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ABSTRACT 25 

All components of the CNS are surrounded by a diffuse extracellular matrix (ECM) containing 26 

chondroitin sulphate proteoglycans (CSPGs), heparan sulphate proteoglycans (HSPGs), hyaluronan, 27 

various glycoproteins including tenascins and thrombospondin, and many other molecules that 28 

are secreted into the ECM and bind to ECM components. In addition, some neurons, particularly 29 

inhibitory GABAergic parvalbumin-positive (PV) interneurons, are surrounded by a more 30 

condensed cartilage-like ECM called perineuronal nets (PNNs). PNNs surround the soma and 31 

proximal dendrites as net-like structures that surround the synapses. Attention has focused on the 32 

role of PNNs in the control of plasticity, but it is now clear that PNNs also play an important part in 33 

the modulation of memory. In this review we summarize the role of the ECM, particularly the 34 

PNNs, in the control of various types of memory and their participation in memory pathology. 35 

PNNs are now being considered as a target for the treatment of impaired memory. There are 36 

many potential treatment targets in PNNs, mainly through modulation of the sulphation, binding, 37 

and production of the various CSPGs that they contain or through digestion of their sulphated 38 

glycosaminoglycans.  39 

 40 

INTRODUCTION 41 

All components of the CNS are surrounded by a diffuse extracellular matrix (ECM) containing 42 

chondroitin sulphate proteoglycans (CSPGs), heparan sulphate proteoglycans (HSPGs), hyaluronan, 43 

various glycoproteins including tenascins and thrombospondin, and many other molecules that are 44 

secreted into the ECM and bind to ECM components. In addition, some neurons, particularly 45 

inhibitory GABAergic parvalbumin-positive (PV) interneurons, are surrounded by a more condensed 46 

cartilage-like ECM called perineuronal nets (PNNs). PNNs surround the soma and proximal dendrites 47 

as net-like structures that surround the synapses. Attention has focused on the role of PNNs in the 48 

control of plasticity, but it is now clear that PNNs also play an important part in the modulation of 49 

memory. In this review we summarize the role of the ECM, particularly the PNNs, in the control of 50 

various types of memory and their participation in memory pathology. PNNs are now being 51 

considered as a target for the treatment of impaired memory.  There are many potential treatment 52 

targets in PNNs, mainly through modulation of the sulphation, binding, and production of the 53 

various CSPGs that they contain or through digestion of their sulphated glycosaminoglycans. 1 54 

 55 

EXTRACELLULAR MATRIX BIOLOGY 56 

Extracellular matrix  57 
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Extracellular matrix (ECM) refers to a collection of extracellular molecules that provides physical and 58 

biochemical support to cells. Studies on the ECM mainly focus on the intricate network of ECM formed 59 

by macromolecular assembly. The ECM in the central nervous system (CNS) is mainly composed of 60 

proteoglycans, glycosaminoglycans (GAGs) and glycoproteins such as tenascins and thrombospondin 61 

that interact with them 2. Diffusion of molecules such as neurotransmitters, ions, guidance molecules, 62 

and metabolites are tightly regulated by this network.  63 

 64 

Proteoglycans are a family of large ECM molecules whose basic structure comprises linear GAG chains 65 

covalently attached to a core protein. There are five types of GAGs, chondroitin sulphates (CS), 66 

heparan sulphates (HS), keratan sulphates, dermatan sulphates, and hyaluronan 3, 4. Chondroitin 67 

sulphate proteoglycans (CSPGs) and heparan sulphate proteoglycans are the key proteoglycans in CNS 68 

function3. Research in the last three decades has elucidated the inhibitory functions of CSPGs in 69 

neurite extension, path-finding, plasticity and neural regeneration 5-9. CSPG function is strongly 70 

influenced by the pattern of sulphation of the GAG chains, with 4-sulphated GAGs being inhibitory and 71 

6-sulphated GAGs being permissive to axon growth and plasticity 10. Synthesis of GAGs and their 72 

sulfation occurs in the Golgi, sulfation being determined by the activity of sulfotransferases that 73 

sulphate CS and HS chains in various positions on the constituent disaccharides 11. In addition to 74 

being a key inhibitory molecule in the diffuse ECM, CSPGs around some classes of neurons also interact 75 

with other brain ECM molecules, self-assembling into aggregate structures called perineuronal nets 76 

(PNNs) 12-14.  The lectican family of CSPGs (also called aggrecan-family CSPGs) are found within PNNs, 77 

including aggrecan, brevican, neurocan, and versican 1. 78 

 79 

While diffuse CNS ECM surrounds all structures in the CNS, perineuronal nets (PNNs) with a cartilage-80 

like structure surround some classes of neurons. PNNs are reticular CSPG-containing ECM structures 81 

surrounding the soma and proximal dendrites of a subpopulation of CNS neurons and important for 82 

controlling neuroplasticity 1, 13. Hyaluronan is synthesized by the transmembrane enzyme 83 

hyaluronan synthase (HAS), which anchors the nascent hyaluronan chains to the neuronal surface 84 

15 together with ankyrin-R 16 and RPTPzeta/phosphacan 17. The long hyaluronan chains provide a 85 

scaffold for the assembly of CSPGs, hyaluronan, hyaluronin and proteoglycan link proteins (Hapln), 86 

and tenascins 15, 18. While binding of the N-terminal of CSPG to hyaluronan chains is stabilised by Hapln, 87 

the C-terminals of three CSPG molecules will link with the trimeric tenascin-R 19-21. These interactions 88 

enable the formation of a stable PNN. However, the diffuse ECM also affects neuronal activity. 89 

Hyaluronan is a regulator of extracellular volume, and hyaluronan deficiency causes altered 90 

neuronal activity and seizures 22. 91 
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 92 

PNN components and their interactions with other ECM molecules such as OTX2, neuronal pentraxin 93 

2 (Nptx2, also called Narp) and semaphorin3A (Sema3A), contribute to the functions of PNNs in 94 

neuroplasticity 23-27. While OTX2 and Sema3A bind to 4,6 disulphated GAGs in the PNNs 23, 28, Nptx2 95 

binds to both 4,6 sulphated GAGs and HA 29. The soluble transcription factor OTX2 binds to PNNs and 96 

is internalised, leading to maturation of PV neurons and maintenance of PNNs in adulthood 23, 26. Nptx2 97 

is an activity-regulated protein that interacts with the extracellular domain of AMPA receptors to 98 

facilitate receptor clustering and insertion of GluR4 on the postsynaptic membrane of neurons, 99 

strengthening synaptic communication 24. Removal of CS by chondroitinase ABC (ChABC) abolishes 100 

these effects of Nptx2. Sema3A is a chemorepulsive molecule, and prevention of its binding to PNNs 101 

reinstates ocular dominance and cerebellar plasticity in adult mice 30, 31. Moreover, a recent study has 102 

also shown that Sema3A binding to CS GAGs induces rigidification of the CS matrix, which may alter 103 

the mechanical properties of PNNs and ultimately affect neuroplasticity 32. Proteoglycans also exert 104 

effects through binding to a cell surface phosphatase, protein tyrosine phosphatase sigma (PTPσ), 105 

which can exert inhibitory effects from CSPGs and permissive effects from HSPGs 33. 106 

 107 

ECM and synapses 108 

The substrate of memory is synaptic strength and connectivity. All synapses are embedded in ECM, 109 

either the general interstitial ECM found throughout the CNS or the specialized ECM of PNNs, where 110 

they can interact with CSPGs, HSPGs, tenascin-C, tenascin-R, thrombospondin, and laminins (Figure 111 

1). These molecules in turn bind and present other active molecules to neurons. Synaptic ECM 112 

molecules also interact directly with receptors and ion channels, modulating their migration and 113 

properties 34, 35. The most-studied ECM molecules that affect synapses and memory are CSPGs. The 114 

ECM can be modified rapidly by the release of proteases 36, by microglial action and by 115 

internalization, all of which can be activated by memory events 37-39.  116 

 117 

Experimentally, much of our knowledge of the effects of CSPGs and PNNs stems from their 118 

modification by digestion of the GAG chains using ChABC. At postsynaptic sites, ChABC enhances 119 

dendritic spine number and motility, while presynaptic terminals tend to show enhanced sprouting 120 

and synapse numbers 40-42. In the perirhinal cortex and hippocampus, ChABC digestion increases 121 

inhibitory inputs to PV interneurons 43-45 while in the entorhinal cortex, ChABC reduces inhibitory 122 

inputs, and in V1 visual cortex, ChABC decreases both excitatory and inhibitory inputs to PV 123 

interneurons 46, 47. The deep cerebellar nucleus, where PNNs surround most neurons, has been a 124 
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fertile region for PNN research: Purkinje cell terminals sprout after ChABC digestion 48, and in the 125 

frontal cortex, the number of inhibitory connections to pyramidal cells is decreased 49.  Digestion of 126 

HA with hyaluronidase modulates synaptic function by increasing AMPA receptor mobility (reviewed 127 

in 50 and surface expression of NMDA receptors 35, 51. PNN function can be modulated by removing 128 

individual components. Deletion of link proteins leads to fewer Purkinje synapses, decreases 129 

inhibitory transmission in the deep cerebellar nucleus 52,  and facilitates long-term depression in the 130 

perirhinal cortex 53. Manipulation of individual CSPG proteins can also affect synapses and synaptic 131 

function 34, 54. A relevant function of CSPGs in PNNs is to present semaphorins to synapses; absence 132 

of semaphorin 4C (sema4C) prevents the increase in spine number during fear learning 55, 56. 133 

Moreover, knockout mice deficient in PNN component tenascin-R have abnormal synapse formation 134 

and synaptic plasticity after injury 54, 57. An important mechanism of plasticity is modification of the 135 

CNS ECM by activity-related release of metalloproteinases, which can cause rapid changes in PNNs 136 

in region of synapses, enabling local changes in synaptic properties 38, 58.  137 

 138 

Electrophysiological effects 139 

Digestion or transgenic attenuation of PNNs has various effects on electrophysiological properties 140 

that are dependent on brain region and type of PNN manipulation 59. Most studies in the 141 

hippocampal CA1 region show that PNN degradation or attenuation decreases long-term 142 

potentiation (LTP). 60-65. Similarly, LTP is also affected by CSPG sulphation, with loss of 6-sulphation 143 

causing loss of LTP in the perirhinal cortex and CA1 45. However, the effects of reducing PNNs may be 144 

dependent on the cell type surrounded by PNNs. For example, in the CA2, an area associated with 145 

social memory and which usually does not exhibit LTP, PNN depletion enables LTP 66. Long-term 146 

depression (LTD) is also altered after PNN degradation, with both increases 67 and decreases 53, 60 147 

reported. However, in general, there is an overall increase in network activity when PNNs are 148 

depleted or attenuated 53, 59, 68, possibly due to an overall reduction in inhibitory activity. In line with 149 

this, digestion of CSPGs in the primary visual cortex in rats or deletion of aggrecan in mice decreases 150 

inhibitory activity, causing the network to revert to an immature juvenile state and an increased 151 

level of activity-dependent plasticity 47, 69. Enhanced learning of eyeblink conditioning is also 152 

observed after ChABC digestion in the deep cerebellar nucleus, although here it is induced by 153 

increased GABAergic transmission 31, 70. 154 

  155 

The variable effects of PNN attenuation could be related to cell-specific expression patterns of PNNs. 156 

While PNNs predominantly enwrap PV inhibitory neurons in most brain areas, they surround 157 
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excitatory neurons in the CA266, 71. Moreover, individual CSPGs have distinctive effects that may also 158 

contribute to the large variation in effects of PNN depletion. For example, brevican affects mainly 159 

excitatory synapses, regulating both AMPA receptors and potassium channels and the speed and 160 

duration of synaptic potentials, leading to impaired hippocampal LTP observed in brevican knockout 161 

animals 34, 65, 72. In contrast, aggrecan affects inhibitory synapses on PV interneurons (Ruzicka 162 

unpublished observations), and mice deficient in neurocan showed impaired hippocampal LTP 64. 163 

Tenascin-R deficient mice also have a disrupted PNN structure, impaired LTP in the hippocampus 63, 164 

and show reduced active zones in inhibitory synapses 73. Lastly, animals deficient in tenascin-C show 165 

impaired L-type calcium channel dependent LTP 74. 166 

 167 

Types of memory and memory models 168 

Associative learning 169 

To examine PNN function in associative memories, we focus on fear conditioning and eyeblink 170 

conditioning, two well-studied phenomena (see 75 for review). Fear and eyeblink memory are similar 171 

in that a conditioned stimulus (usually a tone, visual cue or context) is linked to an unconditioned 172 

stimulus; electric shock in the case of fear memory, a puff of air to the cornea for eyeblink memory. 173 

After a training period during which both stimuli are given simultaneously, the conditioned stimulus 174 

alone will cause animals to freeze (fear memory) or blink their eyes. The neural pathways differ, but 175 

both involve the auditory or visual pathways. Other forms of conditioning, such as that associated 176 

with drugs of abuse, are also discussed below.  177 

 178 

Eyeblink conditioning 179 

Delayed eyeblink conditioning is a type of associative conditioning that requires neurons in the deep 180 

cerebellar nuclei (DCN) 76, many of which are surrounded by PNNs 77. The acquisition of eyeblink 181 

conditioning reduces the intensity of PNNs in the DCN, whereas longer training (to plateau levels) 182 

restabilizes PNN intensity 31. Injection of ChABC 70 or viral vector-containing ChABC to provide long-183 

term depletion of PNNs increases acquisition of eyeblink conditioning 31 but slightly decreases 184 

retention of this response when tested about three weeks later. This is consistent with reduced 185 

firing of these neurons, an increased number of inhibitory terminals and reduced excitatory 186 

terminals31, and greater inhibition of DCN neurons 70. The increased acquisition is in contrast to 187 

another study 78 that showed a reduced conditioned response and no change during extinction. The 188 

differences between studies may be due to differences in species, strength of the unconditioned 189 

stimulus, or the method of ChABC delivery. Sema3A is associated with PNNs around Purkinje cell 190 
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terminals and may influence remodelling of synapses and in turn the impact of ChABC on eyeblink 191 

conditioning 56(Figure 2A). 192 

 193 

Fear conditioning  194 

Fear conditioning is often used as a model for posttraumatic stress disorder (PTSD), a psychiatric 195 

disorder characterized by hyperarousal, intrusive memories of traumatic events, and avoidance of 196 

reminders of those events 79. While many studies focus on the basolateral amygdala (BLA), cortical 197 

regions  also process threats associated with anxiety 80. Studies in rodent models have focused on 198 

fear conditioning because PTSD in humans is believed to arise from abnormal activation of fear 199 

circuitry 81.  Fear memory was the first type of memory to be linked to PNNs and the ECM.  Gogolla 200 

et al.  82 showed that PNN removal in the BLA in adult mice allowed for a subsequent extinction 201 

training to diminish expression of fear, similar to what occurs in juvenile mice prior to PNN 202 

development (Figure 2A). 203 

 204 

Since then, other studies have shown that PNN degradation in the hippocampus, medial prefrontal 205 

cortex  (mPFC), anterior cingulate cortex, BLA, or auditory cortex impairs the expression of fear 206 

conditioning 62, 83-85. The effectiveness of ChABC implicates CSPGs, but digestion of hyaluronan also 207 

reduces fear memory retrieval 61. Fear conditioning increases PNNs or mRNA encoding PNN 208 

components in the auditory cortex 84, hippocampus, and anterior cingulate cortex 62,  and activates 209 

PNN-surrounded neurons 86. PTPσ associates with PNNs and restricts plasticity by signalling 210 

through the receptor for brain-derived neurotrophic factor, TrKB 87, 88.  Sema4C, which also 211 

associates with PNNs (see above), is increased in the hippocampus and ACC following fear 212 

conditioning, and sema4C knockout mice show deficits in conditioned fear memory recall 55.  213 

 214 

The formation and recall of fear memories and other associative memories involve many connected 215 

brain areas and need to be considered in the context of precisely timed brain oscillations 216 

synchronizing neural activity within and across brain regions. PV neurons are essential for these 217 

oscillations, and the impact of PNNs on learning and recall is likely to be tightly linked to their 218 

influence on the PV neuron network 89-92. For instance, coherence (phase alignment) between theta 219 

oscillations in the secondary visual cortex (V2) and the BLA is necessary for successful recall of 220 

remote fear memories 93, 94 . Attenuation of PNNs in V2 weeks after training reduces theta coherency 221 

between BLA and V2 and prevents recall of a remote fear memory 94. Moreover, Shi et al. 62 found 222 

that the increased theta power in the hippocampus and anterior cingulate cortex during fear 223 
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conditioning is prevented by ChABC treatment, while overexpression of the PNN protein hapln1 224 

increases theta power.  225 

 226 

Spontaneous object recognition memory 227 

 The spontaneous novel object recognition (SOR) memory task measures discrimination between a  228 

novel and a familiar object presented at the same time. Novelty detection is an innate rodent 229 

behaviour that can be impaired during ageing or neurodegeneration 53, 95, 96. The test is usually 230 

performed in a Y-maze, in which two test objects are placed in the Y arms. The times during which 231 

animals interact with the objects through whisking and smelling are measured; animals spend more 232 

time with objects that they perceive as novel. A variation is object-place memory testing in which 233 

objects are moved within a test arena, and animals recognize objects that have been moved to a 234 

new position. The brain regions that participate in the behaviour have been identified based on 235 

early gene c-Fos and Arc expression and lesion studies. For the Y-maze SOR test, a key brain area is 236 

the perirhinal cortex and the neighbouring visual association area TE: animals with lesions in these 237 

areas have impaired SOR 97.  Variations of the task where animals actively explore and dissociate the 238 

objects also involve the CA1 and CA3 areas of hippocampus whose rhythms are synchronised during 239 

generation of SOR memory 98, 99. Object-place memory is primarily associated with the hippocampus, 240 

and may be preserved after perirhinal lesions 99. Increased activity occurs in several regions during 241 

task performance, including the CA1 and CA3, perirhinal cortex, insular cortex, and medial PFC 98, 100. 242 

Both hippocampus and perirhinal cortex are rich in PV interneurons enwrapped with PNNs, and 243 

PNNs are also present on some hippocampal pyramidal neurons 46 101, 102. Genetic or enzymatic 244 

attenuation of PNNs can increase synaptic transmission and facilitate long-term depression (LTD) in 245 

the perirhinal cortex 53 or CA1 region 67, and this correlates with enhanced recognition memory. 246 

Similarly, disaggregation of PNNs by genetic deletion of aggrecan shifts the population of PV 247 

inhibitory interneurons toward a juvenile-like plasticity state, accompanied by increased 248 

performance in the SOR memory task 69. Another component of PNNs - brevican - regulates the 249 

localization of potassium channels and AMPA receptors on PV interneurons, and intact brevican is 250 

required for short-term, but not long-term SOR memories 34 (Figure 2B). 251 

 252 

Spatial memory 253 

Spatial memory is a form of episodic memory that depends on a distributed network of brain areas 254 

including the hippocampus, parahippocampal areas, and connected areas. The rich diversity of 255 

spatially modulated neurons in these areas - including place cells of the hippocampus 103 and grid 256 
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cells  104, 105 of the medial entorhinal cortex as well as neurons estimating the distance to an object 106 257 

or speed of the animal’s movement 107  - represent a rare window into neural correlates of complex 258 

behaviours and memories. Flexible spatial learning requires both dorsal and ventral hippocampus 259 

together with their connection to the mPFC 108, with the medial entorhinal cortex necessary for place 260 

navigation using a global reference frame 109.  261 

 262 

The complexity of behaviours and the many brain regions involved makes it difficult to dissociate 263 

contributing elements. Nevertheless, regulation of PNNs and proper excitatory/inhibitory balance of 264 

these brain areas seem to be essential for spatial memory processing.  Overexpression of ECM/PNNs 265 

in the CA1 area of hippocampus, either due to dysregulation of NPY-Y1 receptor signalling 110, 266 

targeted deletion of hyaluronan binding protein that mediates hyaluronan depolymerization (HYBID) 267 

111, or defeat-induced persistent stress 112, leads to decreased spine density and deficits in spatial 268 

learning. In contrast, digestion of hippocampal PNNs with ChABC promotes re-learning of a once-269 

trained Morris water maze task (Ruzicka et al., 2021, unpublished results). Similarly, significantly 270 

enhanced working memory and reversal learning in the Morris water maze task is found in TNR -/-  271 

global knockout mice 113(Figure 2C). However, degradation of PNNs in medial entorhinal cortex, 272 

where PV positive neurons are enwrapped in particularly dense PNNs, destabilizes the grid cell 273 

networks leading to impaired representations of new environments 46. The new representations also 274 

interfere with the map of familiar places. Following PNN removal in entorhinal cortex there are  275 

distorted spatial representations in downstream hippocampal neurons (Figure 2C) 46. This suggests 276 

that PNNs contribute to ensure a rigid grid cell network, which is essential for new representations 277 

to form, and that the heightened network plasticity caused by PNN removal interferes with stored 278 

spatial representations and perhaps memories. 279 

 280 

The mPFC has an integrative role in object, place and time information 114, 115 as well as reward-281 

regulated mechanisms of spatial learning 116, 117.  A robust approach to test the role of mPFC for 282 

spatial working memory is the mPFC-dependent trial-unique nonmatching-to-location assay (TUNL) 283 

task, a hippocampus-dependent automated test of location memory 118. Infusion of ChABC into the 284 

mPFC improves performance on the touchscreen TUNL task 119(Figure 2D). 285 

 286 

Social memory 287 

Social memory is explored using several experimental approaches. The basic principle is based on 288 

the propensity of rodents to investigate an unfamiliar subject more thoroughly than a familiar one.  289 
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Commonly used is the habituation/dishabituation test, in which the animal repetitively explores the 290 

same subject animal with a time delay between explorations 120. Another variant is the social 291 

discrimination paradigm 121, which has an initial exploration phase, but in the second phase, both 292 

familiar and novel subjects are presented at the same time. The task, usually performed in a three-293 

chamber maze, shows high sensitivity for measuring social recognition in rodents 120, 122.  294 

 295 

Social recognition memory is probably consolidated through the activation of cAMP response 296 

element-binding protein (CREB)-mediated gene expression in the hippocampus, mPFC, anterior 297 

cingulate cortex, and amygdala 123, 124. Whereas the mPFC, anterior cingulate cortex, and amygdala 298 

are needed for coordination of brain activity during social interaction, the hippocampus serves as 299 

one of the mediators of social recognition memory 'and as a connection hub between the various 300 

brain areas 123, 125. The dorsal CA2 is the key centre for encoding, consolidation and recall phases of 301 

social memory 125-128. CA2 also participates in social novelty discrimination 128 and modulates social 302 

aggression 129. All the social memory associated regions are highly populated with PNN-surrounded 303 

PV neurons 46, 66, 130, 131. Unusually in CA2 and the basolateral amygdala, PNNs are found around 304 

many excitatory pyramidal cells 47, 66, and calbindin-positive inhibitory interneurons 130. PNNs play a 305 

distinct role in social memory, since mice with deficient social memory (BTBR mice) have atypical 306 

PNNs, and their degradation can partially restore social memory 132. PNNs are usually associated 307 

with restriction of synaptic plasticity on inhibitory PV neurons, but in CA2, the PNNs also suppress 308 

LTP in excitatory synapses on pyramidal neurons 66. However, PNNs in CA2 can also be permissive for 309 

inhibitory LTD (iLTD) in CA2, through maturation of PNNs and ErbB4 signalling at PV synapses 133. 310 

This appears at the end of adolescence and correlates with social memory maturation. PNN 311 

degradation, in contrast, impairs social memory as well as iLTD induction 133, 134. PNNs in CA2 are also 312 

upregulated during early postnatal exposure to an enriched environment, which opens the 313 

possibility of an early critical period synaptic plasticity in hippocampus 66(Figure 2E).  314 

 315 

Auditory plasticity/memory 316 

The auditory pathway has tonotopic maps in the cortex and inferior colliculus that become refined 317 

during the critical periods for plasticity. As in other topographically arranged projections, PNNs 318 

contribute to the closure of these critical periods, with auditory experience and the diffusible 319 

transcription factor OTX2 which is a key factor in the initiation of PNN formation  135-137. The timing 320 

of this transition at 3.5 years in deaf children is important for successful cochlear implants 138. 321 

Learning of song in birds occurs either once or seasonally when PNNs are downregulated, and song 322 
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is crystallized when PNNs appear 139. In adult mammalian life, auditory learning is limited, but cortex-323 

dependent auditory relearning regains the agility of the juvenile state after ECM digestion 140(Figure 324 

2F). In the auditory cortex, the levels of brevican, which surrounds synapses in PNNs, changes over 325 

the course of auditory learning, with an initial decrease followed by a transient increase during 326 

consolidation  141. Location of sounds is achieved in part by comparison of the timing of signals from 327 

each ear through the cochlear nucleus via the medial nucleus of the trapezoid body and lateral 328 

superior olive. In the trapezoid body there are massive synapses onto the principal cells called the 329 

Calyx of Held. These are specialized for very rapid and reliable transmission, and learning sound 330 

location requires these synapses. The CSPG brevican is enriched in the perisynaptic space of the 331 

Calyx, and knockout of brevican slows pre-to-postsynaptic action potential transmission  and 332 

prolongs pre- and postsynaptic potentials 72.  333 

 334 

The above-mentioned experiments describe the effects of attenuating PNNs, either naturally (as 335 

occurs during learning), by enzymatic degradation of PNNs, or by genetic disruption of PNN 336 

components, and suggest that PNNs may act as a brake on adult brain plasticity and perhaps 337 

learning and memory performance. It is important to note that abolishing PNNs by enzymatic 338 

approaches may not reflect processes occurring under physiological conditions in the brain. Rather, 339 

another suggestion is that learning induces slight changes to the ECM composition, either via 340 

incorporation of specific CSPGs 136, 142 , metalloproteinase activity 143, or recycling of PNN 341 

components 144. We are far from understanding the full complexity of this system. The outstanding 342 

richness and complexity of the ECM landscape, its components, and evolutionarily conserved 343 

endogenous regulators point to a fine-tuned regulation contributing to the brain’s ability to adapt 344 

and respond to a changing environment.  345 

 346 

EXTRACELLULAR MATRIX AND MEMORY PATHOLOGY 347 

Stress 348 

Several studies have examined how acute and chronic stress exposures not involving fear 349 

conditioning influence PNNs. Spijker et al. 145 provide an excellent review on the impact of stress on 350 

PNNs. Although there are exceptions, in general, early life/adolescent stress reduces PNNs when 351 

examined early after stress, while these changes disappear or increases are found weeks after 352 

discontinuing stress. For example, decreases in PNNs around PV neurons are found in the 353 

hippocampus after chronic mild stress or maternal separation during adolescence, but an increase is 354 

observed several weeks post-stress 146-148.  In addition to time-dependent effects of stress, sex- and 355 
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hemispheric-dependent differences have also been identified: early life chronic stress in rodents 356 

during postnatal days 1-10 increases BLA PNNs in males but not in females and show a hemispheric 357 

specificity 149. In adults, often no changes or increases are found after discontinuing stress. For 358 

example, chronic stress increases PNN numbers in the mPFC and habenula 150. Social defeat stress 359 

combined with social isolation for 2 months (producing a depression-like phenotype) increases the 360 

number of PNNs around PV neurons and PNN components in the dorsal hippocampus. Moreover, 361 

removal of PNNs with ChABC restores impaired memory and electrophysiological changes induced 362 

by this stress 112. Consistent with the longer-term effects of stress on PNNs, another study on social 363 

defeat stress in young rodents showed biphasic effects, with decreases in PNN-enwrapped PV 364 

neurons and PNN components in the CA1 early after stress exposure but increases 2 months after 365 

stress exposure 151 (Figure 3A). Overall, both early life and adult stress produce brain region-366 

dependent changes in PNNs. The decreases in the intensity or number of PNNs found after early 367 

stress may reduce PV neuron activity or function, leading to enhanced output from brain regions 368 

such as the BLA that mediate fear responses 152. 369 

 370 

Drugs of Abuse  371 

Several studies have shown that drugs of abuse can either decrease or increase PNNs (see 153 for 372 

review). Several classes of drugs, including ethanol, nicotine, cocaine, and heroin, alter the intensity 373 

or number of PNNs in various brain regions, including the mPFC 154, 155, anterior cingulate cortex 131, 374 

orbitofrontal cortex 156, barrel cortex 157, insula 158, hypothalamus 159, 160, ventral tegmental area 156, 375 

and cerebellum 161-164. Several examples of opposing direction of changes in PNNs are the following. 376 

1) Acute vs. repeated cocaine injections produce opposite responses in PNN intensity in the mPFC 377 

154. 2) Extended exposure to cocaine self-administration increases PNN intensity in the cerebellum 378 

over abstinence time 162.  3) Long-term abstinence times (2-3 weeks) or extinction from heroin self-379 

administration reduces PNN components in the mPFC and/or nucleus accumbens, but even a short 380 

reinstatement session in these animals reverses PNN increases 165. This latter finding suggests that 381 

the changes can be rapid (within several minutes). Other work examining the effects of cocaine and 382 

heroin self-administration also supports opposing effects of abstinence time on the number of PNNs 383 

in the mPFC (dorsal prelimbic and infralimbic, respectively) 166. In the cerebellum, repeated cocaine 384 

exposures followed by an additional cocaine exposure one week later increase PNN intensity within 385 

DCN neurons 164, whereas similar treatment reduces PNN intensity 1 month later 161. Cocaine 386 

conditioned place preference (CPP) training decreases PNN intensity in DCN neurons but increases 387 

PNN intensity in Golgi neurons, the latter of which is correlated with place preference. A binge 388 

model of alcohol in adolescents increases PNN intensity and PNN components in the orbitofrontal 389 
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cortex in adult mice 167. Extended ethanol drinking in adult mice increases PNN intensity in the 390 

mouse insular cortex after 6 weeks, but not after 1 week of exposure 158. Short-term abstinence from 391 

nicotine self-administration also decreases PNN intensity in the orbitofrontal cortex and ventral 392 

tegmental area a few days after discontinuing exposure 156. Thus, in general, short-term abstinence 393 

reduces PNNs, whereas long-term abstinence increases PNNs. However, as with stress, the changes 394 

are dependent on brain area, drug dose and class, exposure duration, and abstinence time from 395 

drug exposure (Figure 3B).  396 

 397 

Several studies have demonstrated that removal of PNNs with ChABC alters behavioural responses 398 

to drugs. For example, removal of PNNs with ChABC in the mPFC or lateral hypothalamus prior to 399 

training for conditioned place preference (CPP) attenuates acquisition of the CPP memory 117, 159, and 400 

removal after CPP training also attenuates memory reconsolidation 117. Removal of PNNs in the 401 

amygdala after training for morphine, cocaine CPP or heroin self-administration but before 402 

extinction reduces drug-primed reinstatement, but has no impact on reconsolidation, retrieval, or 403 

long-term morphine CPP memory 168. Moreover PNN depletion in the lateral hypothalamus blocks 404 

cue-induced reinstatement in cocaine self-administering rats 160. Depletion of the PNN component 405 

brevican in knockout mice enhances cocaine CPP 3 weeks after training, which is normalized by 406 

overexpressing this protein in the hippocampus prior to CPP training 169. Extended ethanol exposure 407 

increases PNN intensity in the insular cortex, as mentioned, and removing PNNs in this brain region 408 

allows mice to become sensitive to the aversive effects of quinine added to ethanol, suggesting that 409 

increases in PNN intensity may contribute to the plasticity needed for compulsive ethanol seeking 410 

behaviour 170. Interestingly, several of these studies found an effect only for drugs of abuse but not 411 

for non-drug rewards such as sucrose or food (e.g., 160, 166, 170). Thus, the impact of PNN removal 412 

appears to be specific for plasticity induced by the learning/memory aspects of drugs of abuse.  413 

 414 

Overall, stress or drugs of abuse bring about short-term changes in PNN numbers and/or intensity, 415 

while long-term increases in PNN may be related to loss of flexibility induced by subsequent natural 416 

stimuli, as previously considered for chronic exposure to stress 145 or drugs of abuse 171 (Figure 3B). 417 

The time of day PNNs are measured also may be critical due to daily rhythmicity in PNNs172, 173.  PNN 418 

removal may enhance plasticity induced by weak stimuli or prevent metaplasticity induced by strong 419 

stimuli (stress or drugs of abuse). Whether these changes are beneficial or detrimental may depend 420 

on task demands, the neurons surrounded by PNNs (see 86), the circuit that underlies task 421 

completion, and whether there is a need for sustained flexibility vs. stability after learning a 422 

particular task.  423 
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 424 

Ageing 425 

Cognitive impairment and memory loss are common changes in ageing. To maintain normal cognitive 426 

and memory functions in the face of scattered neuronal dysfunction, the nervous system needs a 427 

certain level of neuroplasticity to allow for adjustments in circuitry through changes in synaptic 428 

strength and the formation of new synapses 172.  429 

 430 

Chondroitin sulphates and their sulphation pattern can determine whether or not there is memory 431 

loss in ageing. While chondroitin 4-sulphates (C4S) are inhibitory 5, chondroitin 6-sulphates (C6S) are 432 

more permissive to plasticity and regeneration 174, 175, and the balance between C6S and C4S regulates 433 

neuroplasticity. The sulphation pattern changes in the aged brain, having remained fairly constant 434 

since the end of the juvenile critical periods. Analysis of the PNN CSPGs in the aged rat and mouse 435 

brain showed that C6S almost disappears after 20 months while the level of C4S remains stable 45, 176 436 

(Figure 3C). The effect of removing C6S on memory can be tested in transgenic mice with C6-437 

sulfotransferase knockout, giving very low C6S levels. These animals showed a very early deficit in 438 

object recognition memory and  spontaneous alternation memory as young as 3-months old, similar 439 

to the performance of 20-month old aged mice 45. The importance of C6 sulphation for memory was 440 

confirmed by virus-induced or transgenic expression of C6-sulfotransferase, leading to the restoration 441 

of the C6S level in aged mice and restoring or preventing age-related object recognition memory loss. 442 

As mentioned below in the neurodegenerative disease section, neutralisation of the inhibitory C4S 443 

with anti-C4S antibody restores object memory in a mouse tauopathy model 96. These results indicate 444 

that the ratio of C6S:C4S is key to regulation of memory by PNNs. 445 

 446 

Hyaluronan is another PNN component which demonstrates age-related changes in the brain. Long 447 

chain hyaluronan on the neuronal surface provides binding sites for the lectican family of CSPGs, which 448 

have a hyaluronan binding site, enabling hyaluronan to act as the backbone of the PNN 15. Many 449 

studies show that the functions of hyaluronan depend on chain length. For example, low molecular 450 

weight hyaluronan is pro-inflammatory while high molecular weight hyaluronan is anti-inflammatory 451 

177. Changes in hyaluronan quantity have been reported in different pathological conditions such as 452 

ischemic and traumatic brain injury as well as in ageing 3, 178, 179. A recent biochemical analysis of 453 

hyaluronan recovered from the PNNs in aged brains has shown its degradation into smaller fragments. 454 

This degradation has led to a release of other PNN components such as aggrecan into the soluble ECM 455 

180. Whether these age-related changes in hyaluronan affect memory is yet to be shown (Figure 3C).  456 
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 457 

PNNs in genetic cognitive disorders 458 

Rett syndrome is a neurodevelopmental disorder characterised by normal early development but 459 

then profound regression in cognitive, motor, and social function. It is caused by a loss-of-function 460 

mutation in the gene methyl-CpG–binding protein 2 (MECP2). The condition is associated with larger 461 

denser PNNs around PV interneurons in the cortex and many neurons in hippocampal CA2 (which 462 

mediates social behaviours), possibly due to decreased secretion of the metalloproteinase MMP-9. 463 

The increased PNN density causes loss of LTP in hippocampal neurons, which can be restored by 464 

ChABC digestion. In the cortex there is also an increase in the number and complexity of PNNs 465 

around PV interneurons in a Rett syndrome model, altering cortical excitability 102, 181. Fragile X 466 

syndrome is a heritable condition causing intellectual disability and autism, modelled in mice by 467 

Fmr1 knockout. In these mice, there is a decrease in PNNs and impaired PV interneuron 468 

development in the cortex, hippocampus, amygdala and elsewhere. As well as general disability, 469 

the animals have a loss of tone-associated fear memory. The PNN decrease is associated with 470 

increased production of MMP-9, and genetic reduction or inhibition of MMP-9 production restores 471 

normal auditory responses and normalizes behaviour 182.  Schizophrenia, which is associated with 472 

various memory disorders, is also associated with a decrease in PNN numbers and density in the 473 

amygdala, thalamic reticular nucleus, entorhinal cortex and prefrontal cortex of patients 183.  474 

Schizophrenia is linked to abnormalities in PV+ interneurons and an imbalance between 475 

glutamatergic and GABAergic transmission. A current hypothesis is that loss of the neuroprotective 476 

activity of PNNs renders the fast-firing PV+ oxidant-generating neurons vulnerable to oxidative 477 

stress 184.   478 

 479 

ECM memory in neurodegenerative disease 480 

The main neurodegenerative disease associated with memory loss is Alzheimer’s disease, and most 481 

of the data linking the ECM to neurodegeneration apply to this condition. The ECM, in particular 482 

heparan sulphate proteoglycans (HSPGs) and CSPGs, are implicated in the progression of Alzheimer’s 483 

in several ways. In A-beta amyloid pathology, HSPGs bind to A-beta and are associated with plaques, 484 

affecting beta-amyloid precursor protein processing 185 and clearance 186. Tau aggregation is 485 

promoted by proteoglycans 187, which are present in tangles, and are involved in the prion-like 486 

spread of tau pathology 188. PNNs exclude tau pathology from the neurons that they surround, 487 

inhibiting tau uptake 189. However, PNNs are themselves affected in Alzheimer’s disease 190 and in 488 

Huntington’s disease partly through engulfment by activated microglia 191, 192 (Figure 3D). 489 
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There is currently no treatment to prevent the progression of Alzheimer’s disease. However, the 490 

condition leads to the malfunction or death of scattered neurons, so functional compensation 491 

requires plasticity, some aspects of which, including spine and synapse loss, are impaired in 492 

Alzheimer’s, and some interventions aimed at synaptic transmission restore normal function 193. 493 

From the perspective of the ECM, overall levels of plasticity can be restored to the levels normally 494 

associated with critical periods by manipulation of PNNs. Thus, digestion of PNNs in the perirhinal 495 

cortex of tauopathy mice restores object memory, ChABC digestion in A-beta pathology mice 496 

restores hippocampal function, and antibody blockade of the inhibitory 4-sulphated glycans of PNN 497 

CSPGs restores object memory 96, 193, 194. Modification of PNNs in Alzheimer’s disease could also 498 

come about through the action of activated microglia or secretion of metalloproteinases, both of 499 

which can occur in this condition 192, 195. Reelin is an ECM-associated protein with effects on 500 

plasticity, and overexpression of this molecule restores memory in a tauopathy model 196.  Although 501 

much is yet to be understood about the role of PNNs in Alzheimer’s disease progression and 502 

cognitive decline, these investigations point important and mostly uncovered territory to understand 503 

this disease and identify much-needed new drug targets.  504 

 505 

CONCLUSION 506 

The descriptions above show that the brain ECM, and particularly PNNs, play an important part in 507 

the regulation of memory and in memory pathology across a wide range of types of memory. This 508 

leads to the question of whether treatments that target PNNs could be useful for memory defects. 509 

At present, most of the evidence that memory can be modulated in useful ways comes from 510 

injections of ChABC into the CNS. This treatment is useful for proof-of-principle experiments, but is 511 

impracticable for long-term treatment of memory problems. However, there are many potential 512 

treatment targets in PNNs. An antibody that blocks inhibitory C4S has been effective at restoring 513 

memory in an Alzheimer’s model, and AAV-mediated expression of C6-sulfotransferase to reinstate 514 

C6S levels has restored memory in ageing. Other potential targets are small molecule inhibitors of 515 

C4S synthesis or activators of C6S synthesis, hyaluronan production by hyaluronan synthases, viral-516 

mediated knockdown of aggrecan, and modulation or blocking of the diffusible transcription factor 517 

OTX2 1, 197. Future research holds promise for further insight into the function of the ECM in 518 

cognition and for the development of novel treatments.  519 
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FIGURE LEGENDS 1262 

 1263 

Figure 1 1264 

The CNS extracellular matrix. Synapses are tripartite structures involving pre- and postsynaptic 1265 

structures and astrocytes. All synapses are embedded in interstitial extracellular matrix (iECM), 1266 

which regulates the extracellular volume, but some synapses are also surrounded by a condensed 1267 

form of ECM, the PNNs, consisting mainly of CSPGs attached to a hyaluronan backbone.    1268 

 1269 

Figure 2.  1270 

Memory effects of chondroitinase digestion. A) Eyeblink conditioning learning is increased by ChABC 1271 

to the cerebellar nuclei but persistence is decreased. In fear memory PNN digestion enables 1272 

extinction. B) Spontaneous object recognition is assessed in a Y-maze, animals distinguishing 1273 

between familiar and non-familiar objects in the arms. After 5 min exposure to objects, memory 1274 

gradually decays and by 24 hr is mostly lost. ChABC treatment prolongs memory in young animals, 1275 

restores it in models of Alzheimer’s and ageing. C) The Morris water maze tests place learning: 1276 

ChABC treatment increases reversal and short-term learning. Grid cells provide a map of the external 1277 

world: the grid cell map is destabilized by ChABC treatment. D) The trial-unique nonmatching-to-1278 

location assay (TUNL) is a hippocampus-dependent automated test of location memory. Memory 1279 

acquisition is enhanced by ChABC treatment. E) In normal animals, ChABC digestion impairs social 1280 

memory, but in animals with defective social memory due to abnormal PNNs, digestion restores 1281 

memory F) ChABC digestion increases the agility of auditory relearning and decreases firing of fast-1282 

spiking neurons. 1283 

 1284 

 1285 

Figure 3.  1286 

Effects of external events, neurodegeneration and ageing on the CNS extracellular matrix. A) 1287 

Stressful early life events, social isolation, social defeat and fear conditioning all have effects on 1288 

numbers and intensity of PNNs. B) Drugs of abuse have various and complex effects on PNN 1289 

formation in different brain areas: please refer to the text. C) During ageing, the sulphation pattern 1290 

of PNNs changes, with a loss of permissive 6-sulphated CSPGs, leaving a predominance of inhibitory 1291 

4-sulphated forms. In addition, hyaluronan chains, which form the backbone of PNNs, become 1292 

degraded into shorter fragments with unknown effects on memory. D) The CNS ECM participates in 1293 
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neurodegenerative conditions. Proteoglycans participate in formation of tau tangles and beta-1294 

amyloid aggregates. In Huntington’s disease PNNs are engulfed by activated microglia.  1295 
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