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Abstract
We use an isometric embedding of the cross-over surface of the outer horizon
of a rapidly rotating Kerr black hole in a hyperbolic space to compute the quasi-
local mass of the horizon for any allowed value of the spin parameter j = J/m2.
The mass is monotonically decreasing from twice the ADM mass at j = 0 to
1.765 69m at j =

√
3/2. It then monotonically increases to a maximum around

j = 0.999 07, and finally decreases to 2.019 66m for j = 1 which corresponds
to the extreme Kerr black hole.
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(Some figures may appear in colour only in the online journal)

1. Introduction

There is no local concept of energy density in general relativity, which makes defining the mass
of a local system problematic. On the other hand the ADM and the Trautman–Bondi masses
of asymptotically flat space times can be defined at, respectively, spacelike and null infinities,
and their positivity can be established given appropriate energy and regularity conditions. A
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quasi-local energy aims be a compromise, as it associates a number to any closed space-like
two-surface Σ in space time. There are several approaches to the subject which are reviewed
in [10]. In particular the prescriptions of Kijowski [3] and Liu–Yau [4], which are related to
a class of definitions proposed by Brown and York [1], are applicable to surfaces with non-
negative Gaussian curvature. This condition guarantees, by Nirenberg’s solution [7] of the
Weyl embedding problem, the existence of a unique (up to an isometry of R3) global isometric
embedding of Σ in R

3. The resulting mass is then defined, up to a constant factor, to be an
integral of the difference between the mean curvature of this flat embedding, and the norm of
the mean curvature vector of Σ regarded as a surface in the space-time. This prescription is
therefore not applicable to a space-like section of the horizon of rapidly-rotating Kerr black
hole. This is because if the dimensionless spin parameter j ≡ J/m−2 (where J is the angular
momentum, and m is the ADM mass) is between

√
3/2 and 1, then the Gaussian curvature is

negative near north and south poles. It is this problem which we resolve in this note. It will be
done by embedding the Kerr horizons with j >

√
3/2 in a hyperbolic space and choosing the

hyperbolic radius so that the embedding continuously matches with that in R
3 for j =

√
3/2.

In section 2 we shall compute the mean curvatures of both the hyperbolic and flat embed-
dings, and in section 3 we shall construct the corresponding quasi-local mass as a function of
j ∈ [0, 1]. This function is monotonically decreasing from twice the ADM mass m at j = 0 to
1.765 69m at j =

√
3/2. The energy then monotonically increases to the value of 2.022 23m

reached around j = 0.999 07, and decreases down to 2.019 66m which is the quasi local mass
of the extreme Kerr horizon where j = 1.

2. Isometric embeddings of Kerr black hole horizons

2.1. Hyperbolic embedding of rapidly rotating horizons

Let (Σ, g) be a two-dimensional Riemannian manifold with the Gaussian curvature bounded
below by a negative constant −L−2. The Pogorelov theorem [9] states that there is a global
isometric embedding of Σ into hyperbolic three-space H3 with Ricci scalar less than or equal
to −6L−2. We shall consider the upper half-space model of H3, with the hyperbolic metric

GL =
L2

z2

(
dz2 + dr2 + r2 dφ2

)
, z > 0, r > 0,φ ∈ [0, 2π). (2.1)

In [2] a global isometric embedding of (Σ, g) was explicitly constructed in the case where
g admits a U(1) isometric action, and such that this isometry preserves the embedding. This
result was then used in [2] to construct an isometric embedding of the spatial sections of Kerr
black hole horizons. We shall first reproduce this embedding, and then compute its extrinsic
properties: the second fundamental form, and the mean curvature.

Consider an embedding ι : Σ→H
3, where (Σ, g) is a surface of revolution with coordinates

x ∈ [−1, 1],φ ∈ [0, 2π) and

g = ρ2(B−1 dx2 + B dφ2), B = B(x), ρ = const. (2.2)

If z = Z(x), r = R(x), then g = ι∗(GL) iff

Z(x) = exp

(∫ (
−ρ2BB′ ± ρ

√
B(4ρ2B + 4L2 − L2(B′)2)

2B(ρ2B + L2)

)
dx

)
, (2.3)

R(x) =
ρ

L

√
B(x)Z(x).

2
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The mean curvature H of this embedding with respect to the outward pointing unit normal
vector field N to Σ in H

3, where N = Z

L
√

(R′)2+(Z′)2

(
R′ ∂

∂Z − Z′ ∂
∂R

)
, is a half of the g-trace of

the second fundamental form h. Using the definition h(X, Y) = GL(N,∇XY), where (X, Y) are
the elements of TΣ, and ∇ is the Levi–Civita connection of GL we find

H =
−RZZ′R′′ + RZR′Z′′ + 2((R′)2 + (Z′)2)(RR′ + ZZ′/2)

2LR((R′)2 + (Z′)2)3/2
. (2.4)

We aim to match (2.2) with the general form of the Kerr horizon metric with the ADM mass
m, and the angular momentum 0 � J � m2. To do it, consider the Kerr metric written in the
Boyer–Lindquist coordinates (see, e.g. [12]), and restrict it to a surface of constant time on the
outer event horizon, which gives

g = S dθ2 +

(
r+

2 +
J 2

m2
+

2J 2r+
mS

sin2 θ

)
sin2 θ dφ2, (2.5)

where

r+ = m +
√

m2 − J 2/m2, S = r+
2 + (J 2/m2)cos2 θ.

The metric (2.2) then arises from (2.5) by setting x = cos θ, adopting (x,φ) as coordinates, and
taking

B =
(1 + c2)(1 − x2)

1 + c2x2
, ρ2 = 2m(m +

√
m2 − J 2/m2), c =

2J
ρ2

∈ [0, 1], x ∈ [−1, 1].

The constant ρ is twice the irreducible mass of the Kerr black hole (so that it is also proportional
to the square root of the area of the outer horizon), and we choose a plus sign in (2.3).

The Gaussian curvature K of g is bounded from below

K =
(c2 + 1)2(1 − 3c2x2)

ρ2(1 + c2x2)2
� (1 − 3c2)

ρ2(c2 + 1)
= Kmin. (2.6)

For c ∈ (
√

3
−1

, 1] we take L = ρ
√

1+c2

3c2−1
, which is the largest hyperbolic radius for which the

embedding is global. This, after some calculations, gives the mean curvature (2.4) as

H =
c
√

1 − x2(x4(2c4 − 5c6) + x2(−4c6 − 12c4 + 6c2) + c4 + 3c2 + 9)

ρ
√

(1 + c2)(1 + c2x2)3
√

x4(c4 − 2c6) + x2(−c6 − 4c4 + 3c2) + 3
. (2.7)

2.2. Flat embedding of slowly rotating horizons

The hyperbolic embedding (2.3) with the critical choice of the hyperbolic radius is well defined

as long as
√

3
−1

< c � 1, which corresponds to the spin parameter j ∈ [
√

3/2, 1]. If c �
√

3
−1

then the Kerr horizon can be globally isometrically embedded in R
3. If the flat metric on R

3 is

G = dζ2 + dr2 + r2 dφ2,

3
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Figure 1. Mean (in red) and Gaussian (in blue) curvatures of the Kerr horizons for
various values of the spin parameter j.

then the embedding is given by

ζ = ±ρ

2

∫ √
B(4 − (B′)2)

B
dx, r = ρ

√
B. (2.8)

The formulae (2.8) can also be obtained as a limiting case of the hyperbolic embedding when
the hyperbolic radius tends to infinity. To see this, set z = L eζ/L, L > 0 and find

G = lim
L→∞

GL, where GL = dζ2 + e−2ζ/L(dr2 + r2 dφ2).

For (2.8) to be well defined we need B(4 − (B′)2) � 0 which gives

c8(x6 + x4 + x2) + 4c6(x4 + x2) + 6c4x2 − 1 � 0

which should hold for all x ∈ [0, 1]. Evaluating the expression above at x2 = 1 gives a poly-
nomial with two real roots c = ±

√
3/3, and the inequality holds when 0 � c � 1/

√
3. This is

the same condition which guarantees B′′ � 0, which holds iff the Gaussian curvature is non-
negative. Thus, although K � 0 is necessary and sufficient for (2.8) to be a global isometric
embedding, there can be regions on the Kerr horizon where the Gaussian curvature is negative,
and yet the embedding still exists (although it does not extend to the whole horizon).

Repeating the steps leading to (2.7) we find that the mean curvature of the embedding (2.8)
is given by

H0 = − c8 x6 + (c8 + 4c6)x4 + (4c8 + 13c6 + 15c4 + 3c2)x2 − (c6 + 3c4 + 2c2 + 2)

2ρ(c2 x2 + 1)
√

(1 + c2)(1 + c2 x2)(1 − (x3 + x2 + x)c4 − 2c2 x)(1 + (x3 + x2 + x)c4 + 2c2 x)
.

To sum up, the Kerr horizon with any c ∈ [0, 1] can be globally and isometrically embedded
as a hypersurface in the space of constant curvature (figure 1). If c � 1/

√
3 then the embedding

is in R
3 and when c > 1/

√
3 then it is in H

3. The mean curvatures of the flat and hyperbolic
embeddings are equal at c = 1/

√
3, but their derivatives w.r.t. c are different. This will play a

role in analysing the behaviour of the quasi-local energy as a function of c. We shall do this in
the next section.

4
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3. Modified Kijowski–Liu–Yau mass

The Kijowski–Liu–Yau [3, 4] definition of quasi-local mass of a space-like closed two-surface
Σ in a space-time M is

EKLY =
1

4π

∫
Σ

(H − |Ĥ|)volΣ, (3.1)

where H is the mean curvature of the embedding of Σ in R
3, and |Ĥ| is the space-time norm of

the mean curvature vector Ĥ of the surface Σ embedded in M. This is well defined only if
Ĥ is space-like or zero, and if the Gaussian curvature of Σ is non-negative, as then a global
embedding of Σ in R

3 exists.
In what follows, we modify the KLY definition replacing the embedding inR3 by the embed-

ding in H
3, where the hyperbolic radius L of H3 is maximal for which the embedding exists,

i.e. such that Kmin = −L2, where Kmin given by (2.6) is the lower bound for the Gaussian
curvature of Σ. If Σ is taken to be the surface of the horizon, then Ĥ = 0, and the mass is pro-
portional to the integral of the mean curvature. This modification of the KLY mass also leads
to a non-negative expression (theorem 3.1 in [13]).

Set j = J/m2. We first restrict the range of j to (
√

3/2, 1], which corresponds to the hyper-
bolic radius between ∞ and

√
2m, the latter case corresponding to the extremal Kerr metric,

and the former case corresponding to Kmin = 0. For the mean curvature (2.7) we compute the
modified mass to be

E(m, j) =
1

4π

∫ 1

−1

∫ 2π

0
H(x)ρ2 dφ dx

= m
∫ 1

−1

√
1 − x2(x4(2c5 − 5c7) + x2(−4c7 − 12c5 + 6c3) + c5 + 3c3 + 9c)

2(1 + c2)(1 + c2x2)3/2
√

x4(c4 − 2c6) + x2(−c6 − 4c4 + 3c2) + 3
dx

where c =
1 −

√
1 − J 2

j
, ρ =

2m√
1 + c2

. (3.2)

The limiting values of the mass are

E(m,
√

3/2) = m
∫ 1

−1

3
√

1 − x2(x4 + 14x2 + 273)

8(x2 + 3)3/2
√

3x4 + 42x2 + 243
dx ≈ 1.765 69m, (3.3)

E(m, 1) = m
∫ 1

−1

13 − 10x2 − 3x4√
(x2 + 3)(x2 + 1)3

dx ≈ 2.019 66m. (3.4)

Using the flat embedding in the range c ∈ [0,
√

3
−1

] we find

E(m, j) = m
∫ 1

−1

−c8 x6 − (c8 + 4c6)x4 + (4c8 + 13c6 + 15c4 + 3c2)x2 + c6 + 3c4 + 3c2 + 2

2(c2 x2 + 1)3/2(c2 + 1)3/2
√

(1 − c4(x3 + x2 + x) − 2c2 x)(1 + c4(x3 − x2 + x) + 2c2 x)
dx.

(3.5)

The limiting value at j =
√

3/2 agrees with (3.3). The other limit is E(m, 0) = 2m.
The mean curvature as a function of the spin parameter j = J/m2 is continuous but

not smooth at j =
√

3/2 which separates the flat and the hyperbolic embeddings. For

5
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Figure 2. The quasi local mass is greater than twice the irreducible mass.

0 � j �
√

3/2 the quasi local mass is a decreasing function of j, and is very well approximated
by the first four terms of the series

E(m, j) = m

(
2 − 1

4
j2 − 17

320
j 4 − 407

17 920
j 6 − . . .

)
. (3.6)

In the Schwarzschild case j = 0 the quasi-local energy is equal to twice the ADM mass in
agreement with the results of Martinez [5], who (unlike us) additionally assumed that j � 1,
and only derived the first two terms in the series (3.6). Our findings also disprove the conjecture
of Martinez, that the quasi-local energy is equal to twice the irreducible mass. Expanding the
latter quantity (which is equal to our ρ) we find

ρ = m

(
2 − 1

4
J 2 − 25

320
j 4 − 735

17 920
j 6 − . . .

)
< E(m, j) if j ∈

(
0,

√
3

2

]
.

Thus, in this range of j, the quasi-local mass is always greater than twice the irreducible mass
(figure 2) which is in agreement with the Minkowski inequality

1
4π

∫
Σ

HvolΣ � 1
4π

√
4πarea(Σ) = ρ.

As the spin parameter increases to
√

3/2, the energy decreases to 1.765 69m. For j above this
value, the original Brown–York–Kijowski–Liu–Yau prescription breaks down as the global
isometric embedding in R

3 does not exist. This was noted by Martinez, who states in [5]

6
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Figure 3. The quasi-local energy as a function of the spin parameter j = J2/m1.

Figure 4. The quasi-local energy of the extreme Kerr horizon computed using the
hyperbolic embedding as a function of the hyperbolic radius.

that his calculations are applicable only to slowly spinning Kerr black holes. In the range
j ∈ (

√
3/2, 1] we use the hyperbolic embedding. This has a free parameter—the hyperbolic

7
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radius L—constrained by the inequality 0 < L � 2m√
3c2−1

, and, for each c we choose the max-

imal value of L which makes the embedding global. We then numerically integrate (3.2) to
compute the energy as a function of j. We have used the Clenshaw–Curtis quadrature method
implemented on MAPLE 2020, and have verified that increasing the precision, and at the same
adding more digits to j does not change the first six digits in E( j). We have independently
verified the result using a Python code and, applying Simpson’s rule, which we tested for con-
vergence. We found the convergence between 1st and 2nd order, and so significantly lower
than the 4th order expected from the method. This slow convergence is caused by the presence
of square roots in the integrand which makes the function not differentiable at the boundaries.
Indeed, repeating the test, but instead integrating between ±0.9 yields a convergence factor of
15.4 which is close enough to 16 expected from 4th order Simpson’s method. The numerical
value of energy appears to be very precise for all values of j. Changing the resolution between
500 and 10 000 points does not change the leading six digits.

The energy increases in an almost linear way (a closer analysis shows that the graph
deviates from a line). Zooming near j = 1 shows that the energy reaches a maximum of
2.022 23m around j = 0.999 07, and then decreases to 2.019 66m for the extremal Kerr hori-
zon corresponding to j = 1 (figure 3). To show that this maximum is not a numerical artefact
we can expand the integrand in (3.2) near j = 1, and find the integral to the lowest order
in ( j − 1):

E( j) ≈ E(1) +
√

1 − j0.174 59m

so that E( j) is indeed a decreasing function of j near j = 1.
In our computation of EKLY from the hyperbolic embedding, we have chosen the hyperbolic

radius of the ambient H3 to be maximal such the embedding is global. This choice has ensured
the continuity of the mean curvature as well as the resulting energy at j =

√
3/2. We could

instead leave L as a positive parameter, and regard (for each value of j) the energy as a function
of L. It turns out that this function is monotonically decreasing from L = 0 to the critical value
(figure 4), which again suggests that our initial choice was a right one.

4. Conclusions

We have used a combination of flat and hyperbolic embeddings to compute the quasi-local
mass of the Kerr black hole horizon for any allowed value of the angular momentum. The
hyperbolic embedding of the rapidly rotating horizons allowed us to overcome the difficulty
arising from the Gaussian curvature not being positive everywhere on Σ. There is another, by
now well established, way around this problem due to Wang and Yau [14, 15], who used an
embedding of Σ in R

3,1 to construct a reference frame. As well as allowing for non-positive
Gaussian curvature, the Wang–Yau approach addresses a problem (pointed out in [6]) that EKLY

is positive on some closed two-surfaces in Minkowski space which do not lie in a space-like
hyper-plane. The computation of the Wang–Yau quasi local mass involves taking an infimum
of all mean curvature integrals over all ‘time functions’ τ such that the Gaussian curvature of
ĝ = g + dτ 2 is positive. It is therefore difficult to implement for concrete examples. This has
nevertheless been attempted in [16], where the authors noted the difficulty of finding a non-
zero admissible time function as in general they lead to complex energies. By examining the
boundary separating the complex and real energies they have confirmed the result of Martinez
[5] in the range [0, 0.4], and improved it up to j �

√
3/2. For j ∈ (

√
3/2, 1] the numerical

computations of [16] suggest that the mass is increasing which agrees with our findings. The

8
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analysis of [16] has not however revealed the global maximum3 of mass just before j = 1.
Additionally, the Wang–Yau mass is not defined if the mean curvature vector of Σ in the space-
time vanishes, which is the case for the cross-over surface of the outer horizon. In [16] the
mass was therefore calculated at a constant radius, and the outer-horizon limit was taken. It is
however not clear whether this limit is unique.
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