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Supplementary Fig. 1 Snake diagrams of the β1AR constructs used for 19F NMR studies. (a) 

The construct β1AR-m-CysΔ2 used to study TETC3447.54 contains three thermostabilising mutations 

R68S, E130W and F327A (orange circles). The reporter C3447.54 to be labelled with TET is shown 

in cyan and necessary cysteine deletion mutations C85V2.48 and C163L4.47 are shown as red stars. 

Cysteines inert to TET labelling under the given reaction conditions are shown in grey. (b) The 

construct β1AR-m-TM6-CysΔ2 used to study A282CTET, 6.27, with the residue colour coding identical 

to (a). In addition, the native reporter cysteine C3447.54 was mutated to C344S while the reporter 

cysteine A282C (green circle) serving as TET labelling site was introduced. 
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Supplementary Fig. 2 19F labelling of a cysteine sulfhydryl group of β1AR with TET. In a first 

step, accessible cysteine side chains of the β1AR are activated with 4,4ʼ-Dipyridyl disulphide (4-

DPS). Subsequently, the activated side chain is treated with 2,2,2ʼ-Trifluoroethanethiol to produce 

the 19F labelled β1AR 1.  

 
 

 

Supplementary Fig. 3 Analytical size exclusion chromatography of β1AR tagged with 

various 19F reagents. Size exclusion Superdex S200 10/300 chromatography traces are shown 

for untagged β1AR (red), free Nb6B9 (cyan), untagged β1AR in the presence of Nb6B9 (green), 

β1AR tagged with BTFMA in the presence of Nb6B9 (orange) and β1AR tagged with BTFA in the 

presence of Nb6B9 (purple). All samples were treated with 1 mM isoprenaline prior to the addition 

of Nb6B9. Peak positions for the individual components are indicated by labels with dotted lines. 

Binding of the Nb6B9 to functional β1AR is indicated by a left shift in the elution volume from 14.4 

mL for free receptor to 14.1 mL for the ternary complex.  
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Supplementary Fig. 4 β1AR 19F NMR samples. (a) Assignment of TETC3447.54 and A282CTET, 6.27 

signals.  Individual 19F NMR spectra of β1AR in the apo form were recorded at 564 MHz for 
TETC3447.54 (blue) using constructs β1AR-m-CysΔ2, and for A282CTET, 6.27 (light green) using 

construct β1AR-m-TM6-CysΔ2, respectively. With the exception of the positions 344 and 282, the 

two constructs are identical. The observation of a single peak for TETC3447.54 and for A282CTET, 6.27 , 

respectively, allowed therefore the unambiguous assignment of the two labelling positions as C344 

and A282C. The absence of additional background signals and the non-overlapping nature of the 

two NMR signals shows that no additional cysteine residues were 19F labelled. All spectra were 

obtained at 308 K and were scaled to match their signal integrals. (b) Size exclusion Superdex 

S200 10/300 chromatography trace of apo β1AR-m-CysΔ2 TETC3447.54 following purification by 

alprenolol affinity chromatography. The high level of receptor purity and homogeneity displayed is 

representative of all the NMR samples used in this study. 
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Supplementary Fig. 5 Comparison of 19F NMR spectra following TET labelling of the β1AR-m 

and β1AR-m-CysΔ2 constructs. 19F NMR spectra (564 MHz) were recorded under identical 

conditions at 308 K for the apo receptor (green) (a), receptor bound to the full agonist isoprenaline 

(red) (b), and in ternary complex between the β1AR, full agonist isoprenaline and the Gs mimicking 

nanobody Nb6B9 (black) (c). Spectra of β1AR-m-CysΔ2 are shown as solid lines and of β1AR-m as 

dashed lines, respectively. Corresponding spectra of both constructs are virtually identical, except 

for the lower intensity for β1AR-m, which is evidence for the reduced yield in protein uniquely 

labelled at TETC3447.54 when using this construct. Labelling of β1AR-m at multiple Cys sites that 

compete with C344 lead to insoluble protein that was easily separated from the wanted TETC3447.54 

product, but resulted in dramatically reduced yields, which in view of their identical spectroscopic 

behaviour justified the use of the β1AR-m-CysΔ2 for 19F NMR spectroscopy.  
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Supplementary Fig. 6 19F NMR spectra of TM6 TETC3447.54 and TM7 A282CTET, 6.27 for ligand 

bound states of β1AR investigated in this study. 19F NMR spectra (564 MHz) are shown as 

overlays for all ligands and the ternary complex with full agonist isoprenaline and nanobody Nb6B9 

for TM6 A282CTET, 6.27 (a) and TM7 TETC3447.54  (b). The colours for the individual ligands bound are 

indicated in the legend on the figure. All spectra were obtained at 308 K and are shown scaled 

according to their signal integrals. The positions for peaks P1, P2, P4 and P5 representing 

functional states of β1AR as discussed in the main text are indicated.The signal marked with Δ 

relates to the release of TET due to slow cleavage of the S-S bond at 308 K. Values for the 

chemical shift positions and linewidths of the signals can be found in Supplementary Table 2. 
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Supplementary Fig. 7 TM6 A282CTET,6.27 does not show any significant linear correlation 

beween the P1 19F NMR chemical shift and ligand efficacy, or between the P1 linewidth and 

ligand efficacy. (a) The correlation between the chemical shift position of P1 and the efficacy of 

ligands towards Gs signalling shows a very weak correlation. The following conditions were 

assessed: apo receptor (green), atenolol (blue), carvedilol (brown), alprenolol (grey), xamoterol 

(orange) and isoprenaline (red). All shift positions were normalised to the chemical shift of P1 for 

the apo receptor at −66.33 ppm. Gs efficacies were normalised to the isoprenaline Gs efficacy 

which was set to 100%. A dotted line shows the best linear fit of the data points and an R2 value of 

0.32 indicates a relatively poor fit. (b) Similarly, the correlation of the linewidth of P1 with the Gs 

efficacy is shown using the same receptor states as in (a). Linewidths were measured as widths of 

P1 at the peak half-height. All linewidths were normalised relative to the linewidth of P1 for the apo 

receptor (73 Hz). Gs efficacies are normalised to the isoprenaline Gs efficacy which was set to 

100%. The relatively poor quality of the linear fit is indicated by an R2 value of 0.62. 
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Supplementary Fig. 8 1D 19F spectrum deconvolutions. Overlay of 1D 19F NMR spectra 

(experimental data) (black), the spectral deconvolutions as Lorentzian signals (purple), the 

simulated 1D spectra consisting of the sum of the individual deconvoluted signals (red), and the 

residual error of the deconvolutions (blue). Each spectrum corresponds to a region of 2,000 Hz 

centered on the observable peaks. The peak labelled Δ corresponds to free TET that is released 
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over time due to slow cleavage of the S-S bond at 308 K. The signal labelled with * is a 

degradation product of unknown composition (R2 = 60 Hz). β1AR TM6, A282CTET, 6.27: (a) apo form, 

(c) apo receptor in the presence of Nb6B9. β1AR TM7, TETC3447.54: (b) apo form, (d) apo receptor 

in the presence of Nb6B9, (e-i) agonist bound receptor in the presence of Nb6B9, with carvedilol 

(e), cyanopindolol (f), xamoterol (g,h), and isoprenaline (i). Excess ratio of nanobody over receptor 

was two-fold except for (h) were the excess was ten-fold. All the apo and ligand bound receptor 

spectra for TM6 (A282CTET, 6.27) and TM7 (TETC3447.54) (see Supplementary Table 2) were 

deconvoluted with a single Lorentzian line for P1 (a) and for P2 (b), respectively. The downfield 

signal for the spectra in the presence of nanobody was deconvoluted as a single line both for TM6 

P4 (c) and for TM7 P5 (d-i), respectively. The upfield signal was deconvoluted as a single signal for 

TM6 P1 (c) (see Supplementary Table 2), two signals for the P2/P6 region of TM7 (d-h), and as a 

single signal for the P2/P6 region of the isoprenaline bound ternary receptor TM7 (i).      
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Supplementary Fig. 9 19F NMR analysis of ternary complex formation.  

(a) Nanobody Nb6B9 was titrated to the receptor in molar nanobody excesses of twofold, fivefold 

and tenfold with the receptor individually labelled at positions TETC3447.54 or A282CTET, 6.27. The 

amount of active ternary receptor (AG+) formed was monitored as the peak integral of P4 for 

A282CTET, 6.27 or P5 for TETC3447.54, respectively. The amounts of P4 and P5 reach a plateau as the 

amount of nanobody is increased. Circles indicate the relative peak area of P4 for A282CTET, 6.27 

and triangles show the relative peak area of P5 for TETC3447.54. Data was collected for ternary 

complexes with ligands carvedilol (brown), xamoterol (orange) and isoprenaline (red). (b) Overlay 

of individual 1D 19F NMR spectra of the nanobody titration leading to the formation of the ternary 

complex P5 (AG+) in increasing amounts as measured by TETC3447.54, using a twofold (light grey), 

fivefold (dark grey) and tenfold (black) nanobody molar excess. The positions of P5 (AG+) and the 

overlapped region consisting of P2 (I1,2) and P6 (AG-) are indicated by dotted lines. With increasing 

excess of nanobody, the linewidth of the broader peak P6 increasingly dominates the overall 

linewidth of the overlapped P2/P6 region. The latter agrees with an increase in the amount of the 

broader P6 (AG-) with the amount of the sharper P2 (I1,2) decreasing as nanobody is added in larger 

excess. The linewidths of this overlapped P2/P6 region are given above the peak annotation. (c) 

Correlating the chemical shift positions of the P5 signal of TETC3447.54 for the active nanobody-
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bound complexes (AG+) with the ligand efficacy reveals a poor linear fit (R2 = 0.51). Complexes 

(AG+) were formed for the apo receptor (light green) and with β1AR bound to the ligands carvedilol 

(brown), cyanopindolol (dark green), bucindolol (purple), xamoterol (orange) and isoprenaline 

(red), respectively. (d) Differences in the chemical shift positions of the P5 signal for ternary 

complexes (AG+) with the receptor bound to different agonists are revealed. The 19F NMR spectra 

of TETC3447.54 for the ternary complexes with ligands isoprenaline (red) and carvedilol (brown) were 

recorded in the presence of a twofold molar excess of nanobody. The positions of the peaks are 

indicated by dotted lines. Individual chemical shift and linewidth informations are given in 

Supplementary Table 2. 
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Supplementary Fig. 10 19F NMR saturation transfer time courses for β1AR in ternary 

complex with xamoterol and Nb6B9. The plots show normalised signal intensities for P5 

following on- and off-resonance saturation. The insets show the positions of the saturation field 

(grey arrows) relative to the observed peak P5 (AG+). (a) The saturation field (field strength 25 Hz) 

was positioned 384 Hz upfield from P5 (AG+) and the intensities of the P5 signal measured for 

saturation times ranging from 25 ms to 1000 ms (yellow dots). A second off-resonance reference 

experiment was conducted with the saturation field positioned 384 Hz downfield from P5 (grey 

dots). The on-resonance position corresponds to the location of the broad peak P6 (AG-). (b) 

Similar saturation transfer time course with the saturation field positioned 684 Hz upfield (yellow 

dots) and downfield (grey dots) from P5, to selectively saturate the broad foot of the upfield P6 

peak, while minimizing saturation of P2. The exchange rates kex from (a) and (b) obtained from 

simultaneously fitting on-resonance and off-resonance (reference) experiments are very similar, 

suggesting that the exchange is taking place between P5 and P6, without any involvement of P2. 

(c) Similar time course to (a) but using a ten-fold excess in Nb6B9, while a two-fold excess was 

used for (a) and (b). The data shows the normalised intensities of P5 after saturation at the 

respective positions shown in the insets displaying the spectra. Compared to the saturation in (a) 

the response in (b) is reduced. 
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Supplementary Fig. 11 Probing the solvent-accessibility of TM7 TETC3447.54 through the 

addition of the Gd3+ paramagnetic relaxation reagent gadopentetate dimeglumine 

(Magnevist). (a) Intensities of the P5 signal of the ternary xamoterol-bound receptor coupled to 

nanobody Nb6N9 and the P2 signal of xamoterol-bound β1AR following addition of increasing 

amounts of Magnevist (0 mM (blue), 1 mM (light blue), 2 mM (green), 3 mM (orange), 5 mM (red)). 

Under the chosen starting conditions (1 mM xamoterol, two-fold Nb6B9 excess) the initial ratio (0 

mM Gd3+) of P5 to P2 was 60:40, allowing a side-by-side assessment of the effect of Gd3+ addition 

on P2 and P5. (b) R2 rates for P5 (red) and P2 (blue) determined from a two-point relaxation 

measurement (Intensity in a CPMG experiment with νCPMG = 5,000 Hz and a constant time of 2.5 

ms versus a CPMG reference plane without the 2.5 ms delay). The relaxation enhancements ε due 

to the addition of the relaxation reagent are given by the slopes of the linear fits, as 32.87 s-1mM-1 

for the ternary complex and 8.29 s-1mM-1 for the ligand-bound state. (c) Molecular structure of 

gadopentetate dimeglumine (Magnevist). 
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Supplementary Fig. 12 Comparing the location of aromatic residues in the vicinity of the 

TM6 reporter for β1AR and β2AR. The top panel shows the comparison of inactive (blue, PDB 

code 2YCY)  and active (pink, PDB code 6H7J crystal structures of the β1AR. The position of 

aromatic residues influencing the chemical shift of C2826.27 (magenta)  are shown in both structures 

as spheres. For the inactive β1AR, Y149ICL2 and Y2315.62 are shown in orange and red, 

respectively. Due to their extended distance to C2826.27 they only minimally contribute to chemical 

shift changes. For the active β1AR structure, there are no aromatic residues in the vicinity of 

C2826.27. Between inactive and active β1AR, therefore, the predicted changes in the aromatic 

environment of C2826.27 are small, resulting in negligible chemical shift differences between both. 

This fits well with the experimental results. The bottom panel shows the same situation for inactive 

(green, PDB code 4GBR) and active (grey, PDB code 3SN6) β2AR. Aromatic residues that have an 

effect on C2656.27 (magenta) are Y141ICL2 and F2646.26 in blue and yellow, respectively. Their close 

distance to C2656.27 make them more likely to contribute towards chemical shift changes than for 

the corresponding position in the β1AR, while the chemical shift of C2656.27of β2AR in the active 

state is influenced by the nearby F2235.62 (purple). Between inactive and active β2AR the changes 

in the aromatic environment of C2656.27 are extensive therefore, resulting in substantial chemical 

shift changes due to variations in aromatic ring current shifts. Again, this is in agreement with the 

experimental data 2.  
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Supplementary Fig. 13 Comparison of experimentally observed and calculated chemical 

shifts for TM6 A282CTET, 6.27. (a) Experimental 19F NMR spectra are shown as solid lines for the 

cyanopindolol bound β1AR (green) representing the inactive receptor and β1AR in complex with full 

agonist isoprenaline and nanobody Nb6B9 (black) representing the signaling active receptor. 

Chemical shift predictions were performed using the molecular analysis software MOLMOL 3 (see 

Supplementary Table 3). Position of predicted chemical shifts are shown as large triangles for the 

cyanopindolol bound β1AR (green) and full agonist isoprenaline and nanobody Nb80 bound β1AR 

(black). The predicted position of the cyanopindolol bound receptor was normalized to the 

experimentally observed peak position of the cyanopindolol bound receptor. The distance between 

the predicted chemical shift positions of both receptor states is 0.025 ppm and is indicated as a 

black line. (b) The crystal structure of the cyanopindolol bound β1AR (PDB code 2YCY) is shown 

as a blue cartoon. The position of A282CTET, 6.27 is shown as magenta spheres. The only relatively 

close aromatic residues to A282CTET, 6.27  are Y149ICL2 shown in orange and Y2315.62 depicted in 

red. Both residues, however, are too distant to A282CTET to considerably influence its chemical 

shift. (c) The crystal structure of the isoprenaline and nanobody Nb80 bound β1AR (PDB code 

6H7J) is shown as a pink cartoon. The position of A282CTET, 6.27 is shown as magenta spheres. 

Based on the crystal structure coordinates MOLMOL 3 predicts no aromatic residues in the vicinity 

of A282CTET, 6.27 that would contribute to a chemical shift change. Not surprisingly therefore inactive 

and pre-active states have very comparable chemical shifts. 
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Supplementary Fig. 14 Comparison of experimentally observed and calculated chemical 

shift values for TM7 TETC3447.54. (a) Experimental 19F NMR spectra are shown as solid lines for 

the cyanopindolol bound β1AR (green) for the receptor in a close to inactive conformation, and 

β1AR in ternary complex with full agonist isoprenaline and nanobody Nb6B9 (black) for the 

signaling active receptor state. Predicted 19F chemical shift changes were obtained in MOLMOL 3 

using the Johnson-Bovey equation 4, considering solely contributions from aromatic ring current 

effects. In view of the general difficulty to predict 19F chemical shifts 5,6, other less well understood 

contributions were excluded from the calculations. Hence, the predictions only reflect the effects of 

ring current shifts related to relative changes in position and orientation of aromatic residues that 

are in close vicinity to TETC3447.54. The positions of the predicted chemical shifts are shown 

superimposed as filled triangle shapes for the cyanopindolol bound β1AR (green) and for the full 

agonist isoprenaline bound and nanobody Nb80 coupled β1AR (black). The predicted position of 

the cyanopindolol bound receptor was normalized to the experimentally observed peak position of 

the cyanopindolol bound receptor. The distance between the predicted chemical shift positions for 

the two receptor states is -0.16 ppm and is indicated as a black line. The experimental position of 

P3 is indicated with a grey box. The latter peak is found to be exchanging with P2. (b) The crystal 

structure of the cyanopindolol bound β1AR (PDB ID 2YCY) is shown as blue cartoon. The position 

of TETC3447.54 is shown as magenta spheres. Aromatic residues predicted to influence the chemical 
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shift of TETC3447.54 are shown. In this case this is the neighbouring Y3437.53 depicted in green. β1AR 

has a very low basal activity which would make the apo state the most representative for the 

inactive state of β1AR. However, in the absence of an available crystal structure of the apo state 

the cyanopindolol structure was used instead. Weak agonist bound crystal structures of 

thermostabilized β1AR are all very similar in the cytoplasmic region of TM6 and TM7, where they 

are believed to show a conformation representative of an inactive state 7. (c) The crystal structure 

of the isoprenaline and nanobody Nb80 bound β1AR (PDB ID 6H7J) is shown as pink cartoon. The 

position of TETC3447.54 is shown as magenta spheres. Y3437.53 and F3498.50 influence the predicted 

chemical shift of TETC3447.54  and are shown as green and cyan spheres, respectively. The 

orientation of the aromatic residues in the ternary state was assumed to be representative of their 

orientation in the pre-active state P3 (further details related to the calculations are provided in 

Supplementary Table 3).  
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Supplementary Fig. 15 Overlay of active state crystal structures of β1AR ternary complexes 

bound to agonists of varying efficacies and Gs mimicking nanobodies. The crystal structures 

of ternary complexes with cyanopindolol (yellow, PDB code 6H7O), xamoterol (pink, PDB code 

6H7N) and isoprenaline (cyan, PDB code 6H7J). Enlarged side-on view of the cytoplasmic region 

of β1AR TM7 and helix 8 with the residues of the conserved NpxxY7.53 motif shown as sticks and 

the sulfur atom of the reporter C3447.54 shown as a sphere. The overlay reveals the structures as 

virtually identical. The nanobody was excluded from the overlay for clarity.  
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Supplementary Fig. 16 Comparing the location of aromatic residues in the vicinity of the 

TM7 reporter for β1AR and β2AR. The top panel shows the comparison of inactive (light yellow, 

PDB code 2YCY)  and active (bright yellow, PDB code 6H7J) crystal structures of the β1AR. The 

bottom panel shows the inactive (dark pink, PDB code 4GBR) and active (light purple, PDB code 

3SN6) structures of β2AR. The location of the TET probe is shown as red sphere attached to 

C3447.54 or C3277.54, respectively. Proximal aromatic residues are diplayed in blue. For both 

receptors, these residues correspond to the positions of Y7.53, F8.50, F8.54.  Both receptors show an 

inward rotation of TM7 upon activation which causes a change in the relative orientation of the C7.54 

probe to the aromatic residues. 
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Supplementary Fig. 17 Ternary structure of the turkey β1AR bound to the partial agonist 

xamoterol and the nanobody Nb6B9 showing the receptor in a conformation corresponding 

to the fully active state (PDB ID 6H7N). (a) Side-on view of the ternary complex with β1AR shown 

in grey. TM6 and TM7 of the receptor are colored in blue with the TET labelling sites A282C6.27 and 

C3447.54 used in this study highlighted as blue spheres. The nanobody is colored in yellow. (b) 

Enlarged view of the cytoplasmic binding pocket. 
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Supplementary Fig. 18 Nanobody residues in proximity to the 19F NMR probes: receptor-

nanobody binding interface in the ternary complex of xamoterol-bound turkey β1AR 

coupled to nanobody Nb6B9 (PDB ID 6H7N). (a,b,d,e,f) Cartoon representation of the 

cytoplasmic region of β1AR (pink) and the region of the nanobody (cream) interacting with the 

receptor. Nanobody residues in close proxmimity to the 19F probe locations on TM6 and TM7 of 

β1AR are represented with their side chains as sticks (green). The 19F probe locations are 

approximated by: (a) Sγ of TM6 A282C6.27 (red), (b) Sγ of TM7 C3447.54 (red), (d) CF3 of 
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A282CTET,6.27 (red), and (e, f) CF3 of TETC3447.54 (red). The shortest distances between nanobody 

and the 19F probes are highlighted by dashed black lines, with the distances indicated in blue. 

Distances given in (a) and (c) are based on the unmodified coordinates of the crystal structure and 

correspond to a situation where the location of the 19F probe is approximated by the Sγ position. 

Aiming to obtain better representative positions for the fluoro probes, TET tags were added to the 

Sγ positions resulting in A282CTET and TETC344. The conformational energy of the structure with 

the tagged cysteines was subsequently minimized and a MD simulation conducted with the 

receptor embedded in a fully hydrated POPC bilayer. (c) MD trajectories showing the shortest 

distances between nanobody residues S27 (Oγ) or F29 (Caro) and the CF3 of A282CTET (c, upper), 

and between the nanobody residues I103 (Cγ2), I104 (Cδ1) or Y105 (Caro) and the CF3 of TETC344 

(c, lower) as a function of the simulation time. For A282CTET the distances remain very similar 

during the entire simulation. For TETC344, however, the simulation reveals two side chain 

orientations. A minor conformer at ca. 1 ns that exists for ca 8% of the simulation and shows 

shorter distances to the nanobody, while for the remainder of the simulation (92%) the distances 

are considerably larger. (e) Snapshot taken at 1 ns representative of the minor conformer (c, red 

dashed line) with the orientation of TETC344 pointing in direction of TM6 that results in reduced 

distances to the nanobody. (f) Snapshot taken at 10.4 ns (c, red dashed line) representative of the 

major conformer where the distances from the CF3 of TETC344 to the nanobody are substantially 

increased. 
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Supplementary Fig. 19 Binding interface receptor residues in ternary complex between 

β1AR or β2AR and intracellular binding partners (IBPs). Cytoplasmic view of β1AR and β2AR in 

ternary complex, with the residues with atoms within 3.8 Å of the binding partner highlighted.The 

IBPs are omitted from the figure for clarity. (a) The β1AR (PDB code 6H7J) is shown as a red 

cartoon and residues in contact with the nanobody Nb80 are highlighted in green. The positions of 

the individual helices are indicated. (b) The β2AR (PDB code 3P0G) is shown as purple cartoon 

and residues in contact with the nanobody Nb80 are highlighted in cyan. (c) The β2AR (PDB code 

3SN6) is shown as blue cartoon and residues in contact with the Gα subunit of the heterotrimeric 

Gs protein are highlighted in yellow. (d) Sequence alignment of the receptors shown in (a) to (c) 

with the IBP interacting receptor residues highlighted using the same colour scheme. The 

NPxxY7.53 motif on TM7 is indicated by a box. While no TM7 interactions are observed in the Gs 

structure of β2AR, interactions involving the TM7 region leading into H8 are similar for β1AR and 

β2AR bound to nanobodies, with five residues in the TM7-helix 8 region being part of the binding 

interface. 
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1
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β
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β
2
AR_Gs 1 MGQP------------GNGSAFLLAPNGSHAPDHDVTQERDEVWVVGMGIVMSLIVLAIV

β
1
AR_nb 57 AGNVLVIAAIGRTQRLQTLTNLFITSLACADLVMGLLVVPFGATLVVRGTWLWGSFLCEC
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AR_nb 49 FGNVLVITAIAKFERLQTVTNYFITSLACADLVMGLAVVPFGAAHILMKMWTFGNFWCEF

β
2
AR_Gs 49 FGNVLVITAIAKFERLQTVTNYFITSLACADLVMGLAVVPFGAAHILMKMWTFGNFWCEF

β
1
AR_nb 117 WTSLDVLCVTASIETLCVIAIDRYLAITSPFRYQSLMTRARAKVIICTVWAISALVSFLP

β
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β
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AR_nb 177 IMMHWWRDEDPQALKCYQDPGCCDFVTNRAYAIASSIISFYIPLLIMIFVYLRVYREAKE
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β
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β
1
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β
2
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AR_nb 278 IMGTFTLCWLPFFIVNIVHVIQDNLIRKEVYILLNWIGYVNSGFNPLIYCRSPDFRIAFQ

β
2
AR_Gs 278 IMGTFTLCWLPFFIVNIVHVIQDNLIRKEVYILLNWIGYVNSGFNPLIYCRSPDFRIAFQ

β
1
AR_nb 355 RLL

β
2
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β
2
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Supplementary Fig. 20 Temperature dependent 19F NMR spectra of β1AR TM7 TETC3447.54 in 

the apo form and bound to xamoterol. Overlay of spectra showing the signal P2 recorded at the 

temperatures of 308 K (red), 298 K (orange) and 288 K (blue) for the receptor in the apo form (a) 

and bound to xamoterol (b). Over the temperature range investigated there is no evidence of 

multiple signal components for the P2 signal. 
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Supplementary Fig. 21 β1AR ternary complex formation demonstrated by SEC and SDS-

PAGE analysis. 14 µM β1AR-m-CysΔC2 solubilized in LMNG were incubated with 1 mM 

isoprenaline and 21 µM Nb6B9. (a) SEC (Superdex S200 10/300) traces of isoprenaline-bound 

β1AR-m-CysΔC2 in the absence (blue), and in the presence of nanobody Nb6B9 (red), showing 

formation of the ternary receptor complex (peak 2). (b) SDS-PAGE analysis of the SEC fractions. 

SEC fraction peak numbers and SDS-page lane numbers correspond to each other. M, molecular 

weight marker; lane 1, β1AR; lane 2, ternary complex of isoprenaline-bound β1AR-m-CysΔC2 

complexed with Nb6B9 nanobody; lane 3, unbound nanobody. 
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Supplementary Fig. 22 Receptor functionality of β1AR-CysΔ2 demonstrated by 13C methyl 

methionine NMR. Comparison of 1H, 13C HMQC spectra of 13C-Met β1AR-MetΔ5 (used in the 

study by Solt et al 2017 (ref 17 in main text) and 13C-Met β1AR-m-CysΔ2 with TETC3447.54 (used in 

this study) in the apo form and bound to xamoterol. Both receptors show equal spectral 

appearance in the apo form and the same behaviour upon activation through binding of the partial 

agonist xamoterol. It is concluded that the two receptor constructs behave very similarly and that 

the presence of the CysΔ2 mutation and TET tagging at C344 has no deleterious effect on the 

functional response of the receptor construct β1AR-m-CysΔ2. Experiments were recorded at 800 

MHz (1H) and 308 K.  
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Supplementary Table 1 
 
Pharmacological properties of agonists used in this study 
 

 
 
 
#Data taken from Baker et al. 2010 8 
$Data taken from Baker et al. 2011 9 

 

xamoterol

atenolol

Ligand name
(% isoprenaline)

carvedilol

alprenolol
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-6.58 ± 0.02

-5.40 ± 0.06

-9.43 ± 0.05

-10.89 ± 0.06

-6.86 ± 0.08

-6.01 ± 0.04

-9.43 ± 0.06

-7.96 ± 0.04
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Supplementary Table 2 
 
19F chemical shift positions and R2 values of β1AR TM6 A282CTET and TM7 TETC344, for ligand-bound receptor and for receptor in ternary 
complex coupled to Nb6B9 (chemical shift positions and R2 values were obtained from signal deconvolutions using Lorentzian lines)  
 
 

	   	   	   	  
TM6	  A282CTET	   	   TM7	  TETC344	  

	   	   	   	  

Chemical	  shifts§	  
(ppm)	   R2	  (Hz)§	  

Chemical	  shifts§	  
(ppm)	   R2	  (Hz)§	  

	   	   	   peak#	   P1	   P4	   P1	   P4	   P1/P7‡	   P2	   P5	   P2$	   P6$	   P2	   P5	   P2$	   P6$	  

	   	   	   state†	   I1	   AG+	   I1	   AG+	   I/AG-‐	   I1,I2	   AG+	   I1,I2	   AG-‐	   I1,I2	   AG+	   I1,I2	   AG-‐	  
Ligand	   Abbr.	   Efficacy	   Nb6B9£	   no	   yes	   no	   yes	   yes	   no	   yes	   yes	   yes	   no	   yes	   yes	   yes	  

ligand	  free	   APO	   	   2x	   -‐66.33	   -‐65.44	   115	   75	   130	   -‐65.42	   -‐64.69	   -‐65.42	   -‐65.42	   80	   320	   75	   300	  
atenolol	   ATE	   2	   -‐	   -‐66.37	   	   115	   	   	   -‐65.43	   	   	   	   	   	   	   	  
carvedilol	   CVD	   12	   2x	   -‐66.34	   -‐65.45	   118	   75	   120	   -‐65.43	   -‐64.57	   -‐65.43	   -‐65.55	   80	   250	   82	   250	  
alprenolol	   ALP	   31	   -‐	   -‐66.33	   	   120	   	   	   -‐65.41	   	   	   	   	   	   	   	  

cyanopindolol	   CYA	   34	   2x	   -‐66.37	   -‐65.47	   122	   95	   120	   -‐65.42	   -‐64.71	   -‐65.47	   -‐65.55	   80	   230	   80	   330	  
Bucindolol	   BUC	   49	   2x	   	   	   	   	   	   -‐65.47	   -‐64.68	   -‐65.47	   -‐65.50	   	   	   	   	  
xamoterol	   XAM	   67	   2x	   -‐66.35	   -‐65.44	   130	   92	   170	   -‐65.46	   -‐64.78	   -‐65.45	   -‐65.51	   100	   270	   103	   240	  
xamoterol	   XAM	   67	   5x	   	   	   	   	   	   -‐65.46	   -‐64.77	   -‐65.46	   -‐65.52	   100	   270	   105	   250	  
xamoterol	   XAM	   67	   10x	   	   	   	   	   	   -‐65.46	   -‐64.78	   -‐65.45	   -‐65.52	   100	   260	   100	   260	  
isoprenaline	   ISO	   100	   2x	   -‐66.31	   -‐65.45	   140	   106	   	   -‐65.47	   -‐64.77	   	   (-‐65.42)	   140	   320	   	   (200)	  
adrenaline	   ADR	   108	   -‐	   	   	   	   	   	   -‐65.47	   	   	   	   160	   	   	   	  

 
#Peak numbering as discussed in the main text and shown on the spectra 
†Receptor states as discussed in the main text 
§Chemical shift positions and R2 values were obtained from deconvolution with Lorentzian lines  
$For TM7 in the presence of nanobody the overlapped high field region containing P2 and P6 signals was deconvoluted with two Lorentzian lines 
(Supplementary Fig. 8) resulting in significantly improved fits for this region, as evidenced by the smaller residuals. For the isoprenaline complex the 
signal-to-noise of the P2/P6 region was too low to justify deconvolution using two Lorentzians lines. Instead, deconvolution of the P2/P6 region was 
conducted using a single Lorentzian line thus resulting in an R2 value between the ones for the P2 and P6 signals. 
‡The existence of P7 on TM6 is based on the observations for the corresponding peak P6 on TM7, which infers the presence of the (AG-) form also for 
TM6. The chemical shift of P7 is almost identical to P1 and the presence of P7 therefore only shows via changes in linewidth as the amount of 
nanobody is varied. The existence of P7 is not discussed in the main text, but its presence mirrors the behaviour of P6 on TM7.  
£The factors (2x, 5x, 10x) relate to the excess of Nb6B9 over β1AR. ʻnoʼ means: in the absence of Nb6B9; ʻyesʼ means: in the presence of Nb6B9   
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Supplementary Table 3 
Predicted and observed 19F chemical shift positions for β1AR TM6 A282C and TM7 C344, for ligand-bound receptor and for receptor in 
ternary complex coupled to nanobody 
  
 TM6 A282C TM7 C344 
 M

utation
* 

Ring-current shifts Experimental  Ring-current shifts Experimental  
 Predicted§ Δδ(CYA) ¥ Observed Δδ(CYA, 

P1) ¥ 
Contributions 

> |0.01|¶ 
Predicted§ Δδ(CYA) ¥ Observed Δδ(CYA, P2) ¥ Contributions > 

|0.05|¶ 
State           

CYA# L282C -0.028 0 P1: -66.37 P1: 0 Tyr 149 
Tyr 231 

0.024 0 P2: -65.42 P2: 0 Tyr 343 

ISO + 
Nb80$ 

A282C -0.003 0.025 +Nb6B9 
P4: -65.45 

P4: +0.92 - -0.133 -0.157 +Nb6B9 
P5: -64.77 
P3: -65.95 

P5: +0.65 
 

P3: -0.53 

Tyr 343 
Phe 349 

#Predictions using PDB structure 2YCY, chain A 
$Predictions using PDB structure 6H7J, chains A & C 
*In order to predict the ring current shift for C282, crystal structures were mutated to cysteine using the mutagenesis function in Pymol 10, with the 
backbone-dependent rotamer giving minimum steric clashes selected 
¶Residues contributing >|0.01| and > |0.05| ppm to the predicted ring-current shift for C282 and C344 respectively. 
§Ring-current chemical shifts for cysteine Hγ were calculated based on the Johnson-Bovey equation 4 as implemented in MolMol 3 using the 
crystallographic coordinates. Protons were added using UCSF Chimera 11. Calculations used the preferred crystallographic chain as reported in the 
GPCRdB 12. 
¥Chemical shift difference calculated relative to the cyanopindolol-bound form. For experimentally observed shifts, the inactive state signal, P1 or P2 
for C282 and C344 respectively, is used.
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Supplementary Table 4 
Primer sequences used for site-directed cysteine mutagenesis 
 
C85V Forward GTGGCCGACCTGGTGAT 
 Reverse GGCCAGCGAGGTGATGAAG 
C163L Forward CTGACCGTCTGGGCCATCTCC 
 Reverse GATGATGACCTTGGCCCGAGC 
C344S Forward ATCATCTACTCCCGCAGCCC 
 Reverse GGGGTTGGCAGCAGAGTT 
A282C Forward TGTCGCCTGCATGAGGGAACACAAA 
 Reverse CGGGACGTCTTCCTCTTGCTA 
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Supplementary Note 1: β1AR constructs and 19F labelling of cysteines 

 

Previously we studied the activation of the β1AR using 13C methyl-methionine NMR spectroscopy, 

focusing on the TM region of the receptor 13. To relate this 19F NMR study to our previous 

investigation, we set out from the same β1AR-MetΔ5 construct 13, named β1AR-m, that relative to 

wild type contains three thermostabilising mutations, with the number of methionine residues 

reduced by five (Supplementary Fig. 1) (see Methods). The functionality of the construct was 

shown previously 13. Of the six reduced cysteines available in β1AR-m, native C3447.54 was suitable 

for fluoro-tagging to report on the cytoplasmic region of TM7 during receptor activation 

(Supplementary Fig. 1a). A separate reporter cysteine at the end of TM6 was introduced in a 

second construct as A282C6.27, while removing the TM7 cysteine via a C344S7.54 mutation, 

resulting in β1AR-m-TM6 (Supplementary Fig. 1b). To permit a direct comparison with our previous 
13C NMR study all experiments were conducted with receptor solubilized in LMNG micelles.  

 

Tests using 3-bromo-1,1,1-trifluoroacetone (BTFA) resulted in the labelling of multiple cysteine 

sites and were abandoned, despite the use of constructs where two accessible Cys residues on 

TM2 and TM4 were replaced as C85V2.48 and C163L4.47, leading to β1AR-m-CysΔ2 (Supplementary 

Fig. 1a) and β1AR-m-TM6-CysΔ2 (Supplementary Fig. 1b). Further attempts with 2-bromo-N-[4-

(trifluoromethyl)phenyl]acetamide (BTFMA) resulted in receptor that was unable to bind nanobody 

Nb6B9 (Supplementary Fig. 3). Labelling with 2,2,2-trifluoroethanethiol (TET) following the 

described two step reaction (Supplementary Fig. 2) 1, resulted in the required selective 19F tagging 

of β1AR-m-CysΔ2 at TETC3447.54 and β1AR-m-TM6-CysΔ2 at A282CTET,6.27 (Supplementary Fig. 4a). 
19F labelled CysΔ2 receptor constructs showed identical responses towards ligand and nanobody 

binding as the β1AR-m based receptor constructs, but the presence of C852.48 and C1634.47 in the 

latter produced unstable receptor due to tagging at multiple internal sites, which substantially 

reduced the yield of receptor labelled exclusively at A282C6.27 or C3447.54, respectively 

(Supplementary Fig. 5). Hence, all NMR studies were conducted using the two CysΔ2 constructs of 

β1AR. The 19F labelled NMR samples were purified to homogeneity (Supplementary Fig. 4b) and 
19F NMR assignments were obtained based on the unique complementarity of the non-overlapping 

A282CTET, 6.27 and TETC3447.54 signals (Supplementary Fig. 4a). While all of the receptors were 

stable over several days at 308 K the slow cleavage of the S-S bond resulted in the gradual 

release of small amounts of free TET over time, which became visible in the NMR spectra. This 

however does not interfere with any of our investigations.   
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Supplementary Note 2: Solvent accessibility of the TM7 TETC344 environment 

 

The response of the TM7 TETC3447.54 environment upon addition of a water-soluble Gd3+ 

paramagnetic relaxation reagent was investigated for xamoterol-bound β1AR-m-CysΔ2 in the 

presence of a two-fold excess of nanobody through titration with increasing amounts (0 - 5 mM) of 

gadopentetic dimeglumine (Magnevist). The reaction conditions permitted a side-by-side 

comparison of the ligand-bound receptor via the P2 signal and the ternary receptor via the P5 

signal. Signal intensity losses for P5 related to Gd3+ addition were more pronounced than for P2 

and increases in R2 values (determined from a two-point measurement) for P5 were more 

substantial than for P2 (Supplementary Fig. 11). Relaxation enhancements ε = 32.87 s-1mM-1 for 

P5 and ε = 8.29 s-1mM-1 for P2 were obtained from the slopes of the linear fits to the R2 rates. The 

measurement series established the ternary TETC3447.54 receptor environment relating to the P5 

signal to be significantly more solvent-accessible than in the ligand-bound receptor as assessed by 

the P2 signal. 

 
 
Supplementary Note 3: Response of TM6 A282CTET, 6.27 to agonist binding  

 

The P1 signal for A282CTET,6.27 showed only a relatively small response to ligand binding upon 

probing the receptor with a range of agonists varying in efficacy (Fig. 2a, Supplementary Fig. 6a). 

A small amount of exchange broadening to R2 became apparent when comparing the apo receptor 

with isoprenaline bound β1AR, indicating the presence of smaller amounts of µs-to-ms 

conformational dynamics when bound to higher efficacy ligands (Supplementary Table 2). 

Compared to our previous methionine 13C NMR study, this relatively small effect initially appeared 

counterintuitive, as β1AR-m showed strong responses in 1H and 13C to agonist activation as 

evidenced by a range of reporters, including those on TM4, TM5 and TM6 (M1534.37, M1784.62, 

M2235.54 and M2966.41) 13. Also, as shown by Liu et al. for β2AR, the equivalent position, 
TETC2656.27, on TM6 was observed in a slow-exchanging equilibrium between two states postulated 

as inactive and active receptor forms, that changed their populations in an agonist-efficacy 

dependent manner; in contrast to our observations with P1 2. It has been shown that aromatic 

residues in the proximity of a fluoro probe can have a considerable effect on the position of the 

observed 19F NMR signal via ring current shifts 14. Inspection of the molecular environment of 

A282C6.27 in β1AR showed a complete lack of aromatic residues in its vicinity, in contrast to the 

equivalent region in β2AR (Supplementary Fig. 12) or to M2966.41 in β1AR 13. Using the β1AR crystal 

coordinates of several ligand-bound structures we calculated the expected ring current shifts for 

A282CTET for different states compared to the inactive state (PDB code 2YCY) (Supplementary Fig. 

13, Supplementary Table 3). In all cases, these calculated shift changes were smaller than 0.05 
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ppm, even when considering β1AR active receptor states in ternary complex with nanobody, 

emphasizing that due to the local environment lacking aromatic residues and A282C6.27 pointing 

towards the solvent, in the absence of changes in solvent accessibility the fluoro probe is unable to 

report on conformational changes at this position. Unsurprisingly therefore, the TM6 signal showed 

relatively minor changes upon ligand binding to the receptor (Supplementary Fig. 6a). It can be 

assumed therefore that the small amount of additional broadening observed in the isoprenaline 

bound form is related to exchange between conformations that differ only little in their chemical 

environments. Little chemical shift response in this region was also observed in the study by Isogai 

et al. for the backbone amide environment of V2806.25, consistent with our data 15. As evidenced in 

our study by the increase in R2 values for P1 from the apo receptor to the isoprenaline bound form 

(Supplementary Table 2), it can be assumed that despite the lack of chemical shift perturbations, 

conformational interchange on TM6 is taking place. However, the similarity in chemical shifts 

between exchanging states when compared to β2AR places this process in β1AR on the fast-to-

intermediate timescale, with relatively minor impact on the observed linewidth of P1. 

 

 

Supplementary Note 4: Increased solvent accessibility of the TM7 TETC344 environment in 

the ternary complex 

 

Titration with the paramagnetic relaxation reagent Magnevist established the cytoplasmic TM7 

environment of the ternary complex to be more solvent accessible than in the ligand bound states. 

For TM7 C3447.54 this supports the proposition where the observed downfield shift of P5 (compared 

to P2, P3) is caused by a greater solvent exposure in the ternary complex as the 19F probe 

relocates from the more hydrophobic environment sampled in the ligand-bound states (Fig. 5). 

Based on this accessibility data obtained with xamoterol as ligand it seems reasonable to suggest 

that the comparable chemical shift changes observed upon formation of the ternary complexes 

with the other agonists relate to similar effects. Further, as the size of the chemical shift changes 

between ligand-bound receptor and ternary complexes for TM6 and TM7 are of similar size we 

suggest that a similar explanation holds also for the changes observed for A282CTET, 6.27 on TM6.  

Other potential sources contributing towards the observed chemical shift changes need to be 

considered, such as the proximity of nanobody residues in or near the binding interface in the 

ternary complexes (Supplementary Fig. 17). We assessed the likely contribution of such effects by 

measuring the distances of nanobody residue side chains to the Sγ positions of A282C and C344, 

respectively, using the crystal structure of β1AR in the ternary state in complex with xamoterol and 

Nb6B9 (PDB ID 6H7N) (Supplementary Fig. 18a,b). However, the Sγ locations only provide an 

approximate estimate of the 19F probe positions. To obtain more representative distances we 

added the TET moieties onto the aforementioned cysteine residues and conducted a 12 ns MD 
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simulation of the ternary complex equilibrated in a fully hydrated POPC lipid bilayer 

(Supplementary Fig. 18c). While the simple analysis using distances to Sγ suggested S27 as a 

residue close to A282C (4.5 Å) (Supplementary Fig. 18a), the simulation showed no proximal 

residues within 13 Å of the A282CTET CF3 group (Supplementary Fig. 18d). For C344 all distances 

to Sγ were relatively large, with I104 closest at 8.2 Å (Supplementary Fig. 18b). The simulation 

revealed a minor conformer with a population of only 8% with a short distance from the CF3 of 
TETC344 to I104 Cδ1(4.6 Å) (Supplementary Fig. 18e), while in contrast for the remaining time of 

the simulation (92% population) all distances in the sampled conformers were beyond 8 Å 

(Supplementary Fig. 18f).  

 

Based on these distances we did not find any conclusive evidence for nanobody residue proximity 

related effects as a substantial contribution towards the observed changes in 19F chemical shifts. 

Overall, the increased solvent-accessibility for TM6 A282C and TM7 C344 following a move into a 

less hydrophobic environment seems to provide the most consistent explanation for the prominent 

downfield shifts observed upon ternary complex formation, as proposed above.   

 

 

Supplementary Note 5: Interactions between β1AR and Nb6B9 in the ternary complex 

 

A caveat needs to be added regarding the usage of nanobodies such as Nb6B9 as their primary 

purpose resides in stabilizing a GPCR in a native-like fully active state, while they are a poor 

mimetic of extended Gαs function. The similarity of nanobody as well as Gs bound structures of 

β2AR in the TM7-helix 8 region is very high. However, in the crystal structure of β2AR in the full Gs 

protein complex TM7 lacks direct interactions with the heterotrimeric Gs protein, while both β2AR 

and β1AR in nanobody complexes show five residues in the TM7-helix 8 region that form contacts, 

including the last two residues of the NPxxY7.53 motif (Supplementary Fig. 19) 16. Crystallography 

shows several ternary Nb6B9 and Nb80 complexes of β1AR bound to a range of agonists of 

varying efficacy with TM7 conformations near the NPxxY motif that are nearly identical 

(Supplementary Fig. 15). This is in clear contrast to our NMR work in solution. Possibly the 

differences are the result of crystal packing effects making the static structure information in this 

area of the receptor unreliable. 
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Supplementary Methods: BTFA/BTFMA 19F labelling protocol 

 
Purified β1AR receptor eluted from an NiNTA purification was collected and the solution adjusted to 

10 µM in protein via concentration (Amicon Ultra-15 spin concentrator with 50 kDa molecular 

weight cutoff). The labelling reagent 3-bromo-1,1,1-trifuluoroacetone (BTFA) or 2-bromo-N-(4-

(trifluoromethyl)phenyl)acetamide (BTFMA), respectively, was added in a tenfold molar excess to a 

cold solution of the receptor and stirred gently for 1 h at 4 ˚C. The labelling reaction was terminated 

through removal of the labelling reagent through dilution concentration (1000x) or desalting using a 

HiTrap desalting column (GE Healthcare) into buffer containing 50 mM Tris pH 8, 350 mM NaCl 

and 0.02% (w/v) LMNG. The labelled receptor was further purified by alprenolol ligand affinity 

chromatography and eluted with either 1 mM atenolol or 0.1 mM alprenolol. 
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