changes the volatility of an aggregate outcome, and which “second order” (curvature-related)
network statistics are important. We use the principal components of the network to under-
stand which first-order shocks are most amplified, and how this depends on the nature of
strategic interactions.

OA2.2. Beauty contest with local interactions. This example is inspired by Morris and
Shin (2002) and Angeletos and Pavan (2007). Individuals trade off the returns from effort
against the costs, as in the first example, but also care about coordinating with others. These
considerations are captured in the following payoff:

Ui(a,G) = ai

(
b̃i + β̃

∑

j

gijaj

)
− 1

2
a2i −

γ

2

∑

j

gij[aj − ai]2,

where we assume that β̃ > 0 and γ > 0 and that
∑

j gij = 1 for all i, so the total interac-
tion is the same for each individual. This formulation also relates to the theory of teams
and organizational economics (see, for example, Dessein et al. (2016), Marschak and Radner

2For stability of equilibrium, what is relevant is the magnitude of the smallest eigenvalue of an appropriately
defined subgraph of G.
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(1972), and Calvó-Armengol et al. (2015)). We may interpret individuals as managers in
different divisions within an organization. Each manager selects the action that maximizes
the output of the division, given by the first term, but the manager also cares about coor-
dinating with other divisions’ actions.3 This is a game of strategic complements; moreover,
an increase in j’s action has a positive effect on individual i’s utility if and only if aj < ai.
It can be verified that the first-order condition for individual i is given by

ai =
b̃i

1 + γ
+
b̃i + γ

1 + γ

∑
gijaj.

By defining β = β̃+γ
1+γ

and b = 1
1+γ

b̃, we obtain a best-response structure exactly as in

condition (2). Moreover, the aggregate equilibrium utility is W (b, g) = 1
2

(a∗)T a∗. Hence,
this game satisfies Property A.

3A similar analysis can be adapted to a standard (local) beauty contest game in which Ui(a,G) = −(ai −
b̃i)

2 − γ∑j gij [aj − ai]2. Here, we focus on a modification of the standard beauty contest game that makes
the mapping to our formulation easier to present.



6 ONLINE APPENDIX

OA3. Extensions

We now extend our basic model to study settings where (a) Property A is not satisfied
(Session OA3.1), (b) the matrix G is non-symmetric (Session OA3.2), (c) the exact quadratic
cost specification does not hold (Session OA3.3), and (d) the interventions occur via monetary
incentives for activity (Session OA3.4).

OA3.1. General non-strategic externalities. Section 4 characterizes optimal interven-
tions for network games that satisfy Property A. We now relax this assumption. Recall that
player i’s utility for action profile a is

Ui(a,G) = Ûi(a,G) + Pi(a−i,G, b),

where Ûi(a,G) = ai(bi +
∑

j gijaj)− 1
2
a2i .

At an equilibrium a∗, it can be checked that
∑

i Ûi(a
∗,G) ∝ (a∗)T a∗. Therefore, a

sufficient condition for Property A to be satisfied is that
∑

i Pi(a
∗
−i,G, b) is also proportional

to (a∗)T a∗. Examples 1 and 2, as well as the example presented in Section OA2.2, satisfy
this property. However, as the next example shows, there are natural environments in which
it is violated.

Example OA1 (Social interaction and peer effects). Individual decisions on smoking and
alcohol consumption are susceptible to peer effects (see Jackson et al. (2017) for references
to the extensive literature on this subject). For example, an increase in smoking among an
adolescent’s friends increases her incentives to smoke and, at the same time, has negative
effects on her welfare. These considerations are reflected in the following payoff function:

Ui(a,G) = Ûi(a,G)− γ
∑

j 6=i
aj,

where β > 0 and γ is positive and sufficienctly large. It can be checked that the aggregate
equilibrium welfare is:

W (b,G) =
1

2
(a∗)T a∗ − nγ

∑

i

a∗i , (OA-1)

with a∗ given by expression (3).4

To extend the analysis beyond Property A, we allow the non-strategic externality term
Pi(a−i,G, b) to take a form that allows for flexible externalities within the linear–quadratic
family:5

Pi(a−i,G) = m1

∑

j

gijaj +m2

∑

j

gija
2
j +m3

∑

j 6=i
aj +m4

(∑

j 6=i
aj

)2

+m5

∑

j 6=i
a2j .

We also make the following assumption on the matrix G:

Assumption OA1. The total interaction is constant across individuals, that is,
∑

j gij = 1
for all i ∈ N .

4In this specification the last (externality) term is a global term. We can easily accommodate local negative
externalities by replacing that term with

∑
j gijaj .

5We can also accommodate externalities that depend directly on the bi, but we omit this for brevity.
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Using equation (3) and Assumption OA1, we can rewrite the expression for the aggregate
equilibrium utility as follows:

W (b,G) = w1 (a∗)T a∗ +
w2

n

(∑

i

a∗i

)2

+
w3√
n

∑

i

a∗i ,

where w1 = 1 +m2 +m5 + (n− 1)m4, w2 = nm5(n− 2), and w3 =
√
n[m1 + (n− 1)m3].

Observe that Property A clearly holds when w2 = w3 = 0. On the other hand, if (say)
w1 = w2 = 0, then the planner’s objective is to maximize the sum of the equilibrium actions,
which is a fairly different type of objective. A characterization of the optimal intervention
when the planner’s objective is to maximize the sum of the equilibrium actions can be found
in Corollary OA1 below. Under Assumption OA1, the sum of the equilibrium actions is
proportional to the sum of the standalone marginal returns. Because u1 is proportional to
the all-ones vector 1, this sum in turn is equal to b1.

Together, these facts allow us to extend our earlier analysis to the case of general w2 and
w3. First, we can still express the objective function simply in terms of the singular value
decomposition; the only difference is that now b1 will enter both in a quadratic term and in
a linear term. In view of this, we first solve the problem (exactly analogously to the previous
solution) for a given value of b1, and then we optimize over b1.

We maintain Assumption 1 and Assumption 2. Recall that player i’s utility for action
profile a is

Ui(a,G) = Ûi(a,G) + Pi(a−i,G, b)

where Ûi(a,G) = ai(bi+
∑

j gijaj)− 1
2
a2i and Pi(a−i,G, b) is a non-strategic externality term

that takes the following form:

Pi(a−i,G) = m1

∑

j

gijaj +m2

∑

j

gija
2
j +m3

∑

j 6=i
aj +m4

(∑

j 6=i
aj

)2

+m5

∑

j 6=i
a2j .

Here we have taken local and global externality terms given by second-order polynomials
in actions. (We could also accommodate externalities that depend directly on the bi in the
same sort of way, as will become clear in the proof, but we omit this for brevity.)

The implication of Assumption OA1 for our analysis is summarized next.

Lemma OA1. Assumption OA1 implies that:

1. for any a ∈ Rn,
∑

i

∑
j gijaj =

∑
i ai and

∑
i

∑
j gija

2
j =

∑
i a

2
i

2. λ1(G) = 1 and u1i (G) =
√
n for all i

3.
∑

i a
∗
i = 1

1−β
∑
bi =

√
n

1−β b1 =
√
nα1b1, where a∗ is equilibrium action profile.6

The proof of Lemma OA1 is immediate. Using part 1 of Lemma OA1, and that individuals
play an equilibrium (actions satisfy expression (3)), we obtain:

W (b,G) = w1 (a∗)T a∗ +
w2

n

(∑

i

a∗i

)2

+
w3√
n

∑

i

a∗i ,

with:

w1 = 1 +m2 +m5 + (n− 1)m4

w2 = nm5(n− 2)

6The last equality follows because α1 = 1/(1− βλ1)2, and assumption OA1 implies that λ1 = 1.
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w3 =
√
n[m1 + (n− 1)m3].

Using the decomposition G = UΛUT, together with part 2 and part 3 of Lemma OA1,
we obtain:

W (b,G) = w1a
∗Ta∗ + w2α1b

2
1 + w3

√
α1b1.

The intervention problem reads

max
b

w1a
∗Ta∗ + w2α1b

2
1 + w3

√
α1b1

subject to a∗` =
√
α`b`∑

`

(b` − b̂`)2 ≤ C.

Using the expression for equilibrium actions, we obtain:

max
b

w1

∑

`=1

α`b
2
` + w2α1b

2
1 + w3

√
α1b1

subject to
∑

`

(b` − b̂`)2 ≤ C.

Recalling the definition x` =
b`−b̂`
b̂`

for every `, we finally rewrite the problem as:

max
x

w1

∑

`=1

α`b̂
2

`(1 + x`)
2 + w2α1b̂

2

1(1 + x1)
2 + w3

√
α1b̂1(1 + x1)

subject to
∑

`

b̂
2

`x
2
` ≤ C.

Theorem OA1 characterizes optimal interventions for two cases: (i) w1 ≥ 0 and (ii)

w1 < 0 and
∑

`=2 b̂
2

` > C. The extension of the analysis for the remaining case w1 < 0 and∑
`=2 b̂

2

` < C is explained in Remark OA1, which is presented after the proof of Theorem
OA1. Taken together, Theorem OA1, and Remark OA1 following it, constitute our extension
of Theorem 1 to games that do not satisfy Property A.

Theorem OA1. Suppose Assumptions 1, 2 and OA1 hold. Suppose that either: (i) w1 ≥ 0

or that (ii) w1 < 0 and
∑

`=2 b̂
2

` > C. The optimal intervention is characterized as follows:

1.

x∗1 =
α1

µ− (w1 + w2)α1

[
w1 + w2 +

w3

2
√
α1b̂1

]
,

and, for all ` ≥ 2,

x∗` =
w1α`

µ− w1α`
.

The shadow price of the planner’s budget, µ > (w1 + w2)α1, is uniquely determined
as the solution of:

∑

`=2

b̂
2

`

(
w1α`

µ− w1α`

)2

+ b̂
2

1

(
α1

µ− (w1 + w2)α1

)2
[
w1 + w2 +

w3

2
√
α1b̂1

]2
= C

2. a. For all ` 6= 1, x∗` > 0 if and only if w1 > 0;
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b. x∗1 > 0 if and only if w1 + w2 + w3

2
√
α1b̂1

> 0. 2b. If the game has strategic

complements, β > 0, then |x∗2| > |x∗3| > · · · > |x∗n|. If the game has strategic
substitutes, β < 0, then |x∗2| < |x∗3| < · · · < |x∗n|.

3. Suppose w1 6= 0. In the limit as C → 0, µ→∞ and:

x∗`
x∗`′

→ α`
α`′

for all `, `′ 6= 1

x∗1
x∗`
→ α1

α`

[
w1 + w2 +

w3

2
√
α1b̂1

]
for all ` 6= 1

4. Suppose the game has strategic complements, β > 0. In the limit as C → ∞,
µ→ max{w1α2, (w1 + w2)α1}, and

a. If w1α2 > (w1 + w2)α1 then

x∗1 →
α1

w1α2 − (w1 + w2)α1

[
w1 + w2 +

w3

2b̂1
√
α1

]
,

|x∗2| → ∞,
|x∗` | →

α`
α2 − α`

for all ` > 2.

b. If w1α2 < (w1 + w2)α1 then

|x∗1| → ∞
x∗` →

w1α`
(w1 + w2)α1 − w1α`

for all ` ≥ 2.

5. Suppose the game has strategic substitutes, β < 0. In the limit as C → ∞, µ →
max{w1αn, (w1 + w2)α1}. Hence:

a. If w1αn > (w1 + w2)α1 then:

x∗1 →
α1

w1αn − (w1 + w2)α1

[
w1 + w2 +

w3

2b̂1
√
α1

]
,

|x∗` | →
α`

αn − α`
for all ` ∈ {2, . . . , n− 1},

|x∗n| → ∞.
b. If w1αn < (w1 + w2)α1 then

|x∗1| → ∞
x∗` →

w1α`
(w1 + w2)α1 − w1α`

for all ` ≥ 2.

Before the proof, we briefly explain the sense in which this extends Theorem 1 and as-
sociated results in the basic model. The formula for x∗` in part 1 is a direct generalization
of equation (5), with the shadow price characterized by an equation analogous to (6). The
monotonicity relations on x∗` in part 2 correspond to Corollary 1. The small-C analysis of
part 3 corresponds to Proposition 1. The large-C analysis in parts 4 and 5 corresponds to
the limits studied in Section 4.2.
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Proof of Theorem OA1. Part 1. For a given x ∈ Rn, define

K(x1) = (w1 + w2)α1b̂
2

1(1 + x1)
2 + w3

√
α1b̂1(1 + x1)

C(x1) = C − b̂21x21.
The maximization problem can be rewritten as:

max
x

w1

∑

`=2

α`b̂
2

`(1 + x`)
2 +K(x1)

subject to
∑

`=2

b̂
2

`x
2
` ≤ C(x1)

We solve this problem in two steps.
First Step. We fix x1 so that C(x1) ≥ 0; that is, x1 ∈ [−C/b̂1, C/b̂1]. We then solve

max
x−1

w1

∑

`=2

α`b̂
2

`(1 + x`)
2

subject to
∑

`=2

b̂
2

`x
2
` ≤ C(x1)

In the case in which w1 = 0 we skip this first step. If w1 6= 0, then we argue in a way exactly
analogous to the proof of Theorem 1 that for all ` 6= 1,

x∗` =
w1α`

µ− w1α`

where, for all ` 6= 1, µ ≥ w1α` and it solves

∑

`=2

b̂
2

`

(
w1α`

µ− w1α`

)2

= C(x1).

Note that, for all ` ≥ 2, x∗` > 0 if w1 > 0 and x∗` < 0 if w1 < 0.
Note also that if w1 < 0 the constraint binds: the bliss point (x∗` = −1 for all ` 6= 1)

cannot be achieved because C <
∑n

`=2 b̂
2

` .
Second Step. Substituting into the objective function the expression for x∗` , for all ` ≥ 2,

we obtain:

max
x1

W = w1

∑

`=2

α`b̂
2

`

(
µ

µ− w1α`

)2

+K(x1)

subject to
∑

`=2

b̂
2

`

(
w1α`

µ− w1α`

)2

= C(x1)

x1 ∈
[
−C
b̂1
,
C

b̂1

]

The following lemma is instrumental to the solution of this problem. It characterizes µ,
which is implicitly a function of x1.

Lemma OA2. From the budget constraint in the above problem it follows that

1. limx1→−
√
C/b̂1

µ = limx1→
√
C/b̂1

µ =∞
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2.

dµ

dx1
=

b̂
2

1x1
∑

`=2

w2
1 b̂

2
1α

2
`

(µ−w1α`)3

3. dµ
dx1

> 0 if x1 > 0 and dµ
dx1

< 0 if x1 < 0;

4. limx1→−
√
C/b̂1

dµ
dx1

= −∞ and limx1→
√
C/b̂1

dµ
dx1

=∞.

Proof of Lemma OA2. The proof of part 1 of Lemma OA2 follows directly by inspection
of the budget constraint. Expression 2 in part 2 of Lemma OA2 is derived by implicit
differentiation of the budget constraint. Part 3 and part 4 of Lemma OA2 follow by inspection
of the expression in part 2, and the fact that µ > w1α`. This concludes the proof of Lemma
OA2. �

Lemma OA2 implies that µ as a function of x1 ∈
[
−C/b̂1, Cb̂1

]
is U-shaped; the slope is

−∞ at x1 = −C/b̂1 and +∞ at x1 = C/b̂1; and it reaches a minimum at x1 = 0.
For w1 6= 0, taking the derivative of the objective function W in expression (OA-2) with

respect to x1, we obtain:

dW

dx1
= −2µ

∑

`=2

w2
1 b̂

2

1α
2
`

(µ− w1α`)3
dµ

dx1
+ 2(w1 + w2)α1b̂

2

1(1 + x1) + w3

√
α1b̂1.

Plugging in expression for dµ
dx1

in part 2 of Lemma OA2 we obtain that:

dW

dx1
= −2µb̂

2

1x1 + 2(w1 + w2)α1b̂
2

1(1 + x1) + w3

√
α1b̂1.

Part 1 of Lemma OA2 implies that dW
dx1
→ ∞ when x1 → −

√
C/b̂1, whereas dW

dx1
→ −∞

when x1 →
√
C/b̂1. Hence, the optimal x1 must be interior, which implies that dW

dx1
= 0 or,

equivalently:

x∗1 =
α1

µ− (w1 + w2)α1

[
w1 + w2 +

w3

2
√
α1b̂1

]
.

Substituting x∗1, in the budget constraint

∑

`=2

b̂
2

`

(
w1α`

µ− w1α`

)2

= C(x∗1),

we obtain that the Lagrange multiplier µ must solve:

∑

`=2

b̂
2

`

(
w1α`

µ− w1α`

)2

+ b̂
2

1

(
α1

µ− (w1 + w2)α1

)2
[
w1 + w2 +

w3

2
√
α1b̂1

]2
= C.

The conclusion for w1 = 0 are obtained by taking the limits as w1 → 0 of the expression x∗1
and the expression determining µ. This concludes the proof of part 1 of Theorem OA1.
Part 2. We have already proved that, for all ` ≥ 2, x∗` > 0 if and only if w1 > 0. We now
claim that x∗1 > 0 if and only if w1 +w2 + w3

2b̂1
√
α1
> 0. Suppose, toward a contradiction, that
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x∗1 < 0. Suppose, toward a contradiction, that x∗1 < 0. By inspection of the maximization
problem

max
x

w1

∑

`=2

α`b̂
2

`(1 + x`)
2 +K(x1)

subject to
∑

`=2

b̂
2

`x
2
` ≤ C(x1)

note that if w1 +w2 + w3

2b̂1
√
α1
> 0 and x∗1 < 0, then, by flipping the sign of x∗1, K(x1) increases

and the constraint is unaltered; this is a contradiction to our initial assumption that x∗1 was
optimal.

We have just established that x∗1 > 0. Now, by (OA3.1) above, x∗1 > 0 if and only if
w1 + w2 + w3

2b̂1
√
α1
> 0. And since

x∗1 =
α1

µ− (w1 + w2)α1

[
w1 + w2 +

w3

2
√
α1b̂1

]

it follows that µ > α1(w1 + w2). Finally, if the game has strategic complements then
α2 > · · · > αn and so |x∗2| > |x∗3| > · · · > |x∗n|, and if the game has strategic substitutes then
α2 < · · · < αn and so |x∗2| < |x∗3| < · · · < |x∗n|.
Part 3. This follows by using the characterization in part 1 and by noticing that if C → 0
then µ→∞.
Part 4 and Part 5. Both parts follow by using the characterization together with the
following fact, which we will now establish.

lim
C→∞

µ = max{w1 max{α2, αn}, (w1 + w2)α1}.
To show this, recall from above that we have the following equation for the Lagrange

multiplier:

∑

`=2

b̂
2

`

(
w1α`

µ− w1α`

)2

+ b̂
2

1

(
α1

µ− (w1 + w2)α1

)2
[
w1 + w2 +

w3

2
√
α1b̂1

]2
= C

If C tends to ∞ it must be that either the first denominator (µ − w1α`) or the second
denominator (µ− (w1 +w2)α1) tends to zero. Concerning the first one, this is true if either
w1α2 or w1αn (depending on which one is positive) approaches µ. The second denominator
tends to 0 if (w1 + w2)α1 tends to µ. Both denominators are positive by definition of the
Lagrange multiplier, so it will be the greater of w1 max{α2, αn} and (w1 +w2)α1 which tends
to µ. This concludes the proof of Theorem OA1. �

A special case of Theorem OA1 is one where the planner wants to maximize the sum of
equilibrium actions. This occurs when w1 = w2 = 0. In this case we obtain

Corollary OA1. Suppose Assumption 1, 2 and OA1 hold. Suppose that w1 = w2 = 0
and w3 > 0, i.e., the planner wants to maximize the sum of equilibrium actions. Then the
optimal intervention is b∗ = b̂ + u1

√
C.

Remark OA1. Suppose w1 < 0 and
∑

`=2 b
2
` < C, in contrast to what was assumed in

the theorem. If x1 is sufficiently small, the solution in Step 1 in the proof of Theorem OA1
entails x` = −1 for all ` ≥ 2. That is, fixing x1, the bliss point can be achieved with the
remaining budget after the cost of implementing x1, namely C(x1), is paid. Thus, when we



ONLINE APPENDIX 13

move to Step 2 and optimize over x1, we need to take into account that, for small values
of x1, Step 1 yields a corner solution. Hence, the analysis of how the network multiplier
changes when x1 changes will need to be adapted accordingly.

Example OA1, continued. Social interaction and peer effects
We conclude this section by applying Theorem OA1 to Example OA1 from Online Ap-

pendix Section OA3.1. In this example w1 = 1, w2 = 0 and w3 = −γ√n(n− 1).

Corollary OA2. The optimal intervention in Example OA1 is characterized by

x∗1 =
α1

µ− α1

[
1− γ

√
n(n− 1)

2
√
α1b̂1

]

and, for all ` ≥ 2:

x∗` =
α`

µ− α`
where the Lagrange multiplier µ solves

∑

`=2

b̂
2

`

(
α`

µ− α`

)2

+ b̂
2

1

(
α1

µ− α1

)2
[

1− γ
√
n(n− 1)

2
√
α1b̂1

]2
= C.

Corollary OA3. Consider the optimal intervention in Example OA1. It has the following
properties.

1. x∗2 > · · · > x∗n > 0; x∗1 > 0 if and only γ <
2
√
α1b̂1√

n(n−1)
2. If C → 0

x∗`
x∗`′

→ α`
α`′

, for all `, `′ 6= 1

x∗1
x∗`
→ α1

α`

[
1− γ

√
n(n− 1)

2
√
α1b̂1

]
, for all ` 6= 1

3. If C →∞ then |x∗1| → ∞ and x∗` → α`

(α1−α`)
for all ` ≥ 2.

OA3.2. Beyond symmetric and non-negative G. In this subsection we relax the as-
sumption that G is symmetric. Recall that equilibrium actions are determined by:

a∗ = [I − βG]−1b.

When G is not symmetric, we employ the singular value decomposition (SVD) of the matrix
M = I − βG. This allows us to obtain an orthogonal decomposition of an intervention
useful for examining welfare, analogous to the diagonalization. An SVD of M is defined to
be a tuple (U ,S,V ) satisfying:

M = USV T, (OA-2)

where:

(1) U is an orthogonal n× n matrix whose columns are eigenvectors of MMT;
(2) V is an orthogonal n× n matrix whose columns are eigenvectors of MTM ;
(3) S is an n × n matrix with all off-diagonal entries equal to zero and nonnegative

diagonal entries Sll = sl, which are called singular values of M . As a convention, we
order the singular values so that s` > s`+1.
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It is a standard fact that an SVD exists.7 For expositions of the SVD, see Golub and Van Loan
(1996) and Horn and Johnson (2012). The `th left singular vector of M corresponds to the
`th principal component of M . When G is symmetric, the SVD of M = I − βG can be
taken to have U = V , and the SVD basis is one in which G is diagonal.

Let a = V Ta and b = UTb; then the equilibrium condition implies that:

a∗` =
1

s`
b2` ,

and therefore the objective function is:

W (b,G) = w (a∗)T a∗ = wa∗Ta∗.

It is now apparent that the analysis of the optimal intervention can be carried out in the
same way as in Section 4. Theorem 1 applies, with the only difference that now α` = 1/s2` .
We can also extend Proposition 1 and Proposition 2. As the budget tends to 0, r∗`/r

∗
`′ tends

to α`/α`′ ; on the other hand, when C is very large, the optimal intervention is proportional
to the first principal component of M , and a simple intervention that focuses on the first
principal component performs (nearly) as well as the optimal intervention. When G is
symmetric, the nature of strategic interactions (determined by β) pins down the principal
component that most amplifies an intervention. If G is non-symmetric, the singular values
sl of M are not equal to 1 − βλl, where λl are the eigenvalues of G; the singular vectors
of M are not the eigenvectors of G; and the left and right singular vectors need not be the
same.

OA3.3. More general costs of intervention. In Section 4 we solved the optimal interven-
tion problem under a specific cost function. This section discusses some natural properties
on a cost function. We then show that our analysis of the optimal intervention extends to
the general class of cost functions defined by these properties, as long as the budget is small.

We begin by developing properties that a reasonable cost function (b, b̂) 7→ K(b; b̂) must
satisfy.

Assumption OA2.

(1) Translation-invariance: For any z ∈ Rn, we have K(b+z; b̂+ ẑ) = K(b; b̂), that is.,

there is a function κ : Rn → R such that K(b; b̂) = κ(b− b̂).
(2) Symmetry: For any permutation σ of {1, . . . , n}, it is true that κ(yσ(1), yσ(2), . . . , yσ(n)) =

κ(y1, y2, . . . , yn).
(3) Nonnegativity: κ is nonnegative, and κ(0) = 0.

(4) Local separability: ∂2κ(y)
∂yi∂yj

= 0 evaluated at 0.

(5) Well-behaved second derivative at 0: κ is twice differentiable with ∂2κ
∂y2i

(0) > 0 for all

i.

Translational invariance says that there is no dependence on the starting point. Symmetry
across players implies that names don’t matter for costs. Nonnegativity implies that the
planner cannot extract money from the system: κ(0) = 0 is the definition of the status

quo b̂: it does not cost anything to enact b̂. Local separability across individuals requires
that there are no spillovers in the costs of interventions. This is reasonable, as it ensures

7The decomposition is uniquely determined up to a permutation that (i) reorders the singular values of M
and correspondingly reorders the columns of U and V , and (ii) flips the sign of any column of U and V .
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that the complementarities we study come from the benefits side and not from the costs of
interventions. Finally, the twice-differentiability of the function is a technical assumption to
facilitate the analysis, while the positive value of the second derivative at 0 rules out cost
functions such as κ(y) =

∑
i y

4
i in which the increase in marginal costs at 0 is too slow.

Consider a cost function that satisfies Assumption OA2: κ(y) =
∑

i κ̃(yi), where κ̃(y) =
y2+cy3ey+c′y4, with c and c′ being arbitrary constants. Our main result is that the structure
of interventions identified in Section 3.1 carries over to such cost functions as long as the
budget is small.

Proposition OA1. Consider the intervention problem (IT) with the modification that the
cost function satisfies Assumption OA2. Suppose Assumptions 1 and 2 hold and the network

game satisfies Property A. At the optimal intervention, if C → 0 we have
r∗`
r∗
`′
→ α`

α`′
.

Proof of Proposition OA1. First, we state and prove a lemma.

Lemma OA3. Under the conditions of Assumption OA2, on any compact set the function
C−1κ(C1/2z) converges uniformly to k‖z‖2, as C ↓ 0, where k > 0 is some constant. We call
the limit G.

Proof. Consider the Taylor expansion of κ around 0 (κ is defined by part (1) of the as-
sumption). We will now study its properties under parts (2) to (5) of Assumption OA2.
(5) ensures that the Taylor expansion exists. Local separability (4) says that there are no
terms of the form yiyj. Non-negativity (3) (κ is nonnegative and κ(0) = 0) implies that
all first-order terms are zero. Also, (5) says that terms of the form y2i must have positive
coefficients, and symmetry (2) says that their coefficients must all be the same. �

Write y := b − b̂. Let ∆(y) denote the change in welfare from the status quo. Fix all
parameters of the problem, and recall the main optimization problem:

max
b

∆(y) (IT(C))

s.t. κ(y) ≤ C

We maintain, but do not explicitly write, that welfare is evaluated at a∗(y), where a∗ =

[I − βG]−1(b̂ + y).
Let y(C) be the solution of problem IT(C), which is unique for small enough C. Then we

claim that, as C ↓ 0, we have
r∗`
r∗`′
→ α`

α`′
,

where the similarity ratios are defined at the optimum y(C).
We will prove the result by studying an equivalent problem using Berge’s Theorem of the

Maximum. Let y̌ = C−1/2y. We will now define a re-scaled version of the problem, ǏT(C).

max
b

C−1∆(C1/2y̌) (ǏT(C))

s.t. C−1κ(C1/2y̌) ≤ 1.

This is clearly equivalent to the original problem. Let y̌∗(C) be the (possibly set-valued)
solution for C.

The problem ǏT(C) is not yet defined at C = 0, but we now define it there. Let the
objective at C = 0 be the limit of C−1∆(C1/2y̌) as C ↓ 0, which we call F . Let the
constraint be G(y̌) ≤ 1, where G is from Lemma OA3.
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Let us restrict ǏT(C) to a compact set K such that the constraint set {y : C−1κ(C1/2y̌) ≤
1} is contained in K for all small enough C. Now we claim that the conditions of Berge’s
Theorem of the Maximum are satisfied: The constraint correspondence is continuous at
C = 0 because C−1κ(C1/2y̌) converges uniformly to G, while the objective function is jointly
continuous in its two arguments.

The Theorem of the Maximum therefore implies that the maximized value is continuous
at C = 0. Because the convergence of the objective is actually uniform on K by the Lemma,
this is possible if and only if y̌ approaches the solution of the problem

max
b

F (y̌)

s.t. ‖y̌‖2 ≤ 1.

By the same argument, the same point is the limit of the solutions to

max
b

C−1∆(C1/2y̌)

s.t. ‖y̌‖2 ≤ 1.

By Proposition 1, in that limit this satisfies

r∗`
r∗`′
→ α`

α`′
.

�

We next impose an additional restriction on the structure of the costs of intervention and
we show that this new restriction together with Assumption OA2 fully characterizes the cost
functions that we used in our main analysis.

Assumption OA3. There is a function f : R+ → R+ so that κ(sy) = f(s)κ(y).

Proposition OA2. Consider a cost function that satisfies Assumptions OA2 and OA3.
There is a function f : R+ → R+ such that

κ(y) = f(‖y‖).
Proposition OA2 implies that the cost of intervention y is the same as the cost of an

intervention obtained as an orthogonal transformation of y; that is κ(y) = κ(Oy) with O be
an orthogonal matrix. This allows to rewrite the intervention problem using the orthogonal
decomposition of welfare and costs that we employ in Section 4, and all the results developed
there extend to this more general environment.

We conclude by taking up the implication of linear costs of intervention. The main result
is that with a linear cost function, that is, K(b, b̂) =

∑
i |bi − b̂i|, the optimal intervention

will target a single individual. For ease of exposition, we will restrict attention to Example
1. The analysis can be easily extended to general network games.

We consider the following intervention problem:

max
b

(a∗)T a∗ (IT-Linear Cost)

s.t. a∗ = [I − βG]−1b,

K(b; b̂) =
∑

i∈N
|bi − b̂i| ≤ C,
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Proposition OA3. The solution to problem IT-Linear Cost has the property that there
exists i∗ such that b∗i 6= b̂i∗ and b∗i = b̂i for al i 6= i∗.

Proof of Proposition OA3. Define W (b) = a(b)Ta(b). Let F be the set of feasible b, those

satisfying the budget constraint K(b; b̂) ≤ C. Suppose the conclusion does not hold and let
b∗ be the optimum, with W ∗ = W (b∗). Then, because by hypothesis the optimum is not at
an extreme point, F contains a line segment L such that b∗ is in the interior of L.8

Now restrict attention to a plane P containing this L and the origin. Note that L is
contained in a convex set

E = {b : W (b) ≤ W ∗}.
The point b∗ is contained in the interior of L; thus b∗ is in the interior of E. On the other
hand, b∗ must be on the (elliptical) boundary of E because U is strictly increasing in each
component (by irreducibility of the network) and continuous. This is a contradiction. �

We now characterize the optimal target for the case of strategic complements, i.e., β > 0.
Remark OA2 explains how to extend the analysis for the case of strategic substitutes.

In the case of strategic complements, it is clear that the planner uses all the budget C to
increase the standalone marginal benefit of i∗, i.e., b∗i = b̂i + C; reducing someone’s effort

can never help. Thus, the planner changes the status quo b̂ into b = b̂+C1i∗ where 1i∗ is a
vector of 0 except for entry i∗ that takes value 1. Let a(1i) be the Nash equilibrium when
all individuals have bj = 0 and bi = 1, i.e., a(1i) = [I − βG]−11i. It is easy to verify that
the solution to problem IT-Linear Cost is:

i∗ = argmax
i

{
a(b̂ + C1i)

Ta(b̂ + C1i)− a(b̂)Ta(b̂)
}
.

This is equivalent to

i∗ = argmax
i

{
C‖a(1i)‖

[
2‖a(b̂)‖ρ(a(1i),a(b̂)) + C‖a(1i)‖

]}
. (OA-3)

where recall that ρ(a(1i),a(b̂)) is the cosine similarity between vectors a(1i) and a(b̂). There
are two characteristics of a player that determines whether the player is a good target.

The first characteristic is ‖a(1i)‖. This is the square root of the aggregate equilibrium
utility in the game with b = 1i, i.e., the squared root of a(1i)

Ta(1i). So, a player with a high
‖a(1i)‖ is a player who induces a large welfare in the game in which he is the only player with
positive standalone marginal benefit. We call this the welfare centrality of an individual. It is
convenient to express the welfare centrality of individual i in terms of principal components
of G. Note that

‖a(1i)‖ = ‖a(1i)‖ =

√∑

`

α`(u`i)
2.

Recall that under strategic complement α1 > α2 > .. > αn and so an individual with a high
welfare centrality is one that is highly represented in the main principal components of the
network.

The second factor is ρ(a(1i),a(b̂)). This measures the vector similarity between (i) the
equilibrium action profile in the game with b = 1i; and (ii) the status quo equilibrium action

profile. A player with a large ρ(a(1i),a(b̂)) is a player that, in the game in which he is the

8Formally, for some z > 0 there is a linear map ϕ : [−z, z]→ F such that ϕ(0) = b∗.
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only player with positive standalone marginal benefit, leads a distribution of effort similar
to the distribution of effort in the status quo.
Small C. Suppose C ≈ 0. Then the optimal target is selected based on the first term of
expression (OA-3); that is:

i∗ = argmax
i
‖a(1i)‖ρ(a(1i),a(b̂))

For small budgets, the optimal intervention focuses on the player who has a large welfare
centrality and that, at the same time, leads to a distribution of effort not too different from
the status quo equilibrium effort.
Large C: For C sufficiently large, the last term of expression (OA-3) dominates and therefore
the player that is targeted is the player with the highest welfare centrality.

Remark OA2 (Extension to the case of strategic substitutes). In the case of strategic

substitutes, we know for the targeted player i∗, b∗i∗ = b̂i ± C, but we cannot say, a priori,
which (positive or negative), and indeed it is easy to provide examples that both can happen.
Under this qualification, the analysis developed for the case of strategic complements extends

OA3.4. Intervention through monetary incentives. In the basic model presented in
Section 2, an intervention alters incentives for individual action through a direct change
in marginal benefits/marginal costs. The convexity in the cost of changing these marginal
benefits plays a key role in the analysis. In this section we provide a demonstration of how
our approach can be applied beyond this cost setting. We do this by using our methods to
solve the problem of offering monetary incentives to individuals for choosing between two
actions.

Let us reinterpret a node i as a population; thusN = {1, 2, . . . , n} is the set of populations.
Within population i, there is a continuum of individuals distributed uniformly in I = [0, τ ].
Each individual in population i chooses whether to take action 1 or to take action 0. A
strategy of an individual in population i is a function qi : [0, τ ] → [0, 1] that describes the
probability that an individual of type τi ∈ [0, τ ] chooses action 1. Without loss of generality,
we focus on equilibria in which all the players within a population have the same strategy.

The payoff to an individual who chooses action 0 is normalized to 0. If individual τi
takes action 1, then he incurs a cost τi and gets a benefit that depends on his population’s
standalone marginal benefit of action 1, bi, and the number of other individuals he meets
who have also taken action 1. We assume that the interaction between populations takes the
form of random matching, with the following specification: An individual τi in population
i meets someone from population j with probability gij, and, within population j, τi meets
an individual selected uniformly at random. Suppose τi meets type τj, and let qj be the
strategy of individuals in population j. Then individual τi’s payoff for the interaction with
the random partner τj is

β̃qj(τj) + bi − τi.
In this expression, β̃qj(τj) represents the payoffs from interacting with peers that have also
taken action 1.

First, we show that the conditions for an equilibrium are isomorphic to those of the games
we studied in Section 3.1. It is immediate to see that the best reply of each individual in
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population i is a cutoff strategy: there exists a cutoff ai ∈ I so that q(τi) = 1 for all τi ≤ ai
and q(τi) = 0 otherwise. The equilibrium condition for these cutoffs is that, for all i ∈ N ,

β̃
∑

j

gijP [τj ≤ a∗j ] + bi − a∗i = 0 ⇐⇒ ai = bi +
β̃

τ

∑

j

gija
∗
j .

Denoting by β = β̃/τ , the equilibrium threshold profile a∗ solves

[I − βG]a∗ = b.

The equilibrium expected payoff to group i is:

Ui(a
∗, b) =

∫ a∗i

0

(
β
∑

j

gija
∗
j + bi − τi

)
dτi

=

∫ a∗i

0

(a∗i − τi) dτi =
1

2
a∗2i ,

where the second equality follows by using the best response of each population. So aggregate
equilibrium utility is

W (b,G) =
1

2
(a∗)T a∗.

Suppose the planner, before the players choose their action, commits to the a subsidy
scheme. The subsidy scheme depends on realized actions, which are taken after the scheme
is announced. More precisely, the planner selects a vector y ∈ Rn and offers the following
scheme:
Subsidizing action 1. If yi > 0 then the planner gives a subsidy of s1i (τi) = τi− [ai(y)−yi]
to all population i’s types τi ∈ [ai(y)− yi, ai(y)] who take action 1.
Subsidizing action 0. If yi < 0 then the planner gives a subsidy of s0i (τi) = [ai(y)+|yi|]−τi
to all τi ∈ [ai(y), ai(y) + |yi|] who do not adopt the new technology (take action 0).

We make three observations. First, under intervention y the profile of thresholds a(y) is
a Nash equilibrium. Furthermore, the planner does not waste resources in the sense that
she uses the minimum amount of resources to implement a(y). To see this note that, by
construction, the planner provides monetary payments to take action 1 or to take action 0
only to types who need such transfers to satisfy their incentive compatibility constraint. The
monetary payments make these incentive compatible constrains just bind. Finally, let 1yi>0

be an indicator function that takes value 1 if yi > 0 and 0 otherwise, then note that the cost
of intervention y is

K(y) =
1

2

∑

i

1yi>0

∫ ai(y)

ai(y)−yi
s1i (τi)dτi +

∑

i

(1− 1yi>0)

∫ ai(y)+|yi|

ai(y)

s0i (τi)dτi

=
1

2

∑

i

y2i

We then consider a planner who intervenes in the system. The planner has complete
information about the type of each individual in each population and can subsidize types to
take action 1 or to take action 0, in a perfectly targeted manner. In doing this, the planner
effectively shifts the bi of some individuals in some populations. The cheapest individuals
to influence are those who are close to being indifferent between the two actions, so that
they do not need to be paid very much to change their behavior. Indeed, the payment
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to an individual is proportional to his distance x from the marginal type in equilibrium:
Integrating across all the individuals whose actions are changed gives

∫ yi
0
x dx, a cost that

is quadratic in the magnitude of the change. The intervention problem turns out to be
mathematically equivalent to (IT), and so all our results apply.

We can now define the intervention problem of the planner as follows. Starting from the
status quo b̂, the planner chooses intervention y to maximize aggregate equilibrium utility
under the constraint that individuals play according to equilibrium and that the cost of the
intervention cannot exceed C. Formally,

max
y∈Rn

1

2
aTa (IT-P)

s.t. [I − βG]a = b̂ + y,

K(y) =
1

2

∑

i

y2i ≤ C,

Intervention problem (IT-P) is equivalent to the intervention problem (IT) defined in
Section 2.

Note that the specific payoff functions we have taken here make the problem isomorphic
to the setting of Example 1, but by suitably modifying the payoffs, we could capture more
general externalities, along the lines of Online Appendix Section OA3.1.

We focus throughout on maximizing aggregate utility, but we note that the results have
applications to other kinds of objectives, such as implementing Pareto improvements. In
some cases, interventions will make everyone better off without modification, when positive
externalities are strong enough to overcome any negative welfare impacts. However, even
when this is not the case, the planner may be able to achieve Pareto improvements. For
example, consider a planner who is able to make lump sum transfers – e.g., award or take
away discretionary compensation – in addition to any targeted incentives or contingent
payments. In such cases, if an improvement in aggregate utility is possible, then the planner
can use such transfers to compensate individuals (for instance, those harmed by negative
externalities), and achieve a Pareto improvement. In the setting discussed in this subsection,
combining lump-sum and action-contingent transfers would then implement a range of Pareto
improvements. Even beyond the monetary-incentives setting under consideration here, lump
sum transfers may be available to the planner in addition to whatever incentive-targeting
scheme is being used, and in such a setting our comments here would apply also.
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