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Abstract: This paper studies a generalized version of multi-class cost-constrained random-coding
ensemble with multiple auxiliary costs for the transmission of N correlated sources over an N-user
multiple-access channel. For each user, the set of messages is partitioned into classes and codebooks
are generated according to a distribution depending on the class index of the source message and
under the constraint that the codewords satisfy a set of cost functions. Proper choices of the cost
functions recover different coding schemes including message-dependent and message-independent
versions of independent and identically distributed, independent conditionally distributed, constant-
composition and conditional constant composition ensembles. The transmissibility region of the
scheme is related to the Cover-El Gamal-Salehi region. A related family of correlated-source Gallager
source exponent functions is also studied. The achievable exponents are compared for correlated and
independent sources, both numerically and analytically.

Keywords: multiple access channel; correlated sources, random coding; error exponents

1. Introduction

In information theory, the fundamental problem of communication over a channel is
studied from two complementary perspectives. First, one characterizes the transmissibility
conditions, namely the circumstances under which the error probability asymptically
vanishes as the blocklength goes to infinity. Second, one describes by means of error
exponents the speed at which this error probability vanishes; the larger the exponent,
the faster the error probability tends to zero. Since finding an exact expression for error
probability is very difficult, a large body of work has investigated upper and lower bounds
on the average error probability, or equivalently lower and upper bounds for the error
exponent. In point-to-point, that is, single-user communication, using separate source-
channel random coding [1,2], possibly with expurgation [1] (Eq. 5.7.10), yields lower
bounds on the error exponent. In contrast, finding an upper bound to the error exponent
satisfied by every code is more challenging. Generally, the hypothesis-testing method [3] is
employed to derive upper bounds for the error exponent. Two well-known upper bounds
to the error exponent are the sphere-packing exponent [4] and the minimum-distance
exponent [5]. In fact, for rates greater than critical rate [1] (Sec. 5.6), the random-coding
and sphere-packing bounds coincide with each other, while the expurgated and minimum-
distance bounds coincide at rate zero.

For point-to-point communication, it was shown in ref. [1] (Prob. 5.16) that joint source-
channel coding leads in general to a larger exponent than separate source-channel coding.
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Additionally,using codewords with a composition dependent on the source message leads
to a larger exponent than the case where codewords are drawn according to a fixed product
distribution [6,7]. Moreover, a scheme where source messages are assigned to disjoint
classes and encoded by codes that depend on the class index, attains the sphere-packing
exponent in those cases where it is tight [8].

Many works have been devoted to studying the transmissibility and the error exponent
for a two-user multiple-access channel (MAC) [9–11]. Separate source-channel coding for
the MAC with independent sources was studied in refs. [9] and [12]. In ref. [13], a universal
exponent for the MAC was derived by considering separate source-channel coding. In
ref. [14], a transmissible region is derived for the MAC under mismatched decoding,
where the decoding rule is fixed and possibly suboptimal. In ref. [15], it was shown that
using structure coding can improve the error exponent of the MAC. The maximum-error-
probability criterion and the impact of feedback for the MAC were studied in ref. [16].
By considering separate source-channel coding, lower and upper bounds for the error
exponent of the MAC were respectively obtained in refs. [17] and [18]. For the MAC
with independent sources, the idea of exploting the dependency between messages and
codewords was studied in ref. [19]. In ref. [20], an achievable exponent for the MAC with
independent sources was given in the dual domain, that is, as a lower dimensional problem
over parameters in terms of Gallager functions. For the MAC with correlated sources, it was
shown in ref. [11] that considering statistical dependency between messages and codewords
for the MAC with correlated sources leads to a larger transmissible region. However, an
example presented in ref. [21] shows that one can reliably transmit information through
the MAC without satisfying the reliable transmission obtained in ref. [11]. In another line
of work, superposition coding with Gacs Körner Witsenhausen (GKW) common part is
used in ref. [22] to to describe the sufficient conditions lossless recoverability.

In contrast to single-user communication, the problem of reliable transmission of two
correlated sources has not been solved yet and just the sufficient conditions of a reliable
transmission has been derived. In ref. [23], by applying coding techniques, a new set of
sufficient conditions were proposed. Moreover, in ref. [24] new sufficient conditions for the
three-user MAC with correlated sources were studied. In ref. [25], an achievable exponent
derived was presented in the primal domain, that is, as a multi-dimensional optimization
problem over distributions that is generally difficult to analyze.

In this paper, we examine how statistical dependency between the messages and
codewords improves the exponent, as well as its impact on the transmissibility region.
In view of refs. [1] (Ch. 7) and [26], we study a generalized message-dependent cost-
constrained random-coding ensemble with multiple cost functions. By choosing the proper
cost functions, the multi-class cost-constrained ensemble subsumes multiple ensembles
previously considered in the literature and recovers the transmissibility region in ref. [11].

The paper is organized as follows—in Section 2, we present the problem of transmis-
sion of N correlated sources over an N-input discrete memoryless multiple-access channel
and provide the key definitions of error probability, transmissibility, random-coding en-
semble, and achievable exponent. In Section 3, we review the existing random-coding
ensembles, define a novel generalized multi-class cost-constraint ensemble and characterize
its achievable exponent. In the discussion Section 4, we characterize the transmissibility
region for our error exponent, relate the exponent to standard Gallager source and channel
functions, and provide numerical results and formulas that allow us to rank the exponents
attained by the various standard random-coding ensembles.

2. Problem Formulation

We study the simultaneous transmission of N correlated, discrete, memoryless sources
over a channel; users are indexed by ν ∈ N = {1, 2, . . . , N}. The source messages uν of
user ν have n symbols drawn from the alphabet Uν. We denote by uσ the ordered vector
of source messages for all users in a set σ ⊂ 2N , i. e. a subset of the set of all user indices,
and similarly by Uσ the Cartesian product of the source alphabets in the set σ. When
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σ = N , uN and UN denote the ordered vector of source messages for all users and the
Cartesian product of the all source alphabets respectively. The sources are memoryless and
are characterized by the joint probability distribution PN

PN (uN ) =
n

∏
t=1

PN (uN ,t), (1)

and by the symbol joint probability distribution PN . The source message and symbol
marginal distributions of user ν ∈ N are denoted by Pν and Pν respectively. Assuming that
the sources are independent, the marginal distributions induce new joint (mismatched)
probability distributions of sets of users σ ⊂ 2N . The induced independent-message and
-symbol probabilities, denoted by Pind

σ and Pind
σ , are given by

Pind
σ (uσ) = ∏

ν∈σ

Pν(uν), (2)

and similarly for Pind
σ .

Each user ν has an encoder that maps, without cooperation with the other users, the
source message uν onto a codeword xν(uν) also of length n and with symbols drawn from
the alphabet Xν. We denote the codebook of user ν by Cν

n . We denote by xσ ∈ X n
σ the

vector of codewords for all users in a set σ ⊂ 2N . Both terminals simultaneously send these
codewords over a discrete memoryless multiple access channel with output alphabet Y .
The symbolwise transition probability is denoted by W, and the channel is characterized
by a conditional probability distribution

W(y|xN ) =
n

∏
t=1

W(yt|xN ,t), (3)

where y is the received sequence of length n.
Based on y, a joint decoder estimates all transmitted source messages uN according to

the maximum a posteriori criterion:

ûN = arg max
uN∈Un

N

PN (uN )W
(
y | xN (uN )

)
, (4)

where Un
N denotes the set of all possible source messages uN . An error occurs if the

decoded messages ûN differ from the transmitted uN ; we refer to ûN 6= uN as an error
event. The error probability for a given set of codebooks, Pe(CNn ), is thus given by

Pe(CNn ) , Pr
{

ÛN 6= UN
}

. (5)

In our analysis, it will prove convenient to split the error event into 2N − 1 distinct types of
error events indexed by the non-empty subsets in the power set of the user indices 2N \∅,
for example, τ ∈ {{1}, {2}, {1, 2}} for N = 2. More precisely, the error event of type τ
corresponds to the conditions ûν 6= uν for all ν ∈ τ and ûν = uν for all ν ∈ τc, where τc is
the complement of τ in the power set of the user indices.

We are interested in the asymptotics of the error probability for sufficiently large n,
namely whether the error probability vanishes and how fast this probability tends to zero
as it vanishes. The sources UN are said to be transmissible over the channel if there exists
a sequence of codebooks CNn such that limn→∞ Pe(CNn ) = 0. To characterize the speed at
which the error probability vanishes, we use the notion of exponent. An exponent E is said
to be achievable if there exists a sequence of codebooks such that

lim inf
n→∞

− 1
n

log Pe(CNn ) ≥ E. (6)
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Source transmissibility and error-exponent achievability are typically studied by
means of random coding. With random coding, one generates and studies sequences
of ensembles of codebooks whose codewords are randomly drawn from a distribution
Qν(xν|uν) independently for each user; as indicated by the notation, this distribution may
possibly depend on the source message uν. The random-coding probability distribution for
the channel input QN (xN |uN ) combined for all users is given by

QN (xN |uN ) = ∏
ν∈N

Qν(xν|uν). (7)

The use of random coding allows us to study how the error probability averaged over the
ensemble, denoted by P̄e vanishes as n grows. More importantly, it shows the existence
of good codes in the ensemble such that their error probability vanishes. For the point-to-
point and the multiple-access channels, a number of such random-coding ensembles have
been studied in the literature, as reviewed in the following section, where we also present
a multi-class cost-constrained ensemble subsuming all these ensembles and characterize
the achievable exponent and transmissibility region of this ensemble.

2.1. Summary of Notation Used in the Paper

Sets are usually denoted by calligraphic upper case letter, e. g. X , and the n-Cartesian
product set of X is denoted by X n. The cardinality of a set such as X is denoted by |X |.
The indicator function representing an error event or that an element x belongs to a set X
is denoted by 111{x ∈ X}.

The number of users is denoted by N and user indices are typically represented by ν.
The set of all users is denoted by N . The power set of all subsets of N is denoted by 2N

and the complement of a subset σ ⊂ 2N is denoted by σc; sets in the power set of users
are denoted that by Greek letters, for example, τ and σ. The number of source-message
classes and of cost functions for user ν are respectively denoted by Kν and Lν; the sets of
such classes are functions are respectively denoted by Kν and Lν. Indices for source classes
and cost functions are typically denoted by iν and `ν respectively.

Subscripts and superscripts in a quantity A may represent sets of user indices σ.
Depending on the context, the quantity represents a list or a suitable product of variables
for all elements in the set σ. For instance, for σ = {1, 2}, Aσ = (A1, A2) or Aσ = (A1, A2).
If the quantity is a probability distribution, its value for σ represents the probability
distribution of the sequence, for example, Qiσ

σ (xσ) = ∏ν∈σ Qiν
ν (xν). If the quantity is a set,

its value for σ is the Cartesian product, for example, Uσ = U1 ×U2 for σ = {1, 2}. If σ = ∅,
then Aσ = Aσ = 0. If σ is a singleton, for example, σ = {2}, we simply write A2 or A2. We
denote the operation that merges and sorts two lists Aσ1 and Aσ2 with σ1 ∩ σ2 = ∅ into an
ordered list containing all users in the union σ1 ∪ σ2 by [Aσ1 , Aσ2 ]. For sets of user indices,
we denote such merging operation by [σ1, σ2] and we have [σ, σc] = N .

Scalar random variables are denoted by capital letters, for example, X and lowercase
letters represent a particular realisation, for example, x ∈ X . Capital bold letter denotes
random vectors or sequences, for example, X, while small bold letter x ∈ X n denote
deterministic vectors or sequences. Probability distributions for vectors or sequences,
typically of length n, (resp. for symbols) are represented by text-style letters, for example, P,
Q, W (resp. math-style letters, for example, P, Q, W). Sequences symbols are usually affixed
a subscript to indicate a user index; the t-th symbol in the sequence xν is denoted by xν,t.

The source-symbol distribution for user ν is denoted by Pν(uν). The joint distribution
for users σ is denoted by Pσ(uσ); the joint distribution, computed as if the sources were
independent, is denoted by Pind

σ (uσ). The conditional source distribution for users σ1 given
another set σ2 is denoted by Pσ1|σ2

(uσ1 |uσ2). Vector or sequence distributions are defined
analogously with P replaced by P. Channel input distributions are denoted by Qν(xν),
Qiν

ν (xν), or Qiν
ν,uν(xν), where iν denotes the index of the class source message and Qν,uν(xν)

is a shorthand for the conditional distribution Qν(xν|uν). Cost functions are similarly
denoted by aν(xν), aiν

ν (xν), or aiν
ν,uν(xν). Vector or sequence distributions are defined
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analogously with Q or a respectively replaced by Q or a. The conditional distribution for
the channel output symbol (resp. sequence) is denoted by W(y|xN ) (resp. W(y|xN )).

3. Multi-Class Cost-Constrained Ensemble with Statistical Dependency
3.1. Review of Random-Coding Ensembles

The simplest and oldest random-coding ensemble is the independent, identically
distributed (iid) [1,12,17,27], where the symbols xν,t in all codewords xν of a given user
ν are generated independently according to the same input distributions Qν(xν,t) for all
source messages uν. Throughout the paper, we shall identify ensembles by hyphenated
acronyms, where the first part indicates the possible dependence of the codeword on the
source message and the second part describes the generation of symbols in a codeword.
This first ensemble is thus the message-independent iid (mi-iid) ensemble, since codewords
have the same distribution for all source messages and symbols are independent of each
other and independent of the source message symbols too. For the mi-iid ensemble, the
random-coding distribution is given by

Qmi-iid
ν (xν|uν) =

n

∏
t=1

Qν(xν,t). (8)

In the message-independent, independent-conditionally-distributed (mi-icd) ensemble,
the codewords xν of user ν are generated identically for all source messages uν, indepen-
dently of the full message uν, and with symbols according to a set of | Uν| conditional
probability distributions Qν,uν(xν) , Qν(xν|uν). To this end, let Iuν(uν) denote the set of
positions where the symbol uν ∈ U appears in the sequence uν, namely

Iuν(uν) =
{

t ∈ {1, 2, ..., n} : uν,t = uν

}
. (9)

Within each subsequence of uν where uν,t = uν, represented by uν

(
Iuν(uν)

)
, symbols are

drawn independently according to Qν,uν(xν). For this mi-icd ensemble, codewords are
generated according to

Qmi-icd
ν (xν|uν) = ∏

uν∈Uν

∏
t∈Iuν (uν)

Qν,uν(xν,t) (10)

=
n

∏
t=1

Qν,uν,t(xν,t). (11)

Compared to the mi-iid ensemble, the mi-icd ensemble can lead to a larger transmissible
region for the multiple-access channel with correlated sources [11,21]. An example of gener-
ation of three codewords x(1)ν , x(2)ν and x(3)ν in the mi-icd ensemble is shown in Figure 1, for
a given source sequence uν = (α, β, β, γ, β, γ, γ, α, β, α) with source alphabet U = {α, β, γ}.
To generate each codeword xν with alphabet X = {a, c, e}, three subcodewords xν(Iα(uν),
xν(Iβ(uν) and xν(Iγ(uν) are pairwise-independently generated with i. i. d. distributions
Qν,α = (1/3, 1/3, 1/3), Qν,β = (1/2, 1/4, 1/4) and Qν,γ = (1/3, 2/3, 0), respectively. Sym-
bols generated according to Qν,α, Qν,β and Qν,γ are respectively represented as green
circles, blue boxes and red diamonds in the figure. In the example, Iα(uν) = {1, 8, 10},
Iβ(uν) = {2, 3, 5, 9} and Iγ(uν) = {4, 6, 7}. For instance, the subcodeword x(1)ν (Iγ(uν)
has three symbols, each generated independently from Qν,γ, leading to the red-diamond
symbols x(1)ν (Iγ(uν) = (a, a, a).



Entropy 2021, 23, 569 6 of 34

uν = α β β γ β γ γ α β α

x(1)ν
= a e c a a a a c c a

x(2)ν
= e c c c c c c a a c

x(3)ν
= a e e c e a a a e a

mi-icd

x(4)ν
= a a a a e c c c c e

x(5)ν
= e c e c a c a c a a

x(6)ν
= c a e c a a c a c e

mi-ccc

Figure 1. Example of codewords x(1)ν , x(2)ν and x(3)ν in the mi-icd ensemble and x(4)ν , x(5)ν and x(6)ν in
the mi-ccc ensemble, for a given source sequence uν.

Next, we have the message-dependent iid (md-iid) ensemble [6,8,19,25,28], where
codewords for each user are generated with i. i. d. symbols according to different distri-
butions Qiν

ν (xν) that depend on the full source message through the class index iν of the
class the source message belongs to. More precisely, for user ν = 1, 2 with source marginal
distribution Pν, the iν-th class Aiν

ν , where iν ∈ Kν = {1, . . . , Kν}, is defined as the set of all
source messages whose probability Pν(uν) is within a given interval, that is,

Aiν
ν =

{
uν ∈ Un

ν : γn
ν,iν < Pν(uν) ≤ γn

ν,iν−1
}

, (12)

where the thresholds γν,j are Kν + 1 non-negative numbers, ordered from higher to lower,
such that 0 = γν,Kν ≤ γν,Kν−1 ≤ ... ≤ γν,1 < γν,0 = 1, and minuν Pν(uν) < γν,Kν−1 and
γν,1 ≤ maxuν Pν(uν). The md-iid random-coding distribution is given by

Qmd-iid
ν (xν|uν) =

n

∏
t=1

Qiν(uν)
ν (xν,t). (13)

The exponent of this md-iid ensemble can be larger than that of the mi-iid ensemble for
joint source-channel coding [8,20,28].

In the message-dependent, independent conditional symbol distributions (md-icd)
ensemble, messages in the class iν for user ν are encoded with codewords whose symbols
are generated independently according to the conditional input distribution Qiν

ν,uν(xν). The
random-coding distribution of the md-icd ensemble is thus given by

Qmd-icd
ν (xν|uν) = ∏

uν∈Uν

∏
t∈Iuν (uν)

Qiν(uν)
ν,uν (xν,t). (14)

In the message-independent, constant-composition (mi-cc) ensemble [29,30], code-
words xν are drawn independently with an empirical distribution Q̂ν(xν) close to a given
Qν(xν), independently of the source message uν. For each user, codewords xν are randomly
picked from T n

ν (Qν), the set of all sequences whose empirical distribution has a variational
distance to Qν of at most 1/n, that is

T n
ν (Qν) =

{
xν ∈ X n

ν : max
xν

∣∣Q̂ν(xν)−Qν(xν)
∣∣ < 1

n

}
. (15)
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For this mi-cc ensemble, the random-coding distribution is given by

Qmi-cc
ν (xν|uν) =

1
|T n

ν (Qν)|
111
{

xν ∈ T n
ν (Qν)

}
. (16)

While the mi-cc and mi-iid ensembles lead to identical transmissibility conditions, the
former may achieve strictly larger exponents for suboptimal input distributions already in
single-user settings [29].

The message-independent, conditional constant-composition (mi-ccc) ensemble com-
bines features of the mi-icd and mi-cc ensembles. For each subsequence uν

(
Iuν(uν)

)
,

the corresponding subcodewords xν

(
Iuν(uν)

)
are drawn independently from the set

T |Iuν (uν)|
ν (Qν,uν) of subsequences with empirical distribution close to Qν,uν(xν), namely

T |Iuν (uν)|
ν (Qν,uν) =

{
xν ∈ X |Iuν (uν)|

ν : max
xν∈xν

∣∣Q̂ν(xν)−Qν,uν(xν)
∣∣ < 1
|Iuν(uν)|

}
. (17)

The random-coding distribution of the mi-ccc ensemble is given by

Qmi-ccc
ν (xν|uν) = ∏

uν∈Uν

1∣∣T |Iuν (uν)|
ν (Qν,uν)

∣∣111
{

xν

(
Iuν(uν)

)
∈ T |Iuν (uν)|

ν (Qν,uν)
}

. (18)

An example of the generation of three codewords x(4)ν , x(5)ν and x(6)ν in the mi-ccc ensemble
is also shown in Figure 1 as a comparison to the md-iid ensemble, for the same source
sequence uν, source alphabet U = {α, β, γ} and input alphabet X = {a, c, e}. Now, to gen-
erate each codeword xν, three subcodewords xν(Iα(uν)), xν(Iβ(uν)) and xν(Iγ(uν)) are
pairwise-independently, uniformly drawn in the type classes with empirical distributions
Q̂ν,α, Q̂ν,β and Q̂ν,γ that are closest to Qν,α, Qν,β and Qν,γ, respectively. Since in the exam-
ple |Iα(uν)| = 3, |Iβ(uν)| = 4 and |Iγ(uν)| = 3, it follows that Q̂ν,α = (1/3, 1/3, 1/3),
Q̂ν,β = (1/2, 1/4, 1/4) and Q̂ν,γ = (1/3, 2/3, 0). Symbols generated according to Q̂ν,α,
Q̂ν,β and Q̂ν,γ are respectively represented as green doubled circles, blue doubled boxes

and red doubled diamonds in the figure. For instance, all subcodewords x(j)
ν (Iγ(uν), for

j = 4, 5, 6, have three symbols jointly generated from the constant-composition type Q̂ν,γ,
that is, exactly one a and two cs.

The message-dependent, constant-composition (md-cc) ensemble combines the fea-
tures of having different distributions for different messages with constant-composition
random coding. For messages in the class iν ∈ {1, . . . , Kν} for user ν, codewords are drawn
from the set of sequences with empirical distribution close to Qiν

ν (xν). For this ensemble,
the random-coding distribution is given by

Qmd-cc
ν (xν|uν) =

1∣∣T n
ν

(
Qiν(uν)

ν

)∣∣111
{

xν ∈ T n
ν

(
Qiν(uν)

ν

)}
. (19)

Finally, the message-dependent, conditional constant-composition (md-ccc) ensemble
combines several of the ensembles listed above. For a given message uν = (uν,1, ..., uν,n)

in the iν-th class, that is, uν ∈ Aiν
ν , the subsequence of uν having the same symbol uν, that

is, uν

(
Iuν(uν)

)
, is encoded with pairwise-independent codewords generated from the set

of codewords with empirical distribution very close to Qiν
ν,uν(xν). The random-coding

distribution of the md-ccc ensemble is thus given by

Qmd-ccc
ν (xν|uν) = ∏

uν∈Uν

1∣∣T |Iuν (uν)|
ν (Qiν(uν)

ν,uν )
∣∣111
{

xν

(
Iuν(uν)

)
∈ T |Iuν (uν)|

ν (Qiν(uν)
ν,uν )

}
. (20)
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3.2. Generalized Multi-Class Cost-Constrained Ensemble

Motivated by the ensembles listed in the previous section, and inspired by refs. [1] (Ch. 7)
and [26] (Sec. II), we study a generalized message-dependent multi-class cost-constrained
random-coding ensemble with multiple auxiliary costs.

For each user, we partition the set of source messages into Kν disjoint classes with
thresholds on the message probabilities as in equation (12). Let the source message be in
the iν-th class, that is, iν(uν) = iν. Given the source message uν and the source symbol
uν, we consider the subsequence uν

(
Iuν(uν)

)
, where Iuν(uν) is defined in equation (9),

and we denote the corresponding source subsequence and subcodeword by uν

(
Iuν(uν)

)
and xν

(
Iuν(uν)

)
respectively. For each user ν, class index iν, and source message symbol

uν, the subcodeword xν

(
Iuν(uν)

)
is drawn according to a symbolwise i. i. d. distribution

Qiν
ν,uν(xν) conditioned on a set of cost constraints being satisfied. We consider Lν additive

cost functions aiν ,`ν
ν,uν (xν), `ν ∈ Lν = {1, . . . , Lν}. The total cost aiν ,`ν

ν,uν

(
xν

(
Iuν(uν)

))
of the

subcodeword xν

(
Iuν(uν)

)
is given by the sum of the symbol costs aiν ,`ν

ν,uν , namely

aiν ,`ν
ν,uν

(
xν

(
Iuν(uν)

))
= ∑

j∈Iuν (uν)

aiν ,`ν
ν,uν

(xν,j). (21)

We assume that the average cost φiν ,`ν
ν,uν under the conditional distribution Qiν

ν,uν is zero:

φiν ,`ν
ν,uν

= ∑
xν∈Xν

Qiν
ν,uν

(xν)aiν ,`ν
ν,uν

(xν) = 0. (22)

Finally, fix some parameters δν > 0 and let Diν
ν be the set of codewords for which the

average empirical cost of its constituent subcodewords 1
|Iuν (uν)|a

iν ,`ν
ν,uν

(
xν

(
Iuν(uν)

))
is close

to the statistical mean φiν ,`ν
ν,uν = 0 for all cost functions and source symbols, i. e.

Diν
ν,uν

,
{

xν ∈ X n
ν :
∣∣∣∣ 1
|Iuν(uν)|

aiν ,`ν
ν,uν

(
xν

(
Iuν(uν)

))∣∣∣∣ ≤ δν

|Iuν(uν)|
, uν ∈ Uν, `ν ∈ Lν

}
. (23)

Codewords xν are the combination of subcodewords xν

(
Iuν(uν)

)
with respective

positions in Iuν(uν). For this multi-class cost-constrained ensemble, the random-coding
distribution is thus given by

Qcost
ν (xν|uν) =

1
Ξν

∏
uν∈Uν

∏
t∈Iuν (uν)

Qiν
ν,uν

(xν,t)111
{

xν ∈ Diν
ν,uν

}
(24)

=
1

Ξν

n

∏
t=1

Qiν
ν,uν,t(xν,t)111

{
xν ∈ Diν

ν,uν

}
, (25)

where Ξν is a normalizing constant and the class index is determined by the source message,
iν = iν(uν).

The multi-class cost-constrained ensemble subsumes all the ensembles described in
Section 3.1. First of all, the iid and icd ensembles are recovered by setting Lν = 0 and
choosing the appropriate number of classes Kν and random-coding distributions Qν, Qν,uν ,
Qiν

ν and Qiν
ν,uν . For all these cases, the set Diν

ν,uν includes all generated codewords and the
normalizing constant is Ξν = 1.

To recover the constant-composition ensembles, for which constraints force the sub-
codewords to belong to some set T n

ν (Qν) or T |Iuν (uν)|
ν (Qiν

ν,uν), for each of the Kν classes
for user ν we set δν < 1, Lν = |Xν| and bijectively map the channel input symbols to cost
function indices `ν(xν) so that

aiν ,`ν
ν,uν

(xν) = 111
{

xν = `ν

}
−Qiν

ν,uν
(`ν). (26)
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In case the ensemble does not depend on either iν or uν, these symbols are dropped from
equation (26). For example, for the md-cc ensemble, we have aiν

ν,`ν
(`ν) = 111

{
xν = `ν

}
−Qiν

ν (xν).
In addition, the codeword set Diν

ν,uν in equation (23) is simplified as

Diν
ν,uν

=

{
xν ∈ X n

ν :

∣∣∣∣∣ 1n n

∑
t=1

111
{

xν,t = x
}
−Qiν

ν (x)

∣∣∣∣∣ ≤ 1
n

, x ∈ Xν

}
, (27)

which is the same as T n(Qiν
ν ) given a version of equation (15) where Qν may depend on iν.

Again, choosing the right number of classes Kν and random-coding distributions Qν,
Qν,uν , Qiν

ν , and Qiν
ν,uν recovers the various constant-composition ensembles. By construc-

tion, the set Diν
ν,uν includes only the (sub)codewords with empirical distribution close to

respectively Qν, Qν,uν , Qiν
ν , and Qiν

ν,uν , and the normalizing constant Ξν is the probability of
the corresponding type set (or product thereof). As an example, for the md-ccc ensemble,
choosing the cost functions in equation (26) as follows

aiν ,`ν
ν,uν

(
xν

(
Iuν(uν)

))
= ∑

j∈Iuν (uν)

111
{

xν,j = `ν

}
−Qiν

ν,uν
(`ν) (28)

yields the following cost-constraint set, which is equivalent to equation (17),

Diν
ν,uν

=

{
xν ∈ X n

ν :
∣∣∣∣∑j∈Iu(uν) 111

{
xν,j = x

}∣∣Iu(uν)
∣∣ −Qiν

ν,uν
(x)
∣∣∣∣ ≤ 1∣∣Iu(uν)

∣∣ , u ∈ Uν, x ∈ Xν

}
. (29)

3.3. Exponent for the Generalized Multi-Class Cost-Constrained Ensemble

Theorem 1. For the transmission of N correlated memorlyess sources with joint distribution
PN , where N = {1, 2 . . . , N}, over a channel with input xN over a memoryless channel with
transition probabilitiy W(y|xN ), consider a random-coding multi-class cost-constrained ensemble
where source messages for each user ν ∈ N are allocated, depending on their probabilities, into Kν

classes with thresholds {γν,0, γν,1, . . . , γν,Kν}, as in equation (12), and encoded onto codewords
randomly generated with a distribution Qiν

ν (xν|uν) that depends on the source message according to
equation (24) through symbol distributions Qiν

ν,uν that possibly depend on the source-message class
index iν and source symbol uνand Lν cost functions aiν ,`ν

ν,uν , `ν ∈ {1, 2, . . . , Lν}. This random-coding
ensemble attains the following exponent Ecost

Ecost = min
τ∈2N \∅, iN∈KN

max
0≤ρ≤1

max
λL,U
N ≥0, r

`N
N uN

∈R
EiN

τ

(
ρ, λL,U
N , r`NN uN

)
, (30)

where the Gallager function EiN
τ

(
ρ, λL,U
N , r`NN uN

)
is given by

EiN
τ

(
ρ, λL,U
N , r`NN uN

)
=

− log ∑
uτc ,xτc ,y

(
∑

uτ ,xτ

PN (uN )
1

1+ρ ΛiN
N (uN )Qiτ

τ,uτ
(xτ)RiN

N ,uN
(xN )

(
Qiτc

τc ,uτc (xτc)W(y|xN )
) 1

1+ρ

)1+ρ

, (31)

and the functions Λiσ
σ (uσ) and Riσ

σ,uσ
(xσ) are respectively given by

Λiσ
σ (uσ) = ∏

ν∈σ

(
Pν(uν)

γν,iν

)λL
ν
(

γν,iν−1

Pν(uν)

)λU
ν

, (32)

Riσ
σ,uσ

(xσ) = ∏
ν∈σ

∏
`ν∈Lν

er`ν
νuν aiν ,`ν

ν,uν (xν), (33)

and implicitly depende on the set of optimization parameters
(
λL,U
N , r`NN uN

)
.
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Proof. This result is proved in Appendix A.

The random-coding exponent in equation (30) depends on the partitioning of the
source-message set into classes, the channel input distributions, and the codeword cost-
constraint functions. The best possible generalized cost-constraint exponent is obtained by
optimizing over the multi-class partitioning, the cost constraints and the input distributions.
We briefly discuss the optimization w. r. t. the thresholds of the source messages partitioning
in Appendix B. In the next section, we provide some numerical examples where we
compute the optimal exponents for either independent or correlated sources, and find that
the optimal number of classes is two. In ref. [31] (Sec. 3.2.1.1), we provide some indications
of why this optimality of only two classes is harder to establish in multi-user scenarios,
compared to the single-user case. In the next section, we use equations (31) and (30) to
respectively obtain the source and channel Gallager functions of the various ensembles in
Section 3.1 and rank their achievable exponents and transmissibility regions.

4. Discussion
4.1. Gallager Functions for Correlated Sources

In this section, we evaluate the generalized Gallager function EiN
τ

(
ρ, λL,U
N , r`NN uN

)
of the

multi-class cost-constrained ensemble in equation (31) for the various ensembles described
in Section 3.1. In the cases where it is possible, we relate this Gallager function to the
well-known [1] correlated-source and channel Gallager functions, respectively given by:

Es,σ(ρ, PN ) = log ∑
uσc

(
∑
uσ

PN (uN )
1

1+ρ

)1+ρ

, (34)

E0(ρ, Q, W) = − log ∑
y

(
∑
x

Q(x)W(y|x)
1

1+ρ

)1+ρ

, (35)

where σ ∈ 2N . Using that [uσ, uσc ] = uN , the standard Gallager source function is given
by Es(ρ, PN ) = Es,N (ρ, PN ), with N = {1, . . . , N} the set of user indices.

For the simple mi-iid ensemble, with only one source class and no cost constraints,
Kν = 1 and Lν = 0 for all ν ∈ N , and Λiσ

σ (uσ) = Riσ
σ,uσ

(xσ) = 1 for all σ ∈ 2N . With no sta-
tistical dependency between messages and codewords, Qν,uν(xν) = Qν(xν). Setting iN = 1
and λL,U

N = r`NN uN
= 0 in equation (31) gives the Gallager function Emi-iid

τ (ρ, PN , QN , W),

Emi-iid
τ (ρ, PN , QN , W)

= − log ∑
uτc ,xτc ,y

(
∑

uτ ,xτ

PN (uN )
1

1+ρ Qτ(xτ)
(
Qτc(xτc)W(y|xN )

) 1
1+ρ

)1+ρ

. (36)

Isolating the summations over uτc and uτ , we can split the Gallager function as

Emi-iid
τ (ρ, PN , QN , W) = E0(ρ, Qτ , QτcW)− Es,τ(ρ, PN ), (37)

where QτcW is a shorthand for Qτc(xτc)W(y|xN ), the transition probability of a channel
with input xτ and output (xτc , y).

For the mi-icd ensemble, we have a similar set-up as for the mi-iid ensemble, where
Qν,uν(xν) now may depend on uν. In this case, the Gallager function Emi-icd

τ (·) is given by
equation (36) with Qσ(xσ) replaced by Qσ,uσ (xσ), for σ ∈ {τ, τc}:

Emi-icd
τ (ρ, PN , QN ,U , W)

= − log ∑
uτc ,xτc ,y

(
∑

uτ ,xτ

PN (uN )
1

1+ρ Qτ,uτ (xτ)
(

Qτc ,uτc (xτc)W(y|xN )
) 1

1+ρ

)1+ρ

. (38)
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As the summations over uτc and uτ are not independent from the rest, the Gallager function
does not split into source and channel functions unless the sources are independent, in
which case one can find an mi-iid ensemble with a tilted unconditional input distribution
and identical exponent. To this end, and for a given conditional input distribution Qν,uν(xν),
let us define a tilted distribution Qρ

ν(xν) as

Qρ
ν(xν) = ∑

uν

Pν(uν)
1

1+ρ

∑ūν
Pν(ūν)

1
1+ρ

Qν,uν(xν). (39)

From this equation, we have the following equality:

Qρ
ν(xν) ∑̄

uν

Pν(ūν)
1

1+ρ = ∑
uν

Pν(uν)
1

1+ρ Qν,uν(xν). (40)

Substituting this identity together with PN (uN ) = Pτ(uτ)Pτc(uτc) in equation (38) and
rearranging the result, we obtain the following Gallager function for independent sources:

Emi-icd
τ (ρ, PN , QN ,U , W) = E0(ρ, Qρ

τ , WQτc)− Es(ρ, Pτ) (41)

= Emi-iid
τ (ρ, PN , [Qρ

τ , Qτc ], W). (42)

For the md-iid and md-icd ensembles, there are Kν source classes per user and no cost
constraints, i. e. Lν = 0 and Riσ

σ,uσ
(xσ) = 1 for ν ∈ N and σ ∈ 2N . Settting r`NN uN

= 0 in
equation (31) gives the Gallager function Emd-icd

τ,iN
(·) for generic iN [31] (Eq. (4.36)),

Emd-icd
τ,iN (ρ, PN , QiN

N ,U , W)

= − log ∑
uτc ,xτc ,y

(
∑

uτ ,xτ

PN (uN )
1

1+ρ ΛiN
N (uN )Q

iτ
τ,uτ

(xτ)
(

Qiτc
τc ,uτc (xτc)W(y|xN )

) 1
1+ρ

)1+ρ

. (43)

The Gallager function Emd-iid
τ,iN

(·) for the md-iid ensemble is obtained by setting
Qσ,uσ (xσ) = Qσ(xσ), independent of uν, for σ ∈ {τ, τc} in equation (43). As the sum-
mations over uτc and uτ are now independent from the rest, the Gallager function splits
as

Emd-iid
τ,iN (ρ, PN , QiN

N , W) = E0(ρ, Qiτ
τ , Qiτc

τc W)− EiN
s,τ(ρ, PN ), (44)

where we defined EiN
s,τ(ρ, PN ), a modified Gallager Es-function, as

EiN
s,τ(ρ, PN ) = log ∑

uτc

(
∑
uτ

PN (uN )
1

1+ρ ΛiN
N (uN )

)1+ρ

. (45)

The maximization w. r. t. λL,U
N in equation (30) only affects the second term in the r. h. s. of

equation (44), since the function ΛiN
N only appears in the source part of the exponent. In

Appendix C, we discuss the properties of equation (45) after the maximization w. r. t. λL,U
N

as a function of ρ, and establish some connections to the Gallager source function (34) and
to the source functions for the single-user md-iid ensemble in ref. [8].

The Gallager functions for the constant-composition ensembles differ from the ones
considered so far in the presence of Lν = |Xν| cost functions aiν ,`ν

ν,uν (xν), given in equa-
tion (26), for each input distribution Qiν

ν,uν(xν). These cost functions appear in the Gallager
functions through the factors Riσ

σ,uσ
(xσ), for σ ∈ {τ, τc} that multiply each appearance of

Qiσ
σ,uσ

(xσ) in the function, and through their associated optimization parameters r`NN uN
. The

expressions of the Gallager functions for these constant-composition ensembles can be
easily inferred from this obversation, so we focus on the factor Riσ

σ,uσ
(xσ) itself.
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For the mi-cc and md-cc ensembles, the cost functions aiν ,`ν
ν,uν (xν), factor Riσ

σ,uσ
(xσ), and

associated optimization parameter r`ν
νuν are independent of uν, we thus write aiν ,`ν

ν (xν),
Riσ

σ (xσ), and r`ν
ν . The expressions in equations (26) and (33) for Lν = Xν give

Riν
ν (xν) = e∑`ν∈Xν r`ν

ν

(
111{xν=`ν}−Qiν

ν (`ν)
)

. (46)

The exponent in equation (46) can be evaluated as

∑
`ν∈Xν

r`ν
ν

(
111
{

xν = `ν

}
−Qiν

ν (`ν)
)
= rxν

ν − ∑
`ν∈Xν

r`ν
ν Qiν

ν (`ν) (47)

= αiν
τ,ν(xν), (48)

where we have defined a function αiν
τ,ν(xν) that depends on τ and iν through the opti-

mization parameters r`ν
ν . We can be easily verify that αiν

τ,ν has zero mean, in other words,
∑xν

αiν
τ,ν(xν)Qiν

ν (xν) = 0. At this point, the parameters r`ν
ν may be replaced by the equiv-

alent real-valued functions αiν
τ,ν(xν). We obtain the mi-cc Gallager function Emi-cc

τ (·) by
setting iN = 1 and λL,U

N = 0 in equation (31),

Emi-cc
τ (ρ, ατ,N , PN , QN , W)

= − log ∑
uτc ,xτc ,y

(
∑

uτ ,xτ

PN (uN )
1

1+ρ Qτ(xτ)eατ,N (xN )
(

Qτc(xτc)W(y|xN )
) 1

1+ρ

)1+ρ

(49)

= − log ∑
xτc ,y

(
∑
xτ

Qτ(xτ)eατ,N (xN )
(

Qτc(xτc)W(y|xN )
) 1

1+ρ

)1+ρ

− Es,τ(ρ, PN ), (50)

where we split the Gallager function into channel and source terms in analogy to equa-
tion (37).

In ref. [31] (Eq. (4.49)), the md-cc ensemble was studied for N = 2 users in both the
primal and dual domains. The md-cc Gallager function Emd-cc

τ (·) for N users is obtained
by combining the derivation of equation (50) with that of equation (44) to yield

Emd-cc
τ (ρ, α

iN
τ,N , PN , QiN

N , W) = − log ∑
xτc ,y

(
∑
xτ

Qτ(xτ)e
α

iN
τ,N (xN )

(
Qτc(xτc)W(y|xN )

) 1
1+ρ

)1+ρ

− log ∑
uτc

(
∑
uτ

PN (uN )
1

1+ρ ΛiN
N (uN )

)1+ρ

. (51)

As in previous cases, the exponent is obtained after maximization over α
iN
τ,N .

Concluding our list, the cost functions aiν ,`ν
ν,uν (xν), factors Riσ

σ,uσ
(xσ), and parameters

r`ν
νuν for the mi-ccc and md-ccc ensembles do depend on uν. In analogy to equation (48), we

define a zero-mean function βiν
τ,ν,uν

(xν) as

βiν
τ,ν,uν

(xν) = rxν
νuν
− ∑

`ν∈Xν

r`ν
νuν

Qiν
ν,uν

(`ν), (52)

and similarly for βτ,ν,uν(xν) for the mi-ccc ensemble. The Gallager function for the mi-
ccc ensemble Emi-ccc

τ (·) is obtained by combining the derivations of equation (50) and of
equation (38),
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Emi-ccc
τ (ρ, βτ,N ,uN , PN , QN ,U , W)

= − log ∑
uτc ,xτc ,y

(
∑

uτ ,xτ

PN (uN )
1

1+ρ Qτ,uτ (xτ)e
βτ,N ,uN (xN )

(
Qτc ,uτc (xτc)W(y|xN )

) 1
1+ρ

)1+ρ

. (53)

Similarly, for the md-ccc ensemble, and in agreeement with the 2-user case studied in
ref. [31] (Eq. (4.45)), combining the derivations of equations (50) and (43), yields

Emd-ccc
τ,iN (ρ, β

iN
τ,N ,uN

, PN , QiN
N ,U , W)

= − log ∑
uτc ,xτc ,y

(
∑

uτ ,xτ

PN (uN )
1

1+ρ ΛiN
N (uN )Q

iτ
τ,uτ

(xτ)e
β

iN
τ,N ,uN

(xN )
(

Qiτc
τc ,uτc (xτc)W(y|xN )

) 1
1+ρ

)1+ρ

. (54)

4.2. Transmissibility

We may obtain the transmissibility conditions from the achievable exponents de-
rived in Sec. 4.1, following the random-coding method described in ref. [1] (Th. 5.6.4).
The analysis extends the transmissibility condition for joint source-channel coding in
ref. [1] (Prob. 5.16), to account for statistical dependency of the codeword on the source
message in the multiuser set-up. As mentioned above, the source UN is transmissible
over the channel W if there exists a sequence of codes with vanishing error probability,
or equivalently, with strictly positive achievable error exponent Ecost in equation (30). As
an example, we present the derivation for the mi-icd ensemble where the class and cost
functions in equations (32) and (33) are inactive, namely Λiσ

σ (uσ) = Riσ
σ,uσ

(xσ) = 1 for all
σ ∈ 2N , and leave the general case of Kν > 1 classes and cost-constrained codewords as an
open problem.

For the mi-icd case, and similarly to Gallager’s E0-function [1] (Th. 5.6.3), the Gallager
function Emi-icd

τ (·) in equation (38) is concave (∩) with respect to ρ and satisfies Emi-icd
τ (ρ =

0, ·) = 0. For every τ ⊂ 2N \∅, let ρ̂τ be the optimizer given by

ρ̂τ = arg max
0≤ρ≤1

Emi-icd
τ (ρ, PN , QN ,U , W). (55)

Therefore, the achievable exponent is strictly positive, namely Emi-icd
τ (ρ̂τ , ·) > 0, as far as

the slope of the Emi-icd
τ (ρ, ·) function is strictly positive at ρ = 0, that is

∂

∂ρ
Emi-icd

τ (ρ, PN , QN ,U , W)
∣∣∣
ρ=0

> 0. (56)

Taking the derivative with respect to ρ at both sides of equation (38), after some algebraic
manipulations, we find that (56) is equivalent to

∑
uτc

Pτc(uτc) ∑
xτc ,y

∑
uτ ,xτ

Pτ|τc(uτ |uτc)Qτ,uτ (xτ)Qτc ,uτc (xτc)W(y|xN )×

× log
Pτ|τc(uτ |uτc)Qτc ,uτc (xτc)W(y|xN )

∑ūτ ,x̄τ
Pτ|τc(ūτ |uτc)Qτ,ūτ (x̄τ)Qτc ,uτc (xτc)W(y|[x̄τ , xτc ])

> 0. (57)

We next write the expression in the left hand-side of the inequality (57) in terms
of entropy and mutual information. We denote as H(P) the entropy of a source with
distribution P [32] (Eq. (2.1)) and by I(Q, W) the mutual information of a channel W with
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input distribution Q [32] (Eq. (2.28)). For σ ⊂ 2N , we define a channel input distribution
Qτ|σ, that is conditioned to the source messages uσ, as

Qτ|σ(xτ |uσ) = ∑
uτ∈U�

Pτ|σ(uτ |uσ)Qτ,uτ (xτ). (58)

Therefore, the transmissibility condition (57) can be compactly expressed as

H
(

Pτ|τc
)
< I
(
Qτ|τc , W|Pτc Qτc |τc

)
, τ ⊂ 2N \∅. (59)

As it is, Qτc |τc is “transparent”, as it cancels inside the fraction, and the channel law may
also be written as Qτc |τc W, removing the conditioning in the mutual information. With
N = {1, 2} in equation (59), we recover the achievable Cover-El Gamal-Salehi region
[11] (Eq. (3)).

4.3. Numerical Examples

In this section, we present two simple examples showing that the exponent of the
md-iid ensemble can be larger than that of the mi-iid ensemble with only two classes (and
associated input distributions) for each user. First, we consider two correlated discrete
memoryless sources, N = 2 and N = {1, 2}, with alphabet Uν = {0, 1} for both users
ν ∈ N , and probability distribution PN (u1, u2) given in matrix form as

PN =

(
0.0005 0.0095
0.0005 0.9895

)
. (60)

The sources are sent over a discrete memoryless multiple-access channel with input alpha-
bets X1 = X2 = {1, 2, 3, 4, 5, 6} and output alphabet Y = {1, 2, 3, 4}. The channel transition
probabilites are given by a 36×4 matrix W, such that W(y|x1, x2) is the row x1 + 6(x2 − 1).
The transition matrix W is given by

W =



W1
W2
W3
W4
W5
W6

, (61)

where the 6×4 submatrices W`, ` = 1, . . . , 6 are given as follows. First, the submatrix W1
corresponds to the point-to-point channel discussed in ref. [8] (Sec. IV.C), given by

W1 =



1− 3k1 k1 k1 k1
k1 1− 3k1 k1 k1
k1 k1 1− 3k1 k1
k1 k1 k1 1− 3k1

0.5− k2 0.5− k2 k2 k2
k2 k2 0.5− k2 0.5− k2

, (62)
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for k1 = 0.045 and k2 = 0.01. Let the m-th row of matrix W1 is denoted by W1(m). The
matrix W2 (resp. W3) is a 6× 4 matrix whose rows are all W1(5) (resp. W1(6)). The matrices
W4, W5 and W6 are respectively given by

W4 =



W1(2)
W1(3)
W1(4)
W1(1)
W1(6)
W1(5)

, W5 =



W1(3)
W1(4)
W1(1)
W1(2)
W1(5)
W1(6)

, W6 =



W1(4)
W1(1)
W1(2)
W1(3)
W1(6)
W1(5)

. (63)

The optimal achievable exponent [8] (Sec. IV.C) for the single-user channel W1 in
equation (62) is related to two different distributions Q? and Q†, given in vector form by

Q? =
(
0, 0, 0, 0, 1/2, 1/2

)
, (64)

Q† =
(
1/4, 1/4, 1/4, 1/4, 0, 0

)
. (65)

We let each user employ these distributions in the md-iid ensemble with input distribution
in equation (13) according to the source message partitioning in equation (12) with Kν = 2
classes per user and thresholds γN = (γ1, γ2). Since we consider two input distributions
for each user, the channel Gallager function maxρ∈[0,1] E0(ρ, Qiτ

τ , WQiτc
τc ) is not concave in ρ

[8]. To find the md-iid exponent Emd-iid, we optimize over the class thresholds following the
method in Appendix B with the Gallager function in equation (44), exploit the properties
of the source function in equation (45) in Appendix C, and also find the optimal input
distribution assignment of Qiν

ν for each ν ∈ {1, 2}. In our setting, we have four possible
assignments, namely

Ω1 : Q1
1 = Q1

2 = Q?, Q2
1 = Q2

2 = Q†, (66)

Ω2 : Q1
1 = Q2

2 = Q?, Q2
1 = Q1

2 = Q†, (67)

Ω3 : Q2
1 = Q1

2 = Q?, Q1
1 = Q2

2 = Q†, (68)

Ω4 : Q2
1 = Q2

2 = Q?, Q1
1 = Q1

2 = Q†. (69)

We start our numerical discussion by assessing which of the possible four assignments
in equations (66)–(69) leads to a higher error exponent. For each possible pair of thresholds
(γ1, γ2), we numerically calculate the optimal assignment Ω?(γN ) given by

Ω?(γN ) = arg max
Ωj

min
iN

min
τ

EiN
τ (γN ), (70)

and the corresponding achievable error exponent Emd-iid(γN ) as

Ecost(γN ) = max
Ωj

min
iN

min
τ

EiN
τ (γN ), (71)

where the exponent function EiN
τ (γN ) is given in equation (A55). Figures 2 and 3 respec-

tively show Ω?(γN ) and Ecost(γN ) for the valid range of γN . For most pair of thresholds
(γ1, γ2), assignments Ω1 and Ω3 lead to the highest exponent among the possible assign-
ments, while assignments Ω2 and Ω4 are optimal only for a marginal region. Using this
information, and combined with the values of the achievable exponents in Figure 3, we
determine the message-dependent exponent

Emd-iid = max
γN

Ecost(γN ). (72)

In this example, we obtained the achievable exponent Emd-iid = 0.2611, corresponding
to the input distribution assignment Ω1 in equation (66) and optimal source message
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Figure 2. Correlated-sources optimal assignment Ω?(γN ) in equation (70) for all pairs of thresholds
(γ1, γ2).

partitioning γ?
1 = 0.8469 and γ?

2 = 0.6581. The optimal point γ?
N is shown by a white

(black) bullet in Figure 2 (Figure 3).
Alternatively, we may first optimize over γN and then over the assignments Ωj. To

do so, we solve the system of equations (A58) in Appendix B to numerically determine the
optimal thresholds γ?

N , and compute the exponent Ecost(Ωj) as

Ecost(Ωj) = min
iN

min
τ

EiN
τ (γ?

N ), (73)

where the exponent function EiN
τ (γN ) is given in equation (A55). We provide in Table

1 the values of the optimal thresholds γ?
N and exponents EiN

τ (γ?
N ) under the different

assignment Ωj, for the three types of error τ and the four possible user classes iN . For each
assignment, the minimum over iN and τ as in equation (73) is highlighted in gray, leading
to the exponent Ecost(Ωj). The message-dependent exponent is then

Emd-iid = max
j

Ecost(Ωj), (74)

recovering the error exponent Emd-iid = 0.2611 for input distribution assignment Ω1
obtained using the previous method in equation (71).
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Figure 3. Correlated-sources error exponent Ecost(γN ) in equation (71) for all pairs of thresholds
(γ1, γ2).

Table 1. Correlated-sources optimal thresholds γ?
N and exponents EiN

τ (γ?
N ) in equation (73) for as-

signments Ωj in equations (66)–(69). For each assignment, the minimum over iN and τ is highlighted
in gray.

Assignment Ω1 Assignment Ω2

γ?
1 = 0.8469 γ?

2 = 0.6581 γ?
1 = 1 γ?

2 = 1

(i1, i2) (1, 1) (1, 2) (2, 1) (2, 2) (1, 1) (1, 2) (2, 1) (2, 2)

τ = {1} 0.3131 0.2735 0.3120 0.2611 0.0642 0.3268 0.1005 0.3604
τ = {2} 0.3986 0.4369 0.2611 0.4119 0.3959 0.3986 0.4323 0.3110

τ = {1, 2} 0.2611 0.2972 0.2630 0.2883 0.2108 0.2108 0.2360 0.2637

Assignment Ω3 Assignment Ω4

γ?
1 = 0.5605 γ?

2 = 0.6709 γ?
1 = 0.6985 γ?

2 = 0.9033

(i1, i2) (1, 1) (1, 2) (2, 1) (2, 2) (1, 1) (1, 2) (2, 1) (2, 2)

τ = {1} 0.3120 0.2503 0.2763 0.2897 0.0879 0.3605 0.0879 0.3112
τ = {2} 0.2503 0.3898 0.5675 0.5731 0.3664 0.2503 0.4720 0.4684

τ = {1, 2} 0.2630 0.2816 0.2503 0.3012 0.2360 0.2632 0.2097 0.2097

In the second example, we consider the transmission of two independent discrete
memoryless sources with identical source alphabets Uν = {0, 1}with distributions induced
by the marginals of equation (60), given by P1(0) = 0.01 and P2(0) = 0.001. These sources
are transmitted over the multiple-access channel with transition probability given by
equation (61), and are encoded using the md-iid ensemble with the input distribution
assignments Ωj in equations (66)–(69). Following the footsteps of the correlated sources
case, in Table 2 we calculate optimal thresholds γ?

N and exponents EiN
τ (γ?

N ) for the possible
input distribution assignments and determine the exponent of the md-iid ensemble using
equations (73) and (74). In this case, the optimal assignment is again Ω1, with optimal
source message partitioning specified by the thresholds γ?

1 = 0.8779 and γ?
2 = 0.6933,

achieving an exponent of Emd-iid = 0.2458, slightly smaller than that of correlated sources.
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Table 2. Independent-sources md-iid optimal thresholds γ?
N and exponents EiN

τ (γ?
N ) in equation (73)

for assignments Ωj in equations (66)–(69). For each assignment, the minimum over iN and τ is
highlighted in gray.

Assignment Ω1 Assignment Ω2

γ?
1 = 0.8779 γ?

2 = 0.6933 γ?
1 = 0.8776 γ?

2 = 1

(i1, i2) (1, 1) (1, 2) (2, 1) (2, 2) (1, 1) (1, 2) (2, 1) (2, 2)

τ = {1} 0.3343 0.2458 0.3089 0.2458 0.0913 0.3341 0.0913 0.3089
τ = {2} 0.3850 0.3987 0.2458 0.3788 0.4555 0.3850 0.4357 0.2459

τ = {1, 2} 0.2730 0.2870 0.2685 0.2863 0.3430 0.2728 0.2956 0.2685

Assignment Ω3 Assignment Ω4

γ?
1 = 0.61 γ?

2 = 0.7043 γ?
1 = 0.7092 γ?

2 = 1

(i1, i2) (1, 1) (1, 2) (2, 1) (2, 2) (1, 1) (1, 2) (2, 1) (2, 2)

τ = {1} 0.3089 0.2367 0.2681 0.3078 0.0913 0.3117 0.0913 0.2648
τ = {2} 0.2367 0.3672 0.5425 0.5538 0.4269 0.2367 0.5393 0.4683

τ = {1, 2} 0.2685 0.2811 0.2367 0.3133 0.3006 0.2685 0.2740 0.2164

For the sake of completeness and purpose of comparison, we also calculate the ex-
ponent for the mi-iid ensemble described in equation (8). In the absence of message
dependence, for a given assignment Ωj, the mi-iid exponent is given by

Eno-cost(Ωj) = min
τ

Eτ , (75)

where the exponent function Eτ is given by Eτ = maxρ Emi-iid
τ (ρ, PN , QN , W) and Emi-iid

τ

is the Gallager function in equation (37), described in the previous subsection. For both
the correlated and independent sources described above, Table 3 presents the achievable
exponents Eτ for each type of error τ and input distribution assignment (Q1, Q2), where
Q1 and Q2 are either of Q? and Q† in equations (64) and (65). In our numerical example for
correlated sources, the assignment with highest exponent is (Q1, Q2) = (Q†, Q?), giving an
exponent of Emi-iid = 0.2503, slightly smaller than that of the md-iid ensemble. In contrast,
the mi-iid exponent for independent sources, according to the second part of Table 3 is
found to be Emi-iid = 0.2367 with input distribution (Q1, Q2) = (Q?, Q†). In this case, the
md-iid exponent Emd-iid is around 4% larger that the mi-iid; this situation is in contrast with
to-point communication, where the gain in exponent achieved by an ensemble with two
distributions is typically smaller, for example, 1% in ref. [8]. Hence, message-dependent
random coding with two class distributions, compared to iid random coding, may lead to
a higher error exponent gain in the MAC than in point-to-point communication.
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Table 3. Mi-iid exponents Eτ in equation (75) for two correlated and two independent sources
vs several input distribution assigments (Q1, Q2). For each assignment, the minimum over τ is
highlighted in gray.

Correlated Sources

(Q1, Q2) (Q?, Q?) (Q?, Q†) (Q†, Q?) (Q†, Q†)

τ = {1} 0.2682 0.0642 0.3120 0.0879
τ = {2} 0.3986 0.3986 0.2503 0.3696

τ = {1, 2} 0.2097 0.2097 0.2630 0.2360

Independent Sources

(Q1, Q2) (Q?, Q?) (Q?, Q†) (Q†, Q?) (Q†, Q†)

τ = {1} 0.2648 0.3089 0.0627 0.0865
τ = {2} 0.3850 0.2367 0.3850 0.3559

τ = {1, 2} 0.2164 0.2685 0.2164 0.2421

4.4. Comparison of the Random-Coding Achievable Error Exponents

From the numerical results presented in Subsection 4.3, as well as from refs. [8,20,
28,31], the message-dependent ensembles attain in general a larger exponent than their
message-independent counterparts. We now compare the random-coding exponents for
the ensembles presented in 3.1, whose Gallager functions were obtained in Section 4.1.

For independent sources, we found in equation (42) that for a given conditional input
distribution Qν,uν(xν) and ρ, there exists an iiid distribution Qν,ρ given by equation (39)
with identical Gallager function. Thus, the mi-iid and mi-icd ensembles attains the same
exponent, after maximization over the input distributions. Similarly, we conclude that
md-iid and md-icd-ensembles attain the same exponent.

In ref. [31] (Prop. 2.9), it was proved that for point-to-point communication, the
exponent of the mi-ccc ensemble may be lower than that of the mi-cc ensemble. The same
steps actually prove the same result for the MAC with independent sources. Thus, for the
MAC with independent sources we have

Emi-ccc ≤ Emi-cc ≤ Emd-cc, Emd-ccc ≤ Emd-cc, (76)

Emi-iid ≤ Emi-cc ≤ Emd-cc, Emd-iid ≤ Emd-cc, (77)

and Emd-cc is thus largest among the ensembles in Section 3.1 for an arbitrary input distri-
bution. As discussed in ref. [29] (Th. 4), for optimal input distributions both Emd-cc and
Emd-iid may coincide.

Concerning the optimal partitioning into message classes, for point-to-point com-
munication it is known that partitioning the source-message set into two classes is suf-
ficient to attain the optimal error exponent [8], [31] (Prop. 2.7). However, the proof of
ref. [31] (Prop. 2.7) cannot be easily generalized to the MAC with independent sources. At
the same time, we could not find an example showing that assigning more than two input
distributions leads to a larger exponent. Hence, finding the sufficient number of input
distributions is for the message-dependent exponent is an open problem.

The comparisons in equations (76) and (77) for correlated sources require, in gen-
eral, a more sophisticated machinery and we consider here two simple cases. For the
message-dependent md-icd and md-ccc ensembles, we observe that compared to Emd-icd

τ,iN
in

equation (43) the Emd-ccc
τ,iN

exponent in equation (54) contains an additional term β
iN
τ,N ,uN

(xN )
to guarantee the constant-composition distribution as in equation (52). This allows to re-
cover Emd-ccc

τ,iN
by setting β

iN
τ,N ,uN

(xN ) = 0 in Emd-icd
τ,iN

and to prove that Emd-icd ≤ Emd-ccc

after maximizing w. r. t. β
iN
τ,N ,uN

(xN ). Similarly for the ensembles with statistical inde-
pendence between messages and codewords, we observe that the constant-composition
exponent Emd-cc

τ,iN
in equation (51) also contains the additional term α

iN
τ,N (xN ) compared
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to its iid counterpart Emd-iid
τ,iN

in equation (44), yielding Emd-iid ≤ Emd-cc. Put together, for
correlated sources it holds that

Emd-icd ≤ Emd-ccc, Emd-iid ≤ Emd-cc, (78)

suggesting that, as in the case of single-user communication, the use of constant-
composition input distributions may lead to higher exponents than the symbol-wise
independent distributions when transmitting correlated sources over the MAC.

Summarizing, proper choices of the cost functions recover the different coding schemes
considered in Section 3.1, including message-dependent and message-independent ver-
sions of iid, independent conditionally distributed, constant-composition, and conditional
constant composition ensembles. Thanks to the flexibility of the generalized cost-constraint
random-coding ensemble, the achievable exponents of the various ensembles can be com-
pared and ranked, both numerically and analytically.
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Appendix A. Proof of Theorem 1

We start by bounding the average error probability over the generalized cost-constraint
ensemble, P̄e. Counting ties as errors, the random coding union bound [2] (Th. 16) for joint
source-channel is

P̄e ≤ ∑
uN ,xN ,y

PN (uN )QN (xN |uN )W(y|xN )min

{
1, ∑

ûN 6=uN

Pr

{
PN (ûN )W

(
y|X̂N

)
PN (uN )W(y|xN )

≥ 1

}}
, (A1)

where QN (xN |uN ) is given by equation (7), with every user using the generalized cost-
constrained input distribution Qν(xν|uν) as in equation (24), and x̂N has the same distribu-
tion as xN but conditioned on ûN rather than uN , i. e. QN (xN |ûN ). The summation over
ûN 6= uN can be split into 2N − 1 distinct types of error events indexed by the non-empty
subsets in the power set of the user indices 2N \∅, e. g. τ ∈ {{1}, {2}, {1, 2}} for N = 2,
such that ûτc = uτc and ûν 6= uν for all ν ∈ τ.

Since min{1, a + b} ≤ min{1, a}+ min{1, b}, we bound P̄e as

P̄e ≤ ∑
τ∈2N \∅

P̄τ
e , (A2)

where P̄τ
e is in turn given by

P̄τ
e = ∑

uN ,xN ,y
PN (uN )QN (xN |uN )W(y|xN )min

1, ∑
ûN : ûτc=uτc ,

ûν 6=uν ,ν∈τ

Pr

{
PN (ûN )W

(
y|[xτc , X̂τ ]

)
PN (uN )W(y|xN )

≥ 1

}, (A3)

where the inner probability is computed according to the distribution Qτ(xτ |uτ), including
only users uτ in the set τ as x̂τc = xτc . We recall that [xτc , X̂τ ] is the sorted merger of the
channel inputs for users in the sets τc and τ, in this case xτc and X̂τ respectively.
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Next, we split the summation over uN in equation (A3) into classes iN ∈ KN defined
by equation (12), summing then over the messages belonging to the Cartesian product
of the sets AiN

N . We note that codewords are generated according to distributions that
depend on the class index of the sources. Let DiN

N ,uN
be the Cartesian product of the sets of

codewords Diν
ν,uν in equation (23) for ν = 1, 2, . . . , N, and define

QiN
N (xN |uN ) = ∏

ν∈N
Qiν

ν (xν|uν), (A4)

where Qiν
ν (xν|uν) is given by either equation (24) or equation (25). Then, the double outer

summation of equation (A3) over uN and xN can be written as

∑
uN ,xN

PN (uN )QN (xN |uN ) = ∑
iN∈KN

∑
uN∈A

iN
N

xN∈D
iN
N ,uN

PN (uN )Q
iN
N (xN |uN ) (A5)

= ∑
iτc∈Kτc

∑
uτc∈Aiτc

τc

xτc∈Diτc
τc ,uτc

Pτc(uτc)Qiτc
τc (xτc |uτc) ∑

iτ∈Kτ

∑
uτ∈Aiτ

τ

xτ∈Diτ
τ,uτ

Pτ|τc(uτ |uτc)Qiτ
τ (xτ |uτ),

(A6)

where we split the summations over uN and xN into separate summations over uτc and
uτ , similarly with xτc and xτ with the corresponding rearrangements in the probabilities,
and written the term Qiτc

τc (xτc |uτc) in a similar way to equation (A4). The inner summation
of equation (A3) can be split in an analogous manner based on the classes to which ûτ

belongs, now indexed by the variable jτ ∈ Kτ . Applying this fact together with Markov’s
inequality

Pr{A ≥ 1} ≤ min
s≥0

E[As] (A7)

to upper bound the probability with a parameter s ≥ 0 that implicitly depends on the error-
event type τ and indices iτc , iτ , and jτ . We bound the inner summation of equation (A3)
as

∑
ûN : ûτc=uτc ,

ûν 6=uν ,ν∈τ

Pr

{
PN (ûN )W

(
y|[xτc , X̂τ ]

)
PN (uN )W(y|xN )

≥ 1

}
≤

≤ ∑
jτ∈Kτ

min
s≥0

 ∑
ûτ∈Ajτ

τ

x̂τ∈D jτ
τ,ûτ

Qjτ
τ (x̂τ |ûτ)

(
Pτ|τc(ûτ |uτc)W

(
y|[xτc , x̂τ ]

)
Pτ|τc(uτ |uτc)W

(
y|[xτc , xτ ]

))s

, (A8)

where we also used that PN (ûN ) = Pτc(ûτc)Pτ|τc(ûτ |ûτc) = Pτc(uτc)Pτ|τc(ûτ |uτc) to
rewrite the message probabilities in equation (A8) and we expressed the codeword xN as
[xτc , xτ ].

Inserting equations (A6) and (A8) into equation (A3) and using the following inequal-
ity for A ≥ 0,

min{1, A} ≤ min
ρ∈[0,1]

Aρ, (A9)

where ρ ∈ [0, 1], we further bound P̄τ
e as

P̄τ
e ≤ ∑

iτc∈Kτc
∑

iτ∈Kτ

∑
jτ∈Kτ

min
s≥0

min
ρ∈[0,1]

P̄τ,jτ
e,iτc iτ , (A10)
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where after some minor rearrangements P̄τ,jτ
e,iτc iτ is in turn given by

P̄τ,jτ
e,iτc iτ = ∑

uτc∈Aiτc
τc

xτc∈Diτc
τc ,uτc

Pτc(uτc)Qiτc
τc (xτc |uτc) ∑

y∈Yn
∑

uτ∈Aiτ
τ

xτ∈Diτ
τ,uτ

Pτ|τc(uτ |uτc)Qiτ
τ (xτ |uτ)W

(
y|[xτc , xτ ]

)

 ∑
ûτ∈Ajτ

τ

x̂τ∈D jτ
τ,ûτ

Qjτ
τ (x̂τ |ûτ)

(
Pτ|τc(ûτ |uτc)W

(
y|[xτc , x̂τ ]

)
Pτ|τc(uτ |uτc)W

(
y|[xτc , xτ ]

))s


ρ

. (A11)

Note that, for some conveniently chosen variables z0 and ziτ , sets Z0 and Ziτ , as well as
functions f0(z0) and f s

iτ (z0, ziτ ), with iτ ∈ Kτ , we can express P̄τ,jτ
e,iτc iτ as

P̄τ,jτ
e,iτc iτ = ∑

z0∈Z0

f0(z0)

(
∑

ziτ∈Ziτ

f
1−siτ ,jτ ρiτ ,jτ
iτ (z0, ziτ )

)(
∑

zjτ∈Zjτ

f
siτ ,jτ
jτ (z0, zjτ )

)ρiτ ,jτ

. (A12)

In equation (A12), the variable z0 stands for the triplet (uτc , xτc , y), the alphabet
Z0 for the Cartesian product Aiτc

τc ×Diτc
τc ,uτc ×Yn and the function f0(z0) is given

by Pτc(uτc)Qiτc
τc (xτc |uτc). The variable ziτ stands for the pair (uτ , xτ), the alphabet

Ziτ for the Cartesian product Aiτ
τ × Diτ

τ,uτ
and the function f s

iτ (z0, ziτ ) is given by
Pτ|τc(uτ |uτc)sQiτ

τ (xτ |uτ)W
(
y|[xτc , xτ ]

)s.
The optimization parameters s and ρ in equation (A10) implictly depend on the error-

event type τ and the indices iτc , iτ , and jτ . For new parameters ρ̄`τ
∈ [0, 1], `τ ∈ Kτ ,

setting

siτ ,jτ =
1

1 + ρ̄jτ
, (A13)

ρiτ ,jτ =
ρ̄iτ (1 + ρ̄jτ )

1 + ρ̄iτ
, (A14)

In equation (A12), we obtain the following partial upper bound in equation (A10) as

min
s≥0

min
ρ∈[0,1]

P̄τ,jτ
e,iτc iτ ≤ min

ρ̄`τ∈[0,1]Kτ
∑

z0∈Z0

f0(z0) ∑
ziτ∈Ziτ

f
1

1+ρ̄iτ
iτ (z0, ziτ )

(
∑

zjτ∈Zjτ

f
1

1+ρ̄jτ
jτ (z0, zjτ )

) ρ̄iτ (1+ρ̄jτ )

1+ρ̄iτ

. (A15)

Here, we have kept implicit the dependence on τ and iτc of the optimization parameter ρ̄`τ
.

Now, applying Hölder’s inequality [33] (Th. 13) in the form

∑
i∈K

αiaibi ≤
(

∑
i∈K

αia
p
i

) 1
p
(

∑
i∈K

αib
p

p−1
i

) p−1
p

, for p ∈ [1, ∞), (A16)
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to the expression in equation (A15) with piτ ,jτ = 1 + ρ̄iτ ≥ 1, we obtain

min
s≥0

min
ρ∈[0,1]

P̄τ,jτ
e,iτc iτ ≤ min

ρ̄`τ∈[0,1]Kτ

 ∑
z0∈Z0

f0(z0)

(
∑

ziτ∈Ziτ

f
1

1+ρ̄iτ
iτ (z0, ziτ )

)1+ρ̄iτ
 1

1+ρ̄iτ

 ∑
z0∈Z0

f0(z0)

(
∑

zjτ∈Zjτ

f
1

1+ρ̄jτ
jτ (z0, zjτ )

)1+ρ̄jτ


ρ̄iτ
1+ρ̄iτ

. (A17)

Next, putting equation (A17) back in equation (A10) and using the following inequal-
ity, proved in A.1, for Ai ≥ 0 and 0 ≤ si ≤ 1

∑
i,j∈K

Asi
i A1−si

j ≤ 2|K| ∑
i∈K

Ai (A18)

in the double summation over iτ and jτ in equation (A10), the following upper bound
holds

∑
iτ∈Kτ

∑
jτ∈Kτ

min
s≥0

min
ρ∈[0,1]

P̄τ,jτ
e,iτc iτ ≤ 2Kτ ∑

iτ∈Kτ

min
ρ∈[0,1]

P̄τ
e,iτc iτ , (A19)

where we have moved the optimization over ρ̄`τ
inside the summation over iτ and renamed

ρ̄`τ
as ρ, with the dependence on the index iτ kept implicit. Moreover, the expression for

P̄τ
e,iτc iτ is in fact given by P̄τ,jτ

e,iτc iτ in equation (A11) after setting iτ = jτ , s = 1
1+ρ and

rearranging terms, that is,

P̄τ
e,iτc iτ = ∑

uτc∈Aiτc
τc

xτc∈Diτc
τc ,uτc

Pτc(uτc)Qiτc
τc (xτc |uτc) ∑

y∈Yn

 ∑
uτ∈Aiτ

τ

xτ∈Diτ
τ,uτ

Pτ|τc(uτ |uτc)
1

1+ρ Qiτ
τ (xτ |uτ)W(y|xN )

1
1+ρ


1+ρ

. (A20)

It remains to factorize equation (A20) into a product of symbol distributions in order
to obtain a single-letter expression for the exponent. We start by upper bounding the
summations over the input messages uτc and uτ . For a list of users σ with corresponding
messages uσ, list of class indices iσ and some function piσ

σ (uσ), we have that

∑
uσ∈Aiσ

σ

piσ
σ (uσ) = ∑

uσ∈Un
σ

piσ
σ (uσ)111{uσ ∈ Aiσ

σ }, (A21)

where we used the definition of the message sets Aiσ
σ in equation (12) and the identity

∑
i∈K

fi = ∑
i∈N

fi 111{i ∈ K}. (A22)

Using the upper bound

111
{

a < b ≤ c
}
≤ min

λL,λU≥0

(
b
a

)λL(
c
b

)λU

(A23)

for a, b, c > 0 with λL, λU ≥ 0, together with the fact that the source-message classes are
defined separately for each user to express the source message probabilities in terms of
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Pind
σ (uσ) = ∏ν∈σ Pν(uν) similarly to equation (2), we upper bound the r. h. s. of equa-

tion (A21) as

∑
uσ∈Aiσ

σ

piσ
σ (uσ) ≤ min

λL,U
σ ≥0

∑
uσ∈Un

σ

piσ
σ (uσ)

(
Pind

σ (uσ)

γn
σ,iσ

)λL
σ
(

γn
σ,iσ−1

Pind
σ (uσ)

)λU
σ

, (A24)

where we jointly wrote λL
σ and λU

σ as λL,U
σ . Definining

Λiσ
σ (uσ) =

(
Pind

σ (uσ)

γσ,iσ

)λL
σ
(

γσ,iσ−1

Pind
σ (uσ)

)λU
σ

. (A25)

and taking into account that the sources are memoryless, we obtain that the summations
w. r. t. the source messages uτ and uτc in equation (A20) are upper bounded as

∑
uσ∈Aiσ

σ

piσ iσ
σ (uσ) ≤ min

λL,U
σ

∑
uσ∈Un

σ

piσc iσ
σ (uσ)

n

∏
t=1

Λiσ
σ (uσ,t). (A26)

respecively for σ = τ and σ = τc.
We proceed in a similar manner for the summations w. r. t. the codewords xτ and xτc

in equation (A20). For a list of users σ and some function qiσ
σ (uσ, xσ) implicitly defined, the

summation over channel codewords xσ ∈ Diσ
σ,uσ

can be upper bounded as:

∑
xσ∈Diσ

σ,uσ

qiσ
σ (uσ, xσ) = ∑

xσ∈X n
σ

qiσ
σ (uσ, xσ)111{xσ ∈ Diσ

σ,uσ
} (A27)

= ∑
xσ∈X n

σ

qiσ
σ (uσ, xσ) ∏

ν∈σ
∏

υν∈Uν

∏
`ν∈Lν

111
{∣∣∣aiν ,`ν

ν,υν

(
xν

(
Iυν(uν)

))∣∣∣ ≤ δν

}
(A28)

≤ min
r`σ

συσ ,r̄`σ
συσ

∑
xσ∈X n

σ

qiσ
σ (uσ, xσ) ∏

υσ∈Uσ

∏
`σ∈Lσ

er`σ
συσ aiσ ,`σ

σ,υσ (xσ(Iυσ (uσ)))+r̄`σ
συσ δσ , (A29)

where we used equation (A22) in equation (A27), the fact that the codeword ensembles
are defined separately for each user together with the definition of the ensemble cost
constraints in equation (23) and subcodewords xν

(
Iuν(uν)

)
in equation (A28), and a variant

of equation (A23) proved in A.2,

111{|a| ≤ δ} ≤ min
r,r̄

era+r̄δ (A30)

for r ∈ R and r̄ ≥ 0, in equation (A29) for each indicator function of equation (A28) and
combined the product of exponentials over σ as a single exponential using the list notation.
We continue by rewriting the double product over υσ and `σ in equation (A29) as follows

∏
υσ∈Uσ

∏
`σ∈Lσ

er`σ
συσ aiσ ,`σ

σ,υσ (xσ(Iυσ (uσ)))+r̄`σ
συσ δσ = ∏

υσ∈Uσ

∏
`σ∈Lσ

er̄`σ
συσ δσ ∏

t∈Iυσ (uσ)

er`σ
συσ aiσ ,`σ

σ,υσ (xσ,t(Iυσ (uσ))) (A31)

= βσ

n

∏
t=1

Riτ
σ,uτ,t(xτ,t), (A32)

where in equation (A31) we wrote the cost function in terms of the symbol costs and in
equation (A32) we rearranged terms and introduced a factor βσ that depends on the list
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{r̄`σ
συσ
} and a function Riσ

σ,uσ
(xσ) that depends on the list {r`σ

συσ
} and are respectively given

by

βσ = ∏
υσ∈Uσ

∏
`σ∈Lσ

er̄`σ
συσ δσ , (A33)

Riσ
σ,uσ

(xσ) = ∏
`σ∈Lσ

er`σ
σuσ aiσ ,`σ

σ,uσ (xσ). (A34)

Replacing equation (A32) back into equation (A29), we obtain that the summations over
the codewords are upper bounded as

∑
xσ∈Diσ

σ,uσ

qiσ
σ (uσ, xσ) ≤ min

r`σ
σuσ ,r̄`σ

σuσ

∑
xσ∈X n

σ

qiσ
σ (uσ, xσ)βσ

n

∏
t=1

Riσ
σ,uσ,t(xτ,t). (A35)

for both user lists σ = τ and σ = τc.
We now combine equations (A26) and (A35) for σ = τ to bound the summation inside

the parenthesis in equation (A20) as

∑
uτ∈Aiτ

τ

xτ∈Diτ
τ,uτ

Pτ|τc(uτ |uτc)
1

1+ρ Qiτ
τ (xτ |uτ)W(y|xN )

1
1+ρ ≤

≤ ∑
uτ∈Un

τ
xτ∈X n

τ

Pτ|τc(uτ |uτc)
1

1+ρ min
λL,U

τ

r`τ
τuτ ,r̄`τ

τuτ

βτ

Ξτ

n

∏
t=1

Λiτ
τ (uτ,t)Qiτ

τ,uτ,t(xτ,t)Riτ
τ,uτ,t(xτ,t)W(y|xN )

1
1+ρ , (A36)

where we expressed the distribution Qiτ
τ (xτ , uτ) in terms of the symbol-wise iid distribution

Qiτ
τ,uτ

(x) as in equation (25). Since both source and channel are memoryless, we may now
factorize and rearrange the expression in equation (A36) into single-letter, symbolwise
factors as

∑
uτ∈Aiτ

τ

xτ∈Diτ
τ,uτ

Pτ|τc(uτ |uτc)
1

1+ρ Qiτ
τ (xτ |uτ)W(y|xN )

1
1+ρ ≤ min

λL,U
τ

r`τ
τuτ ,r̄`τ

τuτ

βτ

Ξτ

n

∏
t=1

giτ
τ (uτc ,t, xτc ,t, yt), (A37)

where, for a list of users σ, the function giσ
σ (uσc , xσc , y) is defined as

giσ
σ (uσc , xσc , y) = ∑

uσ∈Uσ
xσ∈Xσ

Pσ|σc(uσ|uσc)
1

1+ρ Λiσ
σ (uσ)Qiσ

σ,uσ
(xσ)Riσ

σ,uσ
(xσ)W(y|xN )

1
1+ρ . (A38)

Although not explicitly, the function giτ
τ (uτc , xτc , y) in equation (A37) depends on several

optimization parameters, namely ρ, λL,U
τ , r`τ

τuτ
, r̄`τ

τuτ
, which depend in turn on the error-event

type τ and class indices iτ and iτc .
Again, we use equations (A26) and (A35) for σ = τc and the fact that the source is

memoryless to upper bound the summation outside the parenthesis in equation (A20) as
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∑
uτc∈Aiτc

τc

xτc∈Diτc
τc ,uτc

Pτc(uτc)Qiτc
τc (xτc |uτc) ≤

≤ min
λL,U

τc

r
`τc
τcuτc

,r̄
`τc
τcuτc

∑
uτc∈Un

τc
xτc∈X n

τc

βτc

Ξτc

n

∏
t=1

Pτc(uτc ,t)Λ
iτc
τc (uτc ,t)Q

iτc
τc ,uτc ,t

(xτc ,t)Riτc
τc ,uτc ,t

(xτc ,t). (A39)

Substituting equations (A37) and (A39) in equation (A20), the resulting expression back
into equation (A19) and then into equation (A10), we get

P̄τ
e ≤ 2Kτ ∑

iτc∈Kτc
iτ∈Kτ

min
ρ,λL,U

τc

r
`τc
τcuτc

,r̄
`τc
τcuτc

∑
uτc∈Un

τc
xτc∈X n

τc

βτc

Ξτc

(
n

∏
t=1

Pτc(uτc ,t)Λ
iτc
τc (uτc ,t)Q

iτc
τc ,uτc ,t

(xτc ,t)Riτc
τc ,uτc ,t

(xτc ,t)

)

(
∑

y∈Yn

(
βτ

Ξτ

)1+ρ

min
λL,U

τ

r`τ
τuτ ,r̄`τ

τuτ

n

∏
t=1

giτ
τ (uτc ,t, xτc ,t, yt)

1+ρ

)
. (A40)

Let us define now the function hiσ ,iσc
σ of the user set σ and the class indices iσ and iσc as

hiσ ,iσc
σ = ∑

uσ∈Uσ ,xσ∈Xσ ,y∈Y
Pσ(uσ)Λiσ

σ (uσ)Qiσ
σ,uσ

(xσ)Riσ
σ,uσ

(xσ) giσc
σc (uσ, xσ, y)1+ρ. (A41)

With this definition, we can rewrite equation (A40) in a compact manner as

P̄τ
e ≤ 2Kτ ∑

iN∈KN
min

ρ,λL,U
N ,r

`N
N uN

,r̄
`N
N uN

βτc

Ξτc

(
βτ

Ξτ

)1+ρ n

∏
t=1

hiτc ,iτ
τc , (A42)

where we have also combined the complementary sets iτc and iτ into iN , and similarly
for λL

N , λU
N , r`NN uN

, and r̄`NN uN
. Finally, substituting equation (A42) into equation (A10) and

then back into equation (A2), taking (minus) the logarithm of the bound on P̄e, dividing
the result by n, and the limit as n→ ∞, we obtain a lower bound Ecost

KL to the exponent of
the generalized cost-constrained ensemble Ecost

KL , namely

Ecost
KL = min

τ,iN
max

ρ,λL,U
N ,r

`N
N uN

{
− log hiτc ,iτ

τc
}

, (A43)

where we have used that as n→ ∞, the quantities 2Kτ , βτc
Ξτc , and

( βτ
Ξτ

)1+ρ are subexponential
in the blocklength n and do not contribute to the exponent, accordingly removed r̄`τc

τcuτc and
r̄`τ

τuτ
from the optimization parameter list, and finally used that the exponential decay of

the error probability in equation (A2) will be dominated by the worst error type τ and the
worst classes assignment iN . It will prove convenient to the express the exponent in terms
of a Gallager function EiN

τ

(
ρ, λL,U
N , r`NN uN

)
, defined as

EiN
τ

(
ρ, λL,U
N , r`NN uN

)
= − log hiτc ,iτ

τc . (A44)

Substituted the expression for hiτc ,iτ
τc in equation (A40), where Λiτ

τ (uτ) and Riν
ν,uν(xν) are

respectively given by equations (A25) and (A34), we may express EiN
τ

(
ρ, λL,U
N , r`NN uN

)
as
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EiN
τ

(
ρ, λL,U
N , r`NN uN

)
=

− log

(
∑

uτc ,xτc ,y
Pτc(uτc)Λiτc

τc (uτc)Qiτc
τc ,uτc (xτc)Riτc

τc ,uτc (xτc)

(
∑

uτ ,xτ

Pτ|τc(uτ |uτc)
1

1+ρ Λiτ
τ (uτ)Qiτ

τ,uτ
(xτ)Riτ

τ,uτ
(xτ)W(y|xN )

1
1+ρ

)1+ρ
, (A45)

or equivalently in the alternative form

EiN
τ

(
ρ, λL,U
N , r`NN uN

)
=

− log ∑
uτc ,xτc ,y

(
∑

uτ ,xτ

PN (uN )
1

1+ρ ΛiN
N (uN )Qiτ

τ,uτ
(xτ)RiN

N ,uN
(xN )

(
Qiτc

τc ,uτc (xτc)W(y|xN )
1

1+ρ

)1+ρ

, (A46)

where in equation (A46) we have moved the product

Pτc(uτc)Λiτc
τc (uτc)Qiτc

τc ,uτc (xτc)Riτc
τc ,uτc (xτc)

inside the parenthesis and merged terms in τ and τc as done above, as well as redefined

the optimization parameters
λL

τc
1+ρ ,

λL
τc

1+ρ , and
r
`τc
τcuτc
1+ρ as λL

τc , λU
τc , and r`τc

τcuτc respectively.

Appendix A.1. Proof of equation (A18)

A sketch of the proof of the inequality in equation (A18) proceeds as follows:

∑
i,j∈K

Asi
i A1−si

j ≤ ∑
i,j∈K

(
si Ai + (1− si)Aj

)
(A47)

≤ ∑
i,j∈K

(Ai + Aj) (A48)

= 2|K| ∑
i∈K

Ai (A49)

where equation (A47) follows from the inequality between arithmetic and geometric means
and in equation (A48) we used that 0 ≤ s ≤ 1.

Appendix A.2. Proof of equation (A30)

We have the following

111{|a| ≤ δ} = 111{−δ ≤ a}111{a ≤ δ} (A50)

= 111{e−δ ≤ ea}111{ea ≤ e+δ} (A51)

≤ er−(a+δ)er+(δ−a) (A52)

= era+r̄δ (A53)

for r−, r+ ≥ 0 or equivalently r = r− − r+ ∈ R and r̄ = r− + r+ ≥ 0. The bound in
equation (A53) can be optimized w. r. t. r and r̂.

Appendix B. Computation of the Optimum Multi-Class Thresholds

In this section we find some conditions describing the optimum partitioning of the
source-message set into classes for the optimization of the exponent in equation (30). For
simplicity, let each user ν ∈ N have two classes, Kν = 2.
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From the class definition in equation (12) with Kν = 2, we have that γν,2 = 0 and
γν,0 = 1, so we need find just one optimum γν,1 for each user, which redefine as γν.
Optimizing the exponent in equation (30) over γN gives

max
0≤γN≤1

Ecost = max
0≤γN≤1

min
iN

min
τ

max
ρ,λL,U
N ,r

`N
N uN

EiN
τ

(
ρ, λL,U
N , r`NN uN

)
, (A54)

where one of the parameters λL
N or λU

N is zero for each iN , as the corresponding constraint
is absent. For each γN , we have a minimization over 2N assignments iN . Following the
same steps as in refs. [31] (Sec. 4.1.2) and [31] (Lemma 4.3), we find that EiN

τ (γN ) defined,
with some abuse of notation, as

EiN
τ (γN ) = max

ρ,λL,U
N ,r

`N
N uN

EiN
τ

(
ρ, λL,U
N , r`NN uN

)
, (A55)

is a non-decreasing (resp. non-increasing) function with respect to γν for iN = [iν, iνc ]
with iν = 1 (resp. iν = 2), irrespective of the values of iνc and of ν. For the sake of
completeness, we present an independent proof of this fact here. Let iν = 1 and τ be
arbitrary. Using equation (31), the function EiN

τ (γN , ρ) has the form − log
(
∑z f1(z)/γ

λL
ν

ν

)
)

for some function f1(z), as all γN are independent from each other, regardless the value
of iνc . Since λL

ν ≥ 0, the function EiN
τ (γN , ρ) in equation (A55) is non-decreasing with

respect to γν. When iν = 2, this function EiN
τ (γN , ρ) has the form − log

(
∑z f2(z)γ

λU
ν

ν

)
) for

some f2(z), and is therefore non-increasing. This behavior will not change after taking
maximization over ρ. As the minimum of monotonic functions is monotonic, the function
EiN

τ (γN ) is non-decreasing (non-increasing) with respect to γν, when iν = 1 (iν = 2).
For any ν and fixed γνc , we may write the optimization problem in equation (A54) as

max
γνc

max
γν

min
iν

min
iνc

min
τ

E[iν ,iνc ]
τ

(
[γν, γνc ]

)
. (A56)

The optimization problem maxγν miniν miniνc minτ E[iν ,iνc ]
τ

(
[γν, γνc ]

)
satisfies the following

lemma, proved in B.1, with γ = γν, i = iν, and ki(γ) = miniνc minτ E[iν ,iνc ]
τ

(
[γν, γνc ]

)
.

Lemma A1. Let k1(γ) and k2(γ) be respectively continuous non-decreasing and non-increasing
functions with respect to γ ∈ [0, 1]. The optimal γ? maximizing mini=1,2 ki(γ) satisfies the
following equation

k1(γ
?) = k2(γ

?). (A57)

When equation (A57) does not have any solution, we have γ? = 0 if k1(0) > k2(0), and γ? = 1
otherwise.

Therefore, the optimal γ?
ν satisfies

min
iνc

min
τ

E[1,iνc ]
τ

(
[γ∗ν , γνc ]

)
= min

iνc
min

τ
E[2,iνc ]

τ

(
[γ∗ν , γνc ]

)
, (A58)

if equation (A58) has a solution. If not, the inequality
miniνc minτ E[1,iνc ]

τ

(
[0, γνc ]

)
> miniνc minτ E[1,iνc ]

τ

(
[0, γνc ]

)
is satisfied, we have γ?

ν = 0 or
γ?

ν = 1 otherwise. Since equation (A58) holds for any ν, evaluating it for each ν gives a
system of equations for the computation of the optimal thresholds.

In ref. [31] (Sec. 3.2.1.1), we give a graphical interpretation of the solutions to equa-
tion (A58) and outline the relevant differences with the single-user case. We observe a
strong coupling between the exponent and the thresholds that prevents to find the optimal
number of classes, suggesting that, unlike the single-user case, two classes might not be
sufficient.
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Appendix B.1. Proof of Lemma A1

The relative behaviour of a non-decreasing function with a non-increasing function
can be categorized in three cases.

1. If k1(0) < k2(0) and k1(1) > k2(1), there exists a γ? such that k1(γ
?) = k2(γ

?). In
this case, the function mini ki(γ) is non-decreasing from [0, γ?), and non-increasing
from (γ?, 1]. Thus, the maximum over γ of mini ki(γ) occurs at γ = γ?.

2. If k1(0) < k2(0) and k1(1) < k2(1), k1(γ) and k2(γ) do not cross in γ ∈ [0, 1]. Hence,
we have mini ki(γ) = k1(γ) and obviously since it is an non-decreasing function the
maximum over γ occurs at γ = γ? = 1.

3. When k1(0) ≥ k2(0), we have mini ki(γ) = k2(γ) and hence γ? = 0.

Appendix C. Properties of the modified Gallager source function

In this appendix, we study the modified Gallager source function EiN
s,τ in equation (45)

involved in the achievable exponent for the md-iid ensemble. For the sake of simplicity,
we consider the rather illustrative case of N = 2 users, each having a Kν = 2-class partition
of the source messages with thresholds iN where N = {1, 2}. From the definition of the
sets Aiν

ν in equation (12) with γν,0 = 1, γν,1 = γν and γν,2 = 0, the two message sets

A1
ν(γν) =

{
uν ∈ Un

ν : Pν(uν) ≥ γn
ν

}
, (A59)

A2
ν(γν) =

{
uν ∈ Un

ν : Pν(uν) < γn
ν

}
, (A60)

are specified using a single threshold γν for each user ν ∈ {1, 2}. With some abuse of
notation, we include the optimization w. r. t. λL,U

N and make explicit the dependence on the
thresholds γN in the expression of the source function EiN

s,τ in equation (45), namely

EiN
s,τ(ρ, PN , γN ) = min

λL,U
N ≥0

log ∑
uτc

(
∑
uτ

PN (uN )
1

1+ρ ΛiN
N (uN )

)1+ρ

. (A61)

For iν = 1, the set A1
ν(γν) in equation (A59) has no upper threshold, hence we find that the

optimal parameter λU
ν in this case is λ̂U

ν = 0. Similarly for iν = 2, we obtain that λ̂L
ν = 0.

As a consequence and without any loss of generality, we define λν = λL
ν for iν = 1, and

λν = λU
ν for iν = 2, and further simplify equation (A61) to the following optimization

problem

EiN
s,τ(ρ, PN , γN ) = min

λN≥0
log ∑

uτc

∑
uτ

PN (uN )
1

1+ρ

(
γ1

P1(u1)

)(−1)i1 λ1( γ2

P2(u2)

)(−1)i2 λ2

1+ρ

, (A62)

where we also used the definition of the functions Λiσ
σ in equation (32) with σ = {1, 2}. We

recall that P1 and P2 are the marginal distributions for users ν = 1 and ν = 2, respectively,
and the indices iν ∈ {1, 2} indicate that user ν transmits a source message selected from
the class Aiν

ν (γν) in equations (A59) and (A60). It can be shown that the objective function
in the r. h. s. of equation (A62) is convex w. r. t. both λ1 and λ2. Hence, the minimizers λ̂1

and λ̂2 in the source function EiN
s,τ(ρ, PN , γN ) are respectively given by λ̂1 = max{λ?

1 , 0}
and λ̂2 = max{λ?

2 , 0}, where λ?
1 and λ?

2 are the unique solution after setting the partial
derivatives of the r. h. s. of equation (A62) to zero. Two special cases can be obtained from
equation (A62).

The first case is when γν = 1 for ν ∈ {1, 2}, implying that no message partition
happens whatsoever. In such a case, we have that λ̂1 = λ̂2 = 0 and equation (A62) reduces
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to the joint source-channel coding source function for correlated-sources in equation (34),
i. e.

Es,τ(ρ, PN ) = log ∑
uτc

(
∑
uτ

PN
(
uN
) 1

1+ρ

)1+ρ

. (A63)

The second one is the case of independent sources. Substituting PN = P1P2 in
equation (A62), after some algebra, we obtain that EiN

s,τ(ρ, PN , γN ) can be split into two
terms as

EiN
s,τ(ρ, PN , γN ) = Eiτ

s (ρ, Pτ , γτ) + Eiτc
s (0, Pτc , γτc), (A64)

where we defined the function Ei
s(ρ, P, γ) as

Ei
s(ρ, P, γ) = min

λ≥0
log

(
∑
u

P(u)
1

1+ρ

(
γ

P(u)

)(−1)iλ
)1+ρ

(A65)

for arbitrary class index i ∈ {1, 2}, source distribution P and threshold γ. First, we find
that the unique solution after setting the derivative of the r. h. s. of equation (A65) to zero,
denoted as λ?, is implicitly given by

∑u P(u)
1

1+α? log P(u)

∑u P(u)
1

1+α?
= log(γ), (A66)

where we made the convenient change of variable

1
1 + α?

=
1

1 + ρ
− (−1)iλ?. (A67)

Although not made explicit, λ? depends on the triplet (i, P, ρ, γ). When λ? < 0, or equiva-
lently when

(−1)i
(

1
1 + ρ

− 1
1 + α?

)
< 0 (A68)

we have that λ̂ = max(0, λ?) = 0, implying that equation (A65) simplifies to

Ei
s(ρ, P, γ) = Es(ρ, P), (A69)

where Es(ρ, P) is the Gallager source function

Es(ρ, P) = log
(

∑
u

P(u)
1

1+ρ

)1+ρ

. (A70)

Otherwise, when λ̂ = λ? ≥ 0 , a regime given by the following inequality

(−1)i
(

1
1 + ρ

− 1
1 + α?

)
≥ 0 (A71)

we may substitute λ = λ? in the objective function in equation (A65) to obtain

Ei
s(ρ, P, γ) = (1 + ρ) log

(
∑
u

P(u)
1

1+α?

)
+

α? − ρ

1 + α?
log(γ), (A72)
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where we wrote the expression in terms of α?. Using equation (A66) into equation (A72) to
replace log(γ), we get

Ei
s(ρ, P, γ) = (1 + ρ) log

(
∑
u

P(u)
1

1+α?

)
+

α? − ρ

1 + α?
∑u P(u)

1
1+α? log P(u)

∑u P(u)
1

1+α?
. (A73)

After some algebra, we are able to express the former equation in terms of the derivative of
the Es-function in equation (A70), given by

E′s(ρ, P) = log
(

∑
u

P(u)
1

1+ρ

)
− 1

1 + ρ

∑u P(u)
1

1+ρ log P(u)

∑u P(u)
1

1+ρ

, (A74)

and the Es-function itself, as

Ei
s(ρ, P, γ) = Es(α

?, P) + (ρ− α?)E′s(α
?, P). (A75)

We may finally combine equations (A69) and (A75), with the respective ranges in equa-
tions (A68) and (A71) to write the Ei

s(ρ, P, γ) function in equation (A65) piecewise as

E1
s (ρ, P, γ) =

{
Es(ρ, P) 1

1+ρ ≥ 1
1+α? ,

Es(α?, P) + E′s(α?)(ρ− α?) 1
1+ρ < 1

1+α? ,
(A76)

and

E2
s (ρ, P, γ) =

{
Es(ρ, P) 1

1+ρ < 1
1+α? ,

Es(α?, P) + E′s(α?)(ρ− α?) 1
1+ρ ≥ 1

1+α? .
(A77)

where α? is the solution to the implicit equation (A66), hence recovering the source error
exponent functions of the md-iid ensemle described in ref. [8] (Lemma 1). The source
functions E1

s (ρ, P, γ) and E2
s (ρ, P, γ) follow the Gallager function in equation (A70) for a

certain interval of ρ, and are the straight-line tangent beyond that interval. The tangent
point α? is a function of the distribution P and of the multi-class threshold γ.

Once Ei
s(ρ, P, γ) in equation (A65) is fully characterized, we may now discuss the

correlated-sources error function EiN
s,τ(ρ, PN , γN ) in equation (A64) in terms of the error

type τ. We start with the third error type τ = {1, 2}, for which since τc = ∅, we have that

EiN
s,τ(ρ, PN , γN ) = Ei1

s (ρ, P1, γ1) + Ei2
s (ρ, P2, γ2), (A78)

namely the superposition of two Ei
s functions as the ones in equations (A76) and (A77),

one for each user. For the remaining of this appendix, we consider the more informative
error types τ = {1} and τ = {2} for the four possible pairs of class indices i1 and i2 in
equations (A59) and (A60), since in this case EiN

s,τ in equation (A64) is either directly an
Es(ρ, Pτ) function or the straight-line tangent to it, in both cases shifted by a constant term
given by Eiτc

s (0, Pτc , γτc).
Figure A1 shows the family of EiN

s,τ source functions respectively for independent and
correlated sources, as a function of ρ where PN given by equation (60) and τ = {1}. For
independent sources, we observe that the source functions E1,1

s,τ and E2,1
s,τ follow the solid

blue line depicting Es(ρ, Pτ) as in equation (A70) for a certain interval of ρ, and then take
the tangent line beyond. A similar behavior is observed for the sources functions E1,2

s,τ and
E2,2

s,τ , which in this case follow or are tangent to the solid black line, the solid blue Gallager’s
source function shifted by the constant function Eiτc

s (0, Pτc , γτc) as in equation (A64).
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Figure A1. Example of the source functions EiN
s,τ in equation (A62) for independent and correlated

sources and error type τ ∈ {{1}, {2}}.

For correlated sources, the source functions E1,1
s,τ and E2,1

s,τ follow the generalized
Gallager’s source function given by equation (A63) for a certain interval, but unlike inde-
pendent sources they are not straight lines but a curve tangent to Es,τ beyond that interval.
Some intuition about this fact can be gained from the primal form of the source function
EiN

s,τ . Consider, for instance, the source function E2,1
s,τ in Figure A1 for correlated sources,

for which i1 = 2 and i2 = 1. The primal form of this source function E2,1
s,τ can be obtained

as a constrained optimization problem w. r. t. some auxiliary joint distribution P̂N . The
interval in ρ where E2,1

s,τ does not follow Es,τ in the dual form (approximately for ρ ≤ 0.5
in the figure) corresponds to the case where only one of the two constraints on the aux-
iliary distribution P̂N is actually active in the primal form, where the constraint is given
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by ∑uN P̂N (uN ) log Pν(uν) = log(γν). This implies that, unlike the case of independent
sources where each source has its auxiliary distribution P̂1 and P̂2 constrained, for corre-
lated sources the joint auxiliary distribution P̂N is not fully constrained but is the union
of joint distributions with one constrained marginal distribution. This partial constraint
manifests as a curve in ρ, rather than a straight line, in the dual form. A similar behav-
ior is observed for E1,2

s,τ and E2,2
s,τ , which instead of following the source function for joint

source-channel coding in equation (A63) for some intervals of ρ, they follow the curve

min
λν≥0

log ∑
uτc

(
∑
uτ

PN (uN )
1

1+ρ

(
Pν(uν)

γν

)− (−1)iν λν
1+ρ

)1+ρ

, (A79)

corresponding to equation (A62) when the constraint for one source is not active,
i. e. λ̂νc = 0.
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