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ABSTRACT 

Next Generation Sequencing (NGS) technologies are revolutionizing the diagnostic screening for rare 

disease entities, including primary mitochondrial disorders, particularly those caused by nuclear gene 

defects. NGS approaches are able to identify the causative gene defects in small families and even 

single individuals, unsuitable for investigation by traditional linkage analysis. These technologies are 

contributing to fill the gap between mitochondrial disease cases defined on the basis of clinical, 

neuroimaging and biochemical readouts, which still outnumber by approximately 50% the cases for 

which a molecular-genetic diagnosis is attained. We have been using a combined, two-step strategy, 

based on targeted genes panel as a first NGS screening, followed by whole exome sequencing (WES) 

in still unsolved cases, to analyze a large cohort of subjects, that failed to show mutations in mtDNA 

and in ad hoc sets of specific nuclear genes, sequenced by the Sanger’s method. Not only this 

approach has allowed us to reach molecular diagnosis in a significant fraction (20%) of these difficult 

cases, but it has also revealed unexpected and conceptually new findings. These include the 

possibility of marked variable penetrance of recessive mutations, the identification of large-scale 

DNA rearrangements, which explain spuriously heterozygous cases, and the association of mutations 

in known genes with unusual, previously unreported clinical phenotypes. Importantly, WES on 

selected cases has unraveled the presence of pathogenic mutations in genes encoding non-

mitochondrial proteins (e.g. the transcription factor E4F1), an observation that further expands the 

intricate genetics of mitochondrial disease and suggests a new area of investigation in mitochondrial 

medicine. 

 

KEYWORDS: Mitochondrial disorders, Next Generation Sequencing, Whole Exome sequencing,  
E4F1	  
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1. INTRODUCTION 

Mitochondrial Disorders form a group of rare, genetically and clinically heterogeneous conditions 

characterized by impairment of the mitochondrial respiratory chain, which is responsible for the 

synthesis of most of the ATP in the cells through the oxidative phosphorylation (OXPHOS) pathway. 

Most of the proteins required for the biogenesis, structure and function of mitochondria are encoded 

by genes contained in the nuclear genome (nuclear DNA, nDNA) but 13 essential subunits of four of 

the five canonical respiratory-chain complexes are encoded by a physically separated, semi-

autonomous, genome, the mitochondrial DNA (mtDNA) [1, 2]. Unlike nDNA, which has a diploid 

organization (i.e. two copies) within the nucleus of somatic cells, and a haploid organization (i.e. one 

copy) in gametes, mtDNA is present in multiple copies within the mitochondria of each cell. Human 

mtDNA is a circular, double-stranded molecule, 16,569 base pairs in size, which encodes 37 genes, 

including 22 tRNAs and 2 rRNAs encoding genes essential for mtDNA-specific translation of the 13 

genes encoding as many respiratory chain subunits [3]. Albeit essential for the formation of the 

mitochondrial membrane potential (DP) and ATP production, these polypeptides are outnumbered by 

far by the >75 respiratory chain subunits encoded by nDNA. Overall, it has been estimated that more 

than 1000 nuclear genes encode proteins necessary for mitochondrial maintenance and function, 

including those carrying out mtDNA replication and expression, mitochondrial shape and dynamics 

(fission and fusion), Coenzyme Q10 (CoQ10) biosynthesis and the complex network controlling 

respiratory chain formation, activity and turnover [4, 5]. In principle, all of these genes should be 

considered as potential candidates for mitochondrial disease, and mutations in approximately 200 of 

them have already been established to play a causative role. Nevertheless, most of the mitochondrial 

disease cases, classified on the basis of clinical/biochemical features, still lack a molecular diagnosis 

[6], so as to make the completion of the molecular dissection a compelling need in the diagnostics, 

clinical management, and translational research in mitochondrial medicine. 
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The minimum prevalence of isolated or combined, genetically defined OXPHOS defects is 

approximately 1:5000 live birth, just considering the most recurrent mutations of mtDNA. This figure 

is a very conservative one, as it does not take into account the nuclear gene defects associated with 

mitochondrial disease. A more recent epidemiological survey carried out in Northern UK, which 

includes some frequent nuclear gene mutations, indicates a more realistic, but still underestimated, 

figure of 1:4300 live births [6]. Since the mitochondrial respiratory chain is the final common 

pathway for aerobic metabolism, tissues and organs with high-energy demand based on efficient 

OXPHOS are preferentially involved in mitochondrial disease [7], notably the central nervous 

system, the heart and the skeletal muscle. From a medical standpoint, mitochondrial disorders are 

often suspected on the basis of peculiar clinical presentations, but the diagnostic  workup is often 

complex and difficult, requiring extensive clinical and laboratory evaluation [8]. It can include 

biochemical investigation (e.g. measurement of respiratory chain complex activity and mitochondrial 

oxygen consumption), immunohistochemical , and histoenzymatic analyses, and evaluation of the 

amount and integrity of intact respiratory chain complexes and mtDNA in cultured skin fibroblasts 

or skeletal muscle biopsy; neuroimaging findings; and careful clinical examination and follow-up, 

with several criteria and evaluation scales suitable for either adults [9] or children [10, 11]. 

Unfortunately, the use of different methods and lack of standardized procedures among different 

laboratories worldwide, particularly regarding enzymatic analysis, contribute to make the diagnosis 

even more complicated and uncertain [12]; moreover, not always the affected tissues/organs are 

available for the analysis and fibroblasts, the most easily obtainable cellular model, may not express 

any defect. The gold standard for safe diagnosis is clearly based on the identification of the 

responsible gene. Recent advances in gene screening technologies has become an invaluable tool to 

rapidly analyze know disease genes and to search for mutations in new candidate genes. 

This paper reports our own experience on how the development of Next Generation Sequencing 

(NGS) approaches has in fact substantially improved the efficiency of mutation discovery and 
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facilitated its translation into routine diagnostics of mitochondrial disease, with remarkable 

advantages in terms of diagnostic score, and increased value for money and time consumed [13]. 

NGS includes a series of techniques that enable automation of nucleic acids (RNA and DNA) 

sequencing, increasing the analysis power from a few hundred base pairs to the entire genome in a 

single run. NGS became available to the genetics community in 2008–09 when the first NGS 

machines entered the market [14]. The process required for NGS to implement research or diagnostic 

procedures comprises a wet laboratory workflow, including the preparation and sequencing of 

libraries from individual DNA samples. This step is followed by a post-sequencing workflow 

involving informatics and bioinformatics analyses performed to align the sequences, and call, 

annotate and filter the variants. This analytical in silico step is crucial to identify and distinguish rare 

causative mutations from hundreds of frequent or non-pathogenic sequence polymorphisms. Upon 

completion of this pipeline the selected variants can be either known pathogenic mutations or novel 

candidate changes. In general, the first option is followed by a review of the literature in order to 

establish/confirm a causative phenotype-genotype association. As for the second option, the 

conclusive demonstration of the pathogenic role of a given variant will depend on additional 

experimental validation. For instance, the detection of mutations in the same gene in unrelated 

individuals or families with a similar phenotype is a robust and relatively straightforward genetic 

validation. But when only one case/family is available for genetic analysis, then the pathogenic role 

of a suspected variant must be confirmed by functional studies focused on the evaluation of its 

biological effects [13]. In mitochondrial disease, the availability of mutant cells from patients  is 

important to assess the presence of a biochemical defect affecting the OXPHOS system, and as a 

source of mRNA and proteins for further experimental validations. In addition, cells are essential to 

carry out complementation assays and evaluate the rescue of the phenotype under expression of the 

recombinant wild-type cDNA introduced by transfection or viral transduction [15, 16, 17]. However, 

this procedure is applicable only to those conditions in which a specific readout, usually biochemical 
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(e.g. activities of individual respiratory-chain complexes, oxygraphic studies, CoQ measurement) but 

sometimes also morphological (e.g. structure of the mitochondrial network, apoptotic nuclei, etc.) 

can be detected in cultured cells (typically fibroblasts, sometimes myoblasts). In other cases, for 

instance for genes with an ortholog in Saccharomyces cerevisiae, mutations can be modeled in a yeast 

system. A number of biochemical OXPHOS defects, however, are poorly or hardly expressed in 

cultured cells and involve recent genes (not conserved in yeast). In these cases, a functional 

complementation approach is difficult, and validation largely relies on the identification of unrelated 

cases with mutations in the same gene and displaying a similar phenotype. For many genes causing 

mitochondrial disease, the small number of reported cases makes it difficult to safely establish a 

consistent clinical and neuroimaging nosography. Although some peculiar genotype-phenotype 

associations have been reported, these observations may be based on an inclusion bias, because once 

a mutant gene is found in a single or just a few subjects, then the clinical and neuroimaging features 

are often exploited to identify additional patients. Indeed, thanks to unbiased NGS approaches, very 

different clinical presentations have recently been reported in patients harboring mutations in the 

same gene (e.g. AARS2, AIFM1) [18, 19]. 

In the present study, we analyzed a heterogeneous cohort of 125 patients diagnosed as affected by 

mitochondrial disease, mostly characterized by early onset. Using a combined NGS approach based 

on a targeted gene panel and whole exome sequencing (WES), we genetically screened our cohort of 

mitochondrial disease patients in order to: widen the spectrum of clinical presentations associated 

with genes already known to cause MD; discover causative mutations in new candidate genes never 

associated to MD before; evaluate the power of NGS in identifying mutations in patients negative to 

traditional gene screening based on Sanger sequencing. 
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2. MATERIALS AND METHODS 

2.1 Clinical and biochemical investigation 

125 patients (60 males and 65 females; 78 with age of onset ≤1, the mean onset of the remaining ones 

was 18.6 years) referred to the Neurological Institute “C. Besta” (Milan, Italy) and diagnosed as 

affected by mitochondrial disease through the integration of clinical, biochemical and morphological 

investigations were enrolled in this study and coded as NGSP001-NGSP125. Histological analyses 

and measurements of respiratory chain and pyruvate dehydrogenase (PDH) complex activities were 

performed according to standard procedures [16, 20]. Based on the biochemical profile and mtDNA 

characterization obtained in either fibroblasts, skeletal muscle, or both, patients were divided into 

different groups as follows: defects in complex I (n. 5), complex II (n. 18), complex III (n. 15), 

complex IV (n.21), complex V (n. 5), multiple defects (n. 26), CoQ10 deficiency (n. 3), mtDNA 

multiple deletions and/or depletion (n. 8) and PDH complex activity (n. 14) (Supplementary table 

S1). In 8 subjects the biochemical analysis was not performed because no biological material was 

available, and in two no biochemical respiratory chain defect was assessed, but they were all included 

in the study since the clinical and/or neuroimaging features were highly suggestive for a 

mitochondrial disease. Notably, complex I deficient patients are underestimated in this cohort because 

most of them were already analyzed in previous genetic studies [21, 22]. The clinical diagnosis is 

also included in supplementary table S1; a detailed clinical description for NGS091 is reported as 

supplementary material. All patients had previously been screened by traditional Sanger’ sequencing 

for mtDNA mutations, and for sets of genes associated with the specific biochemical or molecular 

(mtDNA) defect and/or clinical presentation, and in no case were mutations found as suggestive for 

a pathogenic role. 
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Informed consent for genetic studies was obtained from all investigated subjects in agreement with 

the Declaration of Helsinki. 

 

2.2 Molecular genetics 

Our combined NGS approach was first based on analysis of our entire cohort of 125 individuals by a 

custom-made targeted mitochondrial panel of 132 genes (Supplementary table S2). Next, we selected 

for WES ten samples, which were negative for the genes contained in the panel. 

2.2.1 Custom-made targeted gene panel  

Genomic DNA was extracted from peripheral blood. We used 250 ng of DNA as template for the 

construction of a paired-end library, according to the TruSeq Custom Amplicon Library preparation 

guide (Illumina). Sequencing was performed on an Illumina MiSeq platform. We sequenced a custom 

panel of genomic regions corresponding to the transcribed sequences of 132 genes (exons and UTR 

regions), selected to be already associated with mitochondrial disorders or to be candidate genes that 

take part to the same molecular pathways. The sequencing reads were aligned to the NCBI human 

reference genome (GRCh37/hg19) using the Burrows-Wheeler Aligner (BWA). Single nucleotide 

variants (SNVs) and small insertions/deletions (INDELs) calling was performed using the Somatic 

Variant Caller (Illumina); Variant Studio software (Illumina) was used for variants annotation and 

filtering. Filtering was carried out by applying a series of steps: low-quality variants were filtered out 

(Illumina Qscore threshold of 30); variants with a minor allele frequency (MAF) >1% in the 1000 

Genomes Project (http://www.1000genomes.org) and Exome Variant Server databases 

(http://evs.gs.washington.edu) were discharged. Finally, we focused on predicted missense, frame-

shift, stop-gain or stop-loss, and splice-site variants. For remained variants in the final list we also 

checked their frequency in the Exome Aggregation Consortium (ExAC) database.  
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2.2.2 Whole Exome Sequencing 

WES analysis was conducted using 50 ng of DNA as template for the construction of pair-ended 

libraries with the Nextera Rapid Exome Capture kit (Illumina), following the manufacturer’s 

instructions. Sequencing was performed on 12 pM libraries with the addition of 1% 12.5 pM PhiX 

control library on an Illumina MiSeq platform. Libraries were run several times until 12-15 G of 

data/sample were obtained. Sequences from the FASTAQ files were aligned to the human genome 

(hg19) by using the BWA aligner. Variants were called by using the GATK HaplotypeCaller, and 

then filtered by using the Variant Quality Score Recalibration according to the best practices of 

GATK-2.7 (https://www.broadinstitute.org/gatk/). Variants were annotated by using Annovar. 

Coverage of the targeted regions was estimated using the GATK DepthOfCoverage. For paired end 

reads to be included, they needed to have a mapping quality greater than 20 and a base quality greater 

than 10. 

In addition to the standard SNVs and small INDELs annotation and filtering process, the presence of 

larger insertions/deletions as well as copy number variations (CNVs) was assessed through a deeper 

analysis of NGS coverage data. Using the cn.MOPS software publicly available as an R package 

(http://www.bioinf.jku.at/software/cnmops), we analyzed both targeted gene panel sequencing and 

WES dataset bam files. Using a Bayesian approach, cn.MOPS decomposes variations in the depth of 

coverage across samples into integer copy numbers and noise by means of its mixture components 

and Poisson distributions, respectively [23]. 

Variants identified by NGS were validated by Sanger’ sequencing. The chromatogram traces were 

analyzed using the Sequencher software (Gene Codes Corporation). mtDNA content was evaluated 

by real-time PCR-based quantification (ABI7000 Real-Time PCR System) using specific mtDNA 

probes and a standard, single-copy autosomal gene (RNaseP) [16]. RNA was extracted from skin 

fibroblasts and 1 μg was used as template for reverse transcriptase PCR (RT-PCR) to obtain full-
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length cDNA. Transcripts of candidate genes were amplified through PCR and run by electrophoresis 

through a 1% agarose gel in order to detect potential splicing alterations. PCR products were also 

sequenced in order to confirm genomic variants and unmask potential events of nonsense-mediated 

decay. Real-time quantitative PCR (qPCR) was performed on retro-transcribed cDNA from 

fibroblasts of patients and controls, using an ABI Prism 7000 apparatus (Applied Biosystems). The 

amount of specific transcripts was normalized to beta-actin levels (primers available upon request). 	  
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3. RESULTS 

3.1 Targeted gene panel 

Since the majority of our cohort was composed of patients showing an autosomal recessive mode of 

disease inheritance, we focused our search on homozygous and compound heterozygous variants, 

although in a smaller set of individuals the mode of inheritance was uncertain or compatible with 

autosomal dominant or X-linked transmission. In these cases, single heterozygous variants were also 

considered. In addition, for samples with recessive inheritance but presenting just one heterozygous 

variant in a likely gene candidate, we performed extended systematic NGS coverage analysis in 

search of a second allelic variant. This analysis was carried out by looking for: 1) regions not covered 

or poorly covered by NGS, which were then analyzed by Sanger’ sequencing; 2) large heterozygous 

deletions involving entire exons using the cn.MOPS software, followed by cDNA amplification and 

sequencing to investigate the effect of the two variants on the gene transcript(s); 3) quantitative or 

qualitative cDNA abnormalities due to variants within intronic or regulative regions not targeted by 

NGS (Fig. 1). 

The targeted gene panel allowed us to analyze both the coding sequences as well as the 5’ and 3’ 

untranslated regions of 132 genes, for a total of 1078 exons (2565 amplicons). The total amount of 

the targeted genomic regions is 338K bp and an average number of 249625 reads were produced per 

sample, allowing us to reach an average depth of coverage of 228X per sample. With our pipeline we 

called an average number of 311 variants per sample (SNVs and INDELs). 

After performing variants annotation and filtering steps, we were able to identify the causative 

mutations of the disease in 19 patients (15.2%), whereas in 27 additional cases we found candidate 

variants that were considered likely but not conclusively causative (Supplementary table S1). Of the 

19 patients with an ascertained causative mutation, 2 were patients with defective complex I, 2 with 

defective complex II, 2 with defective complex III, 2 with defective complex IV, 2 with defective 
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PDH complex, 6 with multiple defects, 1 with mtDNA depletion whereas 2 were biochemically 

undefined (Table 1, Fig. 2). 

Of the patients with ascertained or likely recessive inheritance, 7 carried homozygous mutations 

within the DLD, SDHB, ACAD9, TTC19, LYRM7, NDUFV1 and RNASEH1 genes, whereas 5 carried 

compound heterozygous mutations within the TSFM, FBXL4, RARS2, MRPL44, and NDUFS3 genes. 

Two male subjects carried hemizygous mutations, causing amino acid missense substitutions, within 

the AIFM1 and PDHA1 genes, both localized on the X chromosome (Table 1).  

The identified variants comprised already known causative mutations [24-27], variants that we have 

experimentally validated in dedicated studies [17, 28, 29], or predicted pathogenic variants in genes 

responsible for mitochondrial disorders with a phenotype overlapping the clinical presentation 

observed in our mutant subjects. Concordance between genotype and phenotype helped us to achieve 

definite molecular diagnosis. In order to validate all the variants discovered and their segregation with 

the disease, we performed Sanger’ sequencing on the DNA of the probands and of all the available 

family members. Interestingly, this analysis allowed us to demonstrate reduced penetrance for a 

homozygous variant identified in the SDHB gene in two sisters, the older of whom showed hardly 

any symptoms, whereas the younger (NGSP124) was affected by severe mitochondrial 

leukoencephalopathy; this family is described in detail by Ardissone et al [28].  

By performing NGS coverage analysis we were also able to identify the causative mutations in three 

additional patients who were negative after the variants-filtering pipeline. In one case (NGSP018) a 

single heterozygous SNV was identified within the MTFMT gene, then coverage analysis revealed a 

non-covered region within exon 1 of the same gene. Sanger’ sequencing showed the presence of a 

second, nonsense heterozygous, allelic mutation in this region. In the second case (NGSP100) we 

found a heterozygous missense mutation in DARS2 in a patient with a neuroimaging pattern highly 

suggestive for DARS2-related leukoencephalopathy. Coverage analysis revealed a heterozygous 

deletion encompassing the last two exons of DARS2. Sequencing of the cDNA obtained from patient’s 

fibroblast RNA showed only the presence of the allele with the missense mutation. Accordingly, 
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Western-blot analysis on whole cell lysates of primary patient’s fibroblasts revealed a clear reduction 

of DARS2 protein amount compared with controls. In the third case (NGSP122) no SNV or small 

INDEL were identified through variants analysis, but coverage analysis allowed us to detect a 

homozygous large deletion involving the entire DNAJC19 gene, which was then confirmed by 

Sanger’ sequencing.  

For cases with a family history clearly supporting dominant inheritance or for sporadic cases with 

mutations in genes known to be associated with an autosomal dominant trait, we also evaluated genes 

with heterozygous variants. We identified one subject (NGSP098) with a heterozygous mutation 

within the POLG gene, which was also present in two additional affected subjects of the family and 

already reported in a patient with myopathy [30]. A second female patient (NGSP031) carried a 

heterozygous mutation of the X-linked PDHA1 gene, already described in females with defects of the 

PDH complex [31]. We also found 6 additional heterozygous missense SNVs within genes previously 

associated with dominantly inherited mitochondrial disease: three SNVs in POLG and one each in 

DNA2, MFN2 and OPA1. However, these findings were not considered conclusive because of either 

discordance with the phenotype typically associated with mutations in these genes [32, 33], uncertain 

or no pathogenicity of the SNV according to the literature [34, 35], or no segregation with the disease 

(Table 1). 

 

3.2 Whole exome sequencing 

From the group of patients that failed to attain conclusive genetic diagnosis after targeted gene panel 

NGS, we selected 10 patients for WES, based on accuracy of family history and clinical description, 

parental consanguinity, availability of DNA samples from other family members, suggestive and 

peculiar phenotypic features and well-established disease inheritance These patients included 3 cases 

with defects in complex IV activity, 2 cases with mitochondrial multiple defects, 3 cases with defect 

of PDH complex activity, 1 patient with mtDNA depletion and 1 patient with no biochemical 

diagnosis available, but with an affected sibling and an MRI pattern suggestive for a mitochondrial 
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encephalopathy. WES allowed us to analyze the transcribed regions of the 99.9% of genes present in 

the human genome, for a total of ~60 Mb. The average number of reads produced per sample was 

~59 millions, with an average number of bases with a coverage greater than 20x of 91.6±4.6 %. With 

our pipeline we called an average number of 377±48 variants per sample. Most of the variants were 

non-synonymous SNVs in the coding regions (359±35.2), including stop gain mutations (7.8±1.5), 

but a small proportion of INDELs were also detected (14±3.0). 

After performing variants annotation and filtering steps, we were able to identify causative mutations 

in six patients (60%) (Table 2). Four unrelated patients were born from consanguineous parents and 

carried homozygous mutations in different genes: PC, CYP2U1, PREPL and E4F1. In a fifth patient, 

two allelic heterozygous mutations were identified in a putative assembly factor for complex IV. In 

a sixth patient, a single heterozygous missense mutation was found in RANBP2, inherited from the 

mother. Notably, only the protein encoded by the PC gene, pyruvate carboxylase, and the putative 

assembly factor specific to complex IV are proteins exclusively and specifically targeted to 

mitochondria, whereas the other genes encode polypeptides that are localized and operate outside the 

organelle.   

Pyruvate carboxylase is a biotin-dependent mitochondrial enzyme, which converts pyruvate into 

oxaloacetate in the first step of gluconeogenesis. Pyruvate carboxylase deficiency (OMIM #266150), 

due to mutations in the PC gene, is associated with three clinical forms of different severity and 

outcome [36-38]. Our patient (NGSP067) displayed a severe condition characterized by psychomotor 

delay and tetraparesis with leukoencephalopathy, associated with biochemical defects of complexes 

I and III of the mitochondrial respiratory chain. The presence of the same variant also in the affected 

sister and a concordant phenotype/genotype association confirmed this homozygous mutation as the 

cause of the disease. However, it is not clear the link between PC mutation and the respiratory chain 

deficiency (observed in muscle but not in fibroblasts from NGSP067) or if the latter could be a 

secondary effect caused by impairment in pyruvate metabolism.  
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The two compound heterozygous mutations in a gene encoding a putative mitochondrial assembly 

factor specific to complex IV were found in a child (NGSP073) with defects in complex IV activity, 

associated with peripheral neuropathy, hypotonia and a cavitating leukoencephalopathy. According 

to the literature, no mutations of this gene have been linked to any pathological condition so far. 

Mutations and function of this protein are currently under study. 

As for mutations in non-mitochondrial gene products, in a patient (NGSP065), born from 

consanguineous parents, presenting with reduced PDH complex activity, hyperlactacidemia, spastic 

paraparesis and white matter MRI alterations, targeted gene panel NGS showed the presence of a 

single heterozygous missense variant within the KARS gene, encoding the lysyl-tRNA synthetase 

common to both cytosol and mitochondria. Mutations in this gene are reported to cause Charcot-

Marie-Tooth disease, recessive intermediate, B (CMTRIB, OMIM #613641) with an essentially 

recessive mode of inheritance [39]. This fact and the clear consanguinity of the parents prompted us 

to deem this variant as non-causative. Conversely, WES analysis revealed a homozygous deletion of 

13 nucleotides involving the splicing site of exon 3 in the CYP2U1 gene, encoding a member of the 

cytochrome P450 superfamily. CYP2U1 is mutated in autosomal recessive spastic paraplegia 56, 

(OMIM #615030). By comparing our case with the clinical presentations described in the literature, 

an overlapping spectrum of symptoms emerges, strongly suggesting a causative link between our 

genetic findings and the biochemical and clinical features of the patient. Interestingly, mutations in 

CYP2U1 have been reported to alter mitochondrial architecture and bioenergetics [40]. 

In a patient (NGSP066) born from consanguineous parents, with defective complex IV activity, 

psychomotor delay, somatic growth retardation and myopathy with neonatal onset, the targeted gene 

panel NGS screening revealed a heterozygous variant within the OPA1 gene. This variant was not 

considered conclusive, because of the marked inconsistencies between the clinical presentation of our 

patient and the phenotypes reportedly associated with OPA1 dominant mutations. No homozygous 

mutations were found by WES but further analysis of raw data revealed a large, completely non-

covered DNA region, spanning from exon 6 to exon 14 of the PREPL gene, suggesting an intra-genic 
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homozygous deletion, This finding was subsequently confirmed by Sanger’ sequencing. PREPL 

belongs to the propyl oligopeptidase subfamily of serine peptidases and large deletions involving also 

this gene have been associated with hypotonia-cystinuria syndrome, also known as the 2p21 deletion 

syndrome (OMIM #606407) [41]. In addition, Parvari et al. described seven patients affected by 

cystinuria and mitochondrial disease with a large deletion on chromosome 2p16 involving the 

SLC3A1 gene, known to cause isolated cystinuria type 1, the PP2Cbeta gene and the PREPL gene 

[42]. Recently, PREPL deficiency has been associated with a congenital myasthenic syndrome with 

growth hormone deficiency [43], resembling the clinical presentation of our patient. No specific 

studies have been performed so far to assess any direct effect of PREPL defects on mitochondrial 

function; alternatively, the complex IV deficiency found in our patient could be a secondary finding, 

due to muscle dysfunction. 

In a patient (NGSP091) presenting with reduced PDH complex activity, hypotonia, growth delay, 

microcephaly, hyperlactacidemia and organic aciduria, Brain MRI revealed the presence of 

symmetric necrotic lesions in the subthalamic nuclei and substantia nigra, suggestive for a diagnosis 

of Leigh disease (Fig. 3A). A detailed clinical description of this case is reported as supplementary 

data. WES revealed a homozygous missense variant within the E4F1 gene (E4F transcription factor 

1), affecting a highly conserved amino acid residue (Fig. 3B). The E4F1 gene variant was 

homozygous also in an affected sibling whereas the two parents were heterozygous (Fig. 3C). E4F1 

encodes a multifunctional zinc finger protein, which acts as an atypical ubiquitin E3 ligase for p53 

[44] and, as a transcriptional factor, regulates the expression of several genes involved in 

mitochondrial functions and cell-cycle checkpoints [45]. We then tested the transcript levels of some 

genes regulated by E4F1 by qPCR. According to Rodier et al [45], the genes whose expression is 

clearly activated by E4F1 are, DNAJC19, encoding a mitochondrial protein; DLAT and PDPR, two 

genes encoding proteins related to the PDH complex; and CHEK1, the major component of the 

CHK1-Dependent Checkpoint of the cell cycle. Interestingly, we observed that all these transcripts 

were reduced in patient’s fibroblasts compared to controls (Fig. 3D): DNAJC19 was the most affected 
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(46%; P<0.001); CHEK1, DLAT and PDPR showed partial but significant reductions (P<0.05). Given 

this biological evidence, as well as the rarity and predicted pathogenicity of the E4F1 variant, we 

strongly suggest a causative involvement of the mutated E4F1 gene in the disease.  

Finally, in a patient (NGSP110) with combined defects in respiratory chain complexes III and IV and 

in the PDH complex, presenting with two episodes of acute encephalopathy concomitant with fever, 

no pathogenic mutations were found by targeted gene panel NGS, and WES failed to identify any 

candidate amongst the recessive variants. However, we detected a known heterozygous mutation in 

the RANBP2 gene, which encodes Ran-Binding Protein 2, a component of the nuclear pore complex 

playing a role in nuclear protein trafficking, sumoylation of protein cargoes, intracellular trafficking 

and energy maintenance [46]. This mutation has already been associated with “Susceptibility to acute, 

infection-induced encephalopathy 3” (OMIM #608033), a dominantly inherited condition 

characterized by acute necrotizing encephalopathy following a febrile illness [46-48]. Notably, the 

mutation in our patient was inherited from his mother, who is now asymptomatic but reported an 

acute episode of encephalopathy at 6 years of age, requiring Intensive Care Unit admission, during a 

febrile infection. 	  
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4. DISCUSSION 

In this study we applied a combined NGS approach based on targeted gene panel sequencing and 

WES, to analyze 125 patients with a suspect of mitochondrial disease, who had previously been 

screened with traditional Sanger’ sequencing for the entire mtDNA and for specific sets of genes 

known to be associated with the mitochondrial defect and/or the clinical presentation of each subject. 

This strategy let us achieve uncontroversial genetic diagnosis in 19 patients (15.2%) by targeted gene 

panel sequencing and in 6 out of 10 (60%) by WES. Our results demonstrate the power of this 

combined NGS strategy to achieve genetic diagnosis in several cases, who had failed to be solved by 

Sanger’ sequencing based screening of specific genes.  

Since the targeted gene panel includes almost all the known genes associated with mitochondrial 

disease and usually analyzed through Sanger’ sequencing, which has an average discovery rate of 

about 10% [49], we estimate a diagnostic success of the NGS panel approach of ≈25%, when used as 

a first screening strategy. This figure is clearly much higher than the traditional candidate gene 

approach based on Sanger’ sequencing.  

Importantly, the unbiased, simultaneous analysis of a huge number of genes increases the heuristic 

value of the investigation, allowing the discovery of new, unexpected genotype/phenotype 

associations. Although for this scope WES is clearly more powerful, as it enables the discovery of 

novel mitochondrial disease-linked genes, targeted gene panel NGS is also a valuable tool, as it can 

widen the spectrum of the clinical presentations associated with known disease-associated genes. For 

example, the hemizygous mutation in the X-linked AIFM1 gene, found in one of our male patients, 

was associated with predominant reduction of complex IV activity, a muscle biopsy already 

pathological at 13 years of age, with evidence of chronic denervation, ragged-red fibers, and 

cytochrome c oxidase negative or hyporeactive fibers, and a neuromuscular syndrome of moderate 

clinical severity [19]. These features markedly differ from previously reported cases of AIFM1 

mutations, which were associated with a spectrum of conditions, from Cowchock syndrome 
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(CMTX4, Charcot-Marie-Tooth disease with deafness and mental retardation, OMIM #310490), 

caused by a single AIFM1 founder mutation, to early onset, severe or extremely severe 

encephalomyopathy, with multiple respiratory-chain defects, and partial mtDNA depletion 

(Combined Oxidative Phosphorylation deficiency 6, COXPD6, OMIM #300816).  

On the other hand, the intrinsically unbiased approach of WES requires a deeper variants analysis, 

which is more complex than that required for targeted panel NGS, and must be integrated with 

available clinical, metabolic, neuroimaging and biochemical data. Further functional (experimental) 

validation is usually necessary to demonstrate the biological consequences of the mutations and their 

direct causative role in disease. Thus the availability of biological samples (muscle biopsy, 

fibroblasts, etc) is extremely important. Although these new high-throughput genetic approaches can 

be applied to large cohorts of poorly characterized patients, the knowledge about a specific 

biochemical defect present in a sequenced subject could be extremely useful to support the filtering 

process in order to select the causative variant. Moreover the presence of a biochemical phenotype 

allows confirmation of variant pathogenicity by complementation studies. 

In five out of the ten subjects who underwent WES, we were able to identify the causative mutations 

and in a sixth one we found a strong candidate variant (in E4F1). Notably, only in 2 cases have the 

mutant proteins been demonstrated to exclusively target to mitochondria (PC and a putative complex 

IV assembly factor). In the remaining cases the responsible genes (CYP2U1, PREPL, RANBP2 and 

E4F1) encode proteins not localized into mitochondria, whose functional relation with mitochondrial 

OXPHOS is unknown, unclear or not exclusive [40, 45].  

Thus, a fraction of subjects initially classified as mitochondrial-disease patients may indeed carry 

mutations in genes encoding proteins not targeted to mitochondria, and playing roles not obviously 

related to mitochondrial physiology, despite the presence of clinical and biochemical features 

supporting mitochondrial dysfunction. This may well account for a still unknown percentage of 

genetically unsolved cases classified as mitochondrial disease on the basis of biochemical, clinical or 

morphological findings. The relatively loose link demonstrated by our WES results between 
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biochemical features and genetic basis of disease is likely due to the central role of mitochondria in 

a huge number of cellular pathways, although the exact molecular mechanisms of these apparently 

spurious or possibly indirect associations is far from being clarified [50]. A potentially interesting 

and conceptually novel finding concerns the mutation in E4F1, which, to our knowledge, is the first 

example of a transcription factor involved in the orchestration of gene expression related to 

mitochondrial bioenergetics to cause a biochemically defined mitochondrial condition (PDH complex 

deficiency). Interestingly, a region of E4F1 (aa 30–80) required for its Ub E3 activity presents 

sequence similarities with IR domains of the SUMO E3 ligase RanBP2, and it has been proposed that 

E4F1 and RanBP2 E3 domains may originate from a common ancestor [44]. More work is warranted 

to validate the pathogenic role of the mutation and establish a pathomechanistic link between 

defective E4F1 and PDH deficiency. We have obtained evidence strongly suggesting the attractive 

possibility that the biochemical and clinical features associated with the E4F1 mutation are the 

consequence of the direct role of E4F1 in the expression of gene products, which are part of or play 

a regulatory role on pyruvate dehydrogenase. Two relevant genes have been shown to contain an 

E4F1 binding site near the promoter region [45]. The first is DLAT, encoding dihydrolipoamide S-

acetyltransferase, the E2 component of the PDH complex. Dihydrolipoamide acetyltransferase, 

accepts acetyl groups formed by the oxidative decarboxylation of pyruvate and transfers them to 

coenzyme A. Mutations in this gene are also a cause of pyruvate dehydrogenase E2 deficiency 

(PDHDD, OMIM #245348) which causes primary lactic acidosis in infancy and early childhood. The 

second gene is PDPR, which encodes the pyruvate phosphatase regulatory subunit. PDPR subunit 

combines with a catalytic subunit, encoded by the PDP2 gene, to form a pyruvate dehydrogenase 

phosphatase heterodimer. A second PDH phosphatase is a monomeric enzyme encoded by PDP1, 

which retains both regulatory and catalytic domains. Altogether, these PDH phosphatases are the 

main activator of the complex, and mutations in PDP1 are associated with PDH complex deficiency 

(OMIM #608782) [51, 52]. In patient’s fibroblasts we found a reduction in the expression of both 
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DLAT and PDPR; although the decrease is not striking, it is concordant with the results obtained in 

mouse embryonic fibroblasts knock-out for E4F1 [45].   
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5. CONCLUSIONS 

In summary, NGS strategies offer a wide range of approaches to screen patients with suspected 

mitochondrial disease, including targeted gene panel sequencing, comprehensive mitochondrial gene 

panel [53], clinical exome panel (~4.000 clinically relevant genes) and WES. The choice of which 

technique may be the most suitable for genetic investigation of these disorders depends on several 

factors, such as availability of funding, space, personnel and bioinformatics expertise.  

In our opinion, a two-step approach based on targeted gene panel NGS, followed by WES analysis 

for patients negative to the former screening, combines high diagnostic score with affordability of 

costs within an acceptable timeframe. The custom-made targeted panel sequencing allows the 

screening of large cohorts of patients with relatively easy and manageable interpretation of post 

sequencing data. WES has been used at a second level, as an unbiased, and more exhaustive approach, 

to further screen a selected subgroup of patients leftover after targeted panel sequencing. In these 

selected cases, it was not surprising that the responsible gene would indeed be likely to encode 

proteins less directly linked to mitochondrial bioenergetics, or for which a specific biological role has 

not yet been fully elucidated. 

Finally, we want to underscore that the identification of a likely candidate gene or mutation is often 

the beginning of a complex process aimed at validating the pathogenic role of the mutant variant and, 

in several cases, the very function of novel gene products or proteins previously not considered as 

mitochondrial. In vitro studies on isolated mutant and wild-type proteins, mutant cell characterization, 

modeling in yeast or other in vivo systems, including different animal species, are part of the 

experimental package available to translational research to contribute to expand medical knowledge 

on mitochondrial disease and their scientific relevance to understand the complex biology of 

mitochondria. 
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Figure 1. Flowchart of the genetic analyses 

Schematic representation of the different steps of the Next Generation Sequencing (NGS) data 

analysis used in this study. Checkered flags indicate the achievement of a defined molecular 

diagnosis. See text for details on each step. 
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Figure 2. NGS genes panel analysis 

Histograms reporting the patients analyzed by the NGS panel, classified according to their 

biochemical defect (A) and the percentages of patients with a molecular diagnosis in each class (B). 

cI, cII, cIII, cIV, cV: complex I, II, III, IV, V defect; CoQ: CoQ10 deficiency; mtDNA alt: mtDNA 

depletion or deletions; multi: multiple RC complex defect; PDH: pyruvate dehydrogenase complex 

deficiency; Neg: patients with no biochemical deficiency. Colors indicate subjects with (blue) or 

without (red) a defined molecular diagnosis. 
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Figure 3. Clinical and molecular analysis on the E4F1 mutant patient 

(A) Brain MRI: T2 transverse brain sequences showing symmetric lesions in subthalamic nuclei 

(panel I, arrowhead) and substantia nigra (panel II, arrowhead). (B) Pedigree of the family and 

electropherograms of the E4F1 region containing the c.430A>C variant. Black symbols indicate 

clinically affected subjects. (C) Human E4F1 contains three domains: an ubiquitin E3 ligase-like 

domain that may mediate ubiquitination of chromatin-associated p53, a domain containing three 

C2H2 zinc-finger motives required for DNA binding and also involved in protein dimerization and a 

domain containing six C2H2 zinc-finger motives involved in DNA binding. Phylogenetic alignment 

of the human protein region containing the substitution found in affected individuals is shown below 

along with representative protein regions from placental and marsupial mammals, birds and reptiles, 

where this gene is present. The conserved residue mutated in affected individuals is boxed in red. (D) 
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Transcript levels of E4F1 target genes in fibroblasts from NGS091 (pt) and controls (ct), measured 

by qPCR. Data represent the mean ± SD of four experiments. ***: p<0.001, **: p<0.01 and *:p<0.05 

by unpaired two-tailed Student’s t test. 
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Table 1: Variants identified by the NGS panel 

Code Biochemical 
defect Gene Mutations Exonic 

Deletions Trait Notes ExAC 
frequency References 

Pathogenic variants 
NGSP36 cI NDUFS3 p.R140P+p.R199W / AR Parents: Heterozygous <0,01%   
NGSP109 cI NDUFV1 p.R386C homoz / AR Parents: Heterozygous 0,012% [24]a 

NGSP124 cII SDHB p.D48V homoz / AR Incomplete penetrance <0,01% [28]b 
NGSP21 cII PDHA1  p.S388P hemiz / X   Ø   

NGSP92 cIII TTC19 p.Q261Gfs*8 
homoz 

/ 
AR Parents: Heterozygous Ø [29]b 

NGSP113 cIII LYRM7 p.D25N homoz 
/ 

AR Parents: Heterozygous Ø [25]a 

NGSP90 cIV RARS2 p.M1V+p.S443P 
/ 

AR   
0,012%;<0,01
% 

  

NGSP100 cIV DARS2 p.L10P hetero ex. 15-16 AR Mother: p.L10P hetero Ø   
NGSP70 mtDNA depl FBXL4 p.C547*+p.Q404* / AR Parents: Heterozygous 0,015%;Ø   

NGSP118 multi 
RNASEH
1 p.V142I homoz / AR 3 homozygous siblings <0,01% [17]b 

NGSP117 multi TSFM p.G183S+ss(c.232-
3C>G)  

/ AR Altered splicing Ø;<0,01%   

NGSP35 multi MRPL44 p.L156R+p.K278* / AR   0,028%;Ø [26]a 
NGSP122 multi DNAJC19   All exons AR       
NGSP018 multi MTFMT p.S209L+p.Q25* / AR   0,036%;Ø [27]a 

NGSP38 multi AIFM1 p.G262S hemiz / X Mother: heterozygous Ø [19]b 
NGSP33 PDH DLD p.R482G homoz / AR   Ø   
NGSP31 PDH PDHA1 p.R127Q heteroz / X Affected female Ø [31]a 

NGSP023 nd ACAD9 p.R414C homoz / AR Mother: heterozygous <0,01%   

NGSP98 Neg POLG p.R443C heteroz / AD 
Affected mother and 
brother: heterozygous 

<0,01% [30]a 
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Probably non-pathogenic variants 

NGSP60 multi POLG p.Y831C heteroz /   
Reported as benign SNP. 
Unaffected father: 
heterozygous 

0,63% [35]a 

NGSP1 PDH POLG p.G517V heteroz /   Reported as benign SNP 0,47% [34]a  

Unlikely causative variants 
NGSP48 multi POLG p.R628W heteroz /   Different phenotype <0,01%   
NGSP12
1 

nd DNA2 p.A633S heteroz /   Different phenotype <0,01%   

NGSP66 cIV OPA1 p.T95M hetero /   
Different phenotype; 
PREPL deficiency by WES 

0,017% [32]a 

NGSP86 cIV MFN2 p.R250Q hetero /   Different phenotype 0,029% [33]a  

AR: autosomal recessive; AD: autosomal dominant; X: X-linked. Homoz: homozygous; Heteroz: heterozygous. Ø: not reported in the ExAC database.  

a: paper reporting the identified mutation; b: paper describing the patient reported in the present study. 

cI, cII, cIII, cIV: complex I, II, III, IV defect; mtDNA depl mtDNA depletion; multi: multiple RC complex defect; PDH: pyruvate dehydrogenase complex 

deficiency.  

nd: biochemical analysis not done 
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Table 2: Patients analyzed by WES 

Code Biochemical 
defect Gene Mutations Exonic 

Deletions Trait Notes ExAC 
frequency References 

Pathogenic variants 

NGSP67 multi PC p.N647D homoz / AR 
Consanguineous parents;            
1 homozygous affected 
sister 

Ø   

NGSP73 cIV "COA-X" compound heteroz / AR 
Consanguineous parents: 
heterozygous 

Ø   

NGSP65 PDH CYP2U1 c.1283_1288+8del / AR 
Consanguineous parents: 
heterozygous 

Ø   

NGSP66 cIV PREPL / ex.6-14 AR Consanguineous parents     

NGSP110 multi RANBP2 p.T585M / AD 
"Affected" mother: 
heterozygous 

<0,01% [46] 

Probably pathogenic variants 

NGSP91 PDH E4F1  p.K144Q / AR 
Parents: heterozygous;  
1 homozygous affected 
brother 

<0,01%   

Unsolved WES cases 

NGSP47 
mtDNA depl TRMT1 p.N70S+p.A171V / AR 

1 affected sibling. Variants 
on the same allele 

0,1%; Ø   

NGSP49 
Neg TENM4 p.N1799H+p.Q2527K / AR 

2 affected sibling. Variants 
on the same allele 

0,2%; 0,2%   

NGSP89 PDH GNAO1 p.D134N+p.A165V / AR Different phenotype Ø   
NGSP116 multi MRS2 p.R446H homoz / AR Consanguineous parents 0,33%   

AR: autosomal recessive; AD: autosomal dominant. Homoz: homozygous; Heteroz: heterozygous. Ø: not reported in the ExAC database.  

"COA-X": gene coding for a putative assembly factor specific to complex IV. cIV: complex IV defect; mtDNA depl mtDNA depletion; multi: multiple 

RC complex defect; PDH: pyruvate dehydrogenase complex deficiency. Neg: patient without biochemical deficits 


