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Abstract: Smart manufacturing uses advanced data-driven solutions to maximise performance
and resilience of daily operations. It requires large amounts of data delivered quickly. Data-
transfer is enabled by telecom networks and network elements such as routers or switches.
Disruptions can render a network inoperable, and advanced responsiveness to network usage
is required to avoid them. This may be achieved by embedding autonomy into the network,
providing fast and scalable algorithms that use key metrics for prioritising the management
of a potential disruption, such as the impact of a failure in a network element on system
functions. Centralised approaches are insufficient for this as they require time to transmit data
to the controller, by which time it may have become irrelevant. Decentralised and information
bounded measurements solve this by situating computational agents near the data source. We
propose a method to assess the value of the amount of information for calculating decentralised
criticality metrics. The method introduces an agent-based model that assigns a data collection
agent to every network element and computes relevant indicators of the impact of a failure
in a decentralised way. The method is evaluated through simulations of discrete information
exchange and concurrent data analysis, comparing accuracy of simple measures to a benchmark,
and computation time of the measures as a proxy for computation complexity. Results show
relative losses in accuracy are offset by faster computations with fewer network dependencies.

Keywords: Computational Science; Discrete-event Simulation; Dynamic Systems; Intelligent
Diagnostic Methodologies; Large Scale Multi-agent Systems; Multi-agent Simulation;
Visibility; Criticality

1. INTRODUCTION

Manufacturing processes have become more data-driven
and dependent on interconnection of multiple facilities for
efficient decision-making, thus telecom infrastructure is as
pervasive a component of manufacturing industries as the
powergrid and other critical infrastructures. Telecom in-
frastructures are physical networks that support internet,
telephony, and other digital services by facilitating data
transfers between users. Infrastructures are often repre-
sented by graphs, with network elements, such as routers
or switches, as nodes and connections as edges.

In such flow networks, node failure may be caused by
congestion at a node or edge (for example by data packets).
Learning how to monitor the relative impact of disruptions
such as congestion on the network - criticality - is im-
portant for network control. Accurate and quick control
of network behaviour is important in networks that are
? This research was supported by the EPSRC and BT Prosperity
Partnership project: Next Generation Converged Digital Infrastruc-
ture, grant number EP/R004935/1, and the UK Engineering and
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Partnership Award for the University of Cambridge, grant number
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functioning at or near capacity, as is expected for backbone
networks of the near future (Moura and Hutchison (2019)).

In a centralised approach of network monitoring and crit-
icality computation, the central computational resources
need information on the whole network, creating a criti-
cality measure (CM) (Salazar et al. (2016); Fang and Zio
(2013)), and typically require node topology and attribute
data to function. This must be live and dynamic to respond
to behavioural shifts. The increased amount of data causes
longer computational times, thus conclusions arrived at
a given point in time become less relevant, and promote
critical events if too much data is transferred. Therefore,
the amount of data used for a CM should be minimised
while preserving meaning. This may be achieved by impos-
ing a limited bound around a given node, and computing
criticality in a decentralised manner, also shortening data
paths and reducing complexity by requiring information
from a small region around a given node. We call these
information bounded CMs (IB-CMs). This IB-CM can be
approximated with a centrality measure used as a criti-
cality estimate (CE), as both define importance within a
multicomponent system (Birnbaum (1968)).
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This paper builds on Proselkov et al. (2020) to outline
a method to assess the accuracy and computational effi-
ciency of IB-CMs that change with time, with respect to
a novel benchmark estimate of dynamic criticality under
different communication paradigms (CPs). These IB-CMs
are designed for homogeneous flow networks. A prototype
is presented that uses classic centrality measures as a stand
in for CMs and IB-CMs, with real network topology on the
use case of a telecom simulation model.

2. LITERATURE REVIEW

Network topology affects routing and resilience to disrup-
tion since shorter distances give quicker transfers. Critical-
ity, defined as the impact of a node’s failure on the smooth
operation of a network, evaluated by network connectivity
in telecoms, is a key factor in understanding network
resilience. One can determine criticality by tracking its
impact on the network when rendered inactive (Lü et al.
(2016); Herrera et al. (2020)), and estimate it using the
current network state (Proselkov et al. (2020)). Criticality
can inform prioritisation in network prognostics for proac-
tive maintenance. Many criticality measures are extensions
of centrality measures, including, betweenness (Freeman
(1977)); eigencentrality; and degree centrality. The first
two are centralised, needing each node to take information
from all nodes. Degree centrality requires each node to
know the number of their neighbours.

Efficient decentralised computation approaches for under-
standing network criticality are important for networks
operating under stress, (Cetinkaya and Sterbenz (2013)).
Cascade failure may also occur within regularly functional
systems due to random errors, as in January 1990, where
114 switching nodes of the AT&T network successively
went down due to a wrong reset signal (Neumann (1995)).

Nodes within telecoms networks provide information of
their state either by transmitting to a supervisory node,
which facilitates centralised centrality calculation, or with
each other, which facilitates distributed centrality cal-
culation. They can achieve decentralised communication
through broadcasting to all neighbours their node ID, the
value, and topological information including the travel
history of the data packet, and previously broadcasted
packets that are known to remain in motion, (Lehmann
and Kaufmann (2003)). This takes at least the minimum
distance between two nodes to be completed in reality.

Experimental evidence suggests increased computational
efficiency and satisfactory performance of information
bounded network measures as in Ercsey-Ravasz and
Toroczkai (2010). This details the relationship of the depth
of the information bound and size of the value distribution
of the associated bounded betweenness measures. The
value distribution increases exponentially with the depth
of the bound up to mean geodesic length before decreasing,
suggesting meaningful sensitivity at the mean geodesic
length. Tests were conducted on scale-free and random
graphs. These only have one cluster, so it is expected that
the ideal depth may be the mean cluster geodesic length.

Other papers give examples of limited range criticality
and centrality for static measures (Wehmuth and Ziviani
(2011); Chen et al. (2012); Nanda and Kotz (2008); Ker-

marrec et al. (2011); Dinh et al. (2010); Proselkov et al.
(2020)) and for dynamic distributed criticality measures.
All show accuracy despite limited boundaries. However,
no large scale analysis on the relative efficiency via com-
putation time and accuracy has not yet been conducted
for dynamic criticality measures.

3. METHODS

3.1 Telecom simulation model

The network topology is generated, creating the graph,
G = (V,E) where V is nodes and E is edges. The
packet exchange simulator is then run with short range
dependence, meaning random nodes generate data packets
independently according to a Poisson distribution with
random destinations (Veres and Boda (2005)), using 1 a
discrete-event network simulator for simulating networks
that exchange discrete information packets. As this is an
information flow network, a timestep refers to how long
it takes for information to traverse one edge. Packets
traverse the network, stored and routed along nodes on
the way to their destination, where they are removed
from the system. Nodes and edges each have some fixed
capacity which gets filled up over time since it takes time
to process packets at nodes and transmit them between
nodes, with processing time and transmission time as
fixed input parameters within the model. This process is
terminated after either a fixed number of timesteps or until
the network is too congested to function. The nodes all
have a backlog capacity each of φ. The simulation produces
a time series over T of each node’s queued up data packet
backlog, where the size of the queue held by node u ∈ V
at time t ∈ T is φtu.

After this, we examine how nodes would behave if they
were receiving and processing network state information
in real time in an agent based simulation 2 , where an
independent agent is situated at each node. Depending
on our monitoring data CP, which determines how up-to-
date our information is (currentness) different nodes get
different information regarding others depending on their
relative position in the network. We investigate three CPs,
named instant, constant, and periodic.

For a pair of connected nodes, u, v ∈ V , there is a path
puv ⊆ G from u to v if, for some n ∈ Z+, there exists an
ordered sequence of nodes, (u, (ui)

n
i=0, v) ⊆ V such that

either all edges {uu0, (uiui+1)n−1
i=0 , unv} ⊆ E, or uv ∈ E.

If there is a path from u to v, u receives information about
φtv. The queue at time t that the agent at node u believes
v has is the perceived queue, qtuv ∈ Q. When u = v this
is qtu. Centrality calculation for nodes takes time so the
time from transmission to output is always greater than
transmission to receipt between any nodes, thus nodes
must compute centralities at a lower frequency than the
CP dictates to avoid losing currentness. We call the period
between calculations the monitor interval, denoted µ.

Instant communication is a simplification that assumes
monitoring data is transferred instantly without any lag,
such that for all u, v ∈ V , qtuv = qtv. This is a base case, and

1 a Python package called “Anx”, (Likic and Shafi (2018))
2 using a Python package called “Mesa”, (Kazil et al. (2020))
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can only be achieved if monitoring data transfer became
so fast as to be insignificant.

Constant communication has nodes declare their queues
at every timestep and this data traverses the network
normally, because this declaration is a very low bandwidth
operation. If the shortest path (geodesic) between u and v
is length n, then qtuv = qt−nv , since information from v takes
n timesteps to reach u, so u’s knowledge of v is n timesteps
out of date. Due to this lag further nodes give less accurate
information with reduced value and relevance.

Periodic communication has nodes declare their queues
and perceived queues at the same frequency as they calcu-
late their centrality. This corresponds to some aggregation
of the functions that exist in the case of higher order
control functions that use centralities as inputs. Here, for
u and v with geodesic of length n, and model with monitor
interval µ, qtuv = qt−µnv , as each queue pass is µ timesteps.

With each CP, nodes recieve perceived queues of others in
the network. These values are used to inform dynamic,
queue dependant CEs, which are calculated with the
adjacency matrix, and so with respect to edge weight
rather than node weight, which we assign according to the
following steps. First the graph is redefined as directed,
such that for (uv), (vu) ∈ E, (uv) 6= (vu). For a node u,
for all v ∈ Γ1(u), the weight of edge (uv) is

(uv)tq = qtu/|Γ1(u)|. (1)

This is done because larger neighbourhoods give nodes
more opportunities to emit data packets and distribute
load among them, and it accounts for the respective queues
of node pairs since for all (uv) there exists a (vu) produced
under the same rules.

The following subsection describes the data analysis car-
ried out with the data provided according to each CP.

3.2 Centrality Measure CEs

According to each of the above CPs, the data delivered
to each agent situtated at a node is used to compute
centrality measures over time as proxies and estimates of
criticality. In this initial study standard centrality mea-
sures are used, with weighted and bounded extensions. The
unweighted measures only take topological data, whereas
weighted measures adjust their outputs according to the
perceived queues for each node. Unbounded, or sociocen-
tric, measures take information from the whole network
and stand in for CMs, while bounded, or egocentric mea-
sures take information from a limited region around a
given node and stand in for IB-CMs.

We define the information boundary around a node by
the geodesic distance. For a node, u ∈ V , the set of
nodes i edges away is Γi(u) ⊂ V , where Γ1(u) is the
neighbourhood of u. The set of nodes at most i edges

away from u is Hi(u) =
⋃i
j=1 Γj(u), such that if u has an

information boundary at distance i, it takes information
from Hi(u).

Degree Centrality: Unweighted Degree Centrality for a
node u counts the number of neighbours. It is defined as
Cu

d (u)t = Cu
d (u) = |Γ1(u)|.

Weighted Degree Centrality counts each node as many
times as their perceived queue lengths. It is dynamic and
defined as Cw

d (u)t =
∑
v∈Γ1(u) q

t
uv.

Betweenness Centrality: All distinct paths with the
same length and the minimum number of elements are
geodesics. The number of geodesics from v to w is ρv,w :
V → Z+, and the number of geodesics from v to w passing
through u is ρv,w|u : V → Z+.

Unweighted Sociocentric Betweenness Centrality (Freeman
(1977)), tracks pathway disruption potential. It is static,
calculating the fraction of shortest paths between all node
pairs passing through the subject node.

Unweighted Egocentric Betweenness Centrality measures
the betweenness of a bounded region surrounding a node.
It correlates strongly with sociocentric betweenness (Mars-
den (2002)), and is computable in a decentralised manner.
For node u ∈ V it measures the betweenness of the induced
subgraph of Hi(u), such that

Cue
b (u)t = Cue

b (u) =
∑

v,w∈Hi(u)
ρv,w|u/ρv,w.

Weighted Sociocentric Betweenness Centrality uses a
weighted shortest path parameter. Pvw is the set of short-
est paths between nodes v and w, and using Eqn. (1) the
CE is defined as

ωtv,w =
∑
pvw∈Pvw

∑
(st)∈pvw,(st)∈E(st)tq;

ωtv,w|u =
∑
u∈pvw∈Pv,w

∑
(st)∈pvw,(st)∈E(st)tq,

(2)

giving weighted sociocentric betweenness centrality as

Cws
b (u)t =

∑
v,w∈V,u6=v 6=w

ωtv,w|u/ω
t
v,w. (3)

Weighted Egocentric Betweenness Centrality takes Eqn.
(3) but over Hi(u).

Eigencentrality: Unweighted Sociocentric Eigencentral-
ity captures the connectivity of the network, where nodes
with more connections to well connected nodes are better
valued. The number of edges between nodes ui and uj
is ai,j , displayable in a matrix, AG ∈ Mn ({0, 1}), the
adjacency matrix, where

AG = (ai,j) =

{
1, (i, j) ∈ E
0, i = j,

for the matrix, G. The eigencentralities of the nodes in the
network are found for the largest eigenvalue, λG, with

AGx = λGx, (4)

and the CE is the solution to Eqn. (4), numerically solved
via power iteration, or Von Mises iteration, (von Mises and
Pollaczek-Geiringer (1929)).

Unweighted Egocentric Eigencentrality is the solution to
Eqn. (4) over Hi(u) rather than over G.

Weighted Sociocentric Eigencentrality uses the directed
network with edge weights as defined by Eqn. (1). The
adjacency matrix becomes dynamic and temporally de-
pendant, such that for AtG ∈Mn(Z+),

AtG = (ai,j) =

{
(uiuj)

t
q, (i, j) ∈ E

0, i = j.
(5)

AG in Eqn. (4) is then replaced by AtG in Eqn. (5).
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Weighted Egocentric Eigencentrality uses AtG from Eqn.
(5). For node uj it is over Hi(uj), not G, creating

Cwe
e (uj)t = (AtHi(u)x)j = (λtHi(u)x)j .

These CEs will be used as proxies for criticality measures.
To compute the value of information as processed through
each measure, we now outline a validation method.

3.3 Validation Method

The measures above must be validated as correctly ap-
proximating dynamic criticality within the network. A
validation function must determine at any timestep the
similarity of our estimate of criticality to a benchmark and
its period of relevance. Criticality measures the impact
of failure, which must be defined, and for how long the
effects of some action can be said to have been caused
by a previous one. Analysis is conducted post hoc and
uses data that is neither limited by the imperceptibility of
the future nor communication constraints. We take linear
functions of the total queue sizes of the whole network,
using Φt =

∑
u∈V φ

t
u. We also find a time range for which

we have sufficient confidence that all network states are
sufficiently dependant on eachother.

Ideal Time Horizon This is a moving window of
timesteps, bisected by the present timestep, where the
beginning of the window has sufficiently influenced all
timesteps up to the present, and the present will suffi-
ciently influence all timesteps up to the end of the window.
With it, we can determine how far must a CE look into
the future to sufficiently capture both the current network
state and its influence. We iterate over a fixed number,
htest, of time horizon windows, hi, less than half the total
simulation runtime, tmax, where hi = itmax/ (2htest), and
take moving averages over Φt for each width hi, such that

MAt
Φ;hi

=

{∑t
t−i Φt/i t ≥ i;

∅ t < i,

and MAΦ;hi
is the time series made up by MAt

Φ;hi
. Then

for all t such that MAt
Φ;hi

exists, we take the absolute

difference between MAt
Φ;hi

and Φt, such that

MADt
i =

{
|MAt

Φ;hi
− Φt| t ≥ i;

∅ t < i,

and get the sum of absolute differences, SADi =
∑
t MADt

i.

Normalised, this is NSADi = SADi/maxhtest
i=1 SADi. It-

erating through NSADi in ascending i, we obtain gi =
htest(NSADi+1−NSADi). The ideal time horizon is where
the relative gain in error by a wider window is large enough
to suggest that all smaller window sizes cover regions
with significant influence over eachother. Beyond that,
since error gain slows down, one cannot confidently claim
events are the direct consequence of the current time. This
confidence, the validation threshold, is an independent
parameter, c, with which we define the ideal time horizon,
h for the first i where one of the following conditions is
fulfilled, where if the last case is reached we must test
more windows or increase the confidence threshold:

h =


bi/2c gi ≤ c;
b(i− 1)/2c gi < 0;

∅ i = htest.

Comparison Accuracy Function We compare CEs to a
benchmark measure of criticality, defined as the change in
network operation induced by any network state changes.
Dependencies are sufficiently large for all timesteps at
most h timesteps far from eachother, so impacts occur
over a meaningful timescale of h. This impact at time
t is the change over h timesteps across t, scaled by the
built up queues at time t, since a more heavily used
system has more to lose than an underused one. We ob-
tain a moving average with window width h, MAΦ;h and
produce a time series of scaled differences across a time

horizon, defined THDt = MAt
Φ;h

(
MAt+h

Φ;h −MAt−h+1
Φ;h

)
.

This is normalised to [0, 1], such that NTHDt = (THDt −
mint THDt)/(maxt THDt − mint THDt). This is the crit-
icality benchmark. For a CE, C(u)t we calculate the net-
work mean, Ct =

∑
u C(u)t, and normalise to get NCt.

Let T = {τ ∈ T : τ = kµ, k ∈ Z+}. The error from
the benchmark is Errt = NCt − NTHDt, and the root

mean squared error is RMSE =
√∑

t∈T Err2
t/|T |. The

lowest RMSE gives the most accurate measure since it
most closely follows the benchmark criticality.

4. RESULTS AND DISCUSSION

We compared results of simulations of instant, constant,
and periodic CPs for the relative accuracy of decentralised,
dynamic, and information bounded centrality measures
for estimating criticality. Three simulations, one for each
CP, using the real topology of the UK outer backbone
infrastructure network for a UK telecoms service provider
(Fig. 1).

Fig. 1. Outer backbone UK infrastructure network for a
large UK service provider

The parameters of the simulation are shown in Table 1.
Since the simulation initialises on an empty network, we
skip 5000 timesteps to avoid a degenerate case.

Table 1. Simulation Parameters

Runtime tmax (hundreths of a second) 100000 timesteps
Monitor Interval µ 250 timesteps
Packet generation rate 19 packets/timestep
Processing delay 13 timesteps
Queue check time 1 timestep
Transmission time 30 timesteps
Node capacity φ 128 packets
Link capacity 1024 packets
Information visibility boundary 2 hops
Validation threshold c 0.1 relative difference
Window widths tested htest 20 windows
Ideal time horizon h 10000 timesteps
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Plots of all centralities and the criticality benchmark,
NTHDt, for each CP are shown in Fig. 2, filtered us-
ing a first order Savitzky-Golay filter. This graph shows
substantial difference between outputs for weighted and
unweighted measures across all CPs, but further analysis
will show similar accuracy.

(b) Instant (c) Constant (d) Periodic

Fig. 2. CEs and NTHDts for simulations of each CP.

The absolute error, |Errt|, from NTHDt was calculated,
the results plotted in Fig. 3. These plots are only for
the weighted measures since error from static values is
a trivial transformation of the criticality benchmark. We
can see the relative accuracy of each curve, showing simi-
lar accuracy between bounded and unbounded measures.
Periodic CP readouts seem more closely clustered in terms
of accuracy. Error plots are filtered using a first order
Savitzky-Golay filter.

(b) Instant (c) Constant (d) Periodic

Fig. 3. Error for Weighted CEs and NTHDts for simula-
tions of each CP.

Difference from the criticality benchmark is shown in Table
2, with RMSE for each CE and each CP. Weighted, dy-
namic measures largely performed much better than their
static counterparts. Boundedness minimally impacted ac-
curacy. Typically, performance in estimating criticality
was best for the constant CP, followed by the periodic
and then instant CPs. Of the weighted bounded measures,
betweenness performed best under periodic CP with large
variation between CPs; eigenvector best under constant
CPs; and degree under instant CP, and much better than
periodic and constant, which show wide difference. This
suggests different estimates can be used for different CPs.
No weighted bounded measure had more RMSE than
0.35. Betweenness has the worst case in constant CP with
RMSE 0.339, degree best case in instant CP with RMSE
0.239, and eigencentrality and betweenness showing simi-
lar consistency with ranges of 0.086 and 0.085 respectively.
All values are similar and low, which suggests information

bounding and dynamic measurement can be combined to
create accurate and scalable CEs.

Table 2. Root Mean Squared Error for each CP
and CE. Blue is the least error, red is the most.

Instant Constant Periodic
Betweenness 0.536 0.412 0.482
Bnd’d. Betweenness 0.491 0.368 0.437
Wtd. Betweenness 0.263 0.27 0.28
Wtd. Bnd’d. Betweenness 0.301 0.339 0.254
Eigenvector 0.44 0.321 0.388
Bnd’d. Eigenvector 0.381 0.268 0.332
Wtd. Eigenvector 0.228 0.212 0.244
Wtd. Bnd’d. Eigenvector 0.327 0.241 0.259
Degree 0.487 0.365 0.433
Wtd. Degree 0.239 0.344 0.273

Boundedness and the time horizon are spacial and tempo-
ral efforts to maximise relevancy of a given calculation. A
sufficiently small information boundary also reduces com-
putational complexity, allowing calculations to take place
within the relevant period. In application, the monitor in-
terval should be bounded above by the relevant period, and
is typically bounded below by the computation time. This
motivates analysing computation time of each measure
under each CP. We note that all analyses were completed
on Google Colab Pro, a Jupyter notebook service that
provides a Python 3 Google Compute Engine backend of
an adaptable memory of up to 32GB RAM with 2 virtual
CPUs, Intel(R) Xeon(R) @ 2.20GHz.

Computation time plots are displayed in Figure 4, where
limiting information has the most noticeable effect on
weighted betweenness, which unbounded can take over
0.07 seconds, but bounded may be less than 0.01, close
to weighted bounded eigencentrality. Instant and constant
computations are largely similar in time for all measures,
though instant CP shows variability and intermittent
spikes during network congestion, where queue backlogs
grow due to build-up exceeding processing speed within
certain regions. Periodic CP was uniformly faster, which
since it places a lighter memory load through lower fre-
quency, may be an artefact of computational stress placed
on the computer during simulation. Dynamicity increases
computation time for complex measures, but has minimal
impact on degree centrality, which is computed nearly
instantly. The means for each measure and CP are shown
in Table 3.

(b) Instant (c) Constant (d) Periodic

Fig. 4. Computation time for all CEs for simulations of
each CP, measured in seconds.

Altogether, this research shows the viability of dynamic
criticality estimation and provides a framework for fur-
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Table 3. Mean computation time for all CEs for
simulations of each CP, measured in seconds.

Blue is the fastest, red is the slowest.

Instant Constant Periodic
Betweenness 0.03112 0.03022 0.0245
Bnd’d. Betweenness 0.00676 0.00669 0.00554
Wtd. Betweenness 0.06512 0.06231 0.05248
Wtd. Bnd’d. Betweenness 0.01188 0.01154 0.00951
Eigenvector 0.00738 0.00726 0.00612
Bnd’d. Eigenvector 0.00445 0.0043 0.00357
Wtd. Eigenvector 0.01902 0.01874 0.01523
Wtd. Bnd’d. Eigenvector 0.01084 0.01068 0.00869
Degree 1.30E-05 1.09E-05 5.19E-06
Wtd. Degree 1.83E-05 1.38E-05 6.88E-06

ther development of advanced CEs. Bounding information
visibility is a viable method for scalable measures that
largely preserves accuracy while speeding up calculation.
The three main CPs examined were shown to behave simi-
larly. Different measures respond differently to information
limitation and dynamicity based on CP, suggesting further
research into measure development is required.

This study simulated networks under normal operation.
Further research will develop a framework to conduct
analysis under critical event simulation, sourced from sin-
gular nodes. These scenarios are expected to introduce
variability in criticality computation speed, which may
have implications on the selection of monitoring inter-
vals. Future research will also look at different network
topologies for the purpose of generalising the relationship
of accuracy and computation speed with the information
boundary for different network topologies. This research
used classic centrality measures for analysis purposes, and
further research will used advanced measures developed
to estimate criticality (Proselkov et al. (2020)), as well
as produce case specific, machine learning derived CEs
for maximum relevancy. Beyond the telecom case, this
analytic framework will be applicable to other systems
with dynamic flow and independent cognitive agents, such
as business networks, mail networks, river networks, and
more, each a critical support network for any manufactur-
ing system.
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