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Summary

Consolidated memories can become reactivated in order to permit the integration of new inform-

ation into the memory trace. Blockade of the resultant process, reconsolidation, with NMDA re-

ceptor antagonists or protein synthesis inhibition can lead to a decrease in subsequent memory

expression. This may offer a potential tool for the treatment of psychiatric disorders characterised

by maladaptive memories, including drug addiction and post-traumatic disorder.

Given the importance of instrumental associations in supporting drug addiction experiments in

Chapters 3 & 4 aimed to disrupt reconsolidation of these memories. Treatment with an NMDA re-

ceptor antagonist prior to retrieval sessions of various durationswas not able to consistently prevent

reconsolidation of these associations.

Drug addiction is characterised by memories that have been formed not over days or weeks, but

months or years. Experiments in Chapters 5 & 6 therefore investigated how the extent of training

affects the propensity of an appetitive pavlovianmemory to reconsolidate. Experiments in Chapter

5 were not able disrupt reconsolidation of these memories after a relatively short period of training.

In Chapter 6 attempts to disrupt reconsolidation of a cocaine-seeking memory having undergone

extensive training (>1 month, designed to promote the formation of drug-seeking habits) were also

unsuccessful. However, when animals were trained in a similar fashion to respond for a food-

reinforcer treatment with a NMDA receptor antagonist prior to a reactivation session resulted in a

decrease in food-seeking behaviour the following day. However, this deficit was only found in the

first test session; drug treatment had no effect on responding following reminder of the memory.

If data from preclinical studies are to inform future psychiatric treatments the findings from these

works must be robust and replicable. Experiments in previous chapters encountered several issues

in this regard, namely the repeated inability to prevent reconsolidation with NMDA receptor ant-

agonism. Given that reconsolidation of auditory fear memories is well characterised a final series

of experiments in Chapter 7 used this procedure to explore the possible reasons for the fleeting or

absent effects of disrupted memory reconsolidation in previous chapters. Despite the use of sim-

ilar methods as published reports showing decreases in memory expression as a result of blockade

of reconsolidation it was not possible to disrupt this process with NMDA receptor antagonism or

protein synthesis inhibition. Results suggested that the failure to observe reactivation-dependent

amnesia was due to the amnestic agent used not being able to prevent reconsolidation, should it be

taking place, and a failure of the given retrieval trial to result in memory reactivation.

XII



On numerous occasions throughout this thesis it was not possible to disrupt memory reconsol-

idation. One difficulty in interpreting null data of this nature is that it is often unclear whether

the results are due to insufficient retrieval conditions to result in memory reconsolidation, or an

inability of the pharmacological agent to disrupt this process. The final experiments of this thesis

raised the possibility both of these issues may have contributed in tandem towards this inability to

prevent memory reconsolidation.
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Chapter 1: General introduction

Introduction

Associativememories are formed upon the temporally linked presentation of stimuli or actions and

outcomes; an environmental context can become associated with trauma, golden arches with fast-

food or the act of smokingwith the delivery of nicotine. Whilst the ability to form these associations

is evolutionarily advantageous, these memories can become maladaptive and obtrusive, exerting

an overwhelming control over an individual’s behaviour. Although the principles underlying these

memories are simple, the psychological, neuroanatomical and molecular bases are highly complex

and far from entirely understood. A better knowledge of these processes may be able to inform

future treatments for psychological disorders characterised by memories which are intrusive or

maladaptive including post-traumatic stress disorder (PTSD) and drug addiction.

The pharmacological systems and molecular cascades required for two processes, consolidation

and reconsolidation to take place will first be discussed. These two processes appear to be essential

for themaintenance of memory, since disruption of either can lead to amnesia for a recently formed

or retrievedmemory, respectively. The function of reconsolidation and psychological requirements

for it to take place will then be reviewed, with particular attention paid to the role of prediction er-

ror. The ability to disrupt subsequentmemory retrievalwith the administration of pharmacological

agents may be used to treat psychological disorders characterised by maladaptive memories; the

potential for the treatment of PTSD and drug addiction will be discussed in this regard. Finally, the

potential difficulties that need to be overcome before such interventions are adopted in the clinic

will be considered and how this thesis will attempt to address these issues will be outlined.

Memory consolidation and reconsolidation

Memory formation does not occur immediately; a cascade of processes is necessary for the sta-

bilisation of the trace following acquisition, a process termed consolidation. In 1900, Müller and
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Pilzecker reported that the recall of nonsense syllables was impaired by the learning of a second set

of syllables immediately following the first encoding episode. This suggested memory acquisition

was not immediate, but rather a consolidation process was occurring after the first learning epis-

ode. It was not until almost half a century later when this concept was investigated further, with

two papers reporting that administration of electro-convulsive shock (ECS) to rodents immediately

following memory acquisition resulted in deficits in subsequent retrieval (Duncan, 1949; Gerard,

1949). Further seminal investigations in this field have demonstrated that whilst blockade of cellu-

lar processes such as protein synthesis has no immediate effect on task performance, this treatment

results in memory impairments in tests several days later (Agranoff et al., 1966). This latter distinc-

tion has lent support to the notion that there are multiple memory systems within the brain, with

only long-termmemory requiring protein synthesis. Short-termmemory (STM) is hypothesised to

be the result of electrical activation of synapses (Hebb, 1949) in; it is through the process of consol-

idation that this fleeting representation is transferred to long-termmemory (LTM) (McGaugh, 1966;

McGaugh, 2000, see Figure 1.1A). Extensive inactivation studies have demonstrated that whilst the

hippocampus is required for storage of recent memories, as these become more remote they are

transferred, likely through consolidation, to more cortical regions including the anterior cingulate

and prelimbic cortices and the temporal cortex (Wiltgen et al., 2004).

A growing literature suggests that consolidation is not the only period during which a memory

can become active and vulnerable to disruption. Studies as early as 1968 complemented previous

work demonstrating post-acquisition ECS could result in amnesia; by showing this treatment could

similarly induce subsequent deficits in memory expression when applied immediately following

memory retrieval (Misanin et al., 1968; Schneider and Sherman, 1968). Furthermore, similar to con-

solidation, subsequent memory expression is impaired if competing learning takes place following

memory retrieval (Gordon, 1977a). This apparent process can also be enhancedwith administration

of the glycine and acetylcholine receptor antagonist strychnine following memory recall (Gordon,

1977b). These works highlighted the possibility that through the process of retrieval memories

could be reactivated and once again enter a short-term store, triggering a second period in which

they could become manipulated. It was not until much later, however, that this idea was explored

further, with works in 1997 and 2000 using the term reconsolidation, noting its reliance upon mech-

anisms similar to consolidation (Nader et al., 2000; Przybyslawski and Sara, 1997). Not only do both

of these processes require protein synthesis (e.g. Nader et al., 2000; Schafe and LeDoux, 2000), but

importantly, disruption of reconsolidation has no effect on STM, only affecting memory expression
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>24h following memory retrieval (e.g. Nader et al., 2000). These results, alongside others, have res-

ulted in the now widely accepted belief that once consolidated, memories can become destabilised

and reactivated. Once in this active state, the memory is held in a store similar to STM and can

return to an inactive state through reconsolidation (see Figure 1.1B).

Active InactiveConsolidation
A

Inactive Active

Destabilisation

Reconsolidation

B

Figure 1.1: Processes involved in the acquisition and maintenance of memory. A:
Immediately following the formation of a memory the recently formed association
is held in a short-term store and is ’active’. This store cannotmaintainmemory per-
manently and, through the process of consolidation, the memory is transferred to
a long-term store and becomes ’inactive’. B: Under certain conditions of retrieval
memories can undergo destabilisation and once again enter an active state, held in
a similar short-term store. The memory can then be returned to its inactive state
through reconsolidation. Disruption of this process leaves the memory in an un-
stable state and results in subsequent amnesia.

The function of both consolidation, and particularly reconsolidation, has been a topic of great de-

bate. It has been suggested that consolidation allows only those memories that are of adaptive

value to be maintained (McGaugh, 1966). Artificial stimulation of stress and arousal systems with

corticosterone and adrenaline results in enhancements in memory consolidation (e.g. Gold and

Buskirk, 1975; Roozendaal et al., 2006a; Zorawski and Killcross, 2003), raising the possibility that

endogenous activation of these systems in response to motivationally significant events ensures

they are stored with sufficient strength to ensure appropriate responses to similar events in the fu-

ture. The function of reconsolidation is less clear, given that it could be considered maladaptive to

repeatedly expose memories to interference. It has been suggested that this process may similarly

serve to ensure the maintenance of long-term memories; there is evidence that memory reactiva-

tion can confer a resistance to decreases in retrieval as time since an event passes (i.e. forgetting).

Reconsolidation is also theorised to permit the integration of novel information into existing traces

(Lee, 2009; Nader and Einarsson, 2010).
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Amongst others, the early research on consolidation and reconsolidation provided a springboard

for a wealth of ongoing research into these memory processes. The requirements for consolida-

tion and reconsolidation to take place have been explored through administration of various com-

pounds preventing specific neurochemical processes and molecular cascades. Through careful

parametric modulation of the psychological events that result in memory reconsolidation the po-

tential functions of this process have also been explored. Here some of the neurochemical, mo-

lecular and psychological processes required for memory consolidation and reconsolidation will

be outlined.

Neurochemical basis of memory consolidation and reconsolidation

Numerous neurochemical systems have been implicated in memory consolidation and reconsol-

idation. Drugs can be administered either prior to, or immediately following training sessions to

demonstrate an impairment in consolidation. However, an STM test is required when drugs have

been administered before training sessions to ensure any resulting effects are the result of deficits in

consolidation, rather than acquisition. Drugs can be administered either before or after reactivation

sessions in order to demonstrate impairments in memory reconsolidation. The neurotransmitters

addressed below are outlined in a level of detail approximately reflective of their relevance to this

thesis. The studies listed here are not exhaustive and nor does this list reflect the only neurotrans-

mitter systems that are required for memory reconsolidation.

Glutamate

The vast majority of research exploring the neurochemical basis of learning and memory to date

has focussed on glutamate. This is primarily the result of its integral role in long-term potentiation

(LTP), the hypothesised, but much debated, cellular mechanism of memory (e.g. Bliss and Lømo,

1973; Bliss and Collingridge, 1993; Malenka, 1994; Stevens, 1998).

Glutamate binds to two types of receptors: ionotropic, where direct binding of glutamate results in

the opening of the channel and metabotropic (mGluR), where the binding of glutamate results in

the release of secondary messengers which in turn gate the ion channels. There are three sub-

types of ionotropic glutamate receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid (AMPA), N-methyl-D-aspartate (NMDA) and kainate . There are 8 different mGluR receptor

subunits, divided into group I(1,5), II(2,3) and III(4,6,7,8).
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NMDA receptors

The opening of NMDA receptors requires not only postsynaptic binding of glutamate, but also

membrane depolarisation. Under resting conditions amagnesiumblock generates a positive charge

within the receptor, preventing entry of calcium. Firing of several adjacent axons, alongside release

of glutamate from presynaptic axons, removes this magnesium block, permitting influx of calcium

into the postsynaptic cell, triggering activation of calcium-dependent kinases (Kandel et al., 2000).

The rate of calcium entry typically determines whether there is an increase (LTP) or decrease in

synaptic strength (long-term depression (LTD)) (Mulkey and Malenka, 1992). These apparently

unique properties allow NMDA receptors to act as coincidence detectors, or "AND" gates, only

permitting conduction through the channel when there is simultaneous glutamate in the synaptic

cleft and post-synaptic depolarisation (Paoletti and Neyton, 2007).

These characteristics of the NMDA receptor make it well suited to detect relationships between

coincident external events. Indeed, these receptors appear to be required for auditory-fear con-

ditioning. In this task, concomitant presentation of a previously neutral stimulus alongside an

aversive event (a mild foot-shock; unconditioned stimulus (US)) results in a conditioned response

to the once neutral stimulus; it becomes a conditioned stimulus (CS)(see Figure 1.2B). Administra-

tion of an NMDA receptor antagonist systemically or into the lateral ventricle prior to acquisition

of these pavlovian memories (see Figure 1.2C) results in subsequent impairments in memory ex-

pression (Dalton et al., 2012; Kim et al., 1991). Local infusion of these drugs into the basolateral

amygdala (BLA), a region strongly associated with memories of this nature (Hitchcock and Davis,

1986), has comparable effects (Miserendino et al., 1990). Similar results have been reported for con-

textual fear, where a context, rather than a discrete cue is paired with a shock (see Figure 1.2A).

Systemic administration of NMDA receptor antagonists prevents learning in this task (Stiedl et al.,

2000), as does local infusion of these drugs into the amygdala (Fanselow, 1994) or hippocampus

(Matus-Amat et al., 2007), a region implicated in spatial memories (Fanselow, 2000; Logue et al.,

1997; McDonald and White, 1994; Sutherland and Rudy, 1989).

Extensive research in the consolidation field has used avoidance tasks, which may be ’active’ or

’passive’, where animals are trained to move between contexts in order to avoid shock delivery.

Whilst active avoidance requires animals to make a response in order to avoid a shock, passive

avoidance requires that they do not. Administration of NMDA receptor antagonists either system-

ically (Mathis et al., 1991; Zajaczkowski et al., 1997) or directly into the hippocampus (Alvarez and

Banzan, 1999; Roesler et al., 1998) impairs learning in both types of avoidance memory.
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A B

Pavlovian
Instrumenta

l

A,B

C

Figure 1.2: Tasks used to study aversive pavlovian memories in rodents. In each
case, the left hand box shows the procedure used in training and the right used
at test. Lightening symbol represents delivery of foot-shock. A: Contextual fear
conditioning: exposure to a shock-paired context results in freezing. B: Auditory
fear conditioning: presentation of a shock-paired auditory CS results in freezing.
Speaker symbol represents delivery of auditory stimulus. C: Venn diagram show-
ing the suggested memory mechanisms required for performance in these tasks.

It is important to consider whether NMDA receptor antagonists are able to prevent consolidation,

or if the memory deficits occurring as a result of administration of these drugs results in an impair-

ment in acquisition. A specific ability to disrupt consolidation can be demonstrated with post-

training drug administration or unimpaired STM but impaired LTM. Whilst NMDA receptors do

appear to have a specific role in memory consolidation, rather than acquisition, this appears to be

task specific. Antagonism of these receptors both systemically and directly within the hippocam-

pus does not affect STM expression, this treatment results in impaired recall of a spatial memory

when tested once the association would have otherwise been consolidated (McDonald et al., 2005;

Steele andMorris, 1999). NMDA receptor activation is also required for the consolidation of object-

recognition (Lima et al., 2005) and odour-reward memories (Tronel and Sara, 2003), effects that

could not be attributed to a failure in acquisition. However, post-training intracerebroventricular

administration of NMDA receptor antagonists has no effect on subsequent fear expression (Kim

et al., 1991) and pre-training systemic or intra-amygdala administration of these drugs results in

both short and long-term deficits in memory expression (Rodrigues et al., 2001). These findings

suggest that whilst NMDA receptor activation is required for acquisition of fear memories, there is

less evidence for a consolidation specific role of these receptors for these memories.
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The formation of associations with stimuli and appetitive outcomes requires NMDA receptor activ-

ation, with antagonism of these receptors preventing morphine (Couto et al., 2004; Tzschentke and

Schmidt, 1995) and cocaine (Cervo and Samanin, 1995) induced conditioned-place preference. In

this task animals are repeatedly treatedwith a drug and subsequently confined to a salient environ-

mental context. Preference for the drug-paired compartment in comparison to a neutral context is

taken as an index ofmemory. It is unlikely thatNMDAreceptors are only involved in the reinforcing

properties of these drugs, or that they are only required for the acquisition, but not consolidation

of conditioned-place preference, since post-training administration of NMDA receptor antagonists

similarly results in impairments in learning (Alaghband and Marshall, 2013; Tomazi et al., 2016).

However, there are few, if any, reports of unimpaired STM, but not LTM deficits occurring as a

result of NMDA receptor antagonism in these reward-associated memories.

NMDA receptors are also involved in the reconsolidation of conditioned-place preference memor-

ies. NMDA receptor antagonism prior to retrieval of cocaine (Brown et al., 2008) and amphetamine

(Sadler et al., 2007) conditioned-place preference associations results in deficits in subsequent ex-

pression of these memories. However, the use of conditioned-place preference tasks suffers from

similar issues to classic active and passive avoidance tasks, in that it is unclear whether perform-

ance in these tasks is relies upon pavlovian associations between the context and the reinforcer, or

whether the animal is superstitiously spending more time in the drug-paired compartment in an

attempt to receive further reinforcement.

Through the use of more sophisticated behavioural tools it has been shown that NMDA receptors

are required for reconsolidation of pavlovian appetitive memories. The autoshaping procedure

has been used to specifically investigate reconsolidation of pavlovian memories. Typically, food-

delivery is paired with illumination of a CS light and presentation of a lever beneath it (although

this procedure it not always used and may not necessarily be optimal, see Bussey et al., 1997). Over

time, animals will approach the light CS and happen to depress the lever acting as a measure of

approach. Animals may also press and bite on the lever, despite these responses being without

consequence (see Figure 1.3A). Reconsolidation (and consolidation; Dalley et al., 2005) of these

memories has been shown to rely onNMDA receptor activation (Lee and Everitt, 2008c). Appetitive

pavlovian associations can also be probed through the assessment of the ability of a reward-paired

cue to promote acquisition of a new response (ANR); the rewarding properties of this stimulus

are assessed through the ability of contingent CS delivery to maintain responding of an otherwise
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non-rewarded instrumental response (see Figure 1.3B). Systemic (Lee and Everitt, 2008a) or intra-

BLA (Milton et al., 2008a) NMDA receptor antagonism can prevent reconsolidation of the pavlovian

memories underlying this responding.

Instrumental tasks can also be used to study interaction between pavlovian and instrumental

memories. In pavlovian-instrumental transfer (PIT) animals are first trained by pairing a (typic-

ally auditory) CS with reward. Animals are then trained on an instrumental task whereby they

must respond in order to receive the same reward as the initial pavlovian training. In the test ses-

sion the ability of the CS to promote responding on the lever can be used to probe the association

between the CS and the reward (see Figure 1.3C). Memories underlying this form of responding

have been shown to undergo reconsolidation. NMDA receptor antagonism during reactivation ses-

sions consisting of presentation of the CS result in deficits in this behaviour (Lee and Everitt, 2008c).

The ability of a CS to promote responding can also be assessed in cases where animals are required

to respond on levers in order to receive delivery of drugs (or food), paired with CS delivery. In

the test session reward-paired CSs are delivered in a response contingent manner; presentation

of these CSs results in enhanced instrumental responding. Using this method it has been shown

that administration of NMDA receptor antagonists results in decreases in seeking potentiated by

cocaine-paired cues (Milton et al., 2008a). Using similar methods it has been shown that reconsolid-

ation of food-paired CSs reconsolidates in a similarly NMDA receptor-dependent manner (Flavell

and Lee, 2013; Lee and Everitt, 2008b). The involvement of NMDA receptors in reconsolidation can

also be demonstrated through the administration of agonists of these receptors prior to reactiva-

tion resulting in an enhancement in reconsolidation. Treatment with the partial NMDA receptor

agonist d-cyloserine (DCS) prior to reactivation of a cocaine-CS memory results in a subsequent

increased responding for this stimulus (Lee et al., 2009).
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Figure 1.3: Tasks used to study pavlovian appetitive memory in rodents. In each case, the left hand box
shows the procedure used in training and the right used at test. Green arrows represent instrumental re-
sponding. Reward delivery is indicated by a pellet in the food magazine. A: Autoshaping: animals will
approach a reward-paired CS. B: Conditioned reinforcement, acquisition of a new response: response con-
tingent presentation of reward-paired cues is sufficient to support acquisition of an otherwise non-reinforced
instrumental response. C: Pavlovian to instrumental transfer (PIT): delivery of a reward-paired CSs res-
ults in increased instrumental responding. Speaker symbol represents delivery of an auditory stimulus.
D: Relapse procedure: delivery of reward-paired CSs results in enhanced responding of a previously re-
inforced instrumental response. Responding in this procedure may be mediated by pavlovian approach to
the reward-paired CS, conditioned reinforcement and/or PIT, although not necessarily in equal measure. E:
Venn diagram showing the suggested memory mechanisms tested with these tasks.
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NMDA receptors are also required for fear memory reconsolidation, with systemic administration

of NMDA receptor antagonists prior to retrieval of cued (Lee et al., 2006b; Merlo et al., 2014) or

contextual fear (Heath et al., 2015) memories resulting in decreased freezing in tests conducted the

next day. Pre-reactivation administration of DCS results in increased fear expression in subsequent

tests, suggestive of an enhancement in reconsolidation (Lee et al., 2006b; Merlo et al., 2014).

The NMDA receptor is comprised of two subtypes, which appear to have divergent roles in some

memory processes. The subtypes GluN1 and GluN2 (historically referred to as NR1 andNR2). The

GluN2 receptors have four subunits, GluN2A-D, with the GluN2A and GluN2B receptor subunits

being most widely studied. These have been shown to have differential electrophysiological prop-

erties, withGluN2A receptors required for LTP andGluN2B receptors required for LTDbothwithin

the hippocampus (Liu et al., 2004) and the inputs from the auditory thalamus to the lateral amyg-

dala (Dalton et al., 2012). These receptor subtypes have distinct roles in memory acquisition, with

GluN2A, but not GluN2B receptors required for fear memory acquisition (Dalton et al., 2012), al-

though GluN2B receptors do appear to be engaged in this process for strong fear memories (Zhang

et al., 2008).

GluN2A and GluN2B receptors also have contrasting roles in memory reconsolidation. As de-

scribed previously, administration of broad spectrumNMDA receptor antagonists prior tomemory

retrieval can result in deficits in memory reconsolidation. Somewhat paradoxically, however, in

2006 it was demonstrated that pre-reactivation infusion of AP-5, a non-selective NMDA receptor

antagonist prevents the destabilisation of pavlovian fear memories. Through the use of a double

infusion procedure, where drugs were administered directly into the BLA both before and after

memory reactivation sessions, it was demonstrated that infusion of NMDA receptor antagonists

prior to memory retrieval results in a resistance to the amnestic effects of post-reactivation infusion

of the protein synthesis inhibitor anisomycin (Ben Mamou et al., 2006). Without further resolu-

tion it was not clear how the amnestic effects of broad-spectrum NMDA receptor antagonists were

mediated; administration of these drugs should prevent destabilisation, thus preventing any inter-

ference of reconsolidation (a process that cannot take place without prior memory reactivation).

However, in the Ben Mamou et al. study the NMDA receptor antagonists used were either non-

subunit specific (AP-5) or only antagonised GluN2B subunits of this receptor (ifenprodil). Further

investigations in Milton et al. (2013) using similar methods replicated the effect of GluN2B antag-

onism onmemory destabilisation, but it was also shown that antagonism of GluN2A receptors res-

ults in amnesia when given in conjunction with memory reactivation session, even in the absence

of protein synthesis blockade. Thus, whilst NMDA receptors are required for both destabilisation
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and reconsolidation of auditory fear memories, different subunits of these receptors mediate these

two processes. GluN2B receptor subunits are required for memory destabilisation and GluN2A

for reconsolidation. This raises the possibility that the amnestic effects of the administration of

broad spectrum NMDA receptor antagonists occur as a result of their action upon GluN2A re-

ceptors subunits and the destabilisation-preventing effects of these drugs are mediated by GluN2B

antagonism (Milton et al., 2013). It should be acknowledged, however, that it is possible that admin-

istration of NMDA receptor antagonists prevents the pharmacological action of anisomycin, rather

than exerting its effects through prevention of memory destabilisation. This possibility could be in-

vestigatedwith GluN2B receptor antagonism followingmemory reactivation (when destabilisation

should have taken place). If GluN2B receptor activation is specifically required for destabilisation

post-reactivation ifenprodil treatment should have no impact on the ability of subsequent protein

synthesis blockade to prevent reconsolidation.

AMPA and kainate receptors

AMPA receptors are most likely required for memory retrieval, but not consolidation or reconsol-

idation. Binding of extracellular glutamate to AMPA and kainate receptors results in the opening

of these channels, resulting in the entry of sodium and the exit of potassium. Whilst infusion of

AMPA receptor antagonists within the hippocampus has no effect on acquisition, the same treat-

ment impairs retrieval of a spatial memory (Bast et al., 2005; Liang et al., 1994). Similarly, infusion

of these drugs appears to prevent retrieval, but not acquisition, of an association between a cocaine

drug-paired stimulus, asmeasured by the ability of this cue to permit acquisition of a new response

(Cardinal et al., 2003). Finally, infusion of AMPA receptor antagonists into the BLA prevents the ex-

pression, but not reconsolidation, of fear memories (Milton et al., 2013). Kainate receptors have

received minimal attention in the re/consolidation literature, likely the result of a paucity of drugs

targeting this system without simultaneous antagonism of AMPA receptors.

Metabotropic glutamate receptors

Very few studies have investigated the role of mGluRs in consolidation or reconsolidation. Local

infusion of mGluR1, but not mGluR5 receptor antagonists into hippocampus immediately follow-

ing a contextual-fear memory training session prevents subsequent expression of these memories

(Maciejak et al., 2003). Antagonism of mGluR1 and mGluR5 receptors has been shown to prevent

consolidation and reconsolidation of inhibitory avoidance tasks in the day-old chick (Gieros et al.,

2012).
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GABA

Alongside glutamate, which exerts its effects via increasing the likelihood of synaptic activity oc-

curring, the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) is also important in

memory consolidation and reconsolidation. Systemic administration of agonists of this system im-

pairs acquisition of inhibitory avoidance (Jensen et al., 1979) and contextual fear (Harris and West-

brook, 1998) memories, effects suggested to be distinct from the anti-anxiolytic properties of these

drugs (Pain et al., 2002). The deficits occurring as a result of hippocampal infusions of GABA re-

ceptor agonists are only apparent 6 or more hours following acquisition. This suggests these effects

appear to be, at least in part, caused by the effects of GABA agonism prevent memory consolida-

tion, rather than the result of global inactivation of the hippocampus resulting in an impairment in

the encoding of the context during acquisition (Misane et al., 2013).

Whilst there have been very few, if any, reports of the role of GABA receptors in consolidation

of reward-related memories, administration of the GABAA receptor agonist midalozam prevents

the reconsolidation of morphine conditioned place preference (Robinson and Franklin, 2010). This

same drug also prevents reconsolidation of aversive pavlovian memories (Bustos et al., 2006).

Noradrenaline

The noradrenergic system has long been implicated in the regulation of memory. Memory en-

hancements occurring as a result of post-trial treatment with adrenaline, corticosterone or agonists

of these systems are prevented by co-administration of β-adrenergic receptor antagonists (Gold

and Buskirk, 1978; Gold and Buskirk, 1975; Liang et al., 1986; Roozendaal et al., 2006a; Roozendaal

et al., 2006b; Roozendaal et al., 2008; Sternberg et al., 1985; Wichmann et al., 2012; Zorawski and

Killcross, 2003). The role of these receptors in consolidation in the absence of these memory en-

hancing treatments appears to be more task specific. Whilst β-adrenergic receptor antagonism

prevents acquisition of passive avoidance tasks (Gallagher et al., 1977), the same treatment does

not affect consolidation of pavlovian associations with aversive stimuli (Bush et al., 2010; Dȩbiec

and Ledoux, 2004) they are required for reconsolidation of these associations. Systemic injections

of the β-adrenergic receptor antagonist propranolol prevents the reconsolidation of both auditory

CS (Dȩbiec and Ledoux, 2004) and contextual (Muravieva and Alberini, 2010; Taherian et al., 2014)

fear memory reconsolidation. Antagonism of these receptors within the BLA also results in similar

deficits in auditory fear memory reconsolidation (Dȩbiec and Ledoux, 2004).
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Both the consolidation and reconsolidation of appetitive associations relies upon β-adrenergic re-

ceptors, with administration of propranolol immediately following acquisition (Bernardi et al.,

2006) or reactivation (Bernardi et al., 2009; Robinson and Franklin, 2007a) of a drug-conditioned

place preferencememory resulting in subsequent deficits inmemory expression. Research has also

been conducted investigating the role of reward-related memories in tasks that allow the specific

contribution of pavlovian associations to performance to be assessed. Treatment with proprano-

lol prior to memory reactivation has been shown to disrupt reconsolidation of a CS-US memory.

This results in decreased conditioned reinforcing properties the reactivated CS, as manifested by

an inability of reward-paired cues to permit ANR (Milton et al., 2008b; Schramm et al., 2016). In

contrast to NMDA receptor antagonism, treatment with this drug at memory reactivation, has no

effect on the subsequent expression of PIT and conditioned approach behaviour (Lee and Everitt,

2008c; Milton et al., 2012). These differences have been cited as being the result of the these tasks

relying on differing neural structures. Whilst the conditioned reinforcing properties of a CS when

measured with ANR depend upon the BLA (Burns et al., 1993), conditioned approach and PIT rely

upon the central nucleus of the amygdala (CEN) (Cardinal et al., 2002; Hall et al., 2001b; Parkinson et

al., 2000) (although the reliance of the CEN in PIT is parameter specific (Corbit and Balleine, 2005)).

It appears that propranolol is only able to disrupt reconsolidation of memories dependent on the

BLA, but not the CEN, possibly due to innervation of the BLA (Woolf and Butcher, 1982), but not

CEN (Aston-Jones et al., 1986). These regions have previously been shown to have distinct roles in

the representation of the sensory-specific and general motivational properties of CSs (Balleine and

Killcross, 2006). Given that the BLA appears to be the crucial in the former (Corbit and Balleine,

2005), propranolol may only be able to disrupt associations of this nature.

Dopamine

Not all events will be remembered for a lifetime and those that are associated with motivationally

significant events aremore likely to lead to the formation of an enduringmemory. The coding of the

significance of these eventsmay depend upon activation of the dopaminergic system. Single-cell re-

cordings from the ventral tegmental area (VTA), a region responsible for dopaminergic innervation

throughout the mesolimbic system, in behavingmacaques suggest that dopaminergic cells may act

to signal salient events, firing in response to presentation of both appetitive and aversive uncondi-

tioned stimuli, particularly when these are unexpected (discussed further below, Mirenowicz and

Schultz, 1996). In support of this notion, systemic or local infusion of dopamine receptor antag-

onists within the amygdala or hippocampus (Guarraci et al., 1999; Heath et al., 2015) prior to fear
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conditioning sessions results in deficits in fearmemory acquisition. Infusion of these drugs prior to

learning of an appetitive pavlovian memory into both of these structures (Andrzejewski and Ryals,

2016) or the nucleus accumbens (Di Ciano et al., 2001) also results in deficits in the reward-paired

CS to support autoshaping and ANR, respectively. The deficits arising in these tasks appear to be

the result of disrupting acquisition (in accord with the role of dopamine to attribute salience to

events during learning), rather than consolidation, since administration of dopamine receptor ant-

agonists following fear training has no effect on subsequent memory expression (Heath et al., 2015;

Inoue et al., 2000).

Like noradrenaline, dopamine does, however, appear to have a role in the mediation of the effect of

corticosterone to enhance consolidation. Liao et al. (2013) demonstrate that dopamine D2 receptor

antagonism within the hippocampus following acquisition of a contextual fear memory is without

effect on subsequent fear memory expression. However, when corticosterone was administered

prior to training, the resulting enhancement in fear was prevented with post-training infusion of

dopamine receptor antagonists (Liao et al., 2013).

Only a small number of studies have explored the role of dopamine in reconsolidation, with contra-

dicting results. Heath et al. (2015) report that dopamine receptor antagonism either prior to, or im-

mediately following, memory reactivation has no effects on reconsolidation. Whilst systemic post-

retrieval dopamine receptor antagonism prevents the reconsolidation of an appetitive pavlovian

memory (Yan et al., 2014), pre-reactivation dopamine receptor antagonism within the BLA has no

effect on subsequent expression (Merlo et al., 2015). Whilst caution must be applied in comparison

of these two studies conducted using different reinforcers, species, routes of drug administration

andmemory testing conditions, the discrepancy in the amnestic effects of these two studies may lie

in differences in the timing of drug administration and the hypothesised role of dopaminememory

destabilisation.

Administration of dopamine receptor antagonists following memory reactivation resulted in

impairments in memory reconsolidation in Yan et al. (2014), whilst pre-retrieval infusions of these

drugs in Merlo et al. (2015) had no effect on the reconsolidation of the memory. Although pre-

reactivation intra-BLA infusion of dopamine receptor antagonists did not prevent reconsolidation

in Merlo et al. (2015) they were not without effect. Administration of these drugs resulted in an

insensitivity to the otherwise amnestic effects of post-reactivation infusions of anisomycin, sug-

gesting a role for the dopaminergic system in the destabilisation of these memories. Furthermore,
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dopaminergic receptor antagonism in the VTA prevents the ability of a memory reactivation ses-

sion to result in destabilisation of an appetitive memory (Reichelt et al., 2013). The effect of pre-

reactivation dopamine receptor antagonism to prevent memory destabilisation in the Merlo et al.

paper may have prevented the amnestic effect of this treatment – the memory was not able to be-

come destabilised this may have masked any effects on reconsolidation this drug may otherwise

had. The fact that dopaminergic receptor antagonism is without effect on fear memory reconsol-

idation may suggest a differential involvement of this system in aversive memory reconsolidation,

although further research is required on the topic.

Molecular mechanisms of reconsolidation and consolidation

The molecular basis of consolidation, reconsolidation and their constitutive processes has been

extensively investigated. Given that these are not a focus of this thesis, only a brief outline of the

key mechanisms implicated in these processes is outlined.

Protein synthesis

First and foremost, both memory consolidation and reconsolidation require protein synthesis. Fre-

quently used as a hallmark test as to whether these processes are taking place, the dependence of

memory consolidation on the synthesis of new proteins has been demonstrated in a wide range of

tasks. Both passive (Quevedo et al., 1999) and active (Agranoff et al., 1966; Flood et al., 1975) avoid-

ance and discrete and contextual (Schafe and LeDoux, 2000; Schafe et al., 1999) fear memories can

be disrupted by post-training infusion of protein synthesis inhibitors. Reward-associated memor-

ies appear to be similarly reliant on this process, since disruption of protein synthesis following

acquisition of conditioned place preference (Robinson and Franklin, 2007b), pavlovian conditioned

approach (Blaiss and Janak, 2007) and instrumental learning (Hernandez andKelley, 2004; Hernan-

dez et al., 2002, although see Jonkman and Everitt, 2009; Jonkman and Everitt, 2011) tasks disrupts

subsequent performance.

The requirement for the synthesis of new proteins appears to be similarly important for memory

reconsolidation as consolidation. Reconsolidation of aversivememories can be inhibitedwith post-

reactivation administration of anisomycin in both fear conditioning (Frankland et al., 2006; Nader

et al., 2000) and avoidance tasks (Fukushima et al., 2014). Similar results have also been reported in
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conditioned place preference (Robinson and Franklin, 2007b) and appetitive pavlovian memories

(Merlo et al., 2015).

Whilst protein synthesis inhibition has been used extensively as a tool to demonstrate the presence

of both consolidation and reconsolidation processes, this approach is not without fault. Aniso-

mycin has several non-specific effects, most notably increases in catecholamine levels at the site

of infusion (e.g. Qi and Gold, 2009). Importantly, it appears that these increases in neurotrans-

mitters, particularly noradrenaline, are responsible for some of the amnestic effects of anisomycin,

rather than the effect of this drug to prevent protein synthesis; co-administration of noradrenaline

receptor antagonists attenuates the effects of anisomycin on memory consolidation (Canal et al.,

2007; Qi and Gold, 2009). Central infusion of this drug in combination with food-delivery can also

result in an aversion to the delivered reinforcer, interfering with task-performance (Jonkman and

Everitt, 2009; Jonkman and Everitt, 2011) potentially leading to erroneous assumptions as to the

role of protein-synthesis in the infused region to memory processes.

Extracellular signal-regulated kinase

Partly with the non-specific effects of protein synthesis blockade in mind, studies have also

sought to investigate the myriad of specific molecular processes required for consolidation. The

extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase (MAPK) pathway has

received extensive attention in the consolidation and reconsolidation literature. ERK inhibition in

the BLA results in impairments in fear memory consolidation (Schafe et al., 2000). ERK activation

within the nucleus accumbens core is required for cocaine conditioned-place preference (Miller

and Marshall, 2005), although in this study all infusions were administered prior to conditioning

sessions, raising the possibility the results were caused by a prevention of the reinforcing effects

of cocaine. However, in a similar study conducted on amphetamine conditioned-place preference

it was revealed that post-training infusions of ERK inhibitors similarly result in deficits in the ac-

quisition of conditioned-place preference (Gerdjikov et al., 2004). ERK has a demonstrable role in

aversive and appetitive reconsolidation. Inhibition of this kinase within the BLA prevents audit-

ory fear (Duvarci et al., 2005), inhibitory avoidance (Krawczyk et al., 2016) and conditioned-place

preference (Valjent et al., 2006) memory reconsolidation.
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Immediate early gene zif-268

The immediate early gene (IEG) zif-268 (also known as EGR1, Krox4) also has a critical role in recon-

solidation. Expression of this gene is increased in the BLA following reactivation of discrete fear

memories (Hall et al., 2001a; Tedesco et al., 2014b), contextual fear memories in the hippocampus

(Hall et al., 2001a; Lee et al., 2004) and in the BLA following exposure to a cocaine paired stimu-

lus (Thomas et al., 2003), an effect mediated by upstream NMDA receptor activation (Milton et al.,

2008a). These increases appear to be integral to the maintenance of the reactivated memory since

intra-hippocampal/BLA infusion of zif-268 oligodeoxynucleotides (ODNs) prior to reactivation of

each of these memories, respectively, results in deficits in subsequent expression (Lee et al., 2004;

Lee et al., 2005b).

Interestingly, there is less evidence for a requirement of zif-268 in memory consolidation. Knock-

down of this gene in the dorsal hippocampus prior to a contextual fear training session consisting of

two footshocks had no effect on subsequent acquisition. However, when the training was divided

into two sessions, a day apart, such that the memory of the first day of training was fully consolid-

ated, infusion of zif-268 ODNs resulted in a failure to increase the strength of the memory in this

second training session via reconsolidation mechanisms (Lee et al., 2004). Thus, whilst expression

of zif-268 in the hippocampus is not required for the consolidation of contextual fear memories, the

updating of the same memory via reconsolidation mechanisms depends, at least in part, to rely on

distinct cellular processes. The opposite is true of brain-derived neurotrophic factor (BDNF), with

this protein being required for the consolidation, but not reconsolidation of these memories (Lee

et al., 2004). The formation and updating of existing memories is therefore carried out via distinct

cellular mechanisms, suggesting that reconsolidation is not simply re-consolidation.

Mammalian target for rapamycin (mTOR) pathway

The mammalian target of rapamycin (mTOR) pathway is a protein kinase downstream of several

neurotransmitter systems, including NMDA receptors, that is responsible for controlling the as-

sembly of mTOR complexes. These regulate protein translation and activity of phosphates critical

for synaptic plasticity (Hoeffer andKlann, 2010). mTOR inhibition both systemically andwithin the

BLAanddorsal hippocampus results in impairments in the consolidation of contextual fearmemor-

ies (Gafford et al., 2011; Parsons et al., 2006). Systemic and intra-BLA administration of rapamycin
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within the BLA also impairs consolidation of discrete cued fear memories (Gafford et al., 2011). Re-

consolidation of these memories is similarly dependent on mTOR, with systemic rapamycin pre-

venting reconsolidation of cued and contextual fear (Blundell et al., 2008; Hoffman et al., 2015).

Local inhibition of the mTOR pathway within the BLA (Parsons et al., 2006) and dorsal hippocam-

pus (Gafford et al., 2011) also prevents the reconsolidation of cued and contextual fear memories,

respectively. Whilst the requirement of rapamycin in the reconsolidation of reward-relatedmemor-

ies has only receivedminimal attention in the literature, evidence suggests that systemic rapamycin

following reactivation of amorphine, cocaine or alcohol conditioned place preferencememory pre-

vents its subsequent expression (Lin et al., 2014). Disruption of mTOR signalling within the CEN

in conjunction with a memory reactivation session also results in decreased alcohol seeking (Barak

et al., 2013), although the specific memory targeted by this procedure is unclear (discussed further

below).

Protein degradation

Investigations have also focussed their efforts on the molecular mechanisms underlying the

destabilisation of memories, which likely depends on the ubiquitin-proteasome system, required

for proteasome-dependent proteolysis (Jarome and Helmstetter, 2013). The destabilisation of con-

textual fear memories results in increased polyubiquitination of scaffolding proteins Shank and

GKAP in the dorsal hippocampus and infusion of the proteasome inhibitor clasto-Lactacystin-β-

lactone (β-lac) prevents the otherwise amnestic effect of post-retrieval anisomycin (Lee et al., 2008).

Similar effects have been reported within the BLA; reactivation of a pavlovian fear memory results

in an increase in markers of protein polyubiquitination in this region and infusion of β-lac in this

region protects these memories from the reactivation dependent amnestic effects of anisomycin

infusion directly into the BLA (Jarome et al., 2011). The ubiquitin-proteasome system may interact

with previously discussedmechanisms of destabilisation, perhapsmost notably GluN2B activation

(Ben Mamou et al., 2006; Milton et al., 2013).

Psychology of memory reconsolidation

Whilst preventing the pharmacological and molecular processes required for reconsolidation to

take place results in impairments in this process, these manipulations are without effect if the

memory has not been reactivated: the requirements formemory reactivation are not only biological,
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but also psychological. Not all retrieval trials will result in reconsolidation and the psychological

determinants of this process taking place are outlined below.

Function

The requirements for memory consolidation to take place are relatively simple, the key determ-

inant in whether this process occurs is memory formation. Detecting whether this process has

occurred is, therefore, simple; any session that results in a change in behaviour as a result of new

learning has, most likely, triggered the process of consolidation. In contrast, reconsolidation is typ-

ically a silent process; sessions that trigger reconsolidation may have no impact on the subsequent

expression of the memory. Furthermore, memory retrieval is neither necessary nor sufficient to

result in reconsolidation of a memory (Alfei et al., 2015; Díaz-Mataix et al., 2013; Milton et al., 2013).

Whether reconsolidation takes place is therefore frequently determined by the ability of a retrieval

session to result in susceptibility of the memory trace to amnestic agents, providing evidence that

the association has been destabilised.

Many factors relating to both the training that led to the formation of thememory trace, thememory

retrieval session and interactions between these two affect the ability of a retrieval session to res-

ult in memory destabilisation. In order to understand the conditions that might lead to memory

reconsolidation occurring, one must consider why this process exists in the first place. It could be

argued that repeated exposure of a memory to interference may put organisms at an evolutionary

disadvantage. Despite this, the memory process appears to be remarkably conserved, having been

demonstrated in numerous species (Nader, 2015; Tronson and Taylor, 2007). Memory reconsol-

idation may serve to ensure the maintenance of significant memories (Tronson and Taylor, 2007).

Memory reactivation can result in memory strengthening (Fukushima et al., 2014; Rohrbaugh and

Riccio, 1970; Tedesco et al., 2014b) and a resistance to forgetting (Inda et al., 2011). Memory recon-

solidationmay also exist to allowpreviously formedmemories to be updatedwith new information

(Lee et al., 2009; Nader and Einarsson, 2010). This hypothesis has receivedmuch empirical support,

evidence for which is outlined below.

Prediction error

In order for amemory to be updated, novel informationmust be present at retrieval. At its simplest,

this takes the form of prediction error (PE), where there is disparity between the outcome expected
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and that which is obtained. This has been formally conceptualised by Rescorla and Wagner (1972,

see Equation 1.1) where ∆V , the change in conditioning strength is determined by α and β, the rate

parameter of the CS and US, respectively, the maximum conditioning that can be obtained by the

US (λ) and the current sum of all associative strengths (ΣV ).

∆V = αβ(λ− ΣV ) (1.1)

On the first trial, where, for example, a CS is paired with a US, the difference between λ and ΣV is

maximal, since this latter value is zero (no learning has taken place). However, on the second trial

the ΣV has been updated to include learning which occurred on the first trial, and the difference

between λ and ΣV is reduced. As multiple trials take place, the ΣV value is almost equal to λ, such

that no further learning will take place.

Retrieval sessions that result in a large discrepancy between the expected (ΣV ) and obtained out-

come (λ) will result in PE (large ∆V ). This has been shown to affect the likelihood of a retrieval ses-

sion to result inmemorydestabilisation. In the crabChasmagnathus reconsolidation is only triggered

when the expected US is omitted in a retrieval trial (Pedreira et al., 2004). In human subjects trained

to fear a visual stimulus, where each image presentation is paired with shock, a single presentation

of the CS in the absence of the US is sufficient to result in reconsolidation that is sensitive to ant-

agonism of β-adrenergic receptors (Sevenster et al., 2013). In contrast, CS presentations alongside

the US, as in training, have no effect on the lability of the memory. As was confirmed with online

ratings of US expectancy, subjects were expecting to receive a shock when the visual stimulus was

presented, and thus there was only a PE for subjects when the shock was not presented. The reli-

ance of this effect on PE, rather than just shock presentation, was demonstrated in a third group,

who only received shock pairings on every second CS presentation, and were explicitly informed

this was the case. When these subjects were presented with a single CS alongside the shock, recon-

solidation did take place, the expectation that only the second CS presentation would be reinforced

was violated (Sevenster et al., 2013). In rats trained to expect a shock after a given duration follow-

ing CS presentation, only trials that violate this expectancy result in reconsolidation (Díaz-Mataix

et al., 2013). Finally, in contextual fear, where animals can learn to expect a shock after a certain

duration after being placed in a context, only memory reactivations that are sufficient in duration

to result in the experience of a PE trigger reconsolidation (Alfei et al., 2015). Thus, US presentation

is not the sole determinant as to whether this process takes place; instead it is the degree to which

this was expected.
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One likely neural candidate for these PE signals is the VTA, a region responsible for dopaminergic

innervation throughout the mesolimbic system. The firing rate of neurons within this region is

increased in response to presentation of reward when it is unexpected, but as reward delivery be-

comes more predictable these neurons decrease their activity in response to reward, instead show-

ing increases in response to the presentation of the stimuli that predicts reward. Importantly, cells

in this region show decreased firing in response to the omission of an expected reward (Schultz

et al., 1997). Whilst initially it was suggested that the increases in dopaminergic firing to CSs were

selective to appetitive stimuli, recent evidence has demonstrated similar increases in dopaminergic

firing in response to stimuli predictive of aversive events (Matsumoto and Hikosaka, 2009).

These findings have lent support to the notion that the increases and decreases in dopamine release

may be used to inform the unexpected presentation and absence of reward, respectively. If PE is

indeed required for a retrieval trial to result in reconsolidation, and these signals do indeed reflect

this, disruption of dopamine receptor activation should prevent reactivation sessions resulting in

labilisation of the memory. Whilst presentation of a CS paired with reward can result in reconsol-

idation of an association between these two stimuli, disruption of dopaminergic signalling within

the VTA prevents this destabilisation process. Administration of a dopamine receptor antagonist

within this region results in a loss of the amnestic effect of NMDA receptor antagonism (Reichelt et

al., 2013). The effects of the reward sensitive responses of the VTA are also likely expressed inmany

of the structures that this region projects to, including the amygdala (Swanson, 1982). Dopaminer-

gic signalling within this region also appears to be important in determining whether retrieval res-

ults in memory destabilisation. Administration of either dopamine D1 or D2 receptor antagonists

within the BLA prior to memory retrieval preventes the effect of post-trial administration of aniso-

mycin to prevent the reconsolidation of a CS-reward association (Merlo et al., 2015). Whilst both of

these studies support the view that activation of dopamine receptors is required for destabilisation,

whether this is the result of disrupted PE signals is unclear; neither of these studies investigated

whether the ability of the memory retrieval session to result in destabilisation could be preven-

ted through delivery the expected reinforcer and whether such a manipulation led to a loss of the

sensitivity to dopamine receptor antagonism. More conclusive evidence for the role of dopamine

in signalling PE that leads to destabilisation might involve demonstration that administration of

dopamine receptor agonists enable a retrieval session with minimal PE that otherwise does not

lead to reconsolidation to result in destabilisation. It would be expected that whilst dopamine re-

ceptor agonism would have such an effect, other treatments shown to potentiate destabilisation,
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but not PE, such as cannabinoid CB1 receptor agonism (Lee and Flavell, 2014) or perhaps GluN2B

receptor stimulation (Milton et al., 2013) would not.

There is a wealth of evidence suggesting that PE is a critical determinant as to whether a retrieval

trial results in destabilisation, as measured by an ability of amnestic agents to prevent the sub-

sequent reconsolidation of these memories. Retrieval trials that do not trigger PE do not result in

these processes, and this is true for both appetitive and aversive memories. Blockade of neural

signatures hypothesised to mediate these signals also has similar effects for appetitive memories.

However, if PE was the only critical determinant in whether a memory retrieval session results

in its reactivation, strong fear memories should rapidly destabilise with a single CS presentation.

Multiple training sessions should have allowed the difference between the maximum possible as-

sociation from the US (λ) and the associative strength with the CS (ΣV ) to be minimal, thus when λ

changes for a given trial as a result of the omission of theUS the difference between these two values

is high. However, this has been shown not to be the case. For example, Suzuki et al. (2004) report

that memories resulting from a single contextual fear training session will destabilise, as indic-

ated by a susceptibility to systemic injections of anisomycin, after a 3-minute retrieval trial without

shock. The same is not true for memories having undergone multiple pairings, with anisomycin

treatment following a retrieval session of the same duration now being without effect. However,

a 10-minute reactivation was effective at inducing destabilisation of these strong memories. There

appears to be an interaction between memory strength and the PE required for destabilisation to

occur; as memory strength increases the PE required to result in destabilisation increases twofold

– longer reactivation sessions are required, which should result in a greater number of opportunit-

ies to experience the surprising absence of a shock, but also the magnitude of this surprise should

be greater, given the high ΣV value obtained in training. The greater PE required to destabilise

stronger memories likely relates to the function of reconsolidation to update previously formed

memories. If a stimulus has been paired with an aversive event many times, a single occurrence

whereby this event does not occur should not be sufficient to override the previous learning. A

retrieval trial that suggests an aversive event follows CS presentation 99%, rather than 100% is un-

likely to warrant the triggering of memory updating mechanisms. In contrast, a retrieval trial that

suggests that the CS is reinforced 50%, rather than 100% of the time is more likely to result in

memory destabilisation.

Whilst there appears to be a minimum level of PE required to trigger reconsolidation, memory re-

activations that consist of a large number of opportunities to experience a violation of expectation
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will also not result inmemory destabilisation. In auditory fear conditioning, for example, presenta-

tion of a single CS without the expected shock can result in a reactivation of the memory. However,

if the CS is presented multiple times without reinforcement a different process, extinction, will oc-

cur (Lee et al., 2006b; Merlo et al., 2014). Whilst initial pavlovian learning results in an association

between a stimulus and its outcome, extinction learning results in the formation of a new inhib-

itory memory opposing the initially formed association. Trials that result in reconsolidation and

extinction therefore have separate behavioural outcomes; the former typically leaving the initial

memory unaltered (without pharmacological intervention) and the latter resulting in a decrease in

subsequent expression of the memory.

Whether a retrieval trial will result in extinction or reconsolidation is typically determined by their

length, or the number of opportunities for the violation of learned expectations. Shorter retrieval

trials, consisting of fewer CS presentations (in discrete CS fear conditioning), will result in recon-

solidation, whilst longer retrieval trials lead to extinction. Until recently, however, the processes

are engaged in sessions in retrieval trials in between these two extremes have been unclear. This

phenomenon has been investigated by Merlo et al. (2014) in discrete fear memories. Here it was

demonstrated that a single CS presentation results in reconsolidation that is susceptible to NMDA

receptor antagonism – this treatment results in a decrease in responding in a test session the fol-

lowing day. Retrieval trials consisting of 10 CS presentations resulted in extinction, as evidenced

by a decrease in responding both within the retrieval session and the test session the following

day (in the absence of any pharmacological intervention). Administration of an NMDA receptor

antagonist prior to this type of retrieval session resulted in impairments in extinction learning, as

indicated by an increase in freezing the next day in comparison to vehicle treated controls (Merlo

et al., 2014). NMDA receptor antagonism prior to presentation of an intermediate number of CSs

(4), however had no effect on memory expression, suggesting that neither reconsolidation nor ex-

tinction was being triggered by retrieval sessions of this nature and the memory was in ’limbo’

(Merlo et al., 2014). Recent investigations have also analysed levels of phospho-ERK1/2, following

retrieval, demonstrating that sessions consisting of 1 or 10 CS presentations result in an increase

in this kinase. However, sessions consisting of an intermediate number of CSs have no impact on

pERK1/2 levels, supporting the notion that neither reconsolidation nor extinction was being en-

gaged by these retrieval trials (Merlo et al., in preparation).

The requirements for PE within a reactivation session to result in reconsolidation are, therefore,

highly specific. If the retrieval session is too similar to acquisition and the memory need not be up-

dated, it will not be destabilised. As PE increases reconsolidation processeswill indeed be engaged.

23



CHAPTER 1. GENERAL INTRODUCTION

If there is too much, then the window for reconsolidation will close, with the initial engagement

of a limbo phase, followed by extinction. Trials of an intermediate duration have no impact on

memory expression, in the presence or absence of pharmacological agents, whilst decreases in re-

sponding can be observed either through extinction or disruptions of reconsolidation. Whilst these

two latter memory manipulations both result in a decrease in responding, the resulting changes in

behavioural expression likely occur through distinct mechanisms.

There are several lines of evidence that suggesting extinction is the result of new learning, rather

than erasure of the original trace, typified by the ability of the original memory to return as a result

of several manipulations. For example, following a period of extinction of a CS-US memory in

a context distinct from that used in training, returning animals to the training context, or even a

novel context, can result in renewal of responding (see Figure 1.4A). Presentation of the US results in

reinstatement of responding after extinction (see Figure 1.4B), the passage of time between extinction

and test results in spontaneous recovery (see Figure 1.4C). Upon a reminder trial, where the once

extinguished association is once again reinforced, animals can also show accelerated reacquisition

of this association, in comparison to naïve controls (see Figure 1.4D; Bouton, 2002).

The ability of once extinguished memories to regain control over behaviour after these manipu-

lations represents an important difference between a decrease in behavioural expression resulting

from disruptions from reconsolidation and extinction. Whilst the latter is sensitive to mechanisms

of the return of memory expression depicted in Figure 1.4, the same is not true of associations

where memory reconsolidation has been disrupted; decreases in responding occurring as a result

of disrupted reconsolidation are not context-dependent, not sensitive to reinstatement and do not

show spontaneous recovery (Duvarci and Nader, 2004; Kindt et al., 2009).

Retrieval-extinction procedures

Manipulating the manner in which an extinction session occurs can apparently result in a decrease

in responding that is insensitive to sources of relapse described above. Monfils et al. (2009) report

that the addition of a reactivation of a discrete CS-fear memory prior to its extinction results in

a decreased freezing that is context-independent, impervious to reminder shocks, the passage of

time and results in retarded re-acquisition in comparison to animals that have received no retrieval

trial prior to the extinction sessions. Further investigations into this effect have shown similar res-

ults can be obtained with contextual fear (Flavell et al., 2011; Rao-Ruiz et al., 2011), morphine and

cocaine induced conditioned place preference (Sartor and Aston-Jones, 2014; Xue et al., 2012) and
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Figure 1.4: Four possible methods in which extinguished associations can once
again take control of behaviour. Although pavlovian associations are depicted
here, the same processes occur for instrumental associations, where, in this dia-
gram, the CS would be replaced with an opportunity to make an instrumental re-
sponse. A: Returning animals to a context they have been trained in after a period
of extinction in a novel context can result in renewal. Note that the context is not ex-
plicitly paired with an outcome – it is a discrete CS (or instrumental response) that
is associatedwith a reinforcer. Renewal can also occur upon shifting to a novel con-
text for the test session. B: Presentation of the US alone can result in reinstatement
of responding. C: Passage of time following extinction results in spontaneous re-
covery. D: Reminder trials of the once extinguished association can result in rapid
reacquisition of responding. Adapted from Bouton (2002).

CS-heroin memories formed during self-administration in rats, with retrieval trials prior to extinc-

tion of these CSmemories resulting in decreased propensity to show relapse-like behaviour in later

tests (Xue et al., 2012). Whilst the mechanism for these effects is the topic of much ongoing debate

(McNally and Hutton-Bedbrook, 2013), the preferred explanation from many of those advocating

this procedure is that the retrieval trial results in the destabilisation of the memory, priming it for

the incorporation of new information. In the following extinction trials the original memory is

updated with the information that the CS no longer predicts the US, rather than a new inhibit-

ory memory being formed with this information (Monfils et al., 2009). Alongside the behavioural

evidence suggesting that extinction trials of this nature are different from ’normal’ extinction, there

is also accumulating evidence that distinct brain mechanisms are recruited by retrieval-extinction

procedures. For example, retrieval and retrieval-extinction, but not extinction alone procedures

results in up-regulation of zif-268 in the medial prefrontal cortex and amygdala (Tedesco et al.,

2014a).

25



CHAPTER 1. GENERAL INTRODUCTION

Delivery of the US, like CS presentation, is also apparently sufficient to result in memory reactiva-

tion in retrieval-extinction procedures. Presentation of a shock prior to extinction of a fear memory

results in similarly enhanced extinction that is resistant to many of the routes to relapse depicted

in Figure 1.4 in both humans and rats (Liu et al., 2014). In a similar fashion, administration of pre-

viously self-administered drugs prior to extinction of the operant response paired with these sub-

stances has been shown to prevent the renewal and reinstatement of responding (Luo et al., 2015).

Perhaps most remarkably in each of these studies, this US-extinction procedure not only prevented

the recovery of memory expression of the extinguished CS or response, but also a second associ-

ation formed with the same US but a different CS or response (Liu et al., 2014; Luo et al., 2015).

In these US-extinction studies it is not entirely clear which memories are being targeted by the

manipulations. Whilst the extinction sessions typically only involve execution of the instrumental

response and not CS delivery, the test sessions involved response contingent presentation of the

cocaine paired stimuli. Nonetheless these data suggest that presentation of the US results in the

reactivation of an associated response or CS, and the unexpected lack of the execution of this re-

sponse or presentation of the CS could result in sufficient PE to result in destabilisation of this trace

(similar treatments have been shown to result in the labilisation of memories leading to their vul-

nerability to amnestic agents (Milekic et al., 2006; Valjent et al., 2006)). However, the effects on the

second, non-extinguished association are more difficult to explain. It appears that the US induced

retrieval (of both traces) primes these associations for modification and given the shared outcome

of both these associations, any subsequent new information is equally incorporated into the two

associations.

Reconsolidation based treatments for psychiatric disorders

The apparent permanence of the reductions in memory expression occurring as a result of phar-

macological blockade of reconsolidation or retrieval-extinction procedures has led some comment-

ators to (controversially) suggest these techniques result in erasure of the original trace (Clem and

Huganir, 2010; Kindt et al., 2009; Maren, 2011), rather than the formation of novel inhibitorymemor-

ies, as is hypothesised to take place in extinction. Whilst much of the research discussed previously

has provided a fascinating insight into the mechanisms underlying memory acquisition and up-

dating mechanisms, the suggested ability to erase memories could have major implications for the

treatment of psychiatric disorders.
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Several psychological disorders are characterised by maladaptive, overly intrusive memories that

exert a powerful and debilitating influence on an afflicted individual’s life. The nature of several

such disorders will now be outlined, and the potential for the use of reconsolidation based treat-

ments as a form of therapeutic intervention for these conditions discussed.

Post-traumatic stress disorder

Post-traumatic stress disorder (PTSD) has a lifetime prevalence of approximately 7% (Kessler et al.,

2005), with ~15% of individuals that suffer a traumatic event going on to suffer symptoms of PTSD,

although this depends on the type of trauma experienced (Helzer et al., 1987; Vries and Olff, 2009).

Once classified as an anxiety disorder, it is now described as a trauma and stressor-related disorder

in the diagnostic and statistical manual of mental disorders (DSM)-5 (APA, 2013). Individuals with

PTSD, alongside having experienced (or witnessed) a highly traumatic event, also suffer frequent,

involuntary, intrusivememories of the event and suffer intense psychological distress upon perceiv-

ing cues related to such an event amongst many other symptoms (APA, 2013). The ability of these

stimuli to invoke such distress presents one of the major issues for those suffering with PTSD. With

this in mind, psychological therapies have attempted to reduce the impact of these cues to result in

the unwelcome retrieval of these traumatic memories.

One possible method in which the ability of these cues to trigger such anxiety responses could be

reduced is the pharmacological modulation of memory consolidation. Pilot studies administering

the β-adrenergic receptor antagonist propranolol within 6 hours of experiencing a trauma have

shown some promise in this regard (Pitman et al., 2002). However, disruption of consolidation suf-

fers from several potential drawbacks thatmay impede this from becoming awidespread treatment

for PTSD. Any drugs would need to be given within 6h of the event, which may be impractical. In

Pitman et al. participants were taken from an emergency room, however not all traumatic events

require visits to a hospital and PTSD can also develop from not only experiencing, but also wit-

nessing a traumatic event (APA, 2013). Access to individuals that require such a treatment may,

therefore, be difficult. Furthermore, given that themajority of traumatic events will not result in the

development of PTSD (VanElzakker et al., 2014), it may be unclear when these treatments would be

necessary. Finally, some traumas, such as those related to childhood abuse may have been formed

a series of events, thus making pharmacological inhibition of consolidation difficult.
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Another possible avenue for the reduction of the effects of these stimuli is cue-exposure therapy.

Here, cues that elicit retrieval of a traumatic event are presented multiple times in a safe environ-

ment, degrading the association between these cues and trauma. Tapping into the well-studied

process of extinction, these treatments have yielded some success (Marks et al., 1998; Powers et

al., 2010). Furthermore, administration of drugs previously shown to enhance synaptic plasticity

mechanisms, such as the NMDA receptor partial agonist DCS as an adjunct to these treatments has

been shown to enhance their efficacy (Davis et al., 2006; Difede et al., 2014). However, even when

enhanced these treatments present several drawbacks. As discussed above, extinction is hypothes-

ised to result in the acquisition of a new inhibitorymemory, rather than erasure of the original trace.

This means that extinction based treatments may only be able to result in a temporary decrease in

memory expression.

Given the difficulties in disruption of consolidation and cue-exposure therapy as a treatment, re-

search has focussed on the potential use of reconsolidation based treatments to reduce the impact

of maladaptive memories associated with PTSD. Whilst many of the manipulations discussed in

previous sections are wholly inappropriate for human use, most notably protein synthesis inhibi-

tion and intra-cranial infusion of substances directly into the amygdala, some of the drugs shown

to prevent memory reconsolidation in preclinical models are also approved for human use. One of

the most widely explored possibilities in this regard is antagonism of β-adrenergic receptors. As

mentioned previously, propranolol has shown to be effective at preventing memory reconsolida-

tion in preclinical research (e.g. Dȩbiec and Ledoux, 2004). Administration of this drug prior to

retrieval of a fear memory formed the previous day also results in markedly reduced physiological

responses to stimuli associated with an experimenter administered shock in humans (Kindt et al.,

2009). Similar results have also been obtained following the retrieval of memories associated with

PTSD (Brunet et al., 2008).

In this study, participants were played an audio ’script’ describing an event associatedwith trauma.

Subjects administered propranolol immediately following this retrieval episode showed a signific-

ant reduction in physiological responses during mental imagery of traumatic events a week later,

suggesting a disruption of reconsolidation. However, this finding was somewhat compromised by

a lack of a group receiving propranolol in the absence of a memory reactivation session, raising

the possibility the effects reported may have been the result of drug administration alone (Brunet

et al., 2008). Furthermore, subsequent attempts to replicate this effect from the same group have

been unsuccessful (Wood et al., 2015).
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Preclinical studies have shown that themTOR inhibitor rapamycin (Sirolimus) can preventmemory

reconsolidation (Blundell et al., 2008; Gafford et al., 2011; Huynh et al., 2014). However, adminis-

tration of this drug prior to a script-based retrieval session had no effect on a series of clinical and

physiologicalmeasures recorded at several time points aftermemory reactivation (Surís et al., 2013).

It is unclear, however, whether the lack of an amnestic effect was the result of the pharmacological

intervention being unable to prevent reconsolidation. Although well characterised in preclinical

models, there have been few attempts to use this drug to prevent memory processes in humans,

thus raising the possibility the lack of an impairment was the result of inadequate dose, route or

timing. Alternatively, it is possible that in these individuals the retrieval session was insufficient to

result in memory destabilisation.

Given the difficulties of reactivation sessions not triggering reconsolidation, and perhaps more

problematically, not knowing whether this is the case, recent investigations have attempted to use

highly personalised reactivation sessions to increase the likelihood of a retrieval session resulting

in reconsolidation. Kindt and Emmerik (2016) used interviews with PTSD sufferers to identify the

most painful memories (’hot-spots’) in these patients. Once identified these hot-spots were re-lived

in the subsequent reactivation sessions. Once the individual reached maximal distress as a result

of this, the reactivation sessions ceased, in order to prevent memories entering extinction or limbo

phases and the patient administered propranolol. Whilst in an early stage of investigation, it ap-

pears these interventions can lead to a decrease in PTSD symptoms in some patients (Kindt and

Emmerik, 2016).

The evidence for the treatment of PTSD remains in the early stages; studies conducted to date

have typically been pilot investigations (Brunet et al., 2008), and in some cases these have been

unsuccessful (Surís et al., 2013; Wood et al., 2015). Nonetheless, complementing preclinical data,

it is clear that memories underlying PTSD can become destabilised under the correct reactivation

conditions and susceptible to amnestic agents.

Drug addiction

Drug addiction is a chronically relapsing disorder characterised by a cluster of cognitive, behavi-

oural and physiological symptoms that result in continued drug abuse (APA, 2013). Whilst the

criteria for diagnosis of these disorders has recently been revised, studies using the previous clas-

sification (APA, 2005) suggest 2.6% of individuals will be addicted to a substance in their lifetime

(Compton et al., 2007). Addicted individuals show, amongst other criteria, a markedly increased
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dose of the drug required to achieve the desired effect, symptoms of withdrawal (which vary

between different drugs), which are frequently relieved with resumption of drug taking, a persist-

ent desire to cut down substance use, continued use despite adverse circumstances and the dangers

it poses, and an intense urge or desire to take the drug (APA, 2013).

The progressively increased ability of drugs of abuse and their associated cues to exert control over

an individual’s behaviour is hypothesised to result in the recruitment of distinct neural and psy-

chological processes. Almost all drugs of abuse share the ability to directly activate reward-related

pathways (e.g. Di Chiara and Imperato, 1988). The repeated stimulation of these systems during

drug abuse is suggested to play an integral role in the perpetuation of substance use disorders;

opponent-process models of addiction posit that repeated stimulation of reward systems leads to

their desensitisation and a shift in the ’hedonic set-point’ (Ahmed and Koob, 1998). Not only does

this result in escalating drug use to achieve a similar high, but increasing dysphoria when the drug

is absent, which in turn can motivate continued drug seeking (Koob and Moal, 1997).

Drug-administration does not occur in sensory isolation and people, places and paraphernalia

paired with drug-seeking likely become associated with the rewarding effects of the drug in a

pavlovian manner; craving can be heightened by presentation of cues associated with drug tak-

ing (APA, 2013). Subsequently, exposure to these reward paired cues is a frequent cause of relapse

in abstinent individuals (reviewed in Fuchs et al., 2008; Taylor et al., 2009, see Figure 1.5).

Drug seeking is inherently instrumental (see Figure 1.5) – the delivery of drugs is typically de-

termined by an individuals’ behaviour and these actions become paired with drug delivery. In a

series of reviews on the topic Everitt et al. suggest that drugs of abuse result in the pathological

recruitment of normal learning mechanisms, resulting in aberrantly strong memories (Everitt and

Robbins, 2005; Everitt and Robbins, 2016; Everitt et al., 2001). Early studies (e.g. Adams, 1982)

demonstrated that instrumental responding undergoes a progression from an initial goal-directed

stage, governed by direct associations between an instrumental action and its associated reinforcer

to a later, habitual phase, whereby behaviour becomes autonomous (Everitt and Robbins, 2016).

Whilst habits in themselves are not problematic and the devolution of behaviours outside of con-

scious awareness likely carries several evolutionary benefits, in drug addiction this responding

becomes maladaptive. These habits also become compulsive and continued to be carried out in

the face of adverse circumstances (Everitt and Robbins, 2016; Jonkman et al., 2012a; Jonkman et al.,

2012b).
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Responding for drugs of abuse is potentiated by the delivery of reward-paired stimuli. The pairings

of these cues occurs via normal learning mechanisms, but the increased ability of drugs of abuse to

act as USs means they can acquire an overwhelmingly strong ability to control an individual’s be-

haviour (Everitt et al., 2001). Whilst reward-paired cues have been shown to influence responding

during both early and late stages of drug seeking, the transition from initial to habitual drug use

is likely coupled with the progressive recruitment of distinct neural structures. Preclinical stud-

ies have demonstrated that late-stage cocaine-seeking results in the recruitment of specific dorsal

striatal structures, with drug seeking habits hypothesised to result in a dominance in behavioural

control from the dorsal striatum (Belin and Everitt, 2008; Murray et al., 2012; Vanderschuren et al.,

2005, these studies are discussed at length below). Presentation of cocaine paired cues also res-

ults in increased activation of dorsal, but not ventral, striatal structures in human cocaine addicts

(Garavan et al., 2000), with this activation corresponding to the degree to that these cues trigger

craving in these individuals (Volkow et al., 2006). Similarly, compulsive alcohol use is associated

with decreased ventral, but increased dorsal striatal activation in response to alcohol paired cues

(Vollstädt-Klein et al., 2010).

Addiction related behaviour likely occurs as a result of pavlovian and instrumental memories, and

critically, an interaction between these two types of associations (see Figure 1.5). Therapeutic in-

terventions could therefore aim to target these memories, with the view to reducing the ability of

these memories to exert control of the behaviour of drug addicts.

Pavlovian
Instrumenta

l

CS → R S → R

CS

↓
S

↓
R

Figure 1.5: Possible memory systems implicated in addiction-related behaviour.
CS: conditioned stimulus, R: reinforcer, S: stimulus.
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Reconsolidation based treatments

As discussed in previous sections, whilst the reconsolidation literature initially focussed its efforts

on aversive associations, more recently it has become apparent that reward-associatedmemories re-

consolidate in a similar fashion. Reconsolidation of associations between discrete drug-paired stim-

uli and their reinforcers depends upon activation of NMDA (Milton et al., 2008a) and β-adrenergic

(Milton et al., 2008b; Schramm et al., 2016) receptors and expression of zif-268within the BLA (Lee et

al., 2005b; Lee et al., 2006a). Systemic administration of NMDA and β-adrenergic receptor antagon-

ists also disrupts reconsolidation of pavlovian memories formed during drug self-administration

(Milton et al., 2008a; Milton et al., 2008b). The contextual stimuli associated with drug use are also

hypothesised to contribute to the chronically relapsing nature of drug addiction. These associations

have also been shown to undergo reconsolidation that is dependent upon protein synthesis within

the BLA, hippocampus and an interaction between these structures (Fuchs et al., 2009; Ramirez et

al., 2009). ERK activation within the BLA is also required for reconsolidation of these memories

(Wells et al., 2013).

If a similarmanipulation could be performed in addicted individuals then the ability of drug paired

cues to promote relapse could be reduced, an invaluable therapeutic outcome. Research in human

subjects has attempted to prevent memory reconsolidation with the NMDA receptor antagonist

memantine, which has been used with some success in the disruption of ethanol-cue reconsolid-

ation in rats (Vengeliene et al., 2015). In Das et al. (2015a) individuals attempting to quit smoking

were administered this drug prior to a reactivation session consisting of exposure to smoking re-

lated cues, alongside being led to believe theywould have an opportunity to smoke, only to find out

this was not the case, in an attempt to generate PE. However, therewas no evidence thatmemantine

prevented memory reconsolidation with these parameters, since subjects reported similar levels of

craving regardless of drug administration prior tomemory reactivation (Das et al., 2015a). It should

be noted that whilst there is some indication memantine may be used to disrupt reconsolidation

(Vengeliene et al., 2015), this drug is used as a cognitive enhancer in Alzheimer’s disease (Reis-

berg et al., 2003) and has previously been shown to enhance reconsolidation (Samartgis et al., 2012);

the effects reported in Das et al. may have been the result of a failure of this drug to prevent this

process. Alternatively, the results may have been the result of a inability of the memory retrieval

session to result in reconsolidation, rather than the pharmacological tool used being unable to pre-

vent it. Determiningwhether a failure of drug treatment combinedwith a retrieval session to result
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in decreased subsequent memory expression is caused by a failure to induce reconsolidation or an

inability to prevent it presents one of the major hurdles for the field.

Since antagonism of β-adrenergic receptors has also shown to be effective in preclinical research

(Milton et al., 2008b; Schramm et al., 2016) the use of these drugs to prevent reconsolidation in a clin-

ical population has been explored by Saladin et al. (2013). Cocaine addicts underwent a retrieval

session consisting of exposure to cocaine cues in the form of video and exposure to simulated co-

caine within the laboratory, either followed by a propranolol or placebo pill. The next day, the

ability of these same cues to elicit craving was tested. Whilst those administered propranolol did

show reduced craving in this test, in contrast to the long lasting effects reported in preclinical stud-

ies (Lee et al., 2006a; Monsey et al., 2017), these effects were short lasting and individuals in both

treatment groups showed similar levels of craving in a test conducted 1 week later (Saladin et al.,

2013).

Whilst preclinical studies have offered much promise in the prevention of reconsolidation with

pharmacological agents, only a very small number of studies published to date have investigated

whether similar memory processes can be disrupted in individuals suffering from drug addiction.

Those that have been conducted have been unable to capitalise on the progress made in the afore-

mentioned preclinical research. Research has also been conducted using memory retrieval trials

closely followed with further psychological interventions, rather than pharmacological treatment,

in attempts to reduce relapse. In Xue et al. (2012) heroin addicts were exposed to a video consist-

ing of cues paired with drug use, not dissimilar to that used by Saladin et al. (2013). Rather than

following this retrieval session with pharmacological intervention, however, participants under-

went a prolonged session of cue-exposure designed to result in extinction. Retrieval followed by

extinction resulted in a decreased craving and physiological responses to drug-paired stimuli for

at least half a year following the intervention in comparison to subjects that underwent an extinc-

tion trial alone or a retrieval trial followed by extinction 6h later, mirroring preclinical research of

retrieval-extinction procedures in aversive (Clem and Huganir, 2010; Monfils et al., 2009) and ap-

petitive (Sartor and Aston-Jones, 2014; Xue et al., 2012) tasks. A similar approach has been adopted

by Das et al. (2015b). Rather than following retrieval sessions with extinction, participants, who

were hazardous drinkers, were presented with alcohol paired cues alongside images and tastes de-

signed to trigger disgust in a counter-conditioning session following a retrieval session designed to

maximise PE. This treatment resulted in reduced liking and attentional bias toward alcohol paired

cues in comparison to control groups that either had similar pairings with non-alcohol associated

cues or underwent a reactivation session consisting of no PE. There was, however, no evidence
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that the retrieval trial followed by counter-conditioning resulted in a greater decrease in drink-

ing than the counter-conditioning procedure alone (Das et al., 2015b). Thus, whilst attempts to

modify memories with non-pharmacological reconsolidation based manipulations have been met

with some success (Xue et al., 2012), others have been met with mixed results (Das et al., 2015b).

These findings, combined with a paucity of research on the topic, warrants further investigation on

the phenomenon.

Food addiction

The prevalence of obesity is increasing (Flegal et al., 2016; Lobstein, 2015). Varying geographic-

ally, it is estimated that 38% of individuals in the United States of America (Flegal et al., 2016) and

48% individuals in Europe are overweight, 13% of whom are obese (Gallus et al., 2015). The res-

ulting costs are astronomical; approximately £5bn in the United Kingdom and $150bn in the USA

(Lobstein, 2015).

Inarguably an economic burden, whether obesity can be considered a psychological disorder re-

mains a topic of intense debate. The existence of symptoms similar to those observed in drug

addiction has been used as an argument for the former view. An extensive review on the topic

(Gearhardt et al., 2009a), comparing the (then) 7 criteria of substance dependence (a now obsolete

term) as determined by the DSM-IV-TR (APA, 2005) noted numerous similarities in the two beha-

viours, particularly in the loss of control and repeated failures to reduce intake, with less evidence

of tolerance andwithdrawal in food addiction. Such similarities have led to the development of the

Yale Food Addiction Scale, devised to assist of diagnosis of such eating patterns (Gearhardt et al.,

2009b).

Similarities in the neuro-architecture recruited by extensive habitual drug and food-seeking may

offer support for the notion that these two behaviours are both similarly reflective of a psycholo-

gical disorder. Whilst the direction of causality remains a matter for consideration, there is evid-

ence for distinct patterns of neural activation of the striatum in obese and non-obese individuals.

Presentation of food-paired stimuli results in increased dorsal striatal activation in obese women

vs. their lean counterparts (Rothemund et al., 2007), with some evidence suggesting this activity is

differentially dependent on the caloric value of the food (cue) presented (Stoeckel et al., 2008). Fur-

thermore, in accord with preclinical studies on rodents (Belin and Everitt, 2008), there is evidence

that obesity results in increased connectivity between the dorsal and ventral striatum. The rest-

ing state connectivity between these two regions can predict weight gain across a 12-week period
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(Contreras-Rodríguez et al., 2017), although it might be argued that increases in the connectivity

of these two regions upon exposure to food-paired cues might better demonstrate the potential

similarities between drug and food addiction.

Regardless of the neural structures required, the ability of food-paired cues to elicit craving is

widely accepted. Meta-analysis on the subject confirms this alongside a resultant increase in eating

behaviour, although therewas no evidence this relationshipwasmoderated by obesity (Boswell and

Kober, 2016). There is some evidence the psychological manner in which these cues varies in lean

and obese individuals. Attentional biases to foods, particularly those that are ’unhealthy’ (Calitri

et al., 2010) can predict increased body-mass index (Yokum et al., 2011). Furthermore, on present-

ation of food-paired cues restrained eaters show a more specific increase in craving for the food

paired with the cue presented, whilst unrestrained eaters show a more diffuse increase in craving

(Fedoroff et al., 2003).

A reduction in the impact of these cues to promote food-seeking clearly has potential for the treat-

ment of obesity. Research using reconsolidation based techniques to result in such a decrease

is extensive and mechanisms required in this process appear to be preserved between food and

drug reward memories. Blockade of reconsolidation with antagonism of NMDA receptors res-

ults in decreases in the ability of food-paired cues to support subsequent ANR (Lee and Everitt,

2008a), responses on a previously acquired instrumental behaviour (Flavell and Lee, 2013; Lee

and Everitt, 2008b), autoshaping and PIT (Lee and Everitt, 2008c). Treatment with propranolol

results in reactivation-dependent impairments in ANR similar to those observed in cocaine self-

administration (Milton et al., 2008b). There is, therefore, potential for the incorporation of recon-

solidation based treatments into therapeutic interventions for obesity.

Reconsolidation effects: lost in translation

Several psychological disorders lend themselves to possible interventions with reconsolidation

based treatments. Despite this, reports of successful interventions using this approach have been

limited; whilst attempts to integrate such treatments in the clinic have yielded some success (Brunet

et al., 2008; Kindt and Emmerik, 2016; Xue et al., 2012), in numerous other cases these have been un-

successful in resulting in long lasting decrease in craving (Das et al., 2013; Das et al., 2015a; Saladin

et al., 2013; Surís et al., 2013; Wood et al., 2015). As discussed above, retrieval sessions that result

in reconsolidation are difficult to detect, only typically evidenced by their induction to result in

susceptibility of the memory to amnestic agents. Combined with this, there are several conditions
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to be met in order for a retrieval trial to result in reconsolidation. Meeting these criteria will likely

be the most difficult hurdle to cross in the development of reconsolidation based treatments for

psychological disorders. In order to maximise the utility of preclinical research it must endeavour

to model the characteristics of memories underlying psychiatric disorders. This will enable clinical

research to anticipate any issues that may arise in the development of retrieval trials that result

in memory destabilisation. Here some of the possible issues that may arise in translating the pre-

clinical literature into treatments for the conditions outlined above are discussed, with a particular

focus on drug addiction.

Focus on pavlovian associations

The vastmajority of reconsolidation studies using self-administration procedures conducted to date

have focussed on pavlovian pairings formed during these sessions. Alongside these associations,

instrumental memories likely contribute to the maintenance of drug addiction (Everitt et al., 2001).

Despite this, instrumental memories, those associating responses and their outcomes (see Figure

1.6A), have received minimal attention in the literature. This is likely to be partly the result of a

series of studies by Hernandez et al. (2002) showing that nucleus accumbens infusions of aniso-

mycin immediately after instrumental training only result in impairments in later task perform-

ance if they occur after early sessions, with no effect reported if infusions occur in later stages of

training. It was therefore suggested that these responses undergo a consolidation phase early in

training, which was interrupted by the infusions of anisomycin. Once this consolidation phase was

complete, these data suggested the memory could not be reactivated and these memories do not

undergo reconsolidation.

Whilst many of the studies described in previous sections detailing disruption of reward-related

memories required animals to make an instrumental response in the test sessions, the decreases in

responding in these sessions occurred as a result of decreased ability of drug-paired cue to potenti-

ate or support this responding. When the CS is removed in test sessions groups respond similarly

(and at a lesser rate), regardless of treatment at reactivation (Flavell and Lee, 2013; Lee et al., 2006a).

Similarly, when the CS-US association is tested through the ability of the reward-paired stimulus

to support ANR, nosepoke responses that were originally paired with drug reinforcement (and are

nowwithout consequence) are unaffected by the administration of amnestic agents duringmemory

reactivation (Milton et al., 2008a).
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Instrumental associations can be represented by parallel psychological and neural systems, poten-

tially making disruptions of these memories problematic. It has been demonstrated that during

the early stages of instrumental training responding is primarily governed by direct associations

between the action and the reinforcer. The reliance of this responding upon these associations

can be demonstrated through outcome devaluation procedures (see Figure 1.6B and 1.6C). Early

studies have shown that after a relatively short period of training animals will decrease their re-

sponding in response to reinforcer devaluation (Adams, 1982; Adams and Dickinson, 1981; Colwill

and Rescorla, 1985). However, as training progresses, under certain conditions, animals’ respond-

ing becomes impervious to these devaluation protocols (Adams, 1982). This transition has been

described as the progression from responding that is goal-directed, primarily governed by action-

outcome (A-O) associations, to one that is habitual, now driven by associations between the envir-

onmental stimuli and the responses they have been associated with (S-R responding; Dickinson

and Balleine, 1993; Everitt et al., 2001; Wit and Dickinson, 2009).

The progression from A-O to S-R patterns of responding not only recruits distinct psychological

processes, but in parallel to the shifts in associative basis of responding is a change in the neural

structures responding is dependent upon. The dorsomedial striatum (DMS) appears to be par-

ticularly important for the acquisition and retrieval of A-O memories. Pre-training lesions of this

structure result in a loss in sensitivity of instrumental responding to devaluation (Yin et al., 2005b).

More detailed investigations of the specific role of this structure have shown that it is not only re-

quired for the learning of A-O associations (Yin et al., 2005a), but also their expression (Yin et al.,

2005b). In contrast, lesions of an adjacent structure, the dorsolateral striatum (DLS), appear to

result in an opposite pattern of behavioural deficits, restoring the ability of over-trained animals

to express instrumental responding that is sensitive to reinforcer devaluation protocols (Yin et al.,

2004).

Double-dissociations in the neural representations of A-O and S-R associations are found in sev-

eral other brain regions. For example, whilst the prelimbic (PL) cortex appears to be required for

goal-directed behaviour, the infralimbic (IL) cortex is required for habitual responding (Coutureau

and Killcross, 2003; Coutureau et al., 2009; Killcross and Coutureau, 2003). Lesions of the mediod-

orsal thalamus also result in impairments in the ability of animals to use A-O based associations to

guide responding (Corbit et al., 2003). Finally, whilst the BLA has a demonstrable role in the expres-

sion of A-O associations, lesions of the anterior CEN results in an impairment in habit formation

(Lingawi and Balleine, 2012). The regions associated with goal-directed and habitual responding

likely function in unison via cortico-striatal loops to regulate these two forms of responding. For
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example, disconnecting the CEN and DLS with contralateral lesions of these two structures results

in deficits in habitual responding akin to bilateral lesions to each of these structures (Lingawi and

Balleine, 2012).

The existence of parallel neural structures underlying instrumental associations may pose issues

for investigations attempting to disrupt the reconsolidation of these memories. In several of the

studies discussed above, lesions of the structures involved in A-O or S-R responding have no net

effect on response rates; behavioural deficits are only apparent when tests designed to specifically

probe the ability of the animal to recall the association between the instrumental response and its

outcome are used. Given that none of the studies discussed previously on the topic of instrumental

reconsolidation included tests of this nature, it is possible that the attempts to prevent reconsolida-

tion of these memories led to similar deficits. Specifically, the lack of retrieval-dependent amnestic

effects in these studies may have been the result of the use of under sufficiently sensitive tests of the

instrumental memory. Reconsolidation of A-O or S-R memories may have been disrupted in these

studies but the absence of specific tasks designed to probe these associations may have precluded

detection of these effects.
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Figure 1.6: Tasks used to study instrumental memories in rodents. In each case, the left hand box shows
the procedure used in training and the right used at test. Green arrows represent instrumental responding.
A: Instrumental responding. Note that reward-delivery is not paired with CS presentation. B: Excessive
pre-feeding of the reinforcer used in pre-training can be used to probe the ability of animals to retrieve the
association between an instrumental action and its reinforcer C: Pairing the reinforcer used in training with
sickness can act as a similar test. The syringe symbol represents an injection of lithium chloride, resulting in
gastric malaise. D: Venn diagram showing the suggested memory mechanisms tested with this task.
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Despite the apparent difficulties in disrupting instrumental memory reconsolidation, a small num-

ber studies on this topic have been published without the addition of reinforcer devaluation pro-

tocols. Barak et al. (2013) report that reconsolidation of an alcohol self-administration memory can

be disrupted by treatment with the mTOR inhibitor rapamycin, either systemically or directly into

the CEN. Treatment with this drug results in substantial decreases in alcohol seeking behaviour in

later tests when combined with a reactivation session consisting of execution of the once rewarded

operant response and the delivery of non-pharmacologically active dose of alcohol at the start of

the session (no other alcohol was delivered). Unlike previous studies, the delivery of alcohol in

these sessions was not paired with response contingent presentation of any stimuli, suggesting the

deficits were the result of impaired instrumental, rather than pavlovian reconsolidation. However,

the effects of rapamycin did not appear to depend upon execution of the instrumental response, as

would be expected if this were the case, but rather delivery of alcohol in the reactivation session.

Access to a similar dose of alcohol used in the operant reactivation sessions in the home cage resul-

ted in reactivation-dependent effect of rapamycinwhich, unlike the retrieval sessions that consisted

of instrumental responding, resulted in a deficit in subsequent alcohol seeking so pronounced that

animals no longer distinguished between the levers that did, and did not, previously yield rein-

forcement (Barak et al., 2013).

One possibility is that associations between the context and the reinforcer were disrupted in the

Barak et al. (2013) study, rather than the instrumental associations. In this study there was a forced

abstinence period between alcohol self-administration and the reactivation session (often and con-

tentiously termed incubation). It has been suggested that these periods of forced abstinence promote

the ability of reward-associated cues to potentiate responding, without affecting responding in the

absence of these cues (Grimm et al., 2001). It is possible, therefore, that this period of abstinence

between training and test increased the ability of the reward-associated cues, most likely contextual

(given that no discrete cues were paired with reward), to influence responding, and the differences

seen in responding were the results of disruptions of pavlovian memories between the context and

reward, rather than instrumental associations. Indeed, it is notable that activation of the mTORC1

pathway was localised to the CEN, a region associated with these CS incubation effects (Funk et al.,

2006; Li et al., 2015; Lu et al., 2005). It is also perhaps worth noting that it was not explored whether

the rapamycin treatment resulted in a conditioned taste aversion (CTA) to alcohol. Previous studies

using intra-cranial infusions of anisomycin have shown that such reinforcer devaluation effects can

lead to a decrease in responding apparently unrelated to protein synthesis inhibiting properties of

this compound (Jonkman and Everitt, 2009; Jonkman and Everitt, 2011). Given that the apparently
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amnestic effect in the Barak et al. study was determined by exposure to the reinforcer it is possible

these results were similarly caused by the generation of a CTA.

Tedesco et al. (2014b) have further investigated instrumental memory reconsolidation. After 10d

of nicotine self-administration followed by a 14d period of abstinence animals underwent a react-

ivation session consisting of 20 lever presses in the absence of primary reinforcement. Either 30

minutes before or immediately following this session animals received injections of the NMDA

receptor antagonist MK-801. Post, but not pre-reactivation treatment with this drug resulted in a

decrease in responding in a test session conducted the next day. Whilst the decrease in responding

from non-reactivated controls was relatively small, and perhaps aided by the ability of the react-

ivation session to increase responding, and MK-801 to prevent this effect, this paper did appear

to show disruption of reconsolidation of an instrumental memory. The potential for the decreases

in responding being caused by disruptions of context-reward associations were appropriately con-

trolled for with the inclusion of groups exposed to the context without the levers present (Tedesco

et al., 2014b).

Only two papers published to date have acknowledged the potential issue of parallel representation

A-O and S-R representations of instrumental memories. A series of studies conducted by Exton-

McGuinness et al. have demonstrated that reconsolidation of both A-O and S-R memories can take

place in retrieval sessions consisting of a shift from a predictable fixed ratio (FR) schedule of re-

inforcement to an unpredictable, variable ratio (VR) schedule. For example, in animals trained to

respond for a food reinforcer to an extent where respondingwas primarily governed byA-O associ-

ations, shifting from an FR1 schedule of reinforcement to a VR5 schedule results in reconsolidation

that is susceptible to pre-treatment with NMDA receptor antagonism (Exton-McGuinness and Lee,

2015). When animals were given extensive training, now resulting in the dependence of respond-

ing on S-R associations, whilst a shift to VR5 schedule of reinforcement was no longer sufficient

to result in destabilisation, reactivation sessions conducted under a VR20 schedule of reinforce-

ment resulted in reconsolidation of these memories (Exton-McGuinness et al., 2014). Interestingly,

in each case, reactivation sessions conducted in extinction were insufficient to labilise A-O or S-R

memories. However these experiments did not include tests of reinforcer devaluation, raising the

possibility that these reactivation sessions resulted in A-O or S-R specific memory deficits. Altern-

atively, these retrieval sessions (that were of a shorter duration than the VR20 reactivation sessions)

may have not resulted in sufficient PE to trigger reconsolidation mechanisms. Indeed, for habitual
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memories an FR20 reactivation was insufficient to trigger reconsolidation, suggesting that the un-

predictable nature of the VR20 sessions was responsible for the destabilisation of the instrumental

trace (Exton-McGuinness et al., 2014).

It is important to acknowledge that whilst habitual responding can become divorced from the value

of reinforcer it produces (Dickinson and Balleine, 1993; Everitt et al., 2001; Wit andDickinson, 2009),

S-R memories are not necessarily insensitive to reward omission (PE). The key difference between

goal-directed and habitual associations is not whether the instrumental association is paired with

reinforcement (this is true for both A-O and S-R memories), but rather whether the response is

paired with a specific reinforcer. Only goal-directedmemories include an association between a re-

sponse and a specific reinforcer, whilst S-Rmemories pair instrumental actions with a non-specific,

reinforcing outcome. Animals responding habitually are able to reduce their responses in cases of

reward omission (Thrailkill and Bouton, 2015) or when instrumental responding leads to delivery

of an outcome that is no longer valued (Adams, 1982; Dickinson et al., 1983; Furlong et al., 2014) (in

contrast to when these tests are tested in the absence of a reinforcer). If habits were entirely insens-

itive to reward delivery animals would continue to respond in both of these cases. The sensitivity

of habitual memories to reinforcer omission is likely explained by their use of temporal difference

rules to guide behaviour (Daw et al., 2005, see Equation 1.1), which take into account the value of

the reinforcement obtained vs. what is expected, but do not include sensory-specific properties of

the outcome.

There is, therefore, a growing literature suggesting that instrumental memories do indeed recon-

solidate. However, in some cases this can be achieved with reactivation sessions conducted in

the absence of the reinforcer (Tedesco et al., 2014b), whilst in others these non-reinforced reactiva-

tion sessions are without effect (Exton-McGuinness and Lee, 2015; Exton-McGuinness et al., 2014).

While muchmore research is required to determine the fundamental principles that allow the gen-

eration of appropriate and sufficient PE for instrumental memories to destabilise, it appears that

inducing the destabilisation of these memories is a practical problem to be solved, rather than a

theoretical issue that cannot be overcome. Given that reinforcer delivery may not necessarily be

plausible in abstaining individuals (given this may induce reinstatement), and it appears that in

some cases it is possible to conduct reactivation sessions without reinforcer delivery, further at-

tempts should bemade to delineate the conditions that permit non-reinforced reactivation sessions

to trigger destabilisation of A-O and S-R instrumental memories.
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Research on the reconsolidation of pavlovian associationsmust also consider the extent of train-

ing

Whilst the extent of training affects psychological processes and neural structures underlying in-

strumental responding, the number of pairings that pavlovian associations have undergone should

also be a critical consideration for research investigating reconsolidation of these memories. In

pavlovian fear conditioning, which can be learned with a single CS-shock pairing, strong training

occurring as a result of 3 pairings results in a greater resistance of the memory to destabilisation

(Suzuki et al., 2004). Whilst in some cases this resistance to destabilisation can be overcome with

longer retrieval trials (Suzuki et al., 2004) this is not always effective (Wang et al., 2009). This has

led to the suggestion that memory strength may be a ’boundary condition’ of reconsolidation and

that particularly strong memories no longer reconsolidate.

In the drug self-administration literature, reconsolidation deficits have been observed with large

numbers of CS-drug pairings (typically 200-500; see Lee et al., 2006a; Milton et al., 2008a; Milton

et al., 2008b; Schramm et al., 2016; Théberge et al., 2010). However, it is not clear how to compare

the strength of a memory induced by a single CS-shock pairing and that of a single CS-drug pair-

ing formed during self-administration. Whilst it is possible that the extent of training for these

appetitive memories has less of an impact on memory destabilisation than for fear memories, it

is also possible that appetitive training procedures have not yet reached sufficient numbers of CS-

reinforcer pairings to observe the boundary conditions of reconsolidation that have been reported

in the fear literature. Furthermore, whilst 200-500 pairings is a vast improvement on conditioned

place preference studies, which typically involve 4-8 drug exposures, this is still significantly lower

than the number of pairings that those addicted to drugs are suggested to have undergone through-

out their lifetime. It has been estimated that a smoker of two years will have undergone 146,000

such pairings (Das et al., 2015a), almost 300 times greater than the upper limits of the preclinical

studies conducted to date. This incongruence between the preclinical studies and the disorder they

are attempting to model may hinder extrapolation of these studies to the human population and

may explain why attempts to do so have been met with limited success (Das et al., 2015a; Saladin

et al., 2013).

The extent of training may not only pose issues as a result of the boundary conditions arising from

the increased strength of memories, but also the recruitment of distinct neural and psychological

processes as drug use becomes prolonged. The neural basis of reward cue-potentiated responding
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differs as a function of the extent of training, likely reflective of a similar transition from goal-

directed to habitual drug seeking as is seen in instrumental responding. The shift in the reliance

upon distinct striatal circuitry throughout the course of instrumental training is mirrored in a very

similar fashion in the brain circuitry underlying response contingent CS-presentation potentiated

responding. Local infusion of the dopaminergic receptor antagonist α-flupenthixol into the DMS, a

region implicated in goal-directed instrumental responding, results in decreases in cue-dependent

cocaine-seeking after relatively short periods of training whilst this procedure is without behavi-

oural effect after extensive training (Murray et al., 2012). In contrast, infusion ofα-flupenthixol to the

DLS, the adjacent structure implicated in S-R associations results in dramatic decreases in respond-

ing governed by response contingent cues after protracted periods of cocaine self-administration

(Belin and Everitt, 2008; Murray et al., 2012; Vanderschuren et al., 2005). This treatment has no

impact on responding after limited self-administration training (Murray et al., 2012). A similar

double disassociation exists between the different subregions within the amygdala: inactivation of

the BLA, but not the CEN results in reduced cue-dependent cocaine-seeking after relatively short

periods of cocaine access, whilst inactivation of the CEN, but not BLA results in deficits in decreases

in well-established cocaine-seeking (Murray et al., 2015).

The distinct neural and psychological processes underlying responding at different points in train-

ing has important implications for the research conducted to date investigating the reconsolida-

tion of cocaine-paired memories. It is the responding that occurs after extended periods of drug

self-administration that is hypothesised to characterise drug addiction (Everitt and Robbins, 2005;

Everitt and Robbins, 2016) – if reconsolidation based treatments are to be of therapeutic value it

is the cues that result in S-R responding that must be targeted. As mentioned previously, the ma-

jority of studies in cue-cocaine memory reconsolidation conducted to date have involved animals

that have received 200-500 pairings during training which is approximately equivalent to the early-

stage of cocaine-seeking discussed above. Whether CS-drug associations underlying responding

governed by S-R memories reconsolidate is unclear.

It is likely that the neural structures underlying the reconsolidation of these S-R associations are

different from those that have been implicated in reconsolidation of CS-drug associations after re-

latively few days of training. Whilst the majority of studies on CS-drug memory reconsolidation

conducted to date have focused on the BLA (e.g. Lee et al., 2005b; Sanchez et al., 2010; Wells et al.,

2013), as discussed above, after extended periods of cocaine-seeking inactivation of this structure

is without effect, with this responding now dependent upon the CEN (Murray et al., 2015). It is

possible that the shift in dependence in responding on these two regions of the amygdala results
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in a resistance to destabilisation or recruitment of distinct plasticity mechanisms in mediating this

process. The distribution of GluN2A and GluN2B receptor subtypes, which have been shown to

have distinct roles in fear memory destabilisation (Milton et al., 2013), differ between the BLA and

CEN. Cell firing occurring as a result of NMDA receptor stimulation is more susceptible to GluN2B

selective antagonism within the CEN than the BLA (Sah and De Armentia, 2003). Given that the

ability of broad spectrum NMDA receptor antagonists to prevent reconsolidation is hypothesised

to depend upon the balance of GluN2A and GluN2B subunit activation (Milton et al., 2013), the

shift in dependence from the BLA to the CEN may result in a resistance to destabilisation and/or

efficacy of these compounds to prevent reconsolidation.

It is important to acknowledge that, as mentioned previously, despite the hypothesised reliance

of drug seeking behaviour in human addicts on these habitual patterns of behaviour (Everitt and

Robbins, 2005; Everitt and Robbins, 2016; Everitt et al., 2001) and the possible issues that may arise

when attempting to target these memories, there has been some success in reconsolidation based

treatments in heroin addicted individuals (Xue et al., 2012). This perhaps suggests that the bound-

ary conditions arising from the high number of pairings and habitual response patterns need not

be of concern. However, there is little merit in conducting preclinical research if these studies do

not truly reflect the disorder they are trying to model.

The Xue et al. (2012) study is one of only very few conducted to date able to demonstrate long-lasting

decreases in cue-reactivity as a result of the use reconsolidation based treatments; other studies

have only been able to demonstrate a transient decrease in cue-induced craving (Saladin et al., 2013).

There is a great deal more investigation to be conducted before reconsolidation based treatments

are universally adopted. Furthermore, whilst the reliance of retrieval-extinction procedures on

reconsolidation based mechanisms was once assumed, several investigations have challenged this

notion. For example, the order inwhich the retrieval and extinction sessions are conducted does not

appear to influence the ability of the extinction sessions to result in decreased relapse like behaviour

(Millan et al., 2013). One possible reason that the Xue et al. paper was not hindered by boundary

conditions in drug addicts is that the retrieval-extinction effects do not depend on reconsolidation,

and thus the efficacy of these procedures is not affected by memory strength in the same way.

Reconsolidation effects are not always replicable

If reconsolidation based treatments are to provide a plausible therapeutic intervention it is cru-

cial that the experimental data upon which they are based upon are robust and replicable. If the
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conditions that trigger reconsolidation of memories cannot be replicated in the highly controlled

conditions of laboratory studies (in both animal and human research) there is little hope for the use

of similar interventions in individuals suffering with neuropsychiatric disorders. The nature of the

associations underlying these conditions is likely to be wide and varied, with patients presenting

with maladaptive memories of varying ages, strength and conditions of retrieval that result in suf-

ficient PE to result in destabilisation. However, studies from different laboratories have reported

differences in the boundary conditions required to trigger reconsolidation and different pharmaco-

logical requirements to prevent reconsolidation. There are a small number of cases of experiments

apparently being conducted in very similar ways, in some cases in the same laboratory, yielding

different results (Bos et al., 2014; Kindt et al., 2009).

There are several examples of studies reporting that some memories do not reconsolidate, only

for later works to be conducted presenting evidence that they do. For example, as discussed above

Hernandez et al. (2002) suggest that instrumentalmemories do not reconsolidate, only for a series of

studies to be produced adecade later showing thesememories can undergodestabilisation and sub-

sequent reconsolidation (Barak et al., 2013; Exton-McGuinness and Lee, 2015; Exton-McGuinness

et al., 2014; Tedesco et al., 2014b). Similarly, it was suggested that inhibitory avoidance memor-

ies do not reconsolidate (Cammarota et al., 2004), but more recent research shown that they do

(Fukushima et al., 2014). Finally, whilst initial reports suggested that goal-tracking memories do

not reconsolidate (Blaiss and Janak, 2007), a recent thorough investigation on the topic suggests

that through careful manipulation of the training parameters this process can indeed be disrupted

(Reichelt and Lee, 2013a). However, these studies do not preclude the use of reconsolidation based

treatments for psychiatric disorders. The differences are most likely the result of the early studies

failing to satisfy the conditions of retrieval required to result in reconsolidation of these memories,

rather than an inherent inconsistency in whether they can reconsolidate. Nonetheless, the issues of

retrieval sessions not resulting in memory destabilisation remains a significant issue for the field.

What may pose more of an issue to the potential application of reconsolidation based treatments to

the clinic is the apparent differing requirements in the ability of pharmacological agents to prevent

reconsolidation. There have been varied reports of the efficacy of β-adrenergic receptor antagonism

to prevent this process. These results have been eloquently described as being the result of the use

of different methods to assess the reinforcing properties of a reward-paired CS; only memories that

are dependent on learning mechanisms within BLA (Burns et al., 1993; Cardinal et al., 2002; Hall

et al., 2001b; Parkinson et al., 2000) undergo reconsolidation that is susceptible to propranolol treat-

ment (Lee and Everitt, 2008a). However, recent investigations by Dunbar and Taylor (2016) have
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shown that this drug is also unable to prevent reconsolidationwhen thememory is testedwith cue-

induced reinstatement of responding, a procedure that is dependent upon the BLA (McLaughlin

and See, 2003). Whilst it is possible that these results are reflective of an insufficient understanding

of the role of the noradrenergic system in reconsolidation, it is also possible they are indicative of

the potential inconsistencies in reconsolidation research. Whilst Tedesco et al. (2014b) report that

pre, and not post-reactivation treatment with MK-801, is effective at preventing reconsolidation of

an instrumental memory, Exton-McGuinness et al. (2014) and Exton-McGuinness and Lee (2015)

report that pre-reactivation administration of MK-801 is able to prevent reconsolidation of these

memories. These differences may be the result of the differing parameters used for reactivation

(non-reinforced vs. reinforced) or the reward used in training (nicotine vs. cocaine and sucrose).

However, the apparent differences in training and the resultant shifts in the timing of NMDA re-

ceptor dependence mean that it is not entirely clear when the best time point to administer these

drugs would be in a clinical setting.

Perhaps most problematic, however, are cases where reconsolidation blockade has been reported

with a specified reactivation and pharmacological treatment and subsequent investigations have

failed to replicate these effects. A series of studies from the Kindt group have reported that fear

memories generated in the laboratory can undergo reconsolidation that is susceptible to treatment

with the β-adrenergic receptor antagonist propranolol (e.g. Kindt et al., 2009; Sevenster et al., 2013;

Sevenster et al., 2014). However, in a recent study it was reported by the same group that des-

pite using similar training and retrieval conditions as previously used, propranolol was no longer

effective in this regard (Bos et al., 2014). Attempts to replicate the amnestic effect of propranolol

administered following reactivation carried out by researchers outside of this group have also been

unsuccessful (Thome et al., 2016), although it is worth noting that Kindt and colleagues have since

once again been able to disrupt reconsolidationwith this drug (e.g. Soeter andKindt, 2015b). Hard-

wicke et al. (2016) have also reported difficulties in replicating reconsolidation experiments. In 2003

a now seminal study was published by Walker et al. showing that memories underlying a sequen-

tial finger tapping motor task undergo a period of lability following their reactivation that permits

interference by new learning. However, extensive recent attempts to replicate this effect have been

unsuccessful (Hardwicke et al., 2016). The tendency to not publish failed studies (Coursol andWag-

ner, 1986; Dickersin, 1990; Ioannidis, 2005, although see Das et al., 2013) likely means that these

studies are just the tip of the iceberg with regard to failed replications of reconsolidation research.

Whilst the inability to replicate original studies successfully demonstrating reconsolidation of these

memories does not negate the original findings, it is important that future studies do not assume

47



CHAPTER 1. GENERAL INTRODUCTION

any previous effects will be replicated. Only those findings that are sufficiently robust such that

they can be replicated between laboratories and experimenters are likely to be of use in informing

future therapeutic interventions.

Aims of this thesis

There were 3 core aims of this thesis.

Firstly, instrumental reconsolidation was investigated and attempts were made to characterise this

process. Specifically, the possibility of disrupting one of the parallel memory traces that under-

pin these memories was explored, using test sessions that enable any differences in the ability of

A-O and S-R memories to reconsolidate to be detected. Few investigations to date have explored

the possibility these memories may reconsolidate in parallel. A better knowledge of the updating

mechanisms underlying these memories may be informative in the treatment of disorders hypo-

thesised to be characterised by an over-reliance on habitual instrumental memories.

Secondly, the propensity of an appetitive pavlovianmemory to reconsolidate after both limited and

extended trainingwas investigated. Whilst the impact of extent of training has received some atten-

tion in purely pavlovian protocols, few studies have investigated this for memories formed during

drug self-administration. Given that associations underlying drug addiction have been formed

over a prolonged period of time, an improved understanding of the ability of the memories formed

during longer periods of self-administration (resulting in many CS-US associations) to destabilise

will provide invaluable insight into treatments for drug addiction encompassing reconsolidation

blockade.

Finally, the specific psychological requirements for fear-memory destabilisation to take place and

the pharmacological treatments that can prevent reconsolidation of these associations were ex-

plored. A better understanding of these processeswill not only inform treatments for psychological

disorders typified by aversivememories, but also lead to a better understanding of the requirements

for reconsolidation of other types of memory to take place.

Because of the potential issues with replication of reconsolidation effects, positive control experi-

ments were always included. This ensured that when training and reactivation parameters were

modified from previous reports, the potential loss of the ability of a memory to destabilise could

be attributed to these manipulations, rather than a failed replication.

48



Chapter 2: General methods

Subjects and housing

All subjects were male Lister-Hooded rats (Charles River, Bicester, UK), housed in groups of 4 on

arrival and for the duration of experiments that did not require surgical procedures. Animals were

housed singly after intravenous surgery or in pairs after intracranial surgery. Animals were housed

in a reverse cycle vivarium (lights off at 0700). Food and water were provided ad libitum except

where stated.

All experimental procedures were conducted in accordance with the Animals and Scientific Pro-

cedures Act (1986) and EU Directive 2010/63/EU for animal experiments under project license

70/7548 and personal license number IDD9CA2FC.

Surgery

Anaesthesia

In cases where injectable anaesthesia was used animals were maintained at a surgical plane of

anaesthesia using a ketamine (33mgkg−1; Ketaset: Fort Dodge Animal Health, Fort Dodge, IA)

and xylazine (66mgkg−1; Rompun: Bayer, Leverkusen, Germany) cocktail administered via the

intramuscular (im) route. If required, animals were given an additional injection of ketamine

(10mg, intraperitoneally (ip)) during surgery.

In cases where gas anaesthesia was used this was maintained with inhalation of isoflurane (IsoFlo,

Zoetis, London, UK) mixed with 100% oxygen. Induction was achieved with inhalation of 5% iso-

flurane andmaintained at 2-3%, dependent upon the animals’ breathing rate. At the end of surgery

animals were maintained on 100% oxygen until muscle tone was restored and then transferred to

a recovery cabinet.
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Intravenous catheterisation

Catheterswere obtained fromCamCaths (Cambridge, UK) and consisted of a stainless steel cannula

within a plastic sheath surrounded by nylon mesh attached to silastic tubing. A plastic bobble was

used to secure the catheter in place and the tubing was cut 32mm after this bobble.

Once anaesthetised, an incision was made between the shoulder blades and the right intravenous

vein exposed. The catheter tubing was then threaded through the two incisions, such that the

port was exposed on the back. The end of the tubing was inserted into the vein and secured in

place with suture line (5-0 Mersilk) around the plastic bobble. Both incisions were secured with

suture line (5-0/3-0 Mersilk for the front/back) and the animal was left in a recovery cabinet until

consciousness was fully regained. Animals were administered oral Baytril (5ml in 500ml drinking

water; Bayer Plc, Newbury, UK) for 1d pre and 6d post-surgery. Animals were given at least 7 days

to recover before testing began. Catheters were flushed daily with 0.1-0.2ml of heparanized saline

40 units ml−1 to ensure and maintain patency.

Intra-BLA cannulation

Immediately following induction of anaesthesia animalswere administered the analgesic carprofen

(5mgkg−1 subcutaneous (sc); Rimadyl, Pfizer, Kent, UK). Once anaesthetised, animals were placed

into the stereotaxic frame (Kopf Instruments), the skull exposed and Epicaine (Dechra Ltd., Stoke-

on-Trent, UK) applied to the surgical area. Dorsal-ventral (D-V) measurements were taken for

lambda and bregma and a flat skull ensured. 4 jeweller’s screws were implanted into the skull,

and burr holes drilled at -2.6mm anterior-posterior (A-P) and±4.5mmmedial-lateral (M-L). Guide

cannulae (22 gauge, Plastics One) were lowered into the skull via these holes -3.6mm fromdura and

secured in place with dental cement (Simplex Rapid, Kemdent, Swindon, UK). Obturators (Plastics

One, 28G) were inserted into guide cannulae to ensure patency. The surgical wound was sutured

(5-0 Mersilk) and the animal placed in a recovery cabinet until consciousness was fully regained.

Animals were given at least 7 days to recover before behavioural procedures begun.
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Drugs

Systemically administered compounds

(5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate

(MK-801) was purchased from Abcam (Cambridge, UK) or Sigma-Aldrich (Dorset, UK), di-

luted in sterile saline (0.9%) and administered ip at a dose of 0.1mgkg−1. Details of timing of

drug administration are provided in individual chapters. This dose of MK-801 has previously

shown to be effective at disrupting reconsolidation of pavlovian aversive (Lee et al., 2006b) and

appetitive (Lee and Everitt, 2008a; Milton et al., 2008a) associations and instrumental memories

(Exton-McGuinness et al., 2014).

Lithium chloride (LiCl) (Sigma-Aldrich)was administered ip at a concentration of 0.15M in double-

distilled water at a volume of 10ml kg−1 immediately after reinforcer exposure. This was on the

lower end of doses previously used to result in a conditioned taste aversion (CTA) (e.g. Tran-Tu-Yen

et al., 2009).

(±)-3-(2-Carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) was purchased from Sigma-

Aldrich, diluted in sterile saline and administered ip at a dose of 10mgkg−1 60 minutes before

reactivation sessions. This dose of CPP has previously been shown to result in deficits in the con-

solidation of spatial memories acquired in the Morris water maze (McDonald et al., 2005) and ex-

tinction learning (Santini et al., 2001) in rats. This drug has previously been used to prevent recon-

solidation in mice (Suzuki et al., 2004).

Rapamycin (LCLabs,MA,USA)was first diluted into a stock solution of 50mgml−1 in 100% ethanol

and stored at −80 ◦C. The morning of the experiment the solution was brought to room temperat-

ure and diluted such that the final vehicle contained 5% ethanol, 4% Peg400 and 4% Tween80, in

double distilled water (Blundell et al., 2008; Fifield et al., 2015; Stoica et al., 2011). Injections were

administered at a volume of 8mLkg−1 and at a dose of 20mgkg−1, which has previously been used

to prevent reconsolidation of ethanol-paired memories (Barak et al., 2013).

Intravenously administered compounds

Cocaine (MacFarlan Smith, Edinburgh, UK) was diluted in sterile saline to a concentration of

2.5mgmL−1 and the solution microfiltered before use. Fresh cocaine solution was made weekly.
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Intracranially administered compounds

Anisomycin (Sigma-Aldrich)was dissolvedwith hydrochloric acid, pHbalanced to 7.4with sodium

hydroxide. The drug was then brought to a final concentration of 125µgml−1 with phosphate buf-

fered saline (PBS). Aliquots were stored at −80 ◦C and brought to room temperature on the day of

the experiment. Anisomycin was infused at a dose of 62.5µg side−1 in accord with prior studies

preventing reconsolidation (Nader et al., 2000).

Injection procedure

Animals that would receive injections ip received a single habituation injection, during which an-

imals rarely showed any signs of distress (sonic vocalisation/ body movement in response to the

injection).

Infusion procedure

At least 2h after training sessions animals underwent a mock infusion procedure. Obturators were

removed and guide cannulae and replacedwith infusion cannulae (28 gauge, 8mm long, projection:

4mm, Plastics One). Animals were then gently restrained for 3.5 min, the injector removed and

obturators replaced. For infusions the protocol was similar, except 30s after the injectors had been

inserted, anisomycin solution or PBS was infused at a rate of 0.25µLmin−1. Injectors were left in

place for a further minute before the obturators were replaced and the animal returned to the home

cage.

Histological assessment of cannula placements

At the end of the experiment animals were killed using a rising concentration of carbon dioxide,

brains extracted and placed in 4% paraformaldehyde (PFA) solution for at least 48h. Brains were

then transferred into a 30% sucrose solution for at least 48h. Brains were sliced on a cryostat at

50µm, stained with cresyl violet and cannulae tip locations determined under light microscopy.

Only animals with cannulae tips located within the basolateral amygdala (BLA) (Paxinos andWat-

son, 1998) are included in the analysis.
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Apparatus

Appetitive experiments

All appetitive experiments took place in Med Associates conditioning chambers (dims: 29.5 x 32.5

x 23.5cm; St Albans, Vermont) conditioning controlled byWhiskerControl (Version 4, Cardinal and

Aitken, 2010). The top and two of the sides of these boxes were Perspex, whilst the remaining

sides consisted of stainless steel panelling. A houselight (2.8W) was located on one side of the

chamber. On the opposite side levers (7cm from the floor) could be presented on the left and/or

right hand side of one of the stainless steel sides. Cue-lights (2.5W) were located directly above

the levers. Between the levers was a food receptacle that was adapted accordingly, depending on

the reinforcer used in the specific experiment. In cases where a liquid reinforcer was used this was

delivered via lengths of polythene tubing (1.02mm ID, Portex, Smiths Medical, Kent, UK) into a

liquid dispenser comprising of two wells, only one of which was ever used. Where food pellets

were used as a reinforcer these were delivered into the magazine via a pellet dispenser. In cocaine

self-administration experiments animals were attached to an intravenous tether, allowing solutions

to be infused into the catheter whilst the animal was free to move around in the box. Silastic tubing

(0.5mm ID, Altec, Durham, UK) was attached to the catheter, protected with a spring sheath and

attached a swivel located at the top of the operant chamber. The tubing was attached to a pump

(Med Associates), located on the outside of the sound attenuating chamber. Boxes were cleaned

with high level laboratory disinfectant (Distel, Tristel, Snailwell, UK).

Food reinforcers

In Chapter 3 reinforcers were either a sucrose-lemon (20% sucrose (w/v; Tate & Lyle, London,

UK), 10% lemon squash (v/v; Robinson’s, Britvic, Hemel Hempstead, UK)) or maltodextrin-apple

& pear (20% maltodextrin (w/v myprotein.co.uk); 10% apple and pear squash (v/v; Robinson’s))

solution. In Chapter 4 the reinforcer was always the sucrose-lemon solution. Before training began

animals were habituated to each of these reinforcers in half an hour sessions for 4 (Chapter 3) or 2d

(Chapter 4).

In the food experiments of Chapter 6 the reinforcer was delivery of chocolate-flavoured reward

pellets (AIN-76A, TestDiet, IN, USA).
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Fear experiments

Animals in fear experiments were trained in Paul Fray operant chambers (dims: 28 x 28 x 22 cm;

Cambridge, UK) located inside sound attenuating shells illuminated by a 1.2W white houselight.

Boxes were controlled by WhiskerControl (Version 2, Cardinal and Aitken, 2010). Boxes were

equipped with grid floors connected to a shock generator.

In some cases, animals were used in both fear and appetitive experiments. The chambers used in

the fear experiments are distinct in size, shape, distance between, and direction of bars of the grid

floor, door opening direction than the boxes used in the appetitive experiments. These boxes were

also cleaned with a different solution (70% ethanol).

Behavioural procedures

Instrumental memory reconsolidation experiments

Before training animals were food restricted and fed 20g a day of standard laboratory rat chow

(SDS, Witham, UK) thereafter.

Training

In Chapters 3 and 4 animals were trained as follows. At the beginning of each session was a two-

minute prequel period, where the houselight was illuminated, but the levers were not presented.

This period was introduced in an attempt to ensure that animals attended to the environmental

stimuli making up the context prior to training, extinction and test sessions in Chapter 3. For con-

sistency this habituationwasmaintained in Chapter 4. After completion of this period a single lever

was presented on the right or left hand side of the magazine (counterbalanced). Reinforcers were

delivered on a fixed ratio (FR)1 schedule of reinforcement for the first three days, followed by two

days of variable interval (VI)30s. This training procedure was based on similar protocols that have

previously been used to result in responding that is sensitive to devaluation with sensory-specific

satiety (Nelson and Killcross, 2006). The reinforcer was delivered in 0.1ml aliquots, over approxim-

ately 5s. When the reinforcer was delivered no discrete cues were presented, aside from the faint

sound of the activation of the pump, located on top of the sound-attenuating shell of the operant

chamber. All sessions ended after 62 minutes or when 30 reinforcers had been earned, whichever
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came first. Rats that failed to earn at least 20 reinforcers in the final VI30s sessions were excluded

from the experiment.

Reactivation sessions

These varied between experiments. Details are provided in the accompanying methods of each

chapter.

Reinforcer devaluation

These protocols were only used where training was conducted in the absence of discrete cues.

Sensory-specific satiety

Animals were first placed in the devaluation contexts for 1h, where either the reinforcer used in

training or the alternative reinforcer was presented in a spout directly above the magazine.

Pairing with lithium chloride

Sessions began with exposure to the reinforcer used in training in a drinking cage for half an hour,

immediately followed by all animals in the Paired group receiving an injection of LiCl. The next day

animals were placed in the same cages, for the same duration, but without the reinforcer present.

Immediately after these sessions animals in the Unpaired groupwere injected with LiCl. This cycle

was repeated over the next two days (see Figure 2.1A).

Where reinforcer devaluation session took place in the operant chamber the sucrose solution was

delivered non-contingently on a variable time (VT)30s schedule for 15minutes, with the houselight

on. Levers were never presented during these sessions. Immediately following the conclusion of

this session, animals in the Paired group were given injections of LiCl. The next day, animals were

exposed to the operant chamber for the same amount of time as before, but without the reinforcer

present. After this session animals in the Unpaired groupwere injected with LiCl (see Figure 2.1B).

55



CHAPTER 2. GENERAL METHODS

Drinking cage
Sucrose

Drinking cage Drinking cage
Sucrose

Drinking cage

Paired: LiCl

Unpaired: LiCl

Paired: LiCl

Unpaired: LiClUnpaired: LiCl

1d 1d 1d

A

Operant box
Sucrose

Operant box

Paired: LiCl

Unpaired: LiClUnpaired: LiCl

1d

B

Figure 2.1: Conditioned taste aversion procedure. A: Schematic of procedure
where devaluation only took place in drinking cages. Animals received injections
of LiCl after exposure to either sucrose solution in a drinking cage (Paired group)
or the drinking cage alone (Unpaired group). B: Schematic of procedure where
devaluation took place in operant chambers. After undergoing the same proced-
ures as in A, animals underwent 2 additional days of sucrose-LiCl pairings, except
in this case the sucrose was delivered in the operant box, via the magazine that
delivered the reinforcer during training.

Test sessions

All instrumental memory test sessions were conducted in the absence of the reinforcer. Further

details of the test sessions are provided in the accompanying methods of each chapter.

Cocaine self-administration experiments

Before training animals were food restricted and fed 20g a day of standard laboratory rat chow

(SDS) thereafter.

Training

Sessions began with illumination of the houselight and insertion of 2 levers, one of which was des-

ignated the active lever (side counterbalanced). Initially, each active lever press (i.e. FR1) resulted

in activation of the pump for 5.63s (delivering 0.25mg of cocaine in 0.1ml of saline), and the house-

light turning off, both levers retracting and presentation of a light conditioned stimulus (CS) for

20s. Responding on the inactive lever had no consequence, but was recorded as a general measure

of locomotor activity. Sessions ended after 2 hours or when 30 reinforcements had been earned,

whichever came first.
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In experiments where a second-order schedule of reinforcement was introduced animals were ini-

tially trained on an FR1 schedule of reinforcement, as above. Fixed interval (FI) schedules of rein-

forcement were then introduced in the following order: FI1(min), FI2, FI4, FI8, FI10 (1d each) before

stabilising for three days at FI15. All sessions ended after 2 hours or when 30 reinforcements had

been earned.

In second-order training sessions animals continued to respond on an FI15 schedule of reinforce-

ment, except that superimposed on top of this was a FR10:S schedule, whereby each 10th lever

press was reinforced with a 1s CS presentation (this schedule is referred to as FI15(FR10:S)). Both

the FI15 and the FR10:S schedule had to be completed in order to earn a cocaine infusion (Arroyo

et al., 1998; Everitt and Robbins, 2000). These second-order sessions ended after 5 reinforcements

had been earned or 2 hours had passed, whichever came first.

Reactivation sessions

Details of reactivation procedures are provided in the individual methods sections.

Test sessions

Animals that had been trained on FR1 schedules of reinforcement were tested in a relapse procedure

(Lee et al., 2006a; Milton et al., 2008a; Murray et al., 2012). Active lever presses during hour long

these sessions resulted in a brief (1s) presentation of the cocaine paired stimulus but had no other

consequences. Additional test sessions of specific experiments are described in themethods section

of the accompanying chapter.

Animals that had been trained on FI or second-order schedules of reinforcement were tested under

a FI15(FR10:S) schedule of reinforcement (including reinforcer delivery after completion of the first

interval).

Food second-order experiments

Experiments were conducted in a similar fashion to the cocaine self-administration experiments us-

ing second-order schedules of reinforcement as above. Before training animals were food restricted

and fed 18-20g a day of standard laboratory rat chow (SDS) thereafter.
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Training

Animals first underwent two sessions of magazine training. During these 30-minute sessions a

single pellet was delivered alongside illumination of the CS light and de-illumination of the house-

light for 20s. Pellets were delivered on a VT60s schedule. Instrumental training began the following

day. In these sessions two levers were presented, responses on one of which resulted in chocolate

pellet delivery on the given schedule of reinforcement. As inmagazine training, reinforcer delivery

was paired with illumination of the CS light and de-illumination of the houselight. The levers also

retracted during CS presentation. Following this an FI schedule of reinforcement was introduced,

progressing through FI1 (min), 2, 4, 6, 8, 10 and stabilising for FI15 for a final three days. As the

interval increased, so did the number of pellets delivered, with a total of 20 pellets being delivered

in the FI15 sessions. All sessions finished after 120 minutes or when 40 pellets had been earned,

whichever came first. Procedures were adapted from Giuliano et al. (2012).

Followingpre-training sessions a second-order schedule of reinforcementwas introduced: a second

FR schedule was superimposed on top of the FI15 schedule, such that each 10th lever press resulted

in a brief (1s) presentation of the CS (FI15(FR10:S)).

Reactivation sessions

Details of reactivation procedures are provided in the individual methods sections.

Test sessions

Animals underwent two test sessions, the first of which was conducted the day after the (final)

reactivation session. Test sessions were conducted exactly as the second-order training sessions,

with the pellets being delivered into the magazine at the end of each interval.

Fear experiments

Training

Animals were first habituated to the operant chambers in 2h sessions. The next day animals were

exposed the same box for a further 25 minutes, after which time the CS was presented (clicker,

10Hz, 80 dB or illumination of a CS light and simultaneous extinction of the houselight, both 60s)
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which co-terminated with a single footshock (0.5s, 0.5mA). After a 5-minute inter-shock interval

(ISI) the CSwas again presented, co-terminatingwith a shock. After a further 5minutes the session

ended, the houselight was extinguished and the animal removed from the chamber. The training

procedure is presented in schematic form in Figure 2.2. In cases where a single CS-unconditioned

stimulus (US) pairing was presented the session ended after the first ISI. Protocols were adapted

from Merlo et al. (2014).

Habituation
25 min

CS presentation
10Hz, 80 dB

60s

Shock
0.5mA
0.5s

ISI
5 min

CS presentation
10Hz, 80 dB

60s

Shock
0.5mA
0.5s

Habituation
5 min

Figure 2.2: Schematic of the auditory fear training procedure.

Test and reactivation sessions

For reactivation and test sessions the CS was presented for 60s after a 1-minute habituation period,

with the session terminating 1 minute after presentation of the CS.

Scoring

Freezing behaviour was defined as the absence of movement in the except for breathing and was

scoredmanually offline, with the observer blind to the drug treatment. The total time spent freezing

was scored (and converted into a percentage) during all CS presentations in the training session.

Freezing behaviour in the reactivation and test sessions was scored during the minute before CS

presentation and during the 1-minute CS.

Statistical analysis

In appetitive experiments sessions frequently endedwhen themaximumnumber of reinforcements

had been earned, rather than when the time limit had elapsed. Because of this, reporting total

number of lever presses made in training sessions, particularly those conducted in an FR1 schedule

of reinforcement, provides little insight into actual response rates. Responses in training sessions

have therefore been transformed to responses per minute (RPM).

Analysis of all experimental data was achieved using analyses of variance (ANOVAs) or t-tests.

Variableswere coded as between-subjects orwithin-subjects as appropriate. In cases of a significant

interaction between two factors the effect of the first factor was examined in each of the conditions
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of the second. In cases of a three-way interaction, the existence of the interaction upon separate

analyses of the first and second factors was analysed in the each of the separate conditions of the

third. In some cases, where there was a hypothesis to suggest that there should be a differential

effect between groups, separate analyses of the different treatment conditions were carried out

(Cardinal and Aitken, 2013).

If analysis required comparison of only two conditions this was achieved with t-tests (two-tailed;

paired or unpaired, as appropriate). If Levene’s test of equality of variance was significant for

unpaired t-tests equal variances were not assumed. In cases where there aremore than 2 conditions

(between or within-subjects) the Šídák correction for multiple comparisons has been applied.

In cases where Mauchly’s test of sphericity was significant the Huynh-Feldt (H-F) correction was

used when the sum of H-F and Greenhouse-Geisser (G-G) epsilons was greater than 1.5 and G-G

used where it was not (Cardinal and Aitken, 2013). In cases where the degrees of freedom have

been adjusted this is represented in the text by reporting these values to one decimal point.

Power analysiswas conductedwithG*Power (V3.0, Faul et al., 2007). In caseswhere achieved power

was approximated from the graphs of published reports thiswas carried out using Inkscape’smeas-

urement tool (V0.91). For analysis of experimental data the required and achieved power was cal-

culated for a significant t-test for what was deemed the most important comparison, without a

correction for multiple comparisons applied. This approach overestimates the power obtained, but

underestimates the number of subjects required to obtain sufficient power. Given that this ana-

lysis was typically conducted in order to ascertain whether a null result was due to low power this

approach was deemed most appropriate.

For all the analyses described above α was 0.05.
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Chapter 3: Investigations in context-induced renewal: effects of NMDA

receptor antagonism at memory reactivation on subsequent

goal-directed responding

Introduction

The storage and retrieval of memories is an essential function for everyday life. Early theories sug-

gested that memories undergo a period of vulnerability, or lability, just following their formation,

termed consolidation. Following this initial period, the consolidation account suggests that memor-

ies remain stable indefinitely (McGaugh, 1966; McGaugh, 2000). This view has recently been chal-

lenged, with evidence suggesting that memories undergo further transient periods of vulnerability

and are reconsolidated following their recall (Nader et al., 2000; Przybyslawski and Sara, 1997).

Initially investigated in aversive memories, it is becoming increasingly apparent that appetitive

memories undergo a similar period of lability following their reactivation.

Infusion of zif-268 antisense oligodeoxynucleotides (ASOs) in the basolateral amygdala (BLA) fol-

lowing reactivation of a pavlovian association between adrug and adiscrete stimulus results in defi-

cits in the subsequent rewarding properties of the conditioned stimulus (CS) (Lee et al., 2005b; Lee et

al., 2006a). Reconsolidation of these CS-drugmemories can also be prevented by systemic adminis-

tration of β-adrenergic (Milton et al., 2008b; Schramm et al., 2016) orN-methyl-D-aspartate (NMDA)

receptor (Milton et al., 2008a) antagonists. The reconsolidation of food-paired memories is simil-

arly dependent on the activation of β-adrenergic and NMDA receptors (e.g. Lee and Everitt, 2008a;

Milton et al., 2008b). The ability to disrupt such associations has been suggested to be a poten-

tial future treatment avenue for conditions hypothesised to be maintained by presentation of these

reward-paired cues, most notably drug addiction (Everitt, 2014; Milton and Everitt, 2012) and per-

haps obesity (Epstein and Wrotniak, 2010; Reichelt and Lee, 2013b).
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Alongside discrete stimuli, contextual cues associated with reward also contribute towards re-

sponding and are hypothesised to be a major factor in promoting relapse in abstinent individu-

als (Fuchs et al., 2008). Whilst associations of this nature are often investigated with conditioned-

place preference studies (but see Ito et al., 2002), these tasks bear little resemblance to drug addic-

tion, where drug-delivery is determined by an individual’s behaviour and involves many pairings

between the context and reinforcer, two characteristics absent from conditioned-place preference

protocols. Partly with this in mind, research has investigated the potential role of contextual stim-

uli to promote relapse-like behaviour using the phenomenon of context-induced renewal (CIR).

Here, returning animals to a context in which self-administration has previously taken place after

a period of instrumental extinction in a second context results in increased responding. The asso-

ciations underlying this renewed responding have been shown to undergo reconsolidation that is

dependent upon protein synthesis in the BLA, but not dorsolateral striatum (DLS) or dorsal hip-

pocampus, although activation of this latter structure is required for reconsolidation of these asso-

ciations (Fuchs et al., 2009; Ramirez et al., 2009). Further investigations into the specific molecular

requirements of reconsolidation underlying renewed responding have revealed it to be dependent

upon extracellular signal-regulated kinase (ERK) (Wells et al., 2013) and protein kinase A (PKA)

within the BLA (Arguello et al., 2014).

The majority of reconsolidation studies published to date have investigated responding after train-

ing that would be expected to result in responding that is goal-directed. However, the resulting

effects on the expression of these action-outcome (A-O) associations has received little, if any, at-

tention in the literature. This is despite an expanding body of evidence demonstrating these two

types of memories are subserved by distinct cortico-striatal circuitries. Whilst the dorsomedial

striatum (DMS) and prelimbic (PL) cortex are required for goal-directed responding, the DLS and

infralimbic (IL) cortex are required for stimulus-response (S-R) memory expression (Coutureau

and Killcross, 2003; Killcross and Coutureau, 2003; Yin et al., 2006; Yin et al., 2005b). The parallel

circuitries recruited by these different types of instrumental responding raise the possibility that

disruptions of reconsolidation could selectively target A-O or S-R memories.

The lack of research on the effects of disrupting reconsolidation onA-O and S-R processes is primar-

ily because research on pavlovian, rather than instrumental, associations has dominated the field.

For example, responding in tests of conditioned reinforcement is inherently instrumental – an an-

imals’ behaviour impacts upon the presentation of the reward-paired cue. However, responding

governed by reward-paired cues does not appear to undergo a transition from being sensitive, to

insensitive to devaluation. Whilst lever-pressing that results in the delivery of a food-paired cue is
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not decreased by pairing of the associated food with lithium chloride (LiCl) (Parkinson et al., 2005),

food cup approaches elicited by presentation of the CS do (Morrison et al., 2015). This has led to

the suggestion that the susceptibility of responses to pavlovian stimuli depends upon the proxim-

ity of the response to consumption of the reinforcer (Galarce et al., 2007) rather than the extent of

training. This makes investigation of the effects of disruption A-O and S-R associations in tasks of

this nature difficult to investigate.

In contrast, responding that occurs in CIR has been shown to undergo a transition from being goal-

directed to habitual. Responses of this nature are susceptible to devaluation after limited (Cohen-

Hatton and Honey, 2013) but not extended training (Thrailkill and Bouton, 2015). CIR can be ob-

served under conditions inwhich the pavlovian conditioning histories of the training and extinction

contexts are equated (Cohen-Hatton andHoney, 2013; Todd, 2013) or similar (Nakajima et al., 2002)

and extensive experience of the renewal context in the absence of a reinforcer without the oppor-

tunity to make a response does not affect the magnitude of the renewal effect (Bouton et al., 2011).

These data, alongside others, suggest that CIR is reflective of context-dependent instrumental re-

sponse patterns, rather than pavlovian associations akin to those seen in conditioned-reinforcement

tasks.

Whilst much debated, themost parsimonious explanation of the renewal effect is that this occurs as

a result of the loss of inhibitory instrumental associations that have been formedwith the extinction

context (Todd et al., 2014). This explains, for example, how renewal can occur when training, ex-

tinction and test sessions are conducted in distinct contexts (ABC renewal; Bouton et al., 2011) – the

loss of the inhibitory associations formed in B when placed in C result in an increased responding.

Responding in CIR not only undergoes a transition between being sensitive to being insensitive to

devaluation (Thrailkill and Bouton, 2015) but is also susceptible to disruptions of reconsolidation

(e.g. Fuchs et al., 2009). The experiments in this chapter therefore sought to investigate how dis-

rupting reconsolidation of memories resulting in renewed responding affect the underlying goal-

directed associations.

One possibility, rather than using CIR as a tool to characterise instrumental memory reconsolid-

ation, would be to investigate context-independent responses. Several recent investigations have

demonstrated that these memories undergo reconsolidation (Exton-McGuinness and Lee, 2015;

Exton-McGuinness et al., 2014; Tedesco et al., 2014b). However, there appears to be some degree of

inconsistency in when amnestic agents need to be administered in order to prevent instrumental
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memory reconsolidation. Some reports suggest that NMDA receptor antagonists need be admin-

istered before reactivation sessions (Exton-McGuinness and Lee, 2015; Exton-McGuinness et al.,

2014), whilst others suggesting this treatment is ineffective and only drug-administration follow-

ing reactivation can prevent reconsolidation of these memories (Tedesco et al., 2014b). Research

from Exton-McGuinness et al. has also suggested that reinforcer delivery is required in order to

destabilise these memories (see also Barak et al., 2013), whilst this is not the case when tests of CIR

are used (e.g. Fuchs et al., 2009). Retrieval sessions that result in memory reconsolidation in the

absence of reinforcer delivery are likely to be of maximal clinical utility. Retrieval sessions that res-

ult in memory reconsolidation without the requirement for reinforcer delivery are likely to be of

maximal clinical utility.

The ability to useA-O associations to guide responding can be assessedwith reinforcer devaluation,

typically achieved through pairing of the reinforcer with sickness or excessive pre-feeding before

responding is assessed (e.g. Adams, 1982; Balleine andDickinson, 1998). Owing to difficulties in the

use of similar techniques in animals self-administering intravenously delivered psychostimulants,

demonstrating such devaluation effects for drug-seeking has been problematic. Previous studies

have used oral cocaine delivery and subsequently devalued this reinforcer in order to investigate the

extent that cocaine taking is goal-directed throughpairing of the cocaine solutionwith LiCl induced

malaise and subsequent instrumental memory tests (Miles et al., 2003). However, the large number

of groups required for these experiments to demonstrate that responding is motivated by delivery

of cocaine and not the additional sucrose and flavourings added to the cocaine solution, combined

with the necessary between-subjects design for LiCl devaluation make this approach infeasible

for reconsolidation experiments. With this in mind, a food reinforcer was used in the experiments

described herein. Whilst pairing reinforcerswith lithium-chloride induced nausea results in a near-

permanent aversion, reinforcer devaluation with sensory-specific satiety is temporary. The use

of this latter technique therefore permits the use of a within-subjects devaluation procedure and

the continued use of subjects following reinforcer devaluation and was therefore adopted for the

experiments described in this chapter.

Once responding in CIR was shown to be sensitive to devaluation after limited training, an ex-

periment was conducted to investigate the reconsolidation of associations underlying expression

of goal-directed CIR using the NMDA receptor antagonist MK-801. This drug was chosen on its

ability to prevent memory reconsolidation in aversive (e.g. Lee et al., 2006b) and pavlovian appet-

itive memories (e.g. Lee and Everitt, 2008a). Prior investigations have also shown this drug to be

effective at preventing instrumental memory reconsolidation (Exton-McGuinness and Lee, 2015;
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Exton-McGuinness et al., 2014). It has not previously been investigated whether reconsolidation of

memories underlying CIR requires NMDA receptor activation (although see Wouda et al., 2010).

To summarise the above, experiments in this chapter investigated context-induced renewal in an-

imals trained to respond for a food reinforcer. It was first investigated whether these responses

are goal-directed after limited periods of training (Experiment 1). This was assessed with sensory-

specific satiety, a manipulation that should result in a decrease in goal-directed, but not habitual

responding. Following this, the dependence of the reconsolidation of the memories underlying

these responses on NMDA receptor activation was investigated (Experiment 2). These results not

only provide insight into the associative structure underlying responding inCIR, but also how these

responses are reconsolidated and how disrupting this process might specifically affect A-O or S-R

associations. A better understanding of the mnemonic processes underlying these two types of re-

sponding may provide insight into future treatments for psychiatric disorders characterised by an

imbalance between these two associations.

Methods

Summary

In Experiment 1 animals were trained to lever press in operant conditioning chambers. The re-

sponse was then extinguished in a novel context across 4 days. Over the course of the following 2

days the reinforcer used in training and a similarly preferred reinforcer was devalued before test

sessions, either conducted in the training or extinction context. This allowed a between-subjects

comparison of whether CIR was occurring, and a within-subject comparison to determine whether

this responding was sensitive to reinforcer devaluation.

Experiment 2 was conducted as Experiment 1, except that a 5-minute memory reactivation session,

conducted in the absence of the reinforcer, was interposed between the training and extinction

phases. Before this session one third of the animals were injected with the NMDA receptor antag-

onist MK-801 in order to investigate how this treatment affects the subsequent expression of goal-

directed CIR, with the prediction that this may prevent reconsolidation of the memory, leading to

a decrease in responding during the test session.

Procedures were conducted as in General methods except where stated.

65



CHAPTER 3. INVESTIGATIONS IN CONTEXT-INDUCED RENEWAL

Subjects

Subjects were 48 male lister-hooded rats weighing 220-370g at the beginning of experiments. The

day before reinforcer habituation animals were food-restricted and fed 20g of rat chow at the end

of each day."

Apparatus

Chambersweremodified so as to form 3 separate contexts (see Table 3.1). Contexts 1, 2 and 3 served

as training, extinction and devaluation contexts in a counterbalanced fashion.

Context Floor Walls Auditory
1 Acrylic Polkadot Continuous tone (2.5kHz, 74dB)
2 Mesh Clear Metronome (120BPM, 65dB,)
3 Grid Stripes 2s beeping (1kHz, 66dB) / 2s white noise (66dB)

Table 3.1: Additional contextual cues used for boxes in this chapter.

Behavioural procedures

Training

Animals were trained to lever press for either a sucrose-lemon or maltodextrin-apple & pear solu-

tion. Before training began all animals were individually habituated to both reinforcers for 30

minutes per reinforcer over 4d in order to reduce neophobia to the solutions in the training and

sensory-specific satiety sessions.

Following habituation to the reinforcers animals were trained to lever press for either the sucrose or

maltodextrin solution. Reinforcers were delivered on a fixed ratio (FR)1 schedule of reinforcement

for the first three days, followed by two days of variable interval (VI)30s.

Approximately two hours after the two VI30s sessions animals were habituated to a third context,

whichwould later serve as a devaluation context. No levers were ever presented in this context, but

a spout containing either the reinforcer used in training or the alternative reinforcer was presented

directly above the magazine. These sessions were 30 minutes in duration and were conducted to

habituate the animals to the devaluation procedure, context and reinforcers.
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Reactivation: Experiment 2

Reactivation sessions were conducted the day after the conclusion of training and were a total of 7

minutes in duration. For these sessions the lever was presented two minutes after illumination of

the houselight and lever presses resulted in the activation of the pump on the same VI30s schedule

as in training, but no reinforcers were delivered. 30 minutes before this session 8 animals were

injected with MK-801 (0.1mgkg−1, Sigma-Aldrich, UK, intraperitoneally (ip)) and the remaining

animals were injected with a vehicle solution (saline, 0.9%).

Extinction

Extinction sessions were conducted the day after the conclusion of training (Experiment 1) or the

reactivation session (Experiment 2). These took place in a different operant chamber from that used

in training and was configured to form a distinct context (see Table 3.1). As in training, sessions

begun with a 2-minute prequel period and following this a lever was presented on the same side

as used in training. Responding was without consequence and sessions ended after 122 minutes.

Test

Test sessions were conducted the day after the final extinction sessions. Animals were first given

the opportunity to consume either the reinforcer used in training or an alternative reinforcer for 1h.

Approximately 5 minutes after the conclusion of this session, animals were either returned to their

training or extinction contexts, where the lever was presented for 5 minutes. During test sessions

responses were recorded but were without consequence. The next day the test was repeated in

the same fashion, except the opposite reinforcer to that used in the first test was devalued (order

counterbalanced). For Experiment 1 there were two groups in these sessions – one group of rats

were always tested in the training context, whilst the second were always tested in the extinction

context.

In Experiment 2 animals given vehicle injections at reactivation were split in a similar fashion as

in Experiment 1 but all animals given MK-801 were tested in the training context. Because this

test failed to reveal any significant differences, several further tests were conducted. First, animals

underwent 2 test sessions in the training and extinction context on consecutive days (order counter-

balanced) without having undergone reinforcer devaluation beforehand. These were 122 minutes
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in duration and were conducted without the reinforcer present. Animals then underwent 2 re-

training sessions (in the training context) and two further devaluation tests, each in the training

context but were otherwise conducted as before. Between each of these devaluation tests was a

single reacquisition session. All reinforced sessions were rewarded on a VI30s schedule.

Statistical analysis

Results from test sessions in Experiment 1 were analysed with a mixed-design analysis of vari-

ance (ANOVA), with Devaluation (Training and Alternative reinforcer) as a within-subjects factor

and Context (Training or Extinction) as a between-subjects factor. Data from the first test session

from Experiment 2 were analysed in a similar way, except the between-subjects factor was Group,

which comprised of 3 conditions; the within-subject effect of Devaluation was analysed as before.

For the analysis of subsequent test sessions animals were grouped only according to their drug-

treatment at reactivation as a between-subjects factor (Drug) with the within-subjects factors from

these tests coded accordingly (Context for the 2nd test and Devaluation for the 3rd). Responses

during training are presented as responses per minute (RPM) whilst reactivation sessions are re-

ported as total number of lever presses. This is in order to facilitate comparison of data between

this and subsequent chapters.

Results

Experiment 1: Context induced renewal is goal-directed after limited-training

Test

Experiment 1 investigatedwhether responding CIRwas sensitive to devaluation after limited train-

ing (see Figure 3.1A).

After limited-training animals showed a renewal effect – those returned to the extinction context

made fewer responses than those returned to the training context. This renewed responding was

sensitive to the current value of the reinforcer used in training (Figure 3.1B). These results were

indicated by a main effect of Context (F1,17 = 22.36, p< .001), Devaluation (F1,17 = 19.06, p< .001)

and a significant interaction between these factors (F1,17 = 13.65, p= .002). Further analysis of this

effect revealed that animals decreased responding in response to devaluation in the training, but

not extinction context (Figure 3.1B).
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Training
3d FR1
2d VI30s

Extinction
No reinforcers

4d

Devaluation:
Training
reinforcer

Test

Test

Devaluation:
Alternative
reinforcer

Test

Test

or or
1d 1d 1d

A

B

Figure 3.1: Context-induced renewal is goal-directed after limited-training. A: An-
imals were trained for 5d in one context, followed by extinction in a second. Anim-
als were then returned to either the training or extinction context after devaluation
of either the reinforcer used in training or a alternative reinforcer. See text for de-
tails. B: Results of the test sessions. Animals respond more in the training context
than the extinction context. Renewed responding is sensitive to devaluation of the
reinforcer used in training. Bars represent means +SEM. N=9/10. ** p<.01; ***
p<.001

Training and extinction

5 animals were excluded after failing to reach the training criterion. None of the differences occur-

ring between the groups could be explained by differential performance during training or extinc-

tion sessions. Prospective groupings did not affect the total number of responses made in the train-

ing sessions (F1,17 =2.01, p= .174) nor the rate of acquisition (Day*Group: F2.1,35.5 =1.37, p= .267;

Figure 3.2A). Prospective groups responded similarly in the extinction sessions (F1,17 = 0.27,

p= .870) and reduced responding similarly across days of extinction (Day*Group: F1.5,26.0 = 1.10,

p= .356; Figure 3.2B).
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A B

Figure 3.2: Training and extinction data from Experiment 1. A: Responding dur-
ing training. B: Responding during the extinction sessions. Legend refers to the
context animals would subsequently be tested in. Values represent means ±SEM.
N=9/10 per group.

Experiment 2: NMDA receptor antagonism at instrumental memory reactivation does not affect

renewal, but prevents expression of goal-directed responding

Test

Neither drug treatment, devaluation nor testing context had a significant effect on the level of re-

sponding in the test session (Figure 3.3). This was indicated by an absence of a main effect of Group

(F1,21 = 1.34, p= .284), no effect of Devaluation (F1,21< 0.00, p> .999) and no interaction between

these factors (F2,21=0.80, p= .464).

In order to further investigate the effect of contextual stimuli on responding in these animals they

underwent a second, longer, test in each context, without having undergone reinforcer devaluation

beforehand. Data from the two vehicle groups were pooled for this analysis. Animals responded

more in the training than the extinction context in this test (F1,22=14.38, p= .001), with the effect of

context not being affected by drug treatment at reactivation (Context*Drug: F1,22 = 1.45, p= .241;

Figure 3.3D).

After the second test, animals were retrained (in the training context) and underwent further de-

valuation sessions, as conducted before, except that all tests took place in the training context. Al-

though overall responses in this session were not affected by devaluation (F1,22 = 1.64, p = .214),

there was a trend towards differential devaluation effect, dependent on the drug given at reactiv-

ation (Drug*Reactivation: F1,22 = 3.27, p = .084). When analysed separately, it was revealed that
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whilst animals given vehicle at reactivation decreased their responding as a result of reinforcer de-

valuation (t15 = 2.44, p= .028), this was not true of animals administered with MK-801 (t7 = 0.43,

p= .678; Figure 3.3E).

MK-801 did not appear to prevent reconsolidation of the contextual associations underlying instru-

mental responding, as indicated by responding in a second test of context-induced renewal being

unaffected by drug-treatment at reactivation. NMDA receptor antagonism with MK-801 did, how-

ever, appear to prevent expression of goal-directed responding in a devaluation test after retraining.

Reactivation, training and extinction

The total number of responses made in the training sessions was not affected by prospective group-

ings (F1,21 = 0.34, p = .717), with all groups increasing lever pressing across training sessions

(F1.9,40.5 = 68.30, p < .001) equally (Day*Group: F3.9,40.5 = 0.61, p = .768; Figure 3.4A). The total

number of responses made in the reactivation session was not affected by the drug administered

prior to the session, nor the prospective context at test (main effect of Group: F2,21 =2.51, p= .106;

Figure 3.4B). Drug treatment or prospective groups also did not affect the total number of responses

made in the extinction sessions in the novel context (F1,21 = 0.51, p= .606), with all groups extin-

guishing (F3,63 =39.49, p<.001) at similar rate (Group*Session: F3,63 =0.70, p= .650; Figure 3.4C).

This suggested that the context-independent instrumental response was not affected by NMDA

receptor antagonism with MK-801 during memory retrieval.
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Figure 3.3: Effects of MK-801 at reactivation on renewal and expression of goal-
directed behaviour. A: Training, reactivation and testing protocol for Experiment
2. Results of ’Test’ are depicted in B. B: Combined testing of renewal and response
to reinforcer devaluation failed to reveal any significant effects of any treatment.
C: Additional tests conducted on animals for Experiment 2 after the initial test
sessions. The results of the first two renewal tests (the first two Test boxes in C)
are depicted in D whilst the results of the second devaluation (deval.) tests the
second two Test boxes in C) are depicted in E. D: Renewed responding without
prior devaluation was similar regardless of drug treatment at reactivation. E: Only
those animals treatedwith vehicle at reactivation reduce lever pressing in response
to reinforcer devaluationwhen tested after retraining. Bars representmeans +SEM.
N=8-16 per group. * p<.05 *, ** p<.01
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A B

C

Figure 3.4: Training, extinction and reactivation data from Experiment 2. A: Re-
sponding during training sessions. B: Responses made in the reactivation session.
C: Responsesmade in the extinction sessions. VEH/MK-801 refers to treatment an-
imals had received before memory reactivation and TRA/EXT the context would
subsequently be tested in. Values represent means ±/+SEM. N=8 per group.
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Discussion

Summary of results

Here it is reported that responding in context-induced renewal is susceptible to devaluation after

limited instrumental training. This resembles non-renewed free operant responding, which is ini-

tially governed by A-O associations and only after extended training does it become reliant upon

S-R associations and insensitive to devaluation.

NMDA receptor antagonism prior to reactivation of a goal-directed memory resulted in a specific

impairment in the use of the current outcome value to guide responding. This raised the possibility

the retrieval session had specifically reactivated the A-O part of the memory and NMDA receptor

antagonism prevented reconsolidation of this association, thus only leaving S-R associations to

maintain responding.

Relationship to previous work

The ability of rodents to encode and retrieve specific relationships between actions and outcomes,

whilst originally disputed (Tolman, 1933), is now relatively well-established (e.g. Adams and

Dickinson, 1981; Killcross and Coutureau, 2003; Nelson and Killcross, 2006; Yin et al., 2005a). Here

this finding was replicated, but for responding occurring after returning animals to their training

context after periods of extinction in a second environmental context.

The susceptibility of renewed responses to devaluation after limited training fulfilled the primary

aim of carrying out this experiment, to develop a protocol to investigate reconsolidation of memor-

ies underlying goal-directed responding. A second experiment investigated the reconsolidation of

thesememories with the inclusion of a reactivation session between the training and extinction ses-

sions. Subsequent levels of respondingwere apparently unaffected byNMDA receptor antagonism

in the extinction sessions in the novel context. The inability of a memory reactivation session con-

sisting of execution of an operant response to have no subsequent impact on responding is in accord

with previous studies of a similar nature in animals trained to an extent such that responding is

governed primarily by A-O associations (Exton-McGuinness and Lee, 2015).

Instrumental associations resulting in CIR have previously demonstrated to undergo reconsolida-

tion (e.g. Fuchs et al., 2009). With this in mind, alongside the possibility that the drug treatment

at reactivation had selectively targeted the A-O memory, animals underwent a test-session that
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Experiment 1 had previously demonstrated to simultaneously probe the ability to use A-O asso-

ciations to guide responses and the potential influences of contextual stimuli on responding. In

contrast to this initial experiment, however, there was no effect of reinforcer devaluation or context

in which the test session took place, raising the possibility that the reactivation session (which was

conducted in the absence of the reinforcer) resulted in similar inhibitory associations between the

extinction and training contexts. The absence of a renewal or devaluation effect in vehicle treated

animals precluded the assessment of whether NMDA receptor antagonism had resulted in a deficit

in either of these behaviours.

In a second renewal test, conducted without prior reinforcer devaluation, vehicle treated anim-

als responded more in the context that had been used in training. This renewed responding was

observed to a similar degree in animals treated with MK-801 prior to the reactivation session, sug-

gesting this treatment was unable to affect the reconsolidation of these responses. The previous

demonstrations that memories underlying responding of this nature can undergo reconsolidation

(Arguello et al., 2014; Fuchs et al., 2009; Wells et al., 2011; Wells et al., 2013) suggested that the failure

of this treatment to affect responding was either the result of an inability of NMDA receptor ant-

agonism to prevent reconsolidation, or that this process was not taking place. However, the results

of a final devaluation test appeared to rule out each of these possibilities.

After the CIR sessions animals were retrained and the ability to recall A-O associations was once

again assessed. Whilst animals treated with vehicle at reactivation showed intact goal-directed

responding, the responses of those treatedwithMK-801 were apparently insensitive to devaluation

of the reinforcer used in training. This raised the possibility that the retrieval session resulted in

the reactivation of the A-O part of the memory and NMDA receptor antagonism prevented the

reconsolidation of this trace.

This is not the first reported case whereby a reactivation session can result in a change to associ-

ative structure underlying responding. Exton-McGuinness et al. (2014) report that a reactivation

session consisting of a shift from a predictable to unpredictable schedule of reinforcement (FR1 to

variable ratio (VR)20) results in a restoration of susceptibility of responding to reinforcer devalu-

ation with LiCl. Somewhat counter-intuitively, treatment with MK-801 prior to these sessions had

no impact on this effect – responding was equally sensitive to reinforcer devaluation regardless

of drug treatment at reactivation. However, there was some evidence that MK-801 administration

before a reactivation session resulted in a reduced ability to detect a shift in instrumental contin-

gencies in this study, reflective of a loss of goal-directed control (see Hammond, 1980). It appears,
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therefore, that disruptions of instrumental memory reconsolidation can specifically target either

the A-O (Experiment 2) or S-R (Exton-McGuinness et al., 2014) part of the memory.

Disruptions of goal-directed responding can occur as a result of several manipulations such as pre-

training treatment with psychostimulants such as amphetamine (Nelson and Killcross, 2006) or

cocaine (Corbit et al., 2014). Inactivation of the DMS prior to retrieval (Yin et al., 2005a) or the PL

cortex during training (Tran-Tu-Yen et al., 2009) has similar effects. In contrast, inactivation of the

IL cortex (Coutureau and Killcross, 2003) or DLS (Yin et al., 2006) results in a restored sensitivity

to devaluation in responding that would otherwise be habitual. The present data suggest that

preventing memory reconsolidation of an A-O memory results in similar deficits, with animals

unable to retrieve specific associations between responses and the sensory-specific properties of

the reinforcer they are paired with, leaving only S-R memories to maintain responding.

Instrumental associations are not the only memories that are subserved by multiple representa-

tions in the brain. Pavlovian stimuli may influence responding either by a direct representation

of the sensory-specific properties of the reinforcer paired with the CS or the ability of the general

arousing properties of the stimulus to increase responding (Balleine and Killcross, 2006). The asso-

ciation between the CS and the reinforcer it is paired with can be probed with specific pavlovian-

instrumental transfer (PIT), whereby the ability of the CS to specifically promote instrumental re-

sponding on a lever that is paired with the same reinforcer as the CS is assessed; responding that

is reliant upon the BLA (Blundell et al., 2001; Corbit and Balleine, 2005). In contrast, the general

arousing properties of the CS can be measured with general PIT, which is reliant upon the central

nucleus of the amygdala (CEN) (Corbit and Balleine, 2005; Hall et al., 2001b; Holland and Galla-

gher, 2003). The reliance of acquisition of a new response (ANR) on the BLA1 (Burns et al., 1993)

and conditioned approach upon CEN (Cardinal et al., 2002; Hall et al., 2001b; Parkinson et al., 2000)

likely indicates that these types of responding rely upon the encoding of the specific and general

arousing properties of the CS, respectively.

The reconsolidation of general and specific associations between aCS and appetitive unconditioned

stimuli (USs) appears to depend upon distinct neurochemical systems. Reconsolidation of the gen-

eral motivational properties of the CS depends upon NMDA, but not β-adrenergic receptor ac-

tivation (Lee and Everitt, 2008c; Milton et al., 2012). These glutamatergic and noradrenergic sys-

tems both appear to be required for the reconsolidation of the sensory-specific properties of the
1The dependence of ANR on the BLA may also be parameter specific; this responding can be dichotomized into

general and specific forms, like PIT (Burke et al., 2008)
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CS (Milton et al., 2008b; Schramm et al., 2016). This raises the possibility that disrupting reconsol-

idation of pavlovian associations with the β-noradrenergic antagonist propranolol could result in

impaired specific PIT, but leave general PIT intact, an effect that would be similar to the present

results. No experiments conducted to date, however, have explored this possibility with the use of

a specific PIT test after reactivation.

It is important to consider some alternative explanations for the loss of goal-directed responding

in animals treated with MK-801 before the memory reactivation session other than a disruption

of reconsolidation of the A-O trace. It is possible that the effect of MK-801 was not due to a dis-

ruption of memory reconsolidation, but rather the result of the drug administration itself. It was

only possible to detect goal-directed responding in animals following retraining after the extinc-

tion training. One possibility was that these sessions led to the formation of habitual responding

exclusively in animals treated with MK-801.

Similar effects have previously been reported to occur as a result of psychostimulant administration

(Corbit et al., 2014; Nelson and Killcross, 2006) which, like MK-801 results in increases in striatal

dopamine release (Di Chiara and Imperato, 1988; Miller and Abercrombie, 1996). These increases

in dopamine (Nelson and Killcross, 2013) or possible modulation of glutamate homoeostasis (Cor-

bit et al., 2014) by MK-801 might have resulted in faster acquisition of habitual responding. How-

ever, the habit potentiating properties of psychostimulants have only been reportedwhen they have

been administered over multiple (6-7) days. Whether similar effects can be achieved with a single

drug-administration has not been explored. However, given that amphetamine appears to result in

much larger increases in striatal dopamine than MK-801 (Miller and Abercrombie, 1996) and these

effects likely result in the accelerated habit formation in amphetamine treated animals (Nelson and

Killcross, 2013), it is unlikely the present results are due to a similar effect. Inclusion of a group

that received MK-801 treatment, but did not undergo a reactivation session would have helped to

address this issue.

The failure of the animals treated with MK-801 to modify their response rates as a result of rein-

forcer devaluation may have been due to a generalisation of the decrease in drive occurring as a

result of reinforcer pre-exposure. Indeed, at least numerically, it appears that the response rates of

MK-801 treated animals more closely resemble those of vehicle treated group having undergone

devaluation of the reinforcer used in training. Employment of a post-devaluation consumption test

might have permitted the testing of this possibility. Alternatively, the use of a different reinforcer
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devaluation protocol, through pairings with LiCl might prevent the possible contribution of these

effects.

Implications for subsequent research

Given that the context-dependent responding was unaffected by pre-reactivation MK-801 sub-

sequent research further investigated the effect of this treatment to result in a specific impairment

in goal-directed responding without attempting to simultaneously test for CIR.
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Chapter 4: The effects of NMDA receptor antagonism during retrieval

of an instrumental memory

Introduction

The final experiment of Chapter 3 suggested that N-methyl-D-aspartate (NMDA) receptor antag-

onism prior to instrumental memory reactivation may have resulted in a selective deficit in the

retrieval of an action-outcome (A-O) association. The principal aim of the experiments described

in this chapter was to replicate and further explore this finding. If experiments could disrupt re-

consolidation of goal-directed memories, manifested as a selective deficit in the retrieval A-O as-

sociations, future works could attempt to disrupt stimulus-response (S-R) memories in a similar

fashion. Results of this nature would raise the possibility of implementing similar protocols in

the treatment of substance use disorder, hypothesised to be characterised by maladaptive habits

(Everitt and Robbins, 2005; Everitt and Robbins, 2016; Everitt et al., 2001), to restore goal-directed

control over drug-seeking.

The previous demonstration of NMDA receptor antagonism in combination with a reactivation

session to result in an insensitivity of responding to reinforcer devaluation was confounded by

the interposition of (re)training sessions between memory reactivation and the critical test session.

This raised the possibility that the effectswere the result of accelerated habit formation during these

sessions, rather than deficit in memory expression resulting from a disruption of reconsolidation.

Administration of drugs (in the absence of a reactivation session) prior to instrumental training has

previously been shown to accelerate habit formation (Corbit et al., 2014; Nelson and Killcross, 2006)

and it was possible the results were caused by a similar effect. Furthermore, the results of Chapter 3

may also have been the result of a more generalised decrease in drive in MK-801 treated animals. The use

reinforcer devaluation with lithium chloride (LiCl) in this chapter aimed to rule out this possibility.

The experiments described in this chapter therefore aimed to replicate and further characterise the

impairment occurring as a result of MK-801 treatment prior to reactivation without the possible
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confounds of training sessions following drug administration and a possible generalisation account of

the data obtained in the previous chapter. Since NMDA receptor antagonism had no effect on context-

induced renewal (CIR) all the training and test sessions in this chapter were conducted in the same

context.

It was not possible to replicate the A-O specific retrieval deficit occurring as a result of NMDA re-

ceptor antagonism prior to memory reactivation. In order for a retrieval session to result in recon-

solidation extensive evidence suggests thatmust be some degree of prediction error (PE) during the

reactivation session. In the previous chapter this was (apparently) achieved through the absence

of the expected reinforcer, in accord with previous studies (e.g. Fuchs et al., 2009; Lee et al., 2005b;

Nader et al., 2000). Whilst retrieval trials that violate learned expectancies with the unexpected

reinforcer delivery (Sevenster et al., 2013) or the introduction of a novel schedule of reinforcement

(Exton-McGuinness and Lee, 2015; Exton-McGuinness et al., 2014) can also result in memory re-

consolidation, the omission of an expected outcome may be a favourable reactivation session in

a therapeutic setting where delivery of an expected outcome may result in severe distress (in the

case of post-traumatic stress disorder (PTSD)) or have legal implications (in the case of drug addic-

tion). With these considerations taken into account all the reactivation sessions aimed to achieve

sufficient PE to result in memory destabilisation with the omission of the reinforcer delivered in

training.

Analysis of overall response rates in the test sessions of these experiments raised the possibility

that the reactivation sessions were resulting in extinction. As discussed above, the absence of a

predicted reinforcer is typically sufficient to result in memory destabilisation (e.g. Kindt et al., 2009;

Lee et al., 2005b; Nader et al., 2000). However, extensive experience of PEs results in the formation

of a novel memory inhibiting the original trace (Bouton, 2004; Pavlov, 1927). Administration of

amnestic agents in combination with short retrieval trials results in impairments in subsequent

retrieval in comparison to vehicle treated controls. In contrast, the same treatments combined with

prolonged retrieval sessions result increased memory expression in drug-treated groups, by virtue

of the fact these compounds prevent the extinction learning taking place (Alfei et al., 2015; Lee et

al., 2006b; Merlo et al., 2014; Suzuki et al., 2004). Retrieval trials that result in extinction do not,

therefore, typically engage reconsolidation.

Recent evidence suggests that a stage exists between reconsolidation and extinction, where neither

of these processes occurs, a period in which the memory is described as in ’limbo’ (Merlo et al.,
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2014). Administration of amnestic agents combined with these sessions has no impact on sub-

sequent memory expression, nor do the trials themselves. Whilst initially characterised in discrete

cued fear associations, subsequent reports have described in similar effects in contextual fear (Alfei

et al., 2015) and appetitive pavlovian memories (Flavell and Lee, 2013; Reichelt and Lee, 2013a). It

is possible that similar processes exist for the reconsolidation of instrumental memories; retrieval

trials have been previously reported for these associations that result in neither reconsolidation nor

extinction (Exton-McGuinness et al., 2014). Retrieval sessions that lead to reconsolidation must not

result in limbo or extinction processes. The following experiments attempted to determine such

parameters.

Methods

Summary

Animals were trained to lever press for a sucrose solution. After the conclusion of training they

were given the opportunity to respond on this lever in the absence of reinforcer delivery, a session

designed to reactivate the memory. The effects of NMDA receptor antagonism during this session

were assessedwith pre-reactivationMK-801 administration. In order to investigate the effects of this

treatment the integrity of the A-O association was assessed. The reinforcer was devalued through

pairings with LiCl, and animals’ ability to recall the association between the instrumental response

and the reinforcer tested (Experiments 1 & 2).

Owing to concerns that the reactivation session might be resulting in extinction, subsequent exper-

iments used shorter reactivation sessions consisting of 25 and 10 lever presses (Experiments 3 &

4, respectively) and assessed the effect of these sessions, alongside the preceding treatment with

MK-801, on subsequent responding. Animals in Experiment 5 were trained on a fixed ratio (FR)1

schedule of reinforcement throughout training and underwent a reactivation session consisting of

10 lever presses in order to investigate how the training schedule might affect the apparent rapid

extinction of instrumental memories.

Procedures were conducted as in General methods except where stated.
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Subjects

Subjects were 114 male Lister-Hooded rats weighing 310-375g at the start of experiments. The day

before reinforcer habituation animals were food-restricted and fed 20g of rat chow at the end of

each day.

Apparatus

All training took place in Med Associates operant chambers as described in General methods, with

all additional contextual cues from Chapter 3 removed.

Experiments 1 & 2

Training

Training for these experiments was as in General methods, with animals receiving 3 days of FR1

and 2 days of variable interval (VI)30s training, with sessions ending after 62 minutes or when 30

reinforcers had been earned.

Reactivation

Reactivation consisted of a 7-minute session beginning with a 2-minute prequel period, as in train-

ing, followed by 5 minutes’ access to the lever used during training. Responses on this lever were

without consequence. At the end of the session animals were removed from operant chambers

and returned to home cages. 30 minutes before these sessions animals were either administered

MK-801 or its vehicle.

Devaluation and test

Animals in Experiment 1 underwent devaluation sessions involving exposure to the reinforcer in

drinking cages, followed by injections of LiCl, as described in General methods. Following reinfor-

cer devaluation in the drinking cages animals in Experiment 1 underwent a test session the next

day, which was identical to reactivation session. Because this did not result in a significant devalu-

ation effect, animals in Experiment 2 underwent further devaluation sessions within the operant

chamber. This was to ensure the devaluation transferred from the drinking cages to the operant
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chamber (Kosaki and Dickinson, 2010). The memory was then tested the next day, in the same way

as Experiment 1.

Experiments 3 & 4

Training

Training was conducted as described in Experiments 1 & 2.

Reactivation and test

A proportion (12/24 in Experiment 3, 12/18 in Experiment 4) of the animals underwent reactiv-

ation sessions consisting of either 25 (Experiment 3) or 10 (Experiment 4) lever presses. Animals

had 5 minutes to carry out the appropriate number of responses. The time limit was enforced as

previous experiments demonstrated that a 5-minute reactivation did not lead to reconsolidation.

30 minutes before the reactivation session animals were injected with either MK-801 or its vehicle.

Non-reactivated controls received injections and were returned to the home cage for the rest of the

day.

In the test session the lever was presented for 15 minutes and responding was recorded, but was

without consequence.

Experiment 5

Training

Unlike the previous experiments animals were maintained on an FR1 schedule of reinforcement

for the entirety of the 5 days of training, but otherwise training parameters remained the same as

in previous experiments.

Reactivation and test

Both of these sessions were conducted in Experiment 4.
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Statistical analysis

Analysis was conducted as described in General methods. In experiments where there was a full

factorial design (i.e. two between-subjects factors, all conditions represented) analysis was conduc-

ted with a 2*2 between-subjects analysis of variance (ANOVA). If there was not a full factorial

design, responding was analysed with a one-way ANOVA with differences between groups ana-

lysed with the Šídák correction for multiple comparisons applied. Responses during training are

presented as responses per minute (RPM) whilst reactivation sessions are reported as total number

of lever presses. This is in order to facilitate comparison of the total number of responses made in

reactivation sessions that ended after a given period of time and when sessions were limited to a

certain number of responses being carried out.

Results

Experiment 1: Effects of NMDA receptor antagonism before retrieval of an action-outcome

memory on responding after reinforcer devaluation

In this experiment the effects of administration of an NMDA receptor antagonist before retrieval of

an instrumental memory on the subsequent expression of goal-directed memories was examined.

In order to specifically test these A-O associations, the reinforcer was devalued in drinking cages

with LiCl in half the rats (see Figure 4.1A).

Test results

Animals treated with MK-801 before the reactivation session made more responses at test than

those treated with vehicle. This suggested that antagonism of NMDA receptors was preventing

extinction, rather than reconsolidation. Responses were not decreased by reinforcer devaluation

regardless of drug treatment (Figure 4.1B). This suggested that animals were habitual, although it

is equally possible that the insensitivity of responding to reinforcer devaluation was the result of a

failure of the LiCl pairings to transfer to the operant chamber. Treatment with MK-801 increased

total number of responses made in the test session (F1,20=6.65, p= .018), but did not affect expres-

sion of the devaluation effect (Devaluation*Drug: F1,20 = 1.12, p= .284), with animals’ responding

across being insensitive to reinforcer devaluation (Devaluation: F1,20=1.80, p= .195; Figure 4.1B).
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Training
3xFR1
2xVI30s

Reactivation
5 minutes

No reinforcers

Devaluation
Drinking cage

LiCl + Reinforcer

Test
5 minutes

No reinforcers

IP: VEH/MK-801

1d 1d 1d

A

B

Figure 4.1: MK-801 administered before instrumental memory retrieval leads to
a subsequent increase in responding for sucrose reinforcement. Lever pressing in
all groups is insensitive to devaluation with pairing of the reinforcer presented in
drinking cages with LiCl. A: Schematic of experimental procedures in Experiment
1. Only the Paired group are depicted in the diagram; the Unpaired group only
received LiCl injections on dayswhen the reinforcerwas not presented. B: Number
of lever presses made in the test session. N=6 for all groups. Bars represent means
+SEM. * p<.05

Training, reactivation and devaluation

None of the effects reported in the test session were the result of pre-existing differences between

the groups during training, with animals acquiring the instrumental response (Day: F4,80=110.10,

p<.001) equally between treatment groups (all main effects and interactions: F4,80<1.54, p>.197;

Figure 4.2A).

Rats treatedwithMK-801 showed higher levels of responding in the reactivation session, consistent

with the known ability of this drug to result in hyperactivity (Frantz and Hartesveldt, 1999). Re-

sponses were not affected by prospective devaluation groups. This was indicated by a main effect

of drug treatment (F1,20 = 23.47, p< .001). Prospective devaluation groups responded similarly in

the reactivation session (F1,20 = 0.60, p = .808). The effect of MK-801 to increase responding was

equal in each of these groups (Drug*Devaluation: F1,20=0.70, p= .413; Figure 4.2B).

Drug treatment prior to reactivation did not affect the acquisition of the aversion to the sucrose solu-

tion. Whilst animals in the Paired and Unpaired groups drank similar levels of the sucrose solution
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on the first day (F1,20 = 0.86, p= .364), animals in the Paired group drank substantially and signi-

ficantly less than those in the Unpaired group on the 3rd day of conditioned taste aversion (CTA)

procedure (F1,20 = 243.33, p < .001). This was supported by a significant Day*Devaluation in-

teraction (F1,20 = 100.97, p < .001). Although the overall effect of Day was similar regardless of

the drug administered at reactivation (Day*Drug: F1,20 = 0.75, p = .656), there was a significant

Day*Devaluation*Drug interaction (F1,20 =5.83, p= .025). This was likely caused by an increase in

consumption from the 1st to the 3rd day in vehicle treated, Unpaired animals (t5 = 4.20, p= .009)

but not MK-801 treated, Unpaired animals (t5 = 0.32, p= .759). Importantly, there were no differ-

ences in consumption between the drug treatment groups on the final day of the CTA procedure,

confirming that MK-801 treatment at retrieval did not affect acquisition of the CTA (all main effects

and interactions: F1,20<0.30, p>.590; Figure 4.2C).

A B

C

Figure 4.2: Training, reactivation and conditioned taste aversion data for Exper-
iment 1. A: Rate of lever pressing in the training sessions. B: Number of lever
presses made in the reactivation session. C: Consumption of sucrose in condi-
tioned taste aversion sessions. N=6 for all groups. Data are represented as means
+/±SEM. *** p<.001
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Experiment 2: Effects of NMDA receptor antagonism before retrieval of an action-outcome

memory on responding after additional reinforcer devaluation sessions

Since responding in Experiment 1 was insensitive to reinforcer devaluation, Experiment 2 included

additional devaluation sessions in the operant chamber (see Figure 4.3A). This would test the pos-

sibility that the results of Experiment 1 were the result of a failure of the devaluation to transfer

to the operant box (Kosaki and Dickinson, 2010), rather than animals being habitual. It was hoped

these additional devaluation sessionswould result in a robust devaluation effect, permitting invest-

igation of whether administration of an NMDA receptor antagonist before memory reactivation

prevents subsequent expression of the A-O memory.

Test results

After the additional devaluation sessions animals that had the reinforcer paired with LiCl made

fewer responses in the test session, but neither the expression of this devaluation effect, nor the

total number of responses, were affected by MK-801 treatment before reactivation (Figure 4.3B).

This was indicated by an overall devaluation effect (F1,20=24.04, p<.001) but noDrug*Devaluation

interaction (F1,20 = 0.04, p= .849), with both treatment groups showing a significant devaluation

effect (both: t10 > 2.93, p < .016). Treatment with MK-801 before reactivation did not affect the

number of responses made at test (F1,20=0.39, p= .542; Figure 4.3B).

Training, reactivation and devaluation

None of the results from the test session could be explained by pre-existing differences between the

groups, with all groups increasing lever pressing across days of training (F1.9,39.0 =80.79, p<.001)

at a similar rate, regardless of the prospective drug treatment at reactivation and devaluation group

(all main effects interactions: F1.9,39.0<0.48, p>.619; Figure 4.4A).

Administration of MK-801 resulted in an increase in lever pressing in the reactivation session

(F1,20 = 10.96, p = .003). Prospective devaluation groupings did not affect the total number of

responses made in the reactivation session (all main effects and interactions: F1,20<0.47, p> .503;

Figure 4.4B).

Devaluation of the reinforcer with LiCl resulted in a significant decrease in its consumption on

the 3rd day of the CTA training (Day*Devaluation: F1,20 = 182.79, p < .001; Figure 4.4C). Neither
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Training
3xFR1
2xVI30s

Reactivation
5 minutes

No reinforcers

Devaluation I
Drinking cage

LiCl + Reinforcer

Devaluation II
Operant box

LiCl + Reinforcer

Test
5 minutes

No reinforcers

IP: VEH/MK-801

1d 1d 1d 1d
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B

Figure 4.3: Reinforcer devaluation with LiCl in drinking cages and operant boxes
resulted in expression of a devaluation effect, but this was not affected by adminis-
tration of anNMDA receptor antagonist beforememory reactivation. A: Schematic
of experimental procedures in Experiment 2. B: Number of lever presses made in
the test session. N=6 for all groups. Bars represent means +SEM. * p<.05

consumption nor acquisition of CTA was affected by MK-801 at reactivation (all main effects and

interactions: F1,20<0.64, p>.432). During the additional devaluation sessions in the operant cham-

ber Paired groups made significantly fewer nosepoke responses on both days (Figure 4.4D). There

was some indication of an increase in the number of nosepokes made in the 6th day of CTA train-

ing in animals in the Unpaired group treated with MK-801 at reactivation (Day*Drug*Devaluation:

F1,20 = 5.76, p = .026), but the difference was not significant (Day 6, MK-801–Unpaired vs. VEH–

Unpaired: t10 = 1.96, p = .079; Figure 4.4D). This raised the possibility that MK-801 treatment

prevented extinction of the nosepoke response during the reactivation session.
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A
B

C D

Figure 4.4: Training, reactivation and conditioned taste aversion data for Exper-
iment 2. A: Rate of lever pressing in the training sessions. B: Number of lever
presses made in the reactivation session. C: Consumption of sucrose in condi-
tioned taste aversion sessions. D: Total nosepokes made in the 5th and 6th day of
conditioned taste aversion training. Note that reinforcer was delivered on day 5,
but not 6. N=6 for all groups. Data are represented as means +/±SEM. ** p<.001

Experiment 3: Effects of NMDA receptor antagonism before retrieval of an instrumental

memory with 25 lever presses

Experiment 1 suggested that a 5-minute reactivation session resulted in the engagement of extinc-

tion mechanisms, rather than reconsolidation. The next experiment therefore sought to determine

the parameters for a reactivation session that would not result in extinction, reducing the session

length from 5 minutes to the time taken to make 25 lever presses. Because of the large number

of animals required for reinforcer devaluation with LiCl, this part of the experiment was omit-

ted whilst the optimum reactivation parameters were determined. In order to enable detection of

whether the reactivation session alone was resulting in a reduction in responding (i.e. inducing

extinction mechanisms) groups that did not undergo reactivation sessions were also included (see

Figure 4.5A).
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Test results

Analysis of the whole session suggested that treatment with MK-801, but not vehicle, led to an en-

hancement in responding at test when given in conjunction with a reactivation session. This rather

complex pattern of results did not immediately indicate the reactivation session was resulting in

extinction, since taking part in this session did not result in a decrease in responding in vehicle

treated animals (Figure 4.5B). This analysis was confirmed by a significant Reactivation*Drug in-

teraction (F1,20 = 4.86, p= .039), but no main effect of Reactivation (F1,20 = 0.34, p= .568) or Drug

(F1,20 = 0.00, p= .953) and MK-801 treated animals that underwent a retrieval session responding

more than those were also treated with this same drug but did not undergo a reactivation session

(Figure 4.5B).

In order to further investigate the effects of the retrieval session and combined drug treatment on

subsequent responding the first five minutes of the test session was also analysed in a similar fash-

ion (Bin*Reactivation: F2,40=2.46, p= .098; Bin*Drug: F2,40=0.61, p= .549; Bin*Reactivation*Drug:

F2,40=2.94, p= .064; see Figure 4.5B for time course). Responding in this time period is less likely to

confounded by extinction occurring within the test session, which may obscure group differences

(e.g. Milton et al., 2008a). This revealed a slightly different pattern of results in comparison to when

the whole session was analysed, with the reactivation session resulting in a decrease at respond-

ing at test in vehicle treated animals, and this decrease being blocked by administration of MK-801

(Figure 4.5C). This analysis was supported by a significant Drug*Retrieval interaction (F1,20=6.37,

p= .020) but no other main effects being significant (all: F1,20<1.73, p>.203). These data suggested

that the reactivation session was resulting in extinction and MK-801 was blocking this effect.

Training and reactivation

None of the results from the test session could be attributed to pre-existing differences between

the groups. All groups acquired the operant response (F4,80 = 60.89, p< .001) at a similar rate (all

interactions and main effects: F3.5,70.3=2.49, p= .058; Figure 4.6A).

There was a non-significant trend towards animals treated with MK-801 to complete the reactiva-

tion session in a shorter time than animals treatedwith vehicle (t20=5.30, p= .089; Figure 4.6A). All

animals treated with MK-801 completed the 25 lever presses within the 5-minute time limit, whilst

2 rats from vehicle treated group failed to do so, making 14 and 23 lever presses respectively.

90



CHAPTER 4. THE EFFECTS OF NMDA RECEPTOR ANTAGONISM DURING RETRIEVAL OF
AN INSTRUMENTAL MEMORY

Training
3xFR1
2xVI30s

Reactivation
25 lever presses
No reinforcers

Test
15 mins

No reinforcers

IP: VEH/MK-801

1d 1d
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3xFR1
2xVI30s
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15 mins

No reinforcers

IP: VEH/MK-801
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Figure 4.5: MK-801 administered before instrumental memory reactivation con-
sisting of 25 lever presses leads to prevention of extinction, rather than reconsol-
idation. A: Schematic of experimental procedures in Experiment 3. B: Number
of lever presses made in the test session, presented in 15-minute bins. C: Number
of lever presses made in the first 5 minutes of the test session. N=6 for all groups.
Bars represent means +SEM. * p<.05

A B

Figure 4.6: Training and reactivation data for Experiment 3. A: Rate of lever press-
ing in the training sessions. B: Duration of the reactivation session as a function of
drug treatment. N=6 for all groups. Data are represented as means ±/+SEM.
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Experiment 4: Effects of NMDA receptor antagonism before retrieval of an instrumental

memory with 10 lever presses

Given that Experiment 3 demonstrated that a retrieval trial consisting of 25 non-reinforced lever

presses resulted in a reduction in responding the next day, Experiment 4 further reduced the num-

ber of lever presses made in the reactivation session to 10. A proportion of animals also received

treatment with MK-801 before reactivation in order to be able to detect whether reconsolidation

was taking place (Figure 4.7A).

Test results

A reactivation session consisting of 10 lever presses appeared to result in a reduction at responding

at test when the whole session was analysed. This was suggested by a non-significant trend towards

Group affecting the number of responses made at the reactivation session (F2,18 = 3.52, p= .056).

Post-hoc comparison of these groups revealed a marginal, non-significant reduction in responding

in animals treated with vehicle before reactivation vs. their non-reactivated counterparts (p= .056;

Figure 4.7B). Simple comparison of only vehicle treated groups with an independent samples t-test

demonstrated that the reactivation session resulted in a decrease in responding at test (t10 = 2.64,

p= .025).

As in the previous experiment, the time course of respondingwithin the 15-minute retrieval session

was also analysed, although this did not provide further clarification of the pattern of respond-

ing within the test session (see Figure 4.7B for time course). Whilst there was a trend towards a

Bin*Group interaction (F6,40 = 2.00, p= .088), analysis of the first five minutes of this session did

not reveal any group differences (or trends; F2,15=0.73, p= .498, Figure 4.7C).

The ability of the retrieval session to result in a decrease in responding suggested that extinction

was taking place in the memory retrieval session. However, there was no evidence that MK-801

treatment at reactivation prevented this process. This may be the result of NMDA receptor inde-

pendent learning or, more likely, the result of a modest extinction effect making an attenuation of

this result difficult to detect.
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Figure 4.7: An instrumental memory reactivation session consisting of 10 lever
presses appears to lead to extinction, rather than reconsolidation. A: Schematic
of experimental procedures in Experiment 4. B: Number of lever presses made in
the test session. C: Number of lever presses made in the first 5 minutes of the test
session. N=6 for all groups. Bars represent means +SEM. #=p<.06
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Training and reactivation

All groups acquired the operant response (F4,60 = 153.91, p < .001) at a similar rate (Day*Group:

F8,60 =1.04, p= .415) and the prospective groupings did not affect the rate of responding through-

out the training sessions (Group: F1,15=0.40, p= .679; Figure 4.8A). This confirmed that the results

of the test session could not be explained solely by pre-existing differences between the groups.

Prior drug treatment had no effect on the time to execute 10 lever presses (t10=0.95, p= .364; Figure

4.8B). All animals completed the 10 lever presses within the 5 minute time limit.

A B

Figure 4.8: Training and reactivation data for Experiment 3. A: Rate of lever press-
ing in the training sessions. B: Duration of the reactivation session as a function of
drug treatment. N=6 for all groups. Data are represented as means ±/+SEM.

Experiment 5: Effects of training on an FR1 schedule of reinforcement on the ability of a very

short reactivation session to induce extinction

Prior experiments demonstrated that a reactivation session consisting of a very small (10-25) num-

ber of lever presses resulted in a reduction in responding in subsequent test. Whilst this suggested

that extinctionwas taking place in these sessions, it was not expected this processwould be engaged

in such a short session. In Experiment 5 the possibility that the VI30s schedule of reinforcement

was responsible for the decreases in responding was investigated. Inherent in this schedule is that

in some cases the lever press response is not reinforced. It was possible that this led to a formation

of an association whereby the operant response is not reinforced and this ’lever press-no reinforcer’

association was being reactivated and strengthened in the retrieval session. It is known that similar

inhibitory memories undergo reconsolidation (Eisenberg and Dudai, 2004; Rossato et al., 2010) and

reactivation can strengthen memories (Fukushima et al., 2014; Tedesco et al., 2014b).
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Animals were trained on an FR1 schedule of reinforcement throughout in an attempt to reduce the

likelihood of these inhibitory traces being formed and subsequently reactivated. Half of the animals

underwent a reactivation session whilst the other half did not; reactivation conditions were further

divided on based on whether they received MK-801 or vehicle treatment (see Figure 4.9A).

Test results

On initial observation it appeared that neither the retrieval session, nor drug treatment had any ef-

fect on the total number of responses made in the test session (all main effects and interactions:

F3,20 < 1.73, p > .202; Figure 4.9B). When the first 5 minutes of the test session was analysed

(Bin*Retrieval: F1.7,33.6 = 6.88, p = .005) it appeared that the retrieval session led to a decrease

in responding, but this was not affected by prior drug treatment. Separate analysis of the first five

minutes of the test session indicated that animals that underwent a retrieval session responded less

than those that did not (F1,20=5.81, p= .026), but this was not affected by drug treatment (all main

effects and interactions: F1,20 < 0.65, p > .430; Figure 4.9C). No other main effects or interactions

were significant (all: F1.7,33.6 = 2.37, p< .106). Once again it appeared that the reactivation session

was resulting in a decrease in responding, although in this case this was not moderated by prior

treatment with MK-801.

Training and reactivation

All animals acquired the operant response (F3.6,71.2 = 90.46, p < .001) equally; prospective drug

treatment or reactivation conditions did not affect responding at any point during training (all main

effects and interactions: F1,20 = 1.77, p= .197; Figure 4.10A). None of the results in the test session

therefore appeared to be the result of pre-existing differences between the groups.

Animals treated with MK-801 and vehicle spent a similar amount of time to reach 10 lever presses

in the reactivation session (t10=0.95, p= .364; Figure 4.10B). All animals completed 10 lever presses

within the time limit.
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Figure 4.9: A session consisting 10 lever presses leads to a reduction in responding
the next day in animals exclusively trained on an FR1 schedule of reinforcement.
A: Schematic of experimental procedures in Experiment 5. B: Number of lever
presses made in the test session. C: Number of lever presses made in the first 5
minutes of the test session. N=6 for all groups. Bars represent means +SEM. *
p<.05

A B

Figure 4.10: Training and reactivation data for Experiment 5. A: Rate of lever press-
ing in the training sessions. B: Duration of the reactivation session as a function of
drug treatment. N=6 for all groups. Data are represented as means ±/+SEM.
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Discussion

Summary of results

In these experiments NMDA receptor antagonism prior to retrieval of an instrumental memory

did not result in an inability to retrieve A-O associations, nor did it decrease responding at test,

suggesting that reconsolidation of these memories was not affected by this treatment (albeit by

virtue of the fact it was not occurring in the first place). In contrast, in several experiments MK-801

treatment resulted in an increase in responding – apparently caused by the blockade of extinction –

in many cases the reactivation session (in the absence of any drug treatment) resulted in a decrease

in responding. This latter effect was reported despite using very short retrieval sessions.

Relationship to previous data

One difficulty in investigating instrumental memory reconsolidation is that this responding can be

mediated by both action-outcome (A-O) and stimulus-response (S-R) associations. Whilst the asso-

ciation that governs responding is typically determined by the extent of training, evidence suggests

that each of these associations are formed in parallel andwhere one association is lost, the other can

resume control over behaviour (Balleine and O’Doherty, 2010). Reinforcer devaluation protocols,

such as those used in Experiments 1 and 2, are therefore necessary in order to fully investigate a

potential deficit in instrumental reconsolidation. Experiment 1 demonstrated that NMDA receptor

antagonism prior to retrieval of an instrumental memory can result in an increase in responding,

in comparison to vehicle treated controls. However, in this experiment it was not possible to assess

whether thismanipulation had affected the expression of A-Omemory, owing to a failure of vehicle

treated animals to reduce their responding in response to reinforcer devaluation. This was likely

the result of a failure of the devaluation association to transfer to the operant chambers (Kosaki

and Dickinson, 2010). The use of devaluation sessions within the operant chamber was initially

avoided in order to prevent reinforcer presentation in the training context acting as a reminder of

the instrumental association.

Experiment 2 included additional devaluation sessions within the operant chamber. Although the

effect of MK-801 to enhance (or prevent a decrease) in responding was not replicated, both treat-

ment groups showed intact expression of theA-Omemory, as indicated by a decrease in the number

of responses made in response to reinforcer devaluation with LiCl. This suggested that a 5-minute
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retrieval session did not result in instrumental memory destabilisation, potentially due to the re-

cruitment of extinction mechanisms (Experiment 1).

Given that sessions that result in extinction do not typically engage reconsolidation mechanisms

(Flavell and Lee, 2013; Fuchs et al., 2009; Merlo et al., 2014), subsequent experiments decreased

the extent of retrieval with the view of not only ensuring that extinction no longer took place, but

also that reconsolidation would be engaged. Even if sessions no longer resulted in a decrease in

subsequent responding this is not necessarily sufficient for reconsolidation to take place; evidence

suggests a stage of ’limbo’ exists between trials that result in extinction and reconsolidation (Merlo

et al., 2014). Despite reducing of the number of lever presses made in the reactivation sessions it

still appeared that these were engaging extinction mechanisms.

The decrease in responding occurring as a result of the retrieval session may have been due to

the recruitment of extinction mechanisms. In some cases MK-801 treatment prevented this effect.

Extinction occurs upon repeated absence of an outcome that was previously predicted by an instru-

mental response and results in the formation of a new inhibitory memory (Bouton, 2004; Pavlov,

1927). Given that the sucrose reinforcer was not delivered during memory reactivation it was pos-

sible execution of the response in these sessions led to its extinction. Whilst this seems plausible for

the 5-minute reactivation sessions, it seemed unlikely this was causing the reduction in respond-

ing in reactivation sessions where 10 lever presses were made. On the final day of VI30s training in

Experiment 4 animals made an average of 6 responses for each reinforcer; the reactivation session

only differed from training in that a single reinforcer was not delivered. Reactivation sessions that

consist of a single PE result in reconsolidation, and not extinction, of pavlovian fear memories (e.g.

Nader et al., 2000), despite animals in these experiments only having received a single conditioned

stimulus (CS)-unconditioned stimulus (US) pairing – the CS was presented with shock 50% of the

time, oncewith theUS during training, and oncewithout during reactivation. In appetitivememor-

ies reactivation sessions consisting of CS presentation of up to 14% of those experienced in training

result in reconsolidation (Lee et al., 2006a). The absence of a single reinforcer in the reactivation

session of Experiment 4 represented 0.7% of those experienced during training, a proportion much

smaller than in previous studies where reconsolidation took place. However, it is important to ac-

knowledge that the experiments discussed above were investigating pavlovian, rather than instru-

mental reconsolidation. It is possible that the dynamic between reconsolidation to extinction differs

between these two memories, with instrumental associations being less resistant to the former and

more amenable to the latter.
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There is an emerging literature demonstrating instrumental memories do undergo reconsolida-

tion. Notably, however, this only appears to take place when the reinforcer is delivered during

memory reactivation. Weakly trained instrumental memories have been shown to reconsolidate

in an NMDA receptor dependent manner following a shift from an FR1 to variable ratio (VR)5

schedule of reinforcement (Exton-McGuinness and Lee, 2015). Whilst the same manipulation was

ineffective for well-trained animals, reactivations consisting of a shift from FR1 to VR20 result in

reconsolidation of these memories (Exton-McGuinness et al., 2014). In accord with the experiments

reported here, reactivation sessions conducted in the absence of the reinforcer were reported to

be without effect on subsequent memory expression, regardless of the extent of training (Exton-

McGuinness and Lee, 2015; Exton-McGuinness et al., 2014). Notably, reactivation sessions that do

not differ from training do not result in instrumental memory reconsolidation (Exton-McGuinness

andLee, 2015; Hernandez andKelley, 2004; Hernandez et al., 2002), suggesting this process depends

on PE in order to occur, much like several other types of memories (Alfei et al., 2015; Pedreira et al.,

2004; Sevenster et al., 2013).

The requirement for unexpected reinforcer delivery to result in the reconsolidation of instrumental

associationsmay provide insight into theway inwhich thesememories are updated. Theories of re-

inforcement learning suggest that PE signals are calculated through the use of temporal difference

rules (Daw et al., 2005). It is typically assumed that associations are represented by a single rule dic-

tating the relationship between a response and reward which is updated similarly (but in opposite

directions) in the face of reinforcer delivery or its absence. However, one possibility is that the like-

lihood of an instrumental response being executed is instead governed by competition of two rules,

one for when the action is reinforced, another for when it is not. One likely candidate region in de-

termining which of these associations governs responding is the basal ganglia, which has an integ-

ral role in carrying out instrumental actions (Balleine et al., 2009), and is hypothesised to be respons-

ible for inhibition of competing motor responses (Hikosaka, 1998; Mink, 1996). The infralimbic (IL)

cortex is also important for the acquisition of inhibitory associations formed during extinction

(Sierra-Mercado et al., 2011). These memories have previously shown to undergo reconsolidation

(Eisenberg and Dudai, 2004; Rossato et al., 2010). The reinforcing and inhibitory associations are

referred to as P(Response|Reinforced) and P(Response|Not-reinforced) henceforth. Retrieval ses-

sions conducted in the absence of the reinforcer may result in the reactivation and updating of the

P(Response|Not-reinforced) rule, without the need to modify the P(Response|Reinforced) rule.

Given that it has previously been demonstrated that memories can become strengthened through

their reconsolidation (Fukushima et al., 2014; Inda et al., 2011; Rohrbaugh and Riccio, 1970; Tedesco
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et al., 2014b), it was possible that this reactivation led to the decrease in responding occurring dur-

ing the reactivation sessions reported in this chapter. In contrast, reactivation sessions that require

the updating of the P(Response|Reinforced) association, through unexpected reinforcer delivery

(Exton-McGuinness and Lee, 2015; Exton-McGuinness et al., 2014), will result of the destabilisation

of this association, thus exposing it to disruption with amnestic agents. The use of VI schedule of

reinforcement may have promoted the formation of these P(Response|Not-reinforced) rules.

Experiment 5 attempted to address the issue of reactivation of this hypothetical P(Response|Not-

reinforced) rule with the use of FR1 schedules of reinforcement throughout the course of training,

with the view that thismay decrease the likelihood of the formation of these inhibitory associations.

However, this revealed a similar pattern of results aswhen animalswere trained on aVI30s schedule

of reinforcement, with a short non-reinforced reactivation session continuing to result in a reduc-

tion in subsequent responding. This is in accord with published previous reports that FR1 sched-

ules of reinforcement do not expose these memories to destabilisation with reactivation sessions

conducted in the absence of the reinforcer (Exton-McGuinness and Lee, 2015; Exton-McGuinness

et al., 2014).

Implications for subsequent chapters

One of the key aims of this chapter was to characterise the reconsolidation of goal-directed instru-

mental memories, with the hypothesis that disruption of these associations may be manifested as

a specific deficit in the retrieval of their A-O component. The intention was to then subsequently

investigate reconsolidation of S-R memories with the view that it may be possible to restore goal-

directed control of behaviourwith disruptions of this process. Because itwas not possible to disrupt

reconsolidation of these associations experiments in subsequent chapters performed a similar series

of investigations, targeting responses under the control of these reward paired stimuli, which, like

instrumental responding in the absence of these CSs, relies upon distinct neural structures depend-

ent on the extent of training (e.g. Murray et al., 2012; Murray et al., 2015).
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Chapter 5: The effects of NMDA receptor antagonism during retrieval

of a cocaine paired pavlovian memory

Introduction

Chapters 3 and 4 investigated the reconsolidation of instrumental memories, with the view of dis-

rupting this process to weaken the association between an action and an outcome. Whilst these

memories likely contribute to a number of psychiatric disorders, including drug addiction, these

attempts were unsuccessful, apparently due to the rapid extinction occurring within the retrieval

session. However, pavlovian associations also play an integral role in precipitating relapse (Everitt

and Robbins, 2005; Fuchs et al., 2008). The experiments in this chapter therefore aimed to charac-

terise the reconsolidation of conditioned stimulus (CS)-drug memories with of view to disrupting

their ability to maintain subsequent drug-seeking. A better understanding of the conditions in

which these memories destabilise will be informative in the development of reconsolidation based

treatments for drug addiction; many of the attempts to adopt this approach into the clinic have been

unable to yield long-lasting decreases in craving (Das et al., 2015a; Saladin et al., 2013, although see

Xue et al., 2012).

People, places andparaphernalia pairedwith drug-seeking can become associatedwith the reward-

ing effects of the abused substances. These stimuli then acquire the ability to result in craving (APA,

2013). Subsequently, exposure to these CSs is a frequent cause of relapse in abstinent individuals

(Fuchs et al., 2008; Taylor et al., 2009). Through disruptions of reconsolidation of the pavlovian as-

sociations underlying these memories their ability to promote drug-seeking can be reduced and

may be a viable treatment for drug addiction.

Cues underlying drug-seeking have previously shown to undergo reconsolidation, a process that

requires zif-268 (Lee et al., 2005b; Lee et al., 2006a) and protein kinase A (PKA) (Sanchez et al., 2010)

transcription and N-methyl-D-aspartate (NMDA) receptor activation (Milton et al., 2008a) within

the basolateral amygdala (BLA). Systemic administration of propranolol (Milton et al., 2008b),
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NMDA (Milton et al., 2008a) and dopamine D1 and D3 (Yan et al., 2014) receptor antagonists or

protein synthesis inhibitors (Dunbar and Taylor, 2016) also prevents this process.

A wide range of reactivation procedures have been reported to be effective at destabilising of

memories formed during self-administration, potentially suggesting that these associations are

readily destabilised, perhaps even more so than other types of memories. For example, whilst

the relative novelty of contextual cues available during a memory reactivation has previously been

shown to affect the ability of a cued fear memory to reconsolidate (Jarome et al., 2015), memories

formed during drug self-administration appear to be able to destabilise regardless of whether the

reactivation session occurs in the training (e.g. Lee et al., 2005a; Lee et al., 2006a; Milton et al., 2008a)

or a novel context (e.g. Dunbar and Taylor, 2016; Sanchez et al., 2010). The relationship between the

number of reinforced CSs received during training affects the ability of a given retrieval session to

result in reconsolidation of memories associated with food or aversive outcomes (Reichelt and Lee,

2013a; Suzuki et al., 2004). However, for pavlovian associations formed during self-administration

there is considerable variation in the number of CSs presentations required to result in reconsolid-

ation; a number of CSs that is approximately 1.5 (Monsey et al., 2017), 2 (Dunbar and Taylor, 2016),

6 or 14% (Lee et al., 2006a) of those delivered during training have all been reported to result in

memory destabilisation. Whilst contextual fear (Bustos et al., 2006; Suzuki et al., 2004) and avoid-

ance (Milekic and Alberini, 2002) memories become resistant to reconsolidation with age, destabil-

isation of associations formed during self-administration can take place regardless of whether the

memory reactivation session occurs 3 or 27 days after the conclusion of training (Lee et al., 2006a).

Research using sucrose reinforcers has shown that appetitive pavlovian memories only destabilise

when CS-presentation is contingent upon responding, as in training (Lee and Everitt, 2008b). In

contrast, both contingent and non-contingent cue delivery has shown to result in destabilisation of

CS-drug memories (Lee et al., 2006a; Milton et al., 2008a).

From the data discussed above one might surmise that drug-paired associations are readily

destabilised. Only one preclinical study has failed to prevent reconsolidation of these memories

(Brown et al., 2008), although it is likely these results were due to a lack of prediction error (PE) in

the reactivation session (which was conducted as in training, Experiment 4) or the target memories

not having the opportunity to destabilise (the cocaine paired CS was not presented, Experiment 3).

Whilst not all reconsolidation effects can be attributed to publication bias (Das et al., 2013), whether

the paucity of studies reporting a failure of a retrieval session to result in destabilisation is due to a

resistance to publish null findings or a true reflection of the ability of these memories to destabilise

is unclear.
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Despite the apparent ease at which CS-drug memories are destabilised in preclinical research, at-

tempts to disrupt similar memories in addicted individuals have yielded less success. Whilst Xue

et al. (2012) were able to reduce autonomic responses to drug-paired cues with a reconsolidation

based intervention (retrieval-extinction), Das et al. (2015a), were unable to prevent reconsolidation

with the NMDA receptor antagonist memantine, despite use of a reactivation session designed

to maximise PE. Whilst Saladin et al. (2013) were able to reduce cue-induced craving with pro-

pranolol treatment combined with memory reactivation, this decrease was short-lived and drug

treated groups showed a similar degree of craving as controls when presented with drug-paired

cues a week after drug treatment. The disparity between preclinical and clinical suggests that fur-

ther research is required to delineate the conditions under which CS-drugmemories reconsolidate.

A better understanding of the conditions in which memories formed during self-administration

destabilise will help increase the efficacy of reconsolidation based treatments of drug addiction.

It was not possible to disrupt reconsolidation of CS-drug memories with non-contingent CS

presentation, despite previous works suggesting that this should result in reactivation of these

memories (Dunbar and Taylor, 2016; Lee et al., 2006a; Monsey et al., 2017; Sanchez et al., 2010).

Because of the evidence that sucrose-paired CSs only become destabilised with contingent CS ex-

posure (Lee and Everitt, 2008b) experiments also used this type of reactivation, although this was

also apparently unable to result in the destabilisation of the memory.

The initial experiments of this chapter used a fixed ratio (FR)1 schedule of reinforcement, where

each lever press is reinforced with drug-delivery, in accord with the many experiments investigat-

ing reconsolidation of cocaine-paired CS-unconditioned stimulus (US) memories (Lee et al., 2005a;

Monsey et al., 2017; Sanchez et al., 2010). This means that the instrumental drug taking response

and the cocaine-paired CS equally predict drug delivery, possibly reducing the relative ability of

presentation of this CS to result in memory reactivation. In contrast, in fixed interval (FI) sched-

ules of reinforcement, which may better reflect the prolonged periods of drug-seeking individuals

must undergo to obtain drugs of abuse, reinforcement is delivered once a given period of time has

passed. This means that the CS (which is only delivered alongside the drug) becomes the only

predictor of cocaine. The increased ability of the CS to predict cocaine delivery may mean present-

ations of this stimulus are more likely to result in reconsolidation. In FR1 schedules animals can

also ’titrate’ the level of cocaine in their blood stream (and brain), such that a desired level of co-

caine is maintained throughout the session, possibly resulting in increased associations between

contextual, rather than discrete stimuli. The use of FI schedules of reinforcement prevent this ti-

tration, potentially enhancing the ability of a CS to predict cocaine delivery vs. that of contextual
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stimuli, possibly increasing the ability of presentation of this stimulus to result in the labilisation

of the CS-US memory.

The effects of MK-801 to prevent reconsolidation of a CS that was paired with cocaine during these

FI training sessions were assessedwith second-order schedule of reinforcement. In these schedules

responses result in the delivery of reward-paired CSs; these CS presentations enhance responding

during the reinforcement delays that occur during FI schedules of reinforcement (Arroyo et al.,

1998; Everitt and Robbins, 2000). The ability of the CS to potentiate responding was then used as a

probe to assess the results of disrupting reconsolidation of a CS-US association (Lee et al., 2006a).

Using reactivation and training protocols that have previously been used to result in destabilisation

of a pavlovian memory formed during cocaine self-administration (Lee et al., 2006a; Milton et al.,

2008a) it was not possible to prevent reconsolidation with the NMDA receptor antagonist MK-801.

Although NMDA receptors are required for memory reconsolidation, destabilisation also depends

on activation of these receptors. Intra-BLA infusion of broad-spectrumNMDA receptor antagonists

prevents the destabilisation of both fear (BenMamou et al., 2006) and conditioned-place preference

(Yu et al., 2016) memories. It was possible the failure to prevent reconsolidation was due to similar

destabilisation-preventing effects. Studies in fear memories have shown that the GluN2B subunit

is required for destabilisation (Ben Mamou et al., 2006) whilst GluN2A activation is particularly

important for the amnestic effects of NMDA receptor activation (Milton et al., 2013). This suggests

that NMDA receptor antagonists that preferentially target the GluN2A, but not GluN2B, receptor

subtype will be most likely to prevent reconsolidation without affecting destabilisation. With this

in mind a different NMDA receptor antagonist, CPP, was used in attempts to prevent this process,

which has increased affinity of GluN2A receptors (Feng et al., 2004; Feng et al., 2005) and has previ-

ously has been demonstrated to prevent reconsolidation of contextual fear memories (Suzuki et al.,

2004).

In summary, a series of experiments attempted to disrupt reconsolidation of a pavlovian association

between a visual stimulus and an intravenous cocaine infusion with NMDA receptor antagonists

in combination with a memory reactivation session. A better understanding of the behavioural

and neurochemical processes underlying destabilisation and reconsolidation of memories formed

in self-administration in a preclinical setting will assist in developing treatments to disrupt similar

memories in individuals suffering from drug addiction.
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Methods

Summary

Animals were trained to respond for intravenous cocaine delivery, which was paired with present-

ation of a visual CS. In Experiments 1 & 2 the effects of reactivation of the resulting associationwith

contingent and non-contingent CS presentations were compared. The effects of this treatment were

assessed in a ’relapse’ procedure, whereby responses led to the delivery of the CS (without prior

instrumental extinction). Experiment 3 investigated the effects ofMK-801 treatment prior to reactiv-

ation with non-contingent CS presentation on subsequent acquisition of a second-order scheduled

of reinforcement. Experiment 4 assessed the ability of an alternative NMDA receptor antagonist,

CPP, to disrupt cocaine-cue memory reconsolidation occurring as a result of non-contingent CS

presentation. The effects were assessed in both the relapse procedure described above and the

ability of the CS to reinstate responding after a period of instrumental extinction.

Procedures were conducted as in General methods except where stated.

Subjects

Subjects were a total of 80 Lister-Hooded rats weighing 300-425g at the time of surgery. Approx-

imately 3 days before self-administration training began animals were food-restricted and fed 20g

of rat chow at the end of each day.

Surgery

Animals underwent intravenous catherisation surgery under ketamine & xylazine anaesthesia, as

described in General methods.

Training

Experiments 1,2 and 4

Animals were trained for a total of 10d to respond on a lever for intravenous infusions of cocaine

(0.25mg 0.1ml−1 in sterile saline) on an FR1 schedule of reinforcement. Responses on a second lever

that was present throughout training were without effect.
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Experiment 3

This experimentwas based on a study conducted byLee et al. (2006a). Animalswere initially trained

on an FR1 schedule of reinforcement, as above. However, the day after animals had earned 70

CS-US pairings on this schedule they begun training on progressively leaner FI schedules of rein-

forcement, stabilising at FI15 (min) for 3 days (see General methods). The criterion was introduced

to ensure animals in this experiment received similar number of CS-US to that of the equivalent

Lee et al. (2006a) study. For simplicity only data for the final 11d of training are reported here (i.e.

the minimum number of days to complete training) although some rats took longer because of the

initial criterion.

Test and reactivation sessions

Experiment 1 & 2

Non-contingent memory reactivation consisted of 30 CS alone presentations over 30 minutes

without the opportunity to respond on the levers used in training. In reactivation sessions where

CS presentationwas contingent upon lever pressing thesewere conducted exactly as in training, ex-

cept that all sessions ended after 15 minutes and saline, instead of cocaine was delivered. Animals

were either injected with MK-801 (Sigma-Aldrich) or its vehicle 30 minutes before these sessions,

which were conducted 3 days after the conclusion of training.

Test sessions were 1 hour in duration and took place 3 days after reactivation. Active lever presses

during these sessions resulted in a brief (1s) presentation of the cocaine paired stimulus but had no

other consequences.

Experiment 3

Memory reactivation was with non-contingent CS presentation, as above. Animals were either

injected with MK-801 or its vehicle 30 minutes before this session.

In order to investigate the ability of the CS to maintain responding in Experiment 3 animals were

trained in a second-order schedule of reinforcement across the following 6 days.

106



CHAPTER 5. NMDA RECEPTOR ANTAGONISM DURING RETRIEVAL OF A COCAINE PAIRED
PAVLOVIAN MEMORY

Experiment 4

Memory reactivation was with non-contingent CS presentation, as above. Animals were either

injected with CPP or its vehicle 60 minutes before this session.

The initial test session in Experiment 4 was as in Experiments 1 and 2. After this, animals also un-

derwent a cue-induced reinstatement test. Animals were first given 6d of instrumental extinction,

where levers were presented but responding was without consequence. The day after the conclu-

sion of these sessions responding once more resulted in the delivery of the light CS on an FR1:S

schedule. All these sessions were 2 hours in duration.

Statistical analysis

Drug and Reactivation were always treated as between-subjects factors. (Time) Bin, Day (of train-

ing), Session (e.g. FI training vs. second-order Day 1/6) and (presence of the) CS (in cue-induced

reinstatement sessions) were coded as within-subjects factors.

Results

Experiment 1: Effects of NMDA receptor antagonism during memory reactivation with both

non-contingent and contingent CS presentation

Experiment 1A: Effects of NMDA receptor antagonism with MK-801 during memory reactivation with non-

contingent CS presentation

In this experiment a cocaine associated memory was reactivated through non-contingent present-

ation of a cocaine-paired CS under the presence of the NMDA receptor antagonist MK-801 or its

vehicle. The effects of this treatment were later probed with the assessment of the ability of the

reactivated CS to maintain responding (see Figure 5.1A). One animal was excluded from this ex-

periment before testing began after its catheter became damaged during training.

NMDA receptor antagonism with MK-801 at memory reactivation had no impact on responding

in the test session. Animals made similar numbers of active (F1,17 = 2.69, p = .120) and inactive

(F1,17 = 0.15, p= .702) lever presses regardless of drug treatment (Figures 5.1B and 5.1D). Because

within-session extinction can prevent detection of the amnestic effects of MK-801 treatment (Milton

et al., 2008a) the session was broken down into 15-minute time bins in order to investigate any
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potential deficits in reconsolidation. This revealed a similar pattern of results, with both groups

decreasing rate of active lever pressing equally within the hour session (Drug*Bin: F1.9,32.1 = 1.62,

p = .214; Figure 5.1C). There were also no significant differences in the pattern of responding on

the inactive lever (Drug*Bin: F1.9,32.1 = 1.62, p = .214; Figure 5.1E). MK-801 administered before

memory reactivation with non-contingent CS presentation did not, therefore, appear to prevent

reconsolidation, as indicated by a failure to affect responding in a test of the ability of this stimulus

to maintain responding.

Training
LP → Cocaine+CS

10d, FR1

Reactivation
CS x30

Non-contingent

Test
FR1:S
60 min

IP: VEH/MK-801

3d 3d

A

B C

D E

Figure 5.1: MK-801 administered before reactivation of a memory associated with
cocaine with non-contingent CS exposure had no effect on subsequent cocaine
seeking where responses deliver the cocaine paired CS. A: Schematic of experi-
mental procedures in Experiment 1A. B: Total number of active lever presses made
in the test session. C: Active lever presses from the test session, divided into 15-
minute bins. D: Total number of inactive lever presses made in the test session. E:
Inactive lever presses from the test session, divided into 15-minute bins. Data are
represented as means +/±SEM. N=9/10 per group.
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Experiment 1B: NMDA receptor antagonism during a second memory reactivation with contingent CS

presentation

After the first test animals underwent a second reactivation session, with CS presentation now be-

ing contingent upon lever pressing (see Figure 5.2A). This type of reactivation has previously shown

to increase the likelihood of an appetitive memory being destabilised (Lee and Everitt, 2008b). Fur-

ther reactivation sessions have also been shown to make memories more amenable to reconsolid-

ation blockade (Robinson and Franklin, 2010). Drug administration and treatment groups were

exactly as in Experiment 1A. One animal from the MK-801 group was excluded from this part of

experiment after its catheter became blocked during retraining.

Whilst overall response rates in the second test were not significantly affected by drug treatment at

reactivation, further inspection of responding within the session, broken down into time bins, re-

vealed that MK-801 treatment appeared to increase, or prevent a decrease, in responding. Analysis

of responding across the whole session revealed a trend towards MK-801 treated animals respond-

ing more on the active (F1,16 = 3.94, p= .064; Figure 5.2B) but not inactive (F1,16 = 0.98, p= .337;

Figure 5.2D) lever than those treated with vehicle. Although analysis of the session in 15-minute

time bins did not yield a significant Bin*Drug interaction (F1.9,31.0 =2.64, p= .089) analysis of only

the first 15 minutes of the session did reveal a significant increase in the number of active lever

presses made in the MK-801 group in comparison to animals treated with vehicle (Figure 5.2C).

Treatment with MK-801 before the second reactivation had no effect on the pattern of inactive re-

sponses made in the test session (Bin*Drug: F1.6,25.3=0.26, p= .725; Figure 5.2E).

Experiment 1: Training, retraining and reactivation

None of the results of the test sessions could be explained by pre-existing differences in the treat-

ment groups. All prospective groups learned to respond on the active lever in a similar fashion

(Day*Drug: F2.8,47.9 = 0.58, p = .623; Figure 5.3A) with prospective drug treatment not affecting

the response rate on the active (F1,17 = 0.20, p= .889) or inactive (F1,17 = 0.45, p= .834) lever dur-

ing training. Animals in both groups showed a similar pattern of inactive lever pressing during

training (Day*Drug: F3.4,57.5 = 1.58, p = .126; Figure 5.3B). There were also no differences in the

number of CS presentations earned during the training sessions between the prospective groups

(F1,17=0.43, p= .521; Figure 5.3C).
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Retraining
LP → Cocaine+CS

3d, FR1

Reactivation
LP → CS
15 min

Test
FR1:S
60 min

IP: VEH/MK-801

3d 3d

A

B C

D E

Figure 5.2: MK-801 administered before a second reactivation of a memory asso-
ciated with cocaine with contingent CS exposure resulted in increased responding
in subsequent cocaine seeking where responses deliver the cocaine paired CS. A:
Schematic of experimental procedures in Experiment 1B. B: Total number of act-
ive lever presses made in the second test session. C: Active lever presses from the
second test session, divided into 15-minute bins. D: Total number of inactive lever
presses made in the second test session. E: Inactive lever presses from the second
test session, divided into 15-minute bins. Data are represented asmeans +/±SEM.
N=9 per group * p<.05

Drug treatment at reactivation had no effect on the reacquisition of active lever pressing after the

first test (Drug*Day: F1.1,17.1 =1.69, p= .212), with no main effect of Drug on the number of active

(F1,16 = 0.21, p = .656; Figure 5.3A) or inactive lever presses (F1,16 = 0.66, p = .428; Figure 5.3B).

There were also no differences in the total number of CSs earned in these sessions between drug

groups (F1,16=1.36, p= .261; Figure 5.3C).

In the second reactivation session pre-treatment with MK-801 resulted in an increase in active

(F1,16 = 12.39, p= .003; Figure 5.3D) but not inactive lever pressing (F1,16 = 2.08, p= .169; Figure
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5.3E). Thus, animals treated with MK-801 received more presentations of the CS in the reactivation

session than those treated with vehicle (VEH: 17.5 ± 0.94 vs. MK-801: 27.3 ± 2.67; F1,16 = 11.91,

p= .003).

A B

C D E

Figure 5.3: Training and reactivation data for Experiment 1. A: Rate of active lever
pressing during training sessions. B: Rate of inactive lever pressing during training
sessions. C: Conditioned stimuli earned in the training sessions. D: Rate of active
lever pressing in the second reactivation session. E: Rate of inactive lever press-
ing in the second reactivation session. Data are represented as means +/±SEM.
N=9/10 per group. ** p<.01

Experiment 2: Effects of NMDA receptor antagonism with MK-801 during memory reactivation

with contingent CS presentation

Experiment 2 further investigated the effects of NMDA receptor antagonism before memory re-

activation with behaviourally contingent CS presentation on the subsequent response potentiating

properties of the CS in a later test (see Figure 5.4A), with the view that this type of retrieval session

might be more likely to result in memory destabilisation (Lee and Everitt, 2008b).
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Test results

NMDA receptor antagonism prior to the memory reactivation session had no effect on subsequent

responding at test, suggesting the value of the CS was not affected by this treatment. This was

indicated by the number of active lever presses made in the test session being similar between the

two drug groups (F1,18 =0.58, p= .456; Figure 5.4B). The number of inactive lever presses made in

the test session was not affected by MK-801 treatment at reactivation (F1,18 = 0.46, p= .508; Figure

5.4D). There was a similar pattern of results when the session was divided into 15-minute bins,

with both drug treatment groups showing similar patterns of active (Bin*Drug: F1.7,31.0 = 0.19,

p= .793; Figure 5.4C) and inactive lever pressing (Bin*Drug: F2.0,36.0=1.90, p= .164; Figure 5.4E) in

the session. This pattern of results suggested that contingent CS presentation was not effective at

triggering reactivation of the CS-cocaine memory formed during self-administration.

Training and reactivation

The results described above were not confounded by pre-existing differences between prospective

treatment groups. All groups responded on the active lever at similar rates during training (Drug:

F1,18 = 0.41, p = .530; Day*Drug: F2.4,43.3 = 1.49, p = .236; Figure 5.5A). There were also no dif-

ferences in inactive lever pressing throughout training (Drug: F1,18 = 0.97, p = .339; Day*Drug:

F2.5,45.5 = 0.56, p= .614; Figure 5.5B). Both groups received similar number of CS-US associations

during training (Drug: F1,18=0.11, p= .750; Figure 5.5C).

MK-801 had no effect on the total number of active lever presses made in the reactivation session

(F1,18=0.08, p= .779; Figure 5.5D). Drug treatment did, however, affect the total number of inactive

lever presses made in the session (F1,18 = 17.34, p < .001), with MK-801 treatment resulting in an

unexpected decrease in inactive lever pressing (Figure 5.5E). Both groups received an equal number

of CS presentations in the reactivation session (VEH: 24.5±2.36 vs. MK-801: 24.1±2.36; F1,18=0.01,

p= .906).
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Training
LP → Cocaine+CS

10d, FR1

Reactivation
LP → CS
15 min

Test
FR1:S
60 min

IP: VEH/MK-801

3d 3d

A

B C

D E

Figure 5.4: MK-801 administered before reactivation of a memory associated with
cocaine using CS exposure contingent on lever pressing had no effect on sub-
sequent on the ability of this stimulus to maintain responding. A: Schematic of
experimental procedures in Experiment 2. B: Total number of active lever presses
made in the test session. C: Active lever presses from the test session, divided into
15-minute bins. D: Total number of inactive lever presses made in the test session.
E: Inactive lever presses from the test session, divided into 15-minute bins. Data
are represented as means +/±SEM. N=10 per group.
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A B

C
D E

Figure 5.5: Training and reactivation data for Experiment 2. A: Rate of active lever
pressing during training sessions. B: Rate of inactive lever pressing during training
sessions. C: Conditioned stimuli earned in the training sessions. D: Total number
of responses on the active lever in the reactivation session. E: Total number of
responses on the inactive lever in the reactivation session. Data are represented as
means +/±SEM. N=10 per group. *** p<.001
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Experiment 3: Effects of NMDA receptor antagonism with MK-801 during memory reactivation

with non-contingent CS presentation on subsequent acquisition of a second-order schedule of

reinforcement

After training on fixed interval schedules of reinforcement a proportion of animals underwent a

reactivation session, with each half of the reactivated and non-reactivated groups receiving MK-

801 or its vehicle. Over the following 6 days the ability of this stimulus to maintain responding in

a second-order schedule of reinforcement was assessed (see Figure 5.6A).

Effects on total number of responses made in first and subsequent intervals

In day one of second-order training all animals made more lever presses in comparison to baseline

performance (without contingent CS presentation) during the first interval. Importantly, this effect

was of a similar magnitude in the different drug and reactivation groups. This was indicated by an-

imals respondingmore in the first interval of the first session of second-order training (F1,20=18.16,

p<.001). This increase was uniform between groups, regardless of reactivation and drug treatment

(Drug*Reactivation*Day: F1,20 = 0.17, p= .897; Figure 5.6B). The same pattern was revealed in the

other intervals (Day: F1,20 = 15.10, p= .001; Drug*Reactivation*Day: F1,20 = 2.63, p= .935; Figure

5.6C). No other interaction or main effect was significant for either the first or subsequent intervals

(F1,20<1.62, p>.220).

On the sixth day of second-order training animals continued to show increased lever pressing in the

first interval in comparison to baseline performance. However, those treated with MK-801 respon-

ded more than their vehicle treated counterparts and animals that did not undergo a reactivation

session. This was supported by an overall effect of Day (F1,20 = 15.43, p = .001) and this effect

differing between treatment groups (Drug*Day: F1,20 = 6.69, p = .016). Although there was not

a significant Drug*Reactivation*Day interaction: (F1,20 = 1.20, p = .287), given that MK-801 does

not typically affect cue-maintained cocaine seeking when given in the absence of a reactivation

session (Milton et al., 2008a) the effects of Drug were analysed separately in the reactivated and

non-reactivated groups.

Whilst drug treatment affected acquisition of a second-order schedule of reinforcement in animals

that underwent a reactivation session (Day*Drug: F1,14=10.40, p= .006) thiswas not true of animals

that did not (Day*Drug: F1,6 = 0.86, p= .390). Further analysis revealed that at this later stage of

second-order training only animals treated with MK-801 before a reactivation session increased
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their responding in comparison to baseline, suggestive of a memory enhancing effect of MK-801.

Animals treated with MK-801 at retrieval responded at a greater level than animals that did not

undergo a memory reactivation session (Figure 5.6D).

These effects were not seen in the other intervals; animals increased their lever pressing in com-

parison to baseline (F1,20 = 41.45, p < .001), but this increase was not moderated by drug treat-

ment and/or whether animals underwent a memory retrieval session (all interactions: F1,20<1.93,

p > .179). Furthermore, all groups appeared to increase their lever pressing in comparison to

baseline, although the difference did not always reach statistical significance (Figure 5.6E).

The increases in responding occurring as a result of MK-801 treatment were not caused by a gen-

eral increase in locomotor activity. Although introduction of the second-order schedule of rein-

forcement did result in a small increase in the number of inactive lever presses on the first day

(F1,20=8.02, p= .010) this did not interact with any other factor (all: F1,20<1.25, p>.276; see Table

5.1). There were no differences between baseline and the sixth day of second-order in inactive lever

presses made in the first interval (F1,20 = 0.98, p= .335) and this was not affected by reactivation

and/or drug treatment (all interactions: F1,20<1.71, p>.204; see Table 5.1).

Interval Baseline Test Test II
Group

1
VEH No Ret 7.8 ± 2.54 13.8 ± 5.63 9.5 ± 2.53
MK-801 No Ret 5.3 ± 0.32 10.0 ± 1.08 8.8 ± 1.49
VEH Ret 7.6 ± 1.12 12.4 ± 1.05 9.9 ± 2.19
MK-801 Ret 10.4 ± 2.46 10.4 ± 2.72 7.9 ± 1.98

2-5
VEH No Ret 4.6 ± 1.70 7.9 ± 2.56 7.6 ± 3.14
MK-801 No Ret 12.2 ± 2.23 13.8 ± 3.03 14.7 ± 4.62
VEH Ret 10.3 ± 2.79 13.7 ± 2.83 15.6 ± 2.71
MK-801 Ret 9.6 ± 1.96 11.5 ± 3.61 10.9 ± 2.72

Table 5.1: Inactive lever pressesmade in 3 stages of second-order training. Baseline
refers to responding before introduction of the second-order schedule of reinforce-
ment. Days 1 and 6 refer to the number of days of training in the second-order
schedule. 2-5 refers to the average number responses made in these intervals. Val-
ues represent mean values ± SEM to 2 decimal places.
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Training
LP → Cocaine+CS
FR1 → FI1...FI15

Reactivation
CS x30

Non-contingent

Test
Second order
FI15(FR10:S)

IP: VEH/MK-801

3d 1d

Training
LP → Cocaine+CS
FR1 → FI1...FI15

No retrieval Test
Second order
FI15(FR10:S)

IP: VEH/MK-801

3d 1d

A

Day 1 of second order

B C

Day 6 of second order

D E

Figure 5.6: MK-801 administered before a reactivation session of consisting of non-
contingent CS exposure resulted in an enhancement in subsequent responding in
a second-order schedule of reinforcement. A: Schematic of experimental proced-
ures in Experiment 3. B: Responding on the active lever during the first interval on
the first day of second-order. Significance not plotted. C: Responding on the active
lever during themean of the 2nd-5th intervals on the first day of second-order. Sig-
nificance not plotted. D: Responding on the active lever during the first interval on
the sixth day of second-order. E: Responding on the active lever during the mean
of the 2nd-5th intervals on the sixth day of second-order. Data are represented as
means +/- SEM. The numbers beneath of the bars represent the N of each group.
# p<.08, * p<.05, ** p<.01, *** p<.001
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Effects on latency to reach 10th active lever press

In order to investigate whether the increases in responding seen from baseline to second-order con-

ditioning were the result of introduction of response contingent CSs or non-specific effects (e.g. ab-

stinence, additional training sessions), the time taken to make 10 active lever presses was analysed

in a similar fashion to responding in the first interval. This can be used to provide ameasure of drug

seeking unaffected byCS presentation, since it is only on the 10th lever press that the cocaine-paired

stimulus is presented. Analysis of these data suggested that none of the differences in responding

reported in the test sessions could be explained by factors unrelated to CS presentation (Figure 5.7),

details of which are reported below.

Unlike the total number of responses, introduction of the second-order schedule of reinforcement

had no detectable effect on the latency tomake the tenth lever press on the first day of second-order

(F1,20 = 0.26, p = .616; Figure 5.7A). Although no interactions were significant, there was a trend

towards Day affecting groups differentially dependent on whether they had undergone a retrieval

session (Day*Reactivation: F1,20 = 4.29, p= .052). Separate analyses of the effect of day in the No

Retrieval and Retrieval groups did not reveal a significant effect of Day in either of these groups

(No Retrieval: F1,14 = 1.65, p= .219; No retrieval: F1,6 = 3.30, p= .119). There were no significant

interactions between Day and Drug in either group (Retrieval: F1,14 = 1.30, p= .273; No Retrieval:

F1,6=0.89, p= .382).

The latency to reach the 10th lever press did not vary between the FI15 baseline sessions and the

6th day of second-order (F1,20 = 1.82, p = .193; Figure 5.7B). There was, however, a significant

interaction between Day and whether animals had undergone a reactivation session (F1,20 = 6.93,

p= .016). Separate analysis of Retrieval and No Retrieval groups revealed that Day had affected the

latency to make the 10th lever press in the No Retrieval (F1,6=12.36, p= .013), but not the Retrieval

groups (F1,14 = 1.01, p = .331). Furthermore, in the No Retrieval group there was a significant

Day*Drug interaction (F1,6=7.77, p= .032), driven by an increase in time from baseline to reach the

10th lever press inMK-801, but not vehicle, treated groups (Figure 5.7B). In contrast, analysis of only

the animals that underwent a reactivation session revealed no Day*Drug interaction (F1,14 = 0.89,

p= .769). The latency tomake the 10th response on the 6th day of second order did not significantly

differ between reactivatedMK-801 and vehicle groups (t14=1.89, p= .080; Figure 5.7B). These latter

two results are in stark contrast to the pattern that was observed when the number of lever presses

made in the first interval was analysed in a similar fashion (see above).
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It appeared that the increase in responding that was seen following the introduction of the second-

order schedule of reinforcement was not the result of general, non CS-specific effects as the pat-

tern of responding seen before presentation of this CS did not mirror that of those made in the

first interval. The effect of MK-801 treatment at memory reactivation to increase responding in a

second-order schedule of reinforcement therefore appeared to be via an enhancement of the CS to

potentiate responding, rather than a change in contextual or instrumental associations that could

also result in an increase in responding.

A B

Figure 5.7: Effects ofMK-801 treatment before reactivationwith non-contingent CS
presentation on the latency to make 10 lever presses in a second-order schedule of
reinforcement. A: Time taken to make the 10th lever press on the 1st day of the
second-order training in comparison to a FI15 baseline. B: Time taken to make the
10th lever press on the 6th day of the second-order training in comparison to a FI15
baseline. Data are represented as means +SEM. The numbers beneath of the bars
represent the N of each group. ** p<.01

Training

All groups acquired the operant response similarly, showing equivalent patterns of responding on

the active lever throughout the training sessions, regardless of prospective groupings (all interac-

tions: F3.8,75.9<1.31, p>.275; all between-subjects main effects: F1,20<0.52, p>.480; Figure 5.8A).

All groups took a similar number of days of FR1 to earn 70 CS-US pairings (mean: 4.25, all main

effects and interactions: F1,20<0.12, p> .735). There were also no significant interactions between

any factor in inactive lever pressing across training (F2.4,48.4 < 0.66, p > .774) and no main effects

of prospective groups (F1,20<0.25, p> .624; Figure 5.8B). Prospective groupings did not affect the

total number of CSs earned in training (F1,20<0.78, p>.388; Figure 5.8C).
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A B

C

Figure 5.8: Training data for Experiment 3. A: Rate of active lever pressing dur-
ing the last 11 training sessions. See C for schedule of reinforcement. B: Rate of
inactive lever pressing during the last 11 training sessions. See C for schedule of
reinforcement. C: Conditioned stimuli earned in the last 11 training sessions. Data
are represented as means ± SEM. N=4-8 per group.

Experiment 4: Effects of NMDA receptor antagonism with CPP at cocaine associated memory

reactivation with non-contingent CS presentation on subsequent memory expression

After 3 experiments failed to produce an amnestic effect ofMK-801 treatment, an alternativeNMDA

receptor antagonist, CPP, was used. This drug has a greater affinity for the GluN2A subtype of the

NMDA receptor (Feng et al., 2004; Feng et al., 2005), activation of which appears to be critical for

reconsolidation to take place (Milton et al., 2013). In contrast GluN2B receptor subunits, which

MK-801 also targets (Wong et al., 1986; Wong et al., 1988), are required for destabilisation and the

action of this drugmay have prevented this process in previous experiments, meaning thememory

was unable to become reactivated (Ben Mamou et al., 2006; Milton et al., 2013; Yu et al., 2016). This

experiment was similar to Experiment 1A, except that CPP was administered before memory re-

activation with non-contingent CS exposure instead of MK-801 (see Figure 5.9A). The ability of the

drug-paired cue to reinstate responding after instrumental extinction was also assessed.
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Test results

CPP administration prior to memory reactivation had no effect on the subsequent ability of the CS

to maintain responding in an initial relapse test. This was indicated by animals in both treatment

groups making a similar number of active lever presses during this session (F1,14 = 0.14, p= .712;

Figure 5.9B). Drug treatment did not affect the number of inactive lever pressesmade at test (F1,14=

0.45, p= .513; Figure 5.9D). Splitting the session into 15-minute bins did not reveal any effects of

CPP administration on the number of responses made on the active (Bin*Drug: F1.5,21.6 = 0.11,

p= .849; Figure 5.9C) or inactive (Bin*Drug: F1.5,21.3 = 0.77, p= .443; Figure 5.9D) lever across the

session.

The ability of the CS to reinstate responding after a period of instrumental extinction was not af-

fected byCPP treatment prior tomemory reactivation. Animals increased their active lever pressing

in response to the CS to a similar degree regardless of drug treatment. This was substantiated by

an effect of CS presentation to increase responding (F1,14 = 22.78, p < .001) equally across groups

(CS*Drug: F1,14 = 0.06, p = .812; Figure 5.10A). These results therefore further suggested that

CPP treatment at reactivation was ineffective at preventing reconsolidation of the cocaine CS-US

memory.

Training

The results of the test sessions could not be explained by pre-existing differences in the different

drug groups. There were no differences between the prospective groups in the rate of active lever

pressing during training (Drug: F1,14 = 0.07, p = .794; Day*Drug: F2.5,35.0 = 0.69, p = .542; Fig-

ure 5.11A). The same was true of inactive lever pressing (Drug: F1,14 = 0.11, p= .749; Day*Drug:

F1.4,19.1 = 0.19, p= .745; Figure 5.11B). Both groups received a similar number of CS-US pairings

during training (Drug: F1,14=0.05, p= .824; Figure 5.11C).
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Training
LP → Cocaine+CS

10d, FR1

Reactivation
CS x30

Non-contingent

Test
FR1:S
60 min

IP: VEH/CPP

3d 3d

A

B
C

D E

Figure 5.9: CPP administered before reactivation of a memory associated with co-
caine using non-contingent CS exposure had no effect on the subsequent ability of
this stimulus to maintain responding. A: Schematic of experimental procedures
in Experiment 4. B: Total number of active lever presses made in the test session.
C: Active lever presses from the test session, divided into 15-minute bins. D: Total
number of inactive lever presses made in the test session. E: Inactive lever presses
from the test session, divided into 15-minute bins. Data are represented as means
+/±SEM. N=8 for each group.
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A B

Figure 5.10: Effects of CPP treatment before memory reactivation on subsequent
cue-induced reinstatement. A: Effect of reintroduction of a cocaine paired CS on
responding on the active lever. Baseline refers to responses made on the previous
day. B: Effect of reintroduction of a cocaine paired CS on responding on the inact-
ive lever. Data are represented as means +SEM. N=8 for each group. * p<.05, **
p<.01

A B

C

Figure 5.11: Training data for Experiment 4. A: Rate of active lever pressing during
training sessions. B: Rate of inactive lever pressing during training sessions. C:
Conditioned stimuli earned in the training sessions. Data are represented asmeans
± SEM. N=8 for each group.
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Discussion

Summary of results

Here it was reported that despite using behavioural parameters that have previously been shown

to result in memory reconsolidation (Lee et al., 2006a; Milton et al., 2008a), combined with the use

of pharmacological compounds known to prevent this process (Lee et al., 2006b; Milton et al., 2008a;

Suzuki et al., 2004), it was not possible to reduce responding for a cocaine-paired cue. In contrast,

in two of the experiments an increase in responding was reported as a result of this treatment,

potentially via a blockade of extinction-like processes and/or an enhancement of reconsolidation.

This apparent failure to block memory reconsolidation was despite the use of two different NMDA

receptor antagonists, both contingent and non-contingent cue presentation at retrieval, and a range

of techniques used to assess rewarding properties of the drug-paired cue. The implications and

possible explanations of these data are discussed below.

Relationship to previous work

In order for a memory to become destabilised and subsequently reconsolidated conditions of re-

trieval must be sufficient for these processes to take place. There are numerous possibilities as to

why a given retrieval session might fail to result in memory reactivation, some of which are out-

lined below. The degree of similarity between training and reactivation sessions is first discussed,

followed by the saliency of CS presentation. The particular neurochemical mechanisms required

for reconsolidation to take place are then considered, followed by differences between the present

studies and those conducted previously and which of these might account for the failure to replic-

ate their findings. Finally, the possible mechanisms for the ability of MK-801 treatment to enhance

responding is discussed.

During self-administration the cocaine-paired cue was only ever presented upon an active lever

press. In contrast, in the reactivation sessions for Experiment 1a, 3 & 4 the CS was presented non-

contingently. Although pavlovian memories formed during cocaine self-administration have pre-

viously been reported to destabilise upon non-contingent or contingent cue presentation (Lee et

al., 2005b; Lee et al., 2006a; Milton et al., 2008a; Sanchez et al., 2010), previous experiments using

food as a reinforcer have demonstrated that only CS presentation that is contingent upon the an-

imal making a response result in memory reactivation (Lee and Everitt, 2008b). With this in mind,
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the possible effects of the contingency of CS presentation were investigated in Experiment 1b; the

same animals underwent a second reactivation session where the cocaine-paired cue was presen-

ted only upon an active lever press. However, this was unsuccessful in leading to a sensitivity of

the memory to NMDA receptor antagonism prior to retrieval; in contrast, animals treated with

MK-801 increased their lever pressing in a subsequent test session. This suggested that MK-801

was preventing extinction, rather than reconsolidation. It was possible that this was due to some

interaction with the previous reactivation session, which may have altered the susceptibility of the

memory to become destabilised and/or extinguished.

The possible requirement for contingent CS presentation to result in memory destabilisation was

further addressed in Experiment 2, with cue delivery now only occurring upon an active lever

press in the initial reactivation session. Once again, this manipulation was apparently not effective

in triggering reconsolidation, since animals treated with the NMDA receptor antagonist, MK-801

prior to this modified reactivation session responded at similar levels at test to those treated with

vehicle.

One possible hypothesis arising from these data was that the association between the CS and US

was not undergoing reconsolidation because of the lack of saliency of the cocaine paired cue. Under

an FR1 schedule of reinforcement an animal can ’titrate’ to achieve the desired level of cocaine in

the bloodstream (e.g. Ahmed and Koob, 1998). Whilst the presentation of the cue does lead to a

cocaine infusion, other factors may also come to predict this, including the lever press response and

contextual cues of the conditioning chamber. Experiment 3 therefore sought to reduce the impact

of these two additional associations, through the introduction of an FI schedule of reinforcement.

Here, neither the lever press nor the contextual cues alone can predict the infusion of cocaine –

animals will undergo extended periods of lever pressing in the operant box without infusion of

cocaine. It is only the illumination of the CS light (and retraction of the levers), that can accurately

predict the infusion of cocaine. It was hoped that this would increase the salience of the CS, thus

allowing presentation of this stimulus alone to result in reconsolidation. Once again, however, this

was not successful.

In three experiments MK-801 treatment in combination with a memory reactivation session failed

to produce any amnestic effect. One potential difficulty in usingMK-801 to prevent reconsolidation

is that it can prevent memory destabilisation (Yu et al., 2016), although here is some evidence that

CS-cocainememories are resistant to these destabilisation-preventing effects, since pre-reactivation
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intra-BLA infusion ofAP-5 prevents destabilisation of fear (BenMamou et al., 2006), but not cocaine-

pairedmemories (Milton et al., 2008a). Because the ability ofNMDA receptor antagonists to prevent

destabilisation appears to depend on GluN2B subunit activation (Milton et al., 2013) an alternative

NMDA receptor antagonist, CPP, was used, which has a slight preference for the GluN2A subunit

(Feng et al., 2004; Feng et al., 2005). Treatment with this drug was also ineffective at preventing

reconsolidation; administration of CPP before the memory reactivation session, consisting of non-

contingent CS presentation, had no impact in subsequent tests of the ability of the CS to maintain

responding.

All of the present experiments were based on those that have been conducted previously. However,

there were some minor differences between these and the experiments described herein. Whilst

Experiment 2 was based on Milton et al. (2008a), in this paper training sessions were conducted

across 9 days and were an hour in duration, rather than the 2 hour sessions across 10 days in this

experiment. The reactivation session also ended once animals received 30 CS presentations, rather

than after 15 minutes as used here. Although animals in Experiment 2 were likely to have received

more CS-US pairings during training, the number of CSs presented in the reactivation sessions

was approximately equal to the Milton et al. study. Whilst Experiments 1 and 4 were based on

Lee et al. (2006a), there were some differences between those and the present experiments. For

example, in the equivalent experiment animals in the Lee et al. training sessions were 3 hours in

duration, resulting in animals in Experiments 1 and 4 receiving fewer pairings. The number of

CSs presented at reactivation is a crucial factor in determining whether a memory is destabilised

and likely interacts with the extent of training. For example, contextual fear memories that have

received more pairings require longer reactivation sessions to trigger reconsolidation (Suzuki et al.,

2004). 3 CS presentations results in the destabilisation of a goal-tracking memory after 6, but not 3

or 12 days of training (Reichelt and Lee, 2013a). It is possible, therefore, that the altered proportion

of reinforced CSs to CSs in the reactivation session meant the memory did not reconsolidate.

Experiment 3wasmodified in order to ensure that animals received the same extent of training as in

Lee et al. (2006a), with animals in this and the equivalent experiment receiving very similar numbers

of reinforced CS presentations. Despite this, treatment with anNMDA receptor antagonist at react-

ivation did not reduce the subsequent reinforcing properties of the reactivated stimulus. Assuming

that the relationship between reinforced and non-reinforced CS presentations required to trigger

reconsolidation is consistent between experimenters the memory should have become destabilised

in the reactivation session. It is worth noting that not only was there no impairment in the acquisi-

tion of second-order in animals treated with MK-801, but in fact responding was increased in these
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animals. This could not be attributed to the prevention of extinction, since thememory reactivation

procedure did not result in decrease responding, as would be expected if this were the case. At this

point it should be highlighted that a notable difference between the Lee et al. (2006a) experiment

and those conducted here was the intervention to (attempt to) disrupt reconsolidation. The Lee

et al. paper used intra-BLA infusion of antisense oligodeoxynucleotides (ASOs) to prevent expres-

sion of immediate early gene (IEG) zif-268, rather than the systemic NMDA receptor antagonism

used here. There is a wealth of literature suggesting that broad spectrum NMDA receptor antag-

onism as a method of preventing memory reconsolidation should be effective, previous studies

have shown these are receptors are required for reconsolidation of both discrete (Lee et al., 2006b;

Merlo et al., 2015) and contextual (Heath et al., 2015; Suzuki et al., 2004) fear associations, appetit-

ive pavlovian associations for both natural (Lee and Everitt, 2008b; Lee and Everitt, 2008c; Reichelt

and Lee, 2013a) and drug reinforcers (Milton et al., 2008a) and more recently, instrumental asso-

ciations for both food and drug reinforcers (Exton-McGuinness and Lee, 2015; Exton-McGuinness

et al., 2014), alongside their ability to prevent increases in the expression zif-268 in the BLA (Milton

et al., 2008a), known to be critical in the reconsolidation of these associations (Lee et al., 2005a). Fur-

thermore, meta-analysis of numerous studies using NMDA receptor antagonism to prevent recon-

solidation concluded there was a robust impairment in this process for reward-related memories

with this drug (Das et al., 2013). Theoretically, therefore, if reconsolidation was taking place in the

reactivation sessions NMDA receptor antagonism should have been effective at preventing it.

The data from Experiment 3 suggested that reconsolidation was enhanced by MK-801 treatment.

There are several published examples of enhancing reconsolidation of both aversive (Bredy and

Barad, 2008; Lee et al., 2006b) and appetitive (Lee et al., 2009; Schramm et al., 2016) pavlovian associ-

ations. However, typically these effects are achieved with manipulations which would be expected

to enhance plasticity, rather thanNMDA receptor antagonism, that would be expected to prevent it.

Whilst themajority of published reports suggest thatNMDA receptor antagonism results in impair-

ments in both consolidation and reconsolidation, there is also some evidence that it can have an en-

hancing effect on each of these processes. Administration of high doses of MK-801 before cued fear

conditioning sessions can enhance acquisition (Gould et al., 2002) and pre-reactivation treatment

of the same drug (at lower doses) can result in increased fear to a shock-paired context (Flavell,

2015). Although the mechanism for these enhancements is unclear, one possibility is that they are

the result of the non-specific effects of MK-801. Alongside antagonism of NMDA receptors, this

drug also increases dopamine and serotonin metabolite levels across several regions of the brain

(Löscher et al., 1991), increases Fos expression (Sonnenberg et al., 1989), inhibits activity of nicotinic
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acetylcholine receptors (Amador andDani, 1991) and increase acetylcholine levels (Hasegawa et al.,

1993).

Another possibility is that the manipulation disrupted one aspect of the excitatory memory trace,

but not another. Recent investigations have shown that after limited training, responding in a

second-order schedule of reinforcement is BLA-dependent, but after extended training relies upon

the central nucleus of the amygdala (CEN) (Murray et al., 2015). One possibility is that during the

reactivation session the BLA, but not CEN, dependent trace became reactivated. Reconsolidation of

the BLA trace was then prevented, leaving only CEN-dependent responding. Given that respond-

ing requiring the CEN is hypothesised to be habitual and characterised by high response levels,

this could explain the increased responding in the MK-801 treated animals. Post-training lesions of

the BLA have been shown to result in an increase in responding in a second-order schedule of rein-

forcement for cocaine and an enhancement in second-order conditioning for food (Holland, 2016;

Murray, unpublished observations). This would also explain why the increase in respondingwas only

seen several sessions aftermemory reactivation – as animals havemore experiencewith the second-

order schedule of reinforcement brain regions associated with habitual responding, i.e. the CEN,

will start to become recruited. Future investigations could explore this possibility through inactiv-

ation of the CEN after the reactivation sessions – it would be predicted thatMK-801 treatment prior

to memory reactivation would result in a heightened to sensitivity to this treatment in comparison

to vehicle treated controls.

Finally, one possibility is that the effects were unrelated to CS presentation, but the result of disrup-

ted instrumental memory reconsolidation. However, this is unlikely for several reasons. Analysis

of the latency to reach the 10th lever press in the second-order sessions, a potential measure of CS

independent responding, was unaffected by drug-treatment at reactivation. Furthermore, the re-

activation session consisted of only non-contingent CS presentation; there was no opportunity to

reactivate the instrumental response. In order to rule out this possibility, it would have been neces-

sary to conduct test sessions in the absence of CS presentation and examine whether the effect of

MK-801 at reactivation to increase responding persists.

Implications for subsequent research

It was not possible to determine the parameters that result in the destabilisation of a pavlovian

memory associated with cocaine. These experiments were all conducted in animals that have been

trained to an extent that has previously been suggested to a reflect a casual user (Murray et al.,
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2012), a protocol that does not model habitual nature of drug seeking. The inability to disrupt

reconsolidation in these associations does not, however, preclude investigation of reconsolidation

of reward associated memories that have undergone extensive training, the primary aim of the

following chapter.
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Chapter 6: Breaking a habit: disruption of memory reconsolidation

after extensive training

Introduction

Experiments in Chapter 5 were unable to disrupt reconsolidation of a pavlovian memory formed

during cocaine self-administration. Specifically, animals that had undergone approximately 10

days of training showed no reduction in cocaine seeking after being administered an N-methyl-

D-aspartate (NMDA) receptor antagonist prior to a memory retrieval session. This was despite

attempts to increase the likelihood of reconsolidation taking place through modifications of the re-

activation session and the use of different pharmacological compounds used to attempt to block

this process. A variety of different methods were also used to assess the integrity of conditioned

stimulus (CS)-unconditioned stimulus (US) association. Whilst these results may suggest there

is limited potential for reconsolidation-based treatments for drug addiction it is worth noting that

these experiments were carried out on animals that had received relatively few days of training and

were therefore likely more reflective of a ’casual user’ rather than an addicted individual. How-

ever, it is the memories underlying well-established, habitual behaviour that will be the targets

in reconsolidation-based treatments for disorders such as drug addiction. It is known that strong

(Wang et al., 2009), old (Inda et al., 2011; Milekic and Alberini, 2002; Suzuki et al., 2004) memories

are more resistant to destabilisation, potentially making disrupting the reconsolidation of habitual

memories more difficult than those have undergone limited training. However extensive training

may also present the opportunity to induce a greater prediction error (PE), a key factor in determ-

ining whether a given retrieval trial results in reactivation of the memory (Pedreira et al., 2004;

Reichelt and Lee, 2013c; Sevenster et al., 2013). Furthermore, the distinct neurocircuitry supporting

habitual behaviour (e.g. Murray et al., 2012; Murray et al., 2015) may mean that the issues in the

previous chapters that prevented memory destabilisation may not necessarily preclude blocking

reconsolidation of these memories. This chapter therefore attempted to disrupt well-established
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appetitive memories, with the view that it is these associations that will be the target for future

treatments of psychiatric disorders including drug addiction and potentially obesity.

Whilst responses for food rewards are initially governed by action-outcome (A-O) associations, as

training progresses these become driven by stimulus-response (S-R) pairings. The neural structures

required for these two types of responding have received extensive attention. The dorsomedial

striatum (DMS), prelimbic (PL) cortex, basolateral amygdala (BLA) and mediodorsal thalamus are

required for goal-directed responding (Corbit et al., 2003; Killcross and Coutureau, 2003; Lingawi

and Balleine, 2012; Yin et al., 2005b). In contrast, the dorsolateral striatum (DLS), infralimbic (IL)

cortex and central nucleus of the amygdala (CEN) appear to have an exclusive role in S-R dependent

responding (Coutureau andKillcross, 2003; Lingawi and Balleine, 2012; Yin et al., 2004). The shift in

the requirements for these brain regions in these two types of responding has been demonstrated by

a change in the sensitivity of responding to reinforcer devaluation. Lesions or inactivation of brain

structures associated with A-O responding result in an insensitivity to these procedures, whilst

the same manipulations in regions required for S-R responding result in a restored susceptibility

to outcome devaluation in habitual animals. The ability to reinstate goal-directed responding in

animals that were once habitual suggests A-O and S-R associations are formed in parallel, with one

association dominating control over behaviour depending on (typically) the extent of training.

The neural structures underlying responding augmented by cocaine-paired CSs have been shown

to undergo a shift in their neural basis depending on the extent of training, in an apparent parallel

to the shift in goal-directed to habitual instrumental responding. Whilst cocaine seeking at an early

stage of training depends upon activation of the DMS and BLA (Murray et al., 2012; Murray et al.,

2015), after extended periods of drug-seeking these responses become dependent on the DLS and

CEN (Belin and Everitt, 2008; Murray et al., 2012; Murray et al., 2015; Vanderschuren et al., 2005).

Whilst these studies did not specifically probe whether this responding was habitual, the reliance

of this behaviour upon similar neural mechanisms suggests this may be the case. Furthermore,

procedures that do permit the testing of whether drug-seeking is goal-directed or habitual have

shown that the DLS is recruited as responding for these rewards becomes insensitive to the value

of its outcome (Corbit et al., 2012; Zapata et al., 2010). Whilst in a much earlier stage of invest-

igation, it appears that after extensive training cue-dependent food-seeking responses for highly

palatable food also become dependent on the DLS. Infusion of the dopamine receptor antagonist

α-flupenthixol into the DLS results in a reduction in such behaviours (Giuliano et al., in prepara-

tion), whilst this manipulation is without effect on food-seeking responses after limited training

(Belin and Everitt, 2008).
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The majority of works conducted to date on appetitive memory reconsolidation have used training

protocols that are relatively short in duration and would be unlikely to recruit the DLS and CEN

(e.g. Flavell and Lee, 2013; Lee et al., 2006a; Milton et al., 2008a; Sanchez et al., 2010). The reliance

of responding that has been extensively trained upon these regions may affect the ability of these

memories to reconsolidate. For example, cell-firing in the CEN is more GluN2B dependent than

that of the BLA (Sah and De Armentia, 2003) and studies in fear memory reconsolidation have

demonstrated that destabilisation is dependent upon activation of these receptors (Milton et al.,

2013), suggesting that a change in the dependence of the subunit activity between the BLA andCEN

may affect the ability of memories dependent on these regions (Murray et al., 2015) to destabilise.

The extent of training is not the sole determinant in the transition from goal-directed to habitual

responding; this is also influenced by the schedule by which responses are reinforced. Whilst ratio

schedules promote the formation of goal-directed responding, interval schedules will more likely

result in habitual behaviour (Dickinson et al., 1983). The nature of ratio schedules (where a cer-

tain number of responses are required to obtain reward) mean that as the rate of responding in-

creases, so does the reinforcement rate, promoting the formation of A-O associations. The opposite

is true of interval schedules (where a response is reinforced based on the time since last reward

delivery), where at high rates of responding the correlation between response and reinforcement

rate is very low, resulting autonomous responding whereby the instrumental response becomes

separated from the reinforcer it produces (S-R responding) (Dickinson, 1985). The shift in cocaine-

seeking from being DMS to DLS dependent is similarly affected by reinforcement schedule. Fixed

ratio (FR) schedules of reinforcement result in the formation of drug seeking responses that remain

dependent on the DMS, apparently regardless of the extent of training. In contrast, when respond-

ing is reinforced on a second-order schedule of reinforcement the DLS is recruited after the same

number of days of training (Murray et al., 2012). In these schedules animals are required to respond

for long (15-20 minutes) periods in the absence of primary reinforcement. However, during these

intervals responses result in the presentation of the reward-paired CSs; delivery of which results

in a dramatic increase in the rate of responding (Arroyo et al., 1998; Everitt and Robbins, 2000).

Two factors appear to govern the transition from goal-directed to habitual reward seeking: the use

of second-order order schedules of reinforcement and the extent of training. Both of these charac-

teristics may mean that memories underlying habitual responding are resistant to reconsolidation.

Inherent in second-order schedules of reinforcement is that the CS is presented multiple times

without reward delivery. One of the key factors in determining whether a retrieval session will
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result in memory destabilisation is the presence of PE (e.g. Pedreira et al., 2004; Reichelt and Lee,

2013c; Sevenster et al., 2013), that is, whether the reinforcer is delivered as expected. It is possible

that the repeated experience of CS presentation in the absence of reward in the second-order train-

ing sessions means that reactivation sessions, which typically also consist of delivery of CSwithout

reinforcer delivery (e.g. Lee et al., 2006a; Milton et al., 2008a; Sanchez et al., 2010), will not trigger

sufficient PE to result in destabilisation. Alternatively, the use of second-order schedules, com-

bined with extensive training, may in fact present an opportunity to increase the PE at reactivation.

Responding during the first interval in these schedules, which occurs in the absence of drug de-

livery, ’scallops’, with the rate of lever pressing increasing as the fixed interval (FI) comes closer to

completion (Arroyo et al., 1998), perhaps indicative of the anticipation of reward. Violation of this

expectancy should result in a large PE signal perhaps leading to memory destabilisation.

Whilst extensive training should lead to an increase in the likelihood of a given trial to result in

PE, this does not necessarily mean these memories are more likely to destabilise. Fear memories

that have undergone extensive training are more resistant to the effects of post-reactivation aniso-

mycin (Wang et al., 2009). In some cases these difficulties can be overcome with longer reactivation

sessions (Suzuki et al., 2004) and stronger memories may become more receptive to disruption of

reconsolidation with repeated reactivation sessions (Robinson and Franklin, 2010). Furthermore,

in some cases memory strength does not appear to preclude or affect destabilisation; propranolol

is equally effective at preventing reconsolidation of a cued fear memory that has undergone 2 or

5 pairings (Taherian et al., 2014). Moreover, the naturally occurring compound Garcinia is able to

prevent reconsolidation of CS-drug memories formed across 12 or 24 days of self-administration

(Monsey et al., 2017).

Three experiments in this chapter investigated the reconsolidation of memories underlying re-

sponding after extensive training in a second-order schedule of reinforcement for both cocaine

(Experiment 1) and food (Experiment 2 & 3). Animals were trained in a similar fashion as pre-

vious reports showing DLS-dependent responding (Belin and Everitt, 2008; Giuliano et al., in pre-

paration). The reactivation procedure used was designed to maximise PE through the violation

of several learned expectancies. Firstly, unlike training, responses during this session did not pro-

duce delivery of the CS. Secondly, at the end of the first interval no reinforcerwas delivered. Finally,

the session ended after this first interval, unlike training where animals continued to respond for

rewards after the first reinforcer delivery. In Experiment 3 animals underwent multiple (3) react-

ivations in order to investigate whether this results in an increased propensity of the memory to
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destabilise. As in previous chapters, animals were administered with the NMDA receptor antag-

onist MK-801 to disrupt reconsolidation in these sessions.

Methods

Animals were extensively trained to respond on a second-order schedule of reinforcement for de-

livery of cocaine (Experiment 1) or chocolate-flavoured food pellets (Experiments 2 & 3). The effects

of NMDA receptor antagonism duringmemory reactivation on subsequent responding in the same

second-order schedule of reinforcement were then assessed.

Procedures were conducted as in General methods except where stated.

Cocaine self-administration experiments

Animals and housing

Animals were 24 male Lister-Hooded rats weighing 300-350g at the time of surgery. 4 days before

training began animals were food-restricted and fed 20g of standard rat chow at the end of each

day.

Surgery

Intravenous catherisation surgery was conducted as in General methods, with anaesthesia main-

tained with inhalation of isoflurane mixed with 100% oxygen.

Training procedures

Responses on the active lever were first reinforced under an FR1 schedule of reinforcement for 6d.

Animals then progressed through gradually longer FI schedules of reinforcement, beginning at FI1

(min), advancing through 2, 4, 6, 10 for one day each and stabilising for FI15 for a final three days

(Belin and Everitt, 2008; Lee et al., 2006a). A second, inactive, leverwas present throughout training,

responses on which were without consequence.

After pre-training animals were trained under a second-order schedule of reinforcement. Animals

first underwent a total of 7 of these sessions. However, due to low levels of responding in the first

interval, all animals underwent a further 3d of ’remedial’ FR1 with the view that may increase
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the ability of the cocaine paired CS to potentiate responding. Starting the day after these sessions

the second-order schedule of reinforcement was reintroduced for a further 14d, meaning animals

underwent a total of 21d of second-order training. This extent of training has previously shown

to result in recruitment of DLS-dependent responding (Murray et al., 2012; Peña-Oliver et al., in

preparation).

Reactivation

Reactivation took place the day after completion of second-order training. For this session both

levers were presented for 15 minutes but responding was without consequence. Once the 15

minutes had elapsed the next active lever press resulted in illumination of the CS light, de-

illumination of the houselight and delivery of 0.1ml of saline. Following saline infusion and CS

presentation the sessions terminated and the animal was removed. The reactivation session was

different from the prior training sessions in three ways: an abbreviated CS was not presented con-

tingent upon responding, cocaine was not received at the end of the 15 minute interval and the

session ended after approximately 15, rather than 75 minutes. 30 minutes before this session anim-

als were either injected with MK-801 (Sigma-Aldrich) or its vehicle.

Test

The test session was carried out exactly as in second-order training and took place 3d after react-

ivation. This delay between sessions was introduced as this has previously been demonstrated to

result an increase in responding (Peña-Oliver et al., in preparation), potentially making a decrease

in drug-seeking easier to detect.

Food experiments

Animals and housing

Subjects were 60 male Lister-Hooded rats weighing 240-430g at the start of experiments. The day

before training began animals were food-restricted and fed 18-20g of standard rat chow at the end

of each day.
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Training procedures

After two sessions of pavlovian magazine training, where a light CS preceded reward delivery in

a non response-contingent fashion, animals underwent 3-6d of instrumental training, where re-

sponses on one of two levers presented resulted in the delivery of chocolate-flavoured sucrose pel-

lets (AIN-76A, Testdiet, IN, USA) on an FR1 schedule of reinforcement. A second, inactive, lever

was present throughout training, responses on which were without consequence. Following the

FR1 phase an FI schedule of reinforcement was introduced, progressing through FI1, 2, 4, 6, 8, 10

and stabilising for FI15 for a final three days. As the interval increased, so did the number of pel-

lets delivered, with a total of 20 pellets being delivered in the FI15 sessions (adapted from Giuliano

et al., 2012).

Following pre-training sessions a second-order schedule of reinforcement was introduced for 21

consecutive sessions, a procedure that has previously been shown to result in responding that is

dependent on the DLS (Giuliano et al., in preparation).

Memory reactivation and test

Reactivation sessionswere conducted in a similar fashion to Experiment 1. Both leverswere presen-

ted for 15 minutes and responding was without consequence. After this period had elapsed the

next active lever press resulted in illumination of the CS light, de-illumination of the houselight,

retraction of both of the levers and delivery of 20 pellets into a metallic dish located outside of the

operant chamber, but within the sound-attenuating shell. Following mock pellet delivery and CS

presentation the sessions ended and the animal was removed. In each experiment, approximately

half of the subjects were treated with MK-801 prior to the reactivation session(s) and the other half

treated with vehicle. The number of reactivation sessions that animals underwent varied between

experiments.

Animals underwent two test sessions, the first of which was conducted the day after the (final)

reactivation session. Test sessions were conducted exactly as the second-order training sessions,

with the pellets being delivered into the magazine at the end of each interval. The number of days

between each of the second training sessions varied between experiments (see below)
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Experiment 2: The effects ofMK-801 treatment prior to reactivation of awell-established food-seekingmemory

The results of this experiment are represented as combineddata for two separate replications, one of

whichwas intended as a pilot investigation. Although therewere several differences in theway that

these two experiments were conducted, both squads behaved very similarly. Animals in the first

time the study was conducted (final n=11, referred to as Squad A hereafter) had previously been

used in a fear-conditioning experiment, whilst animals in the second were experimentally naïve

(n=18, referred to as Squad B hereafter). Animals in Squad A underwent 3 or 6d of FR1 training,

before proceeding through the interval and second-order schedules of reinforcement, whilst anim-

als in Squad B all underwent 6. The second-order training, reactivation and the first test sessions

were conducted in the same fashion for both squads, with each of these occurring on consecutive

days. The second test session occurred the day after the first in Squad A, and 7d after in the second

in Squad B. None of these factors appeared to influence responding in any way.

Experiment 3: MK-801 prior to multiple reactivation sessions of a well-established food-seeking memory

All animals in this experiment received a total of 6d of FR1 before the introduction of interval

schedules of reinforcement. Test sessions took place the day after the reactivation session and one

week later. The key difference between this and the previous experiment was that the reactivation

session (and preceding drug administration) was conducted three times, each on consecutive days.

Statistical analyses

Response rates for the food second-order experiments weremuch higher than in previous chapters.

Because variance in lever pressing tends to increase with the mean (Dickinson and Dawson, 1987),

these high rates of responding caused data to become highly non-normal. Normality was assessed

with Kolmogorov-Smirnov (K-S) test and if any of the sessions analysed had a non-normal distribu-

tion responses data were square root transformed (Dickinson and Dawson, 1987). Normality tests

were conducted on each of the following groups of data and if any dataset, from either treatment

group were not normally distributed the data from all groups in these sessions were transformed:

first and subsequent interval(s) of baseline and test sessions, responding in the reactivation ses-

sion, first and subsequent intervals of second-order training sessions and response rates during the

training sessions conducted before introduction of the second-order schedule of reinforcement. In
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cases where multiple K-S values suggested the data were not normally distributed the smallest of

these values is reported in the text.

Once assessed for normality and transformed as necessary, data were analysed as in previous

chapters. Responding in the test sessions was compared to baseline second-order performance

using a mixed-design analysis of variance (ANOVA) with Session as a repeated-measures factor

and Drug as a between-subjects factor. Baseline rates of responding were calculated from the two

sessions of second-order training before reactivation took place. Any pre-existing differences in the

acquisition of the second-order schedules were assessed with Session coded as a within-subjects

and Drug as a between-subjects factor. Differences in the drug groups in the rate of responding

in the reactivation session(s) were assessed with between-subjects t-tests in Experiments 1 & 2 and

with Day coded as a within-subjects factor and Drug as between-subjects in an ANOVA.

Results

Experiment 1: NMDA receptor antagonism during retrieval of a well-established cocaine seek-

ing memory has no effect on subsequent drug seeking

In this experiment animals were trained on a second-order schedule of reinforcement for the de-

livery of cocaine. After extensive experience on this schedule animals underwent a memory-

reactivation session, preceded by treatment with the NMDA receptor antagonist MK-801. Animals

were then returned the second-order schedule of reinforcement in order to investigate the impact

on this treatment on subsequent responding (see Figure 6.1A).

6 animals were excluded from the experiment owing to illness or blocked or damaged catheters.

Test results

All data from the test session met the requirements for normality, so the raw values were used for

analysis (D9<0.27, p>.055).

Therewas no evidence thatMK-801 treatment prior to reactivation of awell-trained cocaine seeking

response had any impact on its reconsolidation, as indicated by very similar levels of responding in

the first interval of the test session by both drug treatment groups (Figure 6.1B). Whilst responses

in the first interval were increased in comparison to baseline levels of responding (F1,16 = 11.98,
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p= .003), this increase was similar in drug treatment groups (Session*Drug: F1,16 = 0.87, p= .366).

Drug treatment also had no overall effect on responding (F1,16=0.70, p= .414).

Similar results were obtained when responding in the later intervals, after the delivery of cocaine,

was analysed. Prior treatment with MK-801 had no impact on responding in these intervals, which

did not vary between baseline and test sessions (Figure 6.1C). This was indicated by no effect of

Session (F1,16 = 1.35, p= .263), no Drug*Session interaction (F1,16 = 1.04, p= .323) and no overall

effect of Drug (F1,16=1.00, p= .332).

The number of inactive lever presses did not differ between sessions or drug groups and this was

equally true in the first and subsequent intervals. When data from the first interval were analysed

there was no effect of Day (F1,16 = 0.04, p= .840), no Day*Drug interaction (F1,16 = 0.84, p= .374)

and no overall effect of Drug (F1,16=2.19, p= .159; Table 6.1). The same was true when the average

number of lever presses for the subsequent intervals was analysed (Day: F1,16 = 1.08, p = 0.314;

Day*Drug: F1,16=0.27, p= .613; Drug: F1,16=1.89, p= .188; Table 6.1).

Pre-training
FR1 → FI1...FI15

14d

Second-order
FI15(FR10:S)

21d

Reactivation
15 min

No rewards

MK-801 /
VEH

Test
Second order
FI15(FR10:S)

1d 3d

A

B C

Figure 6.1: MK-801 administered before retrieval of a cocaine seeking memory has
no effect on subsequent responding. A: Schematic of experimental procedures in
Experiment 1. Not depicted in the figure are 3d of additional FR1 training which
were conducted after 7d of second-order training. B: Active lever presses made in
the first interval of the final session of second order and subsequent test sessions.
C: Active lever presses made in the intervals 2-5 of the final session of second order
and subsequent test sessions. Data are represented as means +SEM. N=9 for both
treatment groups.
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Interval Baseline Test
Group

1
Vehicle 3.8 ± 1.58 4.9 ± 2.07
MK-801 10.6 ± 3.97 8.9 ± 2.86

2-5
Vehicle 5.0 ± 1.16 5.8 ± 1.97
MK-801 9.4 ± 3.14 11.8 ± 4.20

Table 6.1: Inactive lever press data from baseline and test sessions of Experiment
1. Data are presented as means ± SEM to 2 decimal points.

Training and reactivation

The prospective treatment groups did not differ in their rate of responding on the active lever dur-

ing the pre-training sessions. Normality analysis of the training sessions conducted prior to the

introduction of the second-order schedule of reinforcement revealed that data from several of these

sessionswere not normally distributed in both treatment groups (D9>0.29, p<.034) and these data

were transformed before being analysed for group differences. Whilst responding varied between

sessions (F2.7,42.8=111.66, p<.001), both groups showed similar patterns of acquisition (Day*Drug:

F2.7,42.8 = 0.72, p= .528) and overall response rates in these sessions (Drug: F1,16 = 0.44, p= .517;

Figure 6.2A).

The rate of inactive lever pressing in the pre-trainingwas similar regardless of future drug treatment

(Figure 6.2B). Responses were transformed because data from several of these session violated the

assumptions of normality in both groups (D9> 0.28, p< .038). Whilst the day of training affected

the rate of inactive lever pressing (F13,208=23.72, p<.001) this effect was similar between treatment

groups (Day*Drug: F13,208 = 0.55, p = .893). Prospective groupings did not influence the overall

level of responding on the inactive lever during these sessions (Drug: F1,16=0.06, p= .817).

None of the results from the test session could be explained by differences in the number of active

lever pressesmade during second-order training sessions between prospective treatment groups in

either the first or subsequent (Figure 6.2C and 6.2D). Data from several of the second-order training

sessions were not normally distributed in the first or subsequent intervals (D9>0.28, p<.049) and

as such these data were transformed before statistical analysis took place. The number of responses

made in the first interval varied between sessions (F20,320 = 2.54, p < .001) but this change was

similar between prospective treatment groups (Session*Drug: F20,320 = 0.59, p = .918) and the

overall number of responses made in these sessions did not vary as a function of future group

140



CHAPTER 6. BREAKING A HABIT

allocation (Drug: F1,16 = 0.36, p= .557; Figure 6.2C). The same was true of subsequent intervals in

these training sessions (Session: F20,320=1.91, p= .011, Session*Drug: F20,320=0.55, p= .942, Drug:

F1,16=0.68, p= .421; Figure 6.2D).

The lack of pre-existing differences in the rate of active lever pressing was mirrored in the inactive

lever press data (Figure 6.2E and 6.2F). Data from both first (D9 > 0.30, p < .028) and subsequent

(D9> 0.28, p< .049) intervals violated the assumptions of normality for both treatment groups so

were transformed. Whilst Day affected the total number of inactive lever presses made in the first

(F20,320 = 2.30, p = .001) and following intervals (F20,320 = 4.81, p < .001), this effect did not vary

between treatment groups (Day*Drug, first interval: F20,320 = 0.67, p= .857; subsequent intervals:

F20,320=0.98, p= .482). Therewas a non-significant trend for animals that would go on to be treated

with MK-801 to respond less on the inactive lever in the first (F1,16=3.37, p= .085; Figure 6.2E) but

not following intervals (F1,16=1.33, p= .265; Figure 6.2F).

Both treatment groups made similar numbers of responses on both levers during the reactivation

sessions. Data from vehicle treated rats did not meet normality requirements for either active or

inactive lever presses (D9 > 0.37, p < .001) so the data were transformed for analysis. Prior drug

treatment did not affect the total number of active (t16=0.24, p= .817; Figure 6.2G) or inactive lever

presses (t16=1.95, p= .069; Figure 6.2H).
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Figure 6.2: Pre-training, second-order training and reactivation data for Experi-
ment 1. A: Rate of active lever pressing during pre-training sessions. B: Rate of
inactive lever pressing during pre-training sessions. C: Number of active lever
presses made in the first interval during second-order training sessions. The break
in the line reflects where animals underwent 3 days of FR1 training. D: Number
of active lever presses made in intervals 2-5 during second-order training sessions.
E: Number of inactive lever presses made in the first interval during second-order
training sessions. F: Number of inactive lever presses made in intervals 2-5 during
second-order training sessions. G: Active lever presses made in the reactivation
session. H: Inactive lever presses made in the reactivation session. Data are rep-
resented as means +/±SEM. N=9 for both groups.
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Experiment 2: NMDA receptor antagonism during retrieval of a well-established food-seeking

memory results in a transient decrease in subsequent seeking

This experiment was similar to Experiment 1, except that animals were trained to respond for a

food, rather than a drug reward. Animals underwent two test sessions in order to investigate the

effect of MK-801 treatment at reactivation (see Figure 6.3A).

One animal was excluded from this experiment after it was observed having multiple seizures.

Test results

Administration of MK-801 prior to the reactivation session resulted in a decrease in responding

from baseline levels when tested under drug free conditions the next day (Figure 6.3B). However,

this treatment did not affect the number of responses made in the second interval, following re-

ward delivery (Figure 6.3C). It appeared that the loss of the apparent amnestic effect by the second

interval was the result of having being reminded of the association between the CS and the reward,

rather than animals having recently come into contact with the reinforcer, since MK-801 treatment

also had no effect on responding in the first interval of a second test session (Figure 6.3B). The

analysis supporting this pattern of results is reported below.

Data from the first interval of the baseline session of second-order and two test sessions were not

normally distributed in theMK-801 treated group (D15>0.34, p<.001) and as such all the data from

these sessions was transformed (data from the baseline sessions also approached the threshold for

violating normality in the vehicle treated group: D14 = 0.22, p= .057). Baseline responding in the

second interval was not normally distributed in all treatment groups (D15>0.23, p< .030) and for

the first test in the MK-801 treated group (D15=0.27, p= .003). These data have therefore also been

transformed.

There was a significant Test*Drug interaction when responses in the first interval were analysed

(F1.8,48.2 = 4.07, p= .023). Responses varied between the test sessions (F1.8,48.2 = 4.87, p= .011) but

were not affected by drug treatment at reactivation (F1,27 = 0.78, p= .385). Subsequent analysis of

this effect revealed that whilst animals treated with MK-801 varied levels of responding between

the different sessions (F2,28 = 7.65, p= .002), animals treated with vehicle responded similarly in

the baseline, test I and test II sessions (F2,26 = 0.29, p = .753). Post-hoc tests revealed that anim-

als treated with MK-801 reduced their response levels in the first interval in comparison to their

baseline responding in the first test (p = .002), but not the second (p= .867), such that responding
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increased from the first test to the second test (p = .013; Figure 6.3B). In contrast, responding in

the second interval did not vary between the test sessions (Session: F2,54 = 1.19, p= .314) and this

did not vary between drug treatment groups (Session*Drug: F2,54=1.63, p= .205). Drug treatment

did not affect overall levels of responding in the second interval (F1,27 = 1.00, p= .327). Response

levels did not vary between sessions in either drug treatment group in the second interval (VEH:

F2,26 = 1.48, p = .247; MK-801: F2,28 = 1.32, p = .283; Figure 6.3C). Raw response rates from all

baseline and test sessions can be seen in Table 6.2.

Pre-training
FR1 → FI1...FI15

∼15d

Second-order
FI15(FR10:S)

21d

Reactivation
15 min

No rewards

MK-801 /
VEH

Test I
Second order
FI15(FR10:S)

Test II
Second order
FI15(FR10:S)

1d 1d 1/7d

A

B C

Figure 6.3: MK-801 administered before memory reactivation results in a
subsequent short-lived decrease in well-established food-seeking behaviour A:
Schematic of experimental procedures in Experiment 2. B: Active lever presses
made in the first interval of the final session of second order and subsequent test
sessions. C: Active lever presses made in the second interval of the final session of
second order and subsequent test sessions. Data are represented as means +SEM.
N=14/15 for each treatment group. * p<.05, ** p<.01

Interval Baseline Test I Test II
Group

1
Vehicle 382.2 ± 56.80 411.7 ± 81.12 432.5 ± 77.54
MK-801 367.4 ± 71.21 253.7 ± 69.62 418.6 ± 84.04

2
Vehicle 240.9 ± 54.56 358.9 ± 68.70 334.8 ± 64.88
MK-801 253.2 ± 61.57 201.0 ± 40.01 302.7 ± 56.24

Table 6.2: Raw response rates from the test session of Experiment 2. Data are
represented as the mean number of active lever presses made in the respective
interval ± SEM to 2 decimal points.

144



CHAPTER 6. BREAKING A HABIT

The number of inactive lever presses did not vary between sessions as a function of drug treatment

and this was equally true in both intervals. In the first interval these effects were substantiated

by a non-significant effect of Day (F2,54 = 0.62, p = .544), no Day*Drug interaction (F2,54 = 0.81,

p= .449) and no overall effect of Drug (F1,27 =0.05, p= .832; Table 6.3). A similar pattern of results

was revealed when the number of lever presses made in the second interval was analysed (Day:

F1.8,47.5 = 0.98, p= .382; Day*Drug: F1.8,47.5 = 0.95, p= .393; Drug: F1,27 = 0.45, p= .506; Table 6.3).

The raw inactive lever press data for both intervals of the test session is presented in Table 6.4.

Interval Baseline Test Test II
Group

1
Vehicle 3.1 ± 0.60 2.6 ± 0.49 2.3 ± 0.35
MK-801 2.6 ± 0.44 2.5 ± 0.33 2.6 ± 0.51

2
Vehicle 3.0 ± 0.33 2.8 ± 0.44 2.0 ± 0.29
MK-801 2.9 ± 0.31 3.0 ± 0.77 2.9 ± 0.48

Table 6.3: Transformed inactive lever press data from the test sessions of Experi-
ment 2. Data are presented as means ± SEM to 2 decimal points.

Interval Baseline Test Test II
Group

1
Vehicle 14.0 ± 5.10 9.9 ± 4.54 7.1 ± 1.82
MK-801 9.3 ± 2.80 7.6 ± 1.75 10.6 ± 3.35

2
Vehicle 10.6 ± 2.27 10.4 ± 3.44 4.9 ± 1.32
MK-801 9.7 ± 2.10 17.1 ± 9.74 11.7 ± 3.31

Table 6.4: Raw inactive lever press data from the test sessions of Experiment 2.
Data are presented as means ± SEM to 2 decimal points.

Training and reactivation

All prospective groups showed similar levels of responding in the pre-training sessions. Data from

these sessions were transformed since the data from several of the days’ training were not normally

distributed for rates of both active (D15 > 0.22, p < .048) and inactive (D15 > 0.24, p < .024) lever

pressing. The day of training affected both the rate of active (F4.5,99.5=42.44, p<.001) and inactive

lever pressing (F3.1,82.4 = 19.52, p < .001), with drug treatment having no effect on the pattern of

acquisition (active: Day*Drug: F4.5,99.5=0.78, p= .526, inactive: Day*Drug: F3.1,82.4=0.64, p= .767)
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or overall response levels on either lever (active: F1,27=0.01, p= .918, inactive: F1,27=0.53, p= .473;

Figures 6.4A and 6.4B).

All groups responded similarly during the second-order sessions, regardless of the treatment that

they would go on to receive at reactivation. Data from active lever pressing in the first and second

interval, alongside the inactive lever pressing data in these intervals were not normal, and therefore

all second-order training session data has been transformed (D14>0.23, p<.049).

The number of responses made on the active lever varied throughout second-order training; the

number of responses varied as a function of day of training in the first (F6.0,161.0 = 6.41, p < .001)

and second intervals (F7.2,194.8 =5.90, p<.001). This occurred similarly between prospective treat-

ment groups in both intervals (Day*Drug, first interval: F6.0,161.0 = 1.48, p= .190; second interval:

F7.5,201.3 = 0.92, p= .565). The overall number of active responses were also similar between pro-

spective treatment groups in the first (F1,27 < 0.01, p > .999; Figure 6.4C) and second intervals

(F1,27=0.28, p= .599; Figure 6.4D) of these training sessions.

The number of inactive lever pressesmade in the first interval of second-order training did not vary

between sessions (F7.5,201.3 = 1.60, p= .131), whilst it did for the second interval (F8.7,234.6 = 2.09,

p= .033). This was similarly true in both groups of animals (Day*Drug interaction, first interval:

F7.5,201.3 = 0.92, p= .565; second interval: Day*Drug: F8.7,234.6 = 0.87, p= .549). The overall level

of responding on the inactive lever was also similar between the two prospective drug treatment

groups in both the first (Drug: F1,27=0.28, p= .599; Figure 6.4E) and following interval (Day*Drug:

F8.7,234.6=0.87, p= .549; Figure 6.4F).

Prior drug treatment did not affect the number of responses made on either lever during the re-

activation session. Responses on the active lever were not normally distributed for animals treated

with MK-801 (D15=0.24, p= .024) and inactive lever pressing data from neither group was normal

(D15 > 0.26, p < .006). Both groups made similar numbers of active (F1,27 = 1.85, p= .185; Figure

6.4G) and inactive (F1,27=1.69, p= .204; Figure 6.4H) lever presses during the reactivation session.
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Figure 6.4: Pre-training, second-order training and reactivation data for Experi-
ment 2. A: Rate of active lever pressing during pre-training sessions. B: Rate of
inactive lever pressing during pre-training sessions. C: Number of active lever
presses made in the first interval during second-order training sessions. D: Num-
ber of active lever presses made in the second interval during second-order train-
ing sessions. E: Number of inactive lever presses made in the first interval dur-
ing second-order training sessions. F: Number of inactive lever presses made in
the second interval during second-order training sessions. G: Active lever presses
made in the reactivation session. H: Inactive lever presses made in the reactiva-
tion session. Data are represented asmeans +/±SEM. N=14/15 for each treatment
group.
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Experiment 3: NMDA receptor antagonism during multiple retrieval sessions of a well-

established food-seeking memory has no effect on subsequent responding

Having demonstrated that MK-801 treatment prior to a single reactivation session resulted in a

short-lived decrease in food-seeking behaviour, Experiment 3 aimed to produce a more robust,

long-lasting deficit in responding in the second-order task. In an attempt to do this animals un-

derwent a total of 3 reactivation sessions, each preceded with treatment with MK-801 or its vehicle

(see Figure 6.5A).

One rat was excluded from this experiment after developing a tumour during training.

Test results

Data for all the baseline and test sessions met the assumption of normality for all treatment groups

(D12<0.24, p>.062) and the data were analysed in their raw form.

TreatmentwithMK-801 prior tomultiplememory reactivation sessions had no effect on subsequent

food-seeking, with MK-801 and vehicle-treated rats showing similar patterns of responding in the

first (Figure 6.5B) and second (Figure 6.5C) intervals. This was indicated by similar levels of re-

sponding in the first interval of the baseline and test sessions (F2,42 = 0.91, p= .411) regardless of

treatment group (Session*Drug: F2,42 = 1.23, p= .304). The overall number of responses made in

the second interval of the baseline and test sessions was also not affected by the drug administered

prior to the memory reactivation sessions (F1,21=0.15, p= .699).

Analysis of the inactive lever press data from the test sessions revealed that these responses did not

vary between days, as a function of drug treatment and this was equally true of both drug groups

in both intervals. In the first interval these effects were indicated by a non-significant effect of Day

(F2,42 = 1.30, p = .284), an absence of a significant Day*Drug interaction (F2,42 = 0.78, p = .463)

and no main effect of Drug (F1,21 = 0.40, p = .535; Table 6.5). A similar pattern of results was

revealed when responses made in the second interval were analysed (Day: F1.3,26.6=2.80, p= .098;

Day*Drug: F1.3,26.6=0.65, p= .463; Drug: F1,21=0.11, p= .743; Table 6.5).

Power analysis

Whilst the effect of MK-801 treatment to reduce lever pressing in comparison to baseline at Test

II was not significant it is apparent there was a numerical trend in the data resembling that of
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Pre-training
FR1 → FI1...FI15

∼15d

Second-order
FI15(FR10:S)

21d

Reactivation
15 min

No rewards

MK-801 /
VEH

Test
Second order
FI15(FR10:S)

Test II
Second order
FI15(FR10:S)

1d 1d 7d

x3

A

B C

Figure 6.5: MK-801 administered before multiple reactivation sessions does not
affect well-established food-seeking seekingA: Schematic of experimental proced-
ures in Experiment 3, where the reactivation, and preceding drug treatment, were
conducted 3 times. B: Active lever presses made in the first interval of the final ses-
sion of second order and subsequent test sessions. C: Active lever presses made
in the second interval of the final session of second order and subsequent test ses-
sions. Data are represented as means +SEM. N= 11/12 for both treatment groups.

Interval Baseline Test Test II
Group

1
Vehicle 10.4 ± 1.93 6.7 ± 1.33 7.3 ± 0.91
MK-801 7.0 ± 2.27 6.2 ± 2.35 7.2 ± 1.92

2
Vehicle 8.5 ± 3.50 4.2 ± 0.87 5.0 ± 0.94
MK-801 6.5 ± 1.93 5.3 ± 1.72 3.9 ± 0.88

Table 6.5: Raw inactive lever press data from the test sessions of Experiment 3.
Data are presented as means ± SEM to 2 decimal points.

Experiment 2. Power analysis was conducted in order investigate whether the smaller number of

subjects in this experiment precluded the detection of a significant result. With the given effect size

obtained when baseline and Test I were compared (d=0.34), 70 rats would be required in order to

achieve power of 0.8 with a p value of .05. Given that is much greater than the n of 14/15 that was

used in Experiment 2 (for comparison, in this experiment the effect size was 1.11 and η2 was 0.93) it

149



CHAPTER 6. BREAKING A HABIT

appeared that the failure to detect an amnestic effect of MK-801 treatment was not solely the result

of the smaller number of animals used in this experiment 1.

Training and reactivation

Prospective groupings did not affect acquisition of the operant response in the sessions prior to the

second-order schedule of reinforcement being introduced on either lever (Figures 6.6A and 6.6B).

The data from these pre-training sessions violated assumptions of normality for both rates of active

(D11>0.26, p<.042) and inactive lever pressing (D12>0.26, p<.043) so they have been transformed.

Rates of active lever pressing varied across training sessions (F1.9,40.5 = 69.97, p < .001) similarly

between prospective treatment groups (Session*Drug: F1.9,40.5 = 1.74, p= .190), with both groups

responding at approximately similar rates across training sessions (F1,21=0.06, p= .807). The same

was true of inactive lever presses: these varied between sessions (F4.1,86.0=29.27, p<.001) similarly

across treatment groups (Day*Drug: F4.1,86.0 = 1.84, p= .127), with the overall rate of responding

being similar between treatment groups (F1,21=0.84, p= .369).

Animals that would go on to receive treatment with vehicle or MK-801 responded at similar rates

in the second-order training sessions on both the active (Figure 6.6C and 6.6D) and inactive (Figure

6.6E and 6.6F) lever. Data from several training sessions for both levers and intervals were not

normally distributed for both treatment groups (D11 > 0.25, p < 0.049) so all the data from the

second-order training sessions have been transformed. The number of active lever presses made

in the first (F5.8,115.1 = 4.11, p= .001) and second (F7.1,148.7 = 3.92, p= .001) interval varied between

training sessions, but this patternwas similar in both prospective treatment groups in both intervals

(Day*Drug, first interval: F5.8,115.1 = 0.67, p= .853; second interval: F7.1,148.7 = 0.69, p= .682). The

overall rate of responding in these sessions was similar treatment groups in both the first (F1,21 =

0.14, p= .713; Figure 6.6C) and following interval (F1,21=0.15, p= .702; Figure 6.6D).

ANOVAs similarly verified the lack of group differences in the level of inactive lever pressing

throughout second-order training sessions. The day of training significantly affected the number

of responses in both the first (F6.2,131.0 =3.30, p= .004) but not the second interval (F8.8,185.0 =1.60,

p= .121). This was equally true in both prospective treatment groups in both intervals (Day*Drug,

first interval: F6.2,131.0 = 1.01, p= .450; second interval: F8.8,185.0 = 0.92, p= .511). The treatment
1It could be argued that the square root transformation, that was necessary owing to the non-normally distributed

data set in Experiment 2, reduced the error in this experiment, increasing the power. However, it was not appropriate
to transform the data from Experiment 3 in order to compare the two experiments, not only because the raw data were
normally transformed, but also because transformation of the data caused them to be become non-normal.

150



CHAPTER 6. BREAKING A HABIT

that animals would ultimately receive prior to the reactivation session did not affect the number of

inactive lever presses made in the first (F1,21 = 1.53, p= .230; Figure 6.6E) or second (F1,21 = 0.51,

p= .483; Figure 6.6F) interval.

The number of active lever presses did not differ between each of the reactivation sessions in either

treatment group, although animals treated with MK-801 did exhibit slightly higher levels of re-

sponding in these sessions (Figure 6.6G). Active lever pressing data from the final reactivation ses-

sion for animals treated with MK-801 were not normally distributed (D12 = 0.25, p= .043), so the

data were transformed before statistical analysis took place. Active lever pressing did not vary

between each of the reactivation sessions (F2,42 =2.07, p= .139) and this was equally true between

MK-801 and vehicle treated rats (Day*Drug: F2,42=1.52, p= .230). However, animals administered

with MK-801 did respond more in the reactivation sessions than those treated with vehicle (Drug:

F1,21=5.20, p= .033; Figure 6.6G). This is in accord with previous research demonstrating this dose

of MK-801 can result in increased locomotor activity (Frantz and Hartesveldt, 1999).

Inactive lever presses from the reactivation sessions were analysed in a similar way and there was

evidence of a slight increase in these responses between sessions in animals treated with vehicle,

but not MK-801 (Figure 6.6H). Inactive lever pressing data from the vehicle-treated rats were not

normally distributed for the first reactivation session (D11 = 0.26, p= .040) and for all reactivation

sessions in MK-801-treated rats (D12 > 0.30, p < .003) so the data from these sessions have been

transformed. Whilst the number of inactive lever presses made in the reactivation sessions did

not appear to vary between sessions (F2,42 = 1.77, p = .183) this effect varied depending on pre-

reactivation drug administration (Day*Drug F2,42 = 3.90, p= .028). Subsequent analysis revealed

a significant effect of day in MK-801 (F2,22 = 4.62, p= .021) but not vehicle (F2,20 = 0.27, p= .763)

treated rats. Post-hoc analysis of this effect in the MK-801 treated group revealed a non-significant

increase in responding between the first and third reactivation session (p = .054). Pre-treatment

with MK-801 did not affect the overall number of responses in these sessions (F1,21=1.27, p= .272;

Figure 6.6H).
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Figure 6.6: Pre-training, second-order training and reactivation data for Experi-
ment 3. A: Rate of active lever pressing during pre-training sessions. B: Rate of
inactive lever pressing during pre-training sessions. C: Number of active lever
presses made in the first interval during second-order training sessions. D: Num-
ber of active lever presses made in the second interval during second-order train-
ing sessions. E: Number of inactive lever presses made in the first interval dur-
ing second-order training sessions. F: Number of inactive lever presses made in
the second interval during second-order training sessions. G: Active lever presses
made in the reactivation sessions. H: Inactive lever presses made in the reactiv-
ation sessions. Data are represented as means +/±SEM. N=11/12 for each treat-
ment group.
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Discussion

Summary of results

Here it is reported that antagonismofNMDAreceptors prior to reactivation ofwell-trained cocaine-

seeking memory has no effect on subsequent drug seeking behaviour. By contrast, the same treat-

ment resulted in a reduction in palatable food-seeking the next day. However, this decrease was

short-lived and high rates responding of were rapidly reacquired. Multiple reactivations in com-

binationwith further drug treatmentswere not able to ameliorate the transitory nature of this effect.

Relationship to previous work

Memories underlying cocaine-seeking have previously been shown to reconsolidate (e.g. Fuchs et

al., 2009; Lee et al., 2005b; Lee et al., 2006a), a process that depends upon the activation of NMDA

receptors (Milton et al., 2008a). This is the first investigation of whether memories that have under-

gone extensive training, likely resulting in the formation of a cocaine seeking habit, reconsolidate

in a similar fashion. It was not possible to disrupt reconsolidation of this memory. It has previously

been demonstrated that strongmemories, by virtue of having undergonemultiple pairings (Suzuki

et al., 2004; Wang et al., 2009) or being paired with a particularly strong US (Kwak et al., 2012) are

more resistant to destabilisation. It is possible that it is for these reasons that no effect of recon-

solidation blockade of a cocaine seeking memory was reported; this process was not taking place.

However, in some cases memory strength does not appear to affect destabilisation. For example it

has been reported that propranolol is equally effective at preventing reconsolidation, regardless of

the number of pairings a pavlovian fear memory has undergone (Taherian et al., 2014). Similarly,

the naturally occurring compound Garcinia is able to disrupt reconsolidation after 12 or 24 days of

cocaine self-administration (Monsey et al., 2017). However, in this study animals self-administered

drugs on an FR1 schedule which is unlikely to result in the recruitment of cocaine seeking habits

(Murray et al., 2012); a factor which may have prevented reconsolidation from taking place in Ex-

periment 1.

Habitual response patterns are by no means exclusive to drug-seeking behaviours; the progression

from goal-directed to habitual responding was first characterised in responses for food reinforcers

(Adams, 1982) and it is only comparatively recently that drug-seeking responses have been shown

to be habitual (Corbit et al., 2012; Dickinson et al., 2002; Miles et al., 2003; Zapata et al., 2010). A
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second experiment investigated reconsolidation of responses trained in fashion for devliery of a

palatable food reinforcer, chocolate pellets. Here, NMDA receptor antagonism before reactivation

of such a memory resulted in a decrease in food-seeking, suggesting this treatment disrupted re-

consolidation of this association. Thiswas evidenced by a decrease in food-seeking responsesmade

in the first interval of the first test session.

There are several interpretations of the ability to disrupt food, but not cocaine associatedmemories.

As discussed above, both the extent of training and the strength of the US can contribute towards

the ability of a retrieval session to result in memory reconsolidation (Kwak et al., 2012; Suzuki et

al., 2004; Wang et al., 2009). Given cocaine’s suggested ability to hijack natural reward systems

(Hyman, 2005) it is possible this drug resulted in the formation of a stronger memory than in the

food experiments, resulting in a resistance to destabilisation. The procedure used to train food

and cocaine seeking responses also differed in that animals in the food experiments received fewer

overall pairings; second-order sessions were limited to 5 infusions of cocaine each day or 2 chocol-

ate pellet deliveries. The number of pairings a memory has undergone has previously shown to

affect the propensity of a memory to destabilise in a given reactivation session (Suzuki et al., 2004;

Wang et al., 2009). The combination of the larger number of cocaine pairings, combined with the

increased strength of cocaine as a US may have acted in tandem to result in a stronger memory in

animals trained to respond for cocaine, preventing the memory retrieval session from triggering

reconsolidation in these animals.

It is perhaps worth noting that the response rates for animals seeking cocaine were considerably

lower than those responding for food. This does not rule out the possibility that the memory un-

derlying drug-seeking was stronger, since response rates as a measure of memory strength are

confounded by potential differences in motivation. However, the lower response rates of animals

self-administering cocaine may have precluded the detection of a reconsolidation deficit.

Whilst it did appear possible to disrupt reconsolidation of well trained food-seeking memory, the

resultant deficit was apparently short-lived; responses in the subsequent interval, once both the

CS and lever press were once again reinforced, were not affected by drug treatment at memory

reactivation. The acute effects of µ-opioid antagonism on cocaine seeking (Giuliano et al., 2013) or

atomoxetine on heroin-seeking (Economidou et al., 2011) result in similar interval-dependent ef-

fects and may suggest a reduction in the reinforcing effects of the drug cue, but not the ability of

reinforcer delivery to affect responding, with the latter effect not necessarily related to the reward-

ing properties of the reinforcer delivered (Everitt and Robbins, 2000). However, it did not appear
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that this was the result of an effect that was selective to the first interval, since responses in this

period of the second test were also unaffected by drug treatment. This instead suggested that re-

minder of the associations underlying the seeking behaviour led to a loss of the apparent effects

of reconsolidation blockade; an effect that might suggest that the initial deficit observed was the

result of a retrieval, rather than a storage deficit (Miller and Springer, 1973).

It has been previously reported that disruptions of memory reconsolidation resulting in decreased

responding in second-order schedules of reinforcement are long-lasting and persist following re-

minder of the CS-US pairing (Lee et al., 2006a). Deficits arising from disruptions of discrete cue

fear memory reconsolidation do not undergo spontaneous recovery (Duvarci and Nader, 2004). In

contrast, the effects of disrupting reconsolidation of contextual fear associations are lost with the

passage of time (Lattal andAbel, 2004) and are particularly sensitive to returnwith reminder shocks

(Fischer et al., 2004; Trent et al., 2015). The distinction in the results of contextual and cued memory

reconsolidation disruptions may reflect that whilst some aspects of the memory trace are lost, oth-

ers are maintained. A contextual fear association is likely comprised of (at least) two components:

one of the configural representation of the context (likely hippocampal) and another pairing this

with shock (likely dependent on the BLA, see Hall et al., 2001a). Disruptions of protein synthesis

within the hippocampus (as in Fischer et al., 2004; Lattal and Abel, 2004; Trent et al., 2015) may dis-

rupt the contextual representation, but leave its pairing with shock intact. This latter association

that remains is sufficient to support return of fear following reminder or the passage of time. The

results of Experiment 2 may be explained by similar mechanisms; one aspect of the memory was

reconsolidated, resulting in a decrease in responding in the first interval, but following reinforcer

delivery other components of the memory trace (that were not reactivated) that underlie respond-

ing were able to once again take control of food-seeking.

It is possible that the decreased responding in animals treated with MK-801 occurred as a result

of state-dependency. It has been shown that retrieval deficits occurring as a result of central and

systemic post-reactivation protein synthesis inhibition can be reversedwith pre-test administration

of the same drug (Gisquet-Verrier and Riccio, 2012). Furthermore, treatment with lithium chlor-

ide (LiCl), which results in gastric malaise and does not affect protein synthesis (Squire et al., 1975),

can lead to similar effects (Gisquet-Verrier et al., 2015). Treatment with MK-801 before a test session

can also reverse apparent amnestic effects occurring as a result of the prior administration of this

drug (Flint Jr. et al., 2013). One explanation of these results is that during reactivation the internal

state of the animal (i.e. whether there is a drug on board) becomes integrated into thememory trace,

such that it can be only retrieved following administration of the same compound (Gisquet-Verrier
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and Riccio, 2012). It is possible that treatment with MK-801 in Experiment 2 resulted in a similar

retrieval deficit. Delivery of the reinforcer during the test may have unleashed it from its state-

dependent state, permitting retrieval in MK-801 treated animals in subsequent intervals. Testing

this hypothesis, however, is problematic since administration of MK-801 can result in hyperactiv-

ity and increased locomotion (Frantz and Hartesveldt, 1999), confounding conclusions made from

lever press data occurring as a result of the acute effects of this treatment.

Another possibility was that the food-seeking memory was not fully able to destabilise in a single

reactivation session; previous demonstrations have suggested that strong memories may be more

amenable to reconsolidation blockade following multiple reactivation sessions (Robinson and

Franklin, 2010). A third experiment addressed this possibility; animals underwent three reactiva-

tion sessions, each preceded by drug (or vehicle) treatment. However, this did not appear to result

in a long-lasting deficit in food-seeking; instead the initial effect ofMK-801 administration to reduce

this behaviour was lost, with both treatment groups responding similarly at test. It is known that

the extent of retrieval is a critical determinant in exposing a memory to disruption with amnestic

agents. As reactivation sessions come to deviate from acquisition more and more the window for

reconsolidation to occur can close, resulting an insensitivity of the memory to disruption (Merlo

et al., 2014; see also Alfei et al., 2015; Flavell and Lee, 2013; Merlo et al., in preparation; Reichelt and

Lee, 2013a). It is possible that the loss of the amnestic effect of MK-801 treatment was the result of

the recruitment of a similar ’limbo’ process.

It is perhaps worth noting that the lack of an amnestic effect of multiple treatments with MK-801

makes a state-dependent account of Experiment 2 unlikely. If MK-801 treatment had led to the

reactivated memory becoming state-dependent it would be expected that three treatments with

MK-801 would be more likely result in such an effect, yet this did not affect responding at test. It

was also possible the results of Experiment 2 were caused by effects of MK-801 treatment that were

unrelated to the fact it was administered prior to the memory reactivation session. However, the

fact that this effect was not observed when the same drug was given 3 times suggested that this

was not the case, although the possibility cannot be excluded.

Implications for subsequent research

For the first time in this thesis NMDA receptor antagonism resulted in a decrease in subsequent

responding. However, this effect was only found when animals were trained to respond for a food
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reinforcer, with no effect being reported using similar conditions for cocaine associated memor-

ies. Furthermore, this deficit was short-lasting, exposing the possibility that it was not due to a

reconsolidation deficit, since this should lead to loss of the memory, preventing its rapid recovery.

With these apparent shortcomings of using NMDA receptor antagonism to prevent reconsolida-

tion, alongside the frequent inability to prevent this process in previous chapters, subsequent in-

vestigations attempted to characterise the deficits in memory expression occurring as a result of

this treatment. The behavioural conditions that permit a retrieval session to lead to the exposure

of the reactivated memory to interference with amnestic agents were also explored.
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Chapter 7: An analysis of the neurochemical and behavioural

requirements of fear memory reconsolidation

Introduction

Previous attempts to prevent reconsolidation in Chapters 4 and 5 were unable to replicate previous

studies showing the dependence of this process on N-methyl-D-aspartate (NMDA) receptor activ-

ation. Whilst antagonism of these receptors did result in a decrease in food-seeking in Chapter 6

this effect was short-lived and did not appear to reflect an entirely amnestic effect of this treatment.

Experiments in this chapter attempted to prevent fear memory reconsolidation, manipulating the

behavioural parameters of the reactivation and training sessions used, alongside the use of different

pharmacological compounds and timing of their administration. These experiments were conduc-

ted with the view that these results may also shed light on the requirements for destabilisation and

reconsolidation of appetitive associations.

The processes underlying reconsolidation of appetitive and aversive memories appear to be sim-

ilar; reactivation of both of these memories requires prediction error (PE) (Díaz-Mataix et al., 2013;

Reichelt and Lee, 2013c), with associations undergoing extended training requiring longer react-

ivation sessions (and thus more extensive PE) to destabilise (Exton-McGuinness and Lee, 2015;

Exton-McGuinness et al., 2014; Reichelt and Lee, 2013a; Suzuki et al., 2004). The reconsolidation of

both of these associations also requires NMDA (e.g. Lee and Everitt, 2008a; Lee et al., 2006b; Merlo

et al., 2014; Milton et al., 2008a; Wouda et al., 2010) and β-adrenergic (Dȩbiec and Ledoux, 2004;

Milton et al., 2008b) receptor activation, alongside protein synthesis (e.g. Dunbar and Taylor, 2016;

Merlo et al., 2015; Nader et al., 2000).

The training protocols used in fear memory studies allow for close control of every parameter res-

ulting in the formation of these associations, unlike the instrumental protocols used in the previous

chapters, where acquisition was contingent on an animal’s behaviour. This allows for parametric

manipulation of the strength of the memory and this is less likely to be affected by individual
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differences. A better understanding of the behavioural and neurochemical characteristics of recon-

solidation of fear memories may provide an insight into the reasons for frequently not being able to

prevent reconsolidation of reward-related memories in previous chapters. This information may

in turn be of benefit in maximising the likelihood of blocking this process for maladaptive memor-

ies underlying psychological conditions such as post-traumatic stress disorder (PTSD) and drug

addiction.

In line with many other experiments of this thesis it was not possible to replicate previous demon-

strations of the blockade of fear memory reconsolidation with NMDA receptor antagonism (Lee

et al., 2006b; Merlo et al., 2014). Further experiments in this chapter therefore aimed to investigate

why this might be the case. Although there are reports of NMDA receptor antagonism prevent-

ing reconsolidation of fear memories (Lee et al., 2006b; Merlo et al., 2014; Milton et al., 2008a), this

treatment can also prevent destabilisation of these associations (Ben Mamou et al., 2006; Yu et al.,

2016). It is possible that this latter effect meant that pre-reactivation MK-801 administration pre-

vented destabilisation, meaning it was not possible to prevent reconsolidation, as the memory had

not been able to destabilise. In order to avoid these effects one possibility is to conduct the reactiv-

ation session in a drug-free state and administer the NMDA receptor antagonist immediately after

the session, when destabilisation should have taken place and the memory is being reconsolidated.

In the following experiments animals were treated with MK-801 either before or after the memory

reactivation session and the effects on subsequent fear expression explored.

It is also possible that NMDA receptor activation has a fleeting role in reconsolidation and may

only be required for this process during retrieval. Immediately after reactivation (in the order of

seconds) the protein synthesis cascades required for reconsolidation to take placemay have already

been activated. It is known thatNMDAreceptor activation is required for the upregulation of zif-268

and extracellular signal-regulated kinase (ERK) that occurs in when reward-related and aversive

memories reconsolidate, respectively (Merlo et al., in preparation; Milton et al., 2008a). This could

mean that once the memory has been reactivated, and these cellular cascades activated, NMDA

receptor activation is no longer required for reconsolidation. Paradoxically, this would mean that

MK-801 should be given before the session to prevent reconsolidation but its potential effect to

block destabilisation makes this problematic. Alternatively, NMDA receptor antagonists should

be given after the session, thus leaving destabilisation intact, but at this latter time point NMDA

receptors may no longer be required for reconsolidation. Whilst destabilisation and reconsolid-

ation do both rely on NMDA receptor activation, there is a double-disassociation in the receptor

subtypes required for these processes to occur; destabilisation requires GluN2B receptor activation
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and restabilisation GluN2A receptors (Ben Mamou et al., 2006; Milton et al., 2013). Attempts to

prevent reconsolidation should therefore target GluN2A receptors. With this in mind the effect of

pre-reactivation administration of the NMDA receptor antagonist CPP, which shows a preference

for the GluN2A subunit (Feng et al., 2004; Feng et al., 2005), on subsequent fear expression was

explored.

It is relatively well established that memories do not reconsolidate each time they are retrieved;

this process only occurs when novel information is presented (e.g. Alfei et al., 2015; Pedreira et al.,

2004; Sevenster et al., 2013), a characteristic that likely relates to the function of reconsolidation

to update existing memories (Lee, 2009; Nader and Einarsson, 2010). Although the memory re-

activation sessions described in previous chapters were conducted in the absence of a reinforcer,

and this is typically sufficient to engage reconsolidation mechanisms, it is possible that this alone

was not sufficiently different from training to induce destabilisation. Novel contextual information

increases the likelihood of reconsolidation of an object recognition memory taking place, despite

no new information directly related to the object being presented (Winters et al., 2009). Whilst re-

activation of a cued fear memory in a novel context results in reconsolidation that is sensitive to

protein synthesis inhibition, reactivation in a familiar context had no such effect (Jarome et al., 2015).

Furthermore, the majority of memory reactivation sessions that result in destabilisation and sub-

sequent reconsolidation are conducted in a novel context (e.g. Ben Mamou et al., 2006; Dȩbiec and

Ledoux, 2004; Duvarci and Nader, 2004; Nader et al., 2000), although there are reports of memory

destabilisation occurringwithout a context shift (Lee et al., 2006b; Merlo et al., 2014). The possibility

that the absence of novel contextual information at reactivation was preventing labilisation of the

memory was therefore also investigated. Because of the aforementioned issues of pre-reactivation

MK-801 preventing memory destabilisation the effects of administering MK-801 both before and

after reactivation in a novel context were explored. The presence of novel contextual information

did not appear to promote destabilisation.

Whilst it is known that novelty is required for reconsolidation to occur, stronger memories may

require a proportionally larger violation of expectancies to destabilise. For example, longer react-

ivation sessions are required to trigger reconsolidation of contextual fear memories that have un-

dergone extensive training (Suzuki et al., 2004). The possibility that insufficient PE was preventing

destabilisation taking place was therefore investigated with an increased number of conditioned

stimulus (CS) presentations within the retrieval session. However, because longer reactivation ses-

sions are not always effective in overcoming a resistance to destabilisation (Wang et al., 2009) another

experiment reduced the training to reactivation CS ratio with a weaker training protocol, reducing
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the number of CS-unconditioned stimulus (US) pairings during memory acquisition, rather than

at reactivation.

It was not clearwhetherMK-801would be able to prevent reconsolidation, should it be taking place.

In order to confirm that this drug can disrupt memory processes the ability of NMDA receptor

antagonism to prevent fear memory acquisition was then investigated, with MK-801 administered

prior to training. Experiments using animals that had been previously trained in an appetitive

task revealed no effect of this manipulation. Because re-learning can occur via NMDA receptor-

independentmechanisms (Bannerman et al., 1995; Hardt et al., 2009; Langton and Richardson, 2008;

Langton and Richardson, 2010; Sanders and Fanselow, 2003; Saucier and Cain, 1995; Wiltgen et al.,

2010) the possibility that this pre-training was affecting the susceptibility of acquisition to antag-

onism of these receptors was investigated. The inability of NMDA receptor blockade to prevent

consolidation was replicated using both naïve and animals pre-trained to fear a visual stimulus.

SinceNMDA receptor antagonists were found to be ineffective oin preventing consolidation and re-

consolidation the use of these drugs as amnestic agents was discontinued. Subsequent experiments

inhibited synthesis of the kinasemammalian target of rapamycin (mTOR) followingmemory react-

ivation. The inhibitor of this pathway, rapamycin disrupts mTOR signalling (Hoeffer and Klann,

2010), known to be required for synaptic plasticity, and has previously been used to prevent fear

memory reconsolidation (Blundell et al., 2008; Gafford et al., 2011; Hoffman et al., 2015). Since this

compound did not appear to prevent this process, with the resultant deficits apparently caused

by state-dependent learning (Gisquet-Verrier and Riccio, 2012; Gisquet-Verrier et al., 2015), sub-

sequent experiments attempted to prevent reconsolidationwith protein synthesis inhibitionwithin

the basolateral amygdala (BLA), a manipulation frequently used to prevent this process (e.g. Ben

Mamou et al., 2006; Jarome et al., 2015; Merlo et al., 2015; Milton et al., 2013; Nader et al., 2000).

Methods

Summary

Animals were trained to fear an auditory stimulus through presentations of the CS with a mild

footshock. The CS was then presented in subsequent long-term memory test (LTMT) sessions

either with the view of reactivating the memory (Experiments 1-7, 10 & 11) or investigating the

consequences of pre-training administration of amnestic agents (Experiments 8 & 9).
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Reactivation sessions were conducted after (Experiment 1) or immediately before (Experiment 2)

treatmentwith theNMDAreceptor antagonistMK-801. In Experiment 3 a differentNMDA receptor

antagonist, CPP, known to more selectively target GluN2A subunit-containing NMDA receptors,

was given before the memory reactivation session. In Experiments 4 and 5 the reactivation session

took place in a novel context, and the effects of pre (Experiment 4) and post-reactivation (Exper-

iment 5) administration of MK-801 investigated. The number of CS presentations in the reactiva-

tion (Experiment 6) and training sessions (Experiment 7) was then altered and the susceptibility of

the memory destabilisation following these manipulations explored with pre-reactivation MK-801

treatment. In Experiment 8 & 9MK-801 was administered prior to the fear training session in anim-

als that had been used in an appetitive experiment, those pre-trained to fear a visual CS and naïve

animals. Experiments 10 and 11 used systemic rapamycin and intra-BLA anisomycin, respectively,

in further attempts prevent memory reconsolidation.

Experiments that attempted to prevent reconsolidation are summarised in Table 7.1. Procedures

were conducted as in General methods except where stated.

Treatment Novel context CS-US CSs at
Exp. Drug Timing for react? Pairings reactivation
1 MK-801 Before 7 2 1
2 MK-801 After 7 2 1
3 CPP Before 7 2 1
4 MK-801 Before 3 2 1
5 MK-801 After 3 2 1
6 MK-801 Before 7 2 2
7 MK-801 Before 7 1 1
10 RAPA After 7 2 1
11 BLA-ANI After 7 2 1

Table 7.1: Summary of pharmacological and reactivation parameters manipula-
tions used to attempt to prevent fear memory reconsolidation in Chapter 7. Not
depicted are Experiments 8 & 9, where pre-training MK-801 was administered be-
fore training in an attempt to prevent fear memory consolidation, rather than re-
consolidation. RAPA - rapamycin, ANI - anisomycin.

Subjects

Subjects were 170 Lister-Hooded rats weighing 260-460g before the start of experiments. In some

cases animals had been previously used in studies using food as a reinforcer; where this is the case

this is mentioned in the description of each experiment below.
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Apparatus

Animals were trained in Paul Fray conditioning chambers. In experiments where the boxes were

modified to form a novel context for the reactivation and test sessions the grid floors were covered

with a black acrylic sheet, the normally clear Perspex door had striped wallpaper attached to it and

light was provided by a light on the wall, rather than above the operant chamber (of the same

wattage as the houselight and colour used in the training context). Pilot studies with context-

induced renewal confirmed that animals were able to discriminate between these two contexts.

Because the acrylic floors prevented contact with the shocking grid floors it was not possible to

counterbalance which contexts served as the training and reactivation/test contexts.

Experiment 1: Antagonism of NMDA receptors with MK-801 before memory retrieval

Animals were first trained to fear an auditory CS through 2 pairings of this stimulus with a mild

foot shock. The following day animals underwent a memory reactivation session, consisting of

a single CS presentation in the absence of shock delivery. 30 minutes before this session anim-

als were treated with either the NMDA receptor antagonist (5S,10R)-(+)-5-Methyl-10,11-dihydro-

5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) (Abcam) or its vehicle. 24h

later the CS was presented in post-reactivation long-term memory test (PR-LTMT)1 and 7d later in

PR-LTMT2. This experiment was a replication of previous experiments that have been conducted

in the lab and have successfully demonstrated an involvement of NMDA receptors in memory re-

consolidation, as indicated by a decreased level of fear expression in the subsequent memory tests

(Lee et al., 2006b; Merlo et al., 2014).

Experiment 2: Antagonism of NMDA receptors with MK-801 after memory retrieval

This experiment was conducted as in Experiment 1, except that MK-801 was given immediately

after, rather than before, the memory reactivation session. Animals were tested 24h after reactiva-

tion and not tested again.
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Experiment 3: Antagonism of NMDA receptors with CPP before memory retrieval

The training and reactivation protocols were conducted as in Experiment 1, except that 60 minutes

before the memory reactivation animals were administered with (±)-3-(2-Carboxypiperazin-4-

yl)propyl-1-phosphonic acid (CPP) or its vehicle and the memory tested 24h and 7d later.

Experiment 4: Antagonism of NMDA receptors with MK-801 before memory retrieval in a novel context

This experiment was conducted exactly as Experiment 1, with MK-801 being given before the re-

activation session, except that the reactivation and subsequent test sessions occurred in a novel

context.

Experiment 5: Antagonism of NMDA receptors with MK-801 after memory retrieval in a novel context

This experiment was conducted exactly as Experiment 4, except that MK-801 was given immedi-

ately after, rather than before, the memory reactivation sessions.

Experiment 6: Antagonism of NMDA receptors with MK-801 before a retrieval session consisting of 2-CS

presentations

This experiment was conducted exactly as Experiment 1, except that the reactivation session con-

sisted of 2 CS presentations, separated by 1 minute.

Experiment 7: Antagonism of NMDA receptors withMK-801 before retrieval of a weakly trained fear memory

This experiment was conducted as Experiment 1, except that animals underwent a single pairing

between the CS andUS. Animals in this experiment had been used in a prior appetitive experiment

which included administration of MK-801 (Sigma) in half of the animals. Prior treatment groups

were counterbalanced across drug groups in this experiment.

Experiment 8: Antagonism of NMDA receptors with MK-801 during fear memory acquisition

Animals were administered withMK-801 or its vehicle 5 minutes before the training session, which

consisted of 2 CS-US pairings. The CS was presented in LTMT sessions 24h and 7d later. Animals

in this experiment had been used in a prior appetitive experiment without drug administration.
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Experiment 9: Antagonism of NMDA receptors with MK-801 prior to fear memory acquisition in naïve or

pre-trained animals

After context habituation, but before auditory fear conditioning, half the animals were trained to

fear a light stimulus. During this period the animals that were not undergoing pre-training re-

mained in the operant chambers for the same duration as those that were, but without CS present-

ation or shock delivery. The following day animals underwent auditory CS fear training with half

of the pre-trained and naïve animals receivingMK-801 or its vehicle before the sessions. Three days

after auditory CS fear training all animals were presented with the light CS. Tests of freezing to the

auditory CS presentations were conducted 24h and 8d after training sessions.

Experiment 10: Inhibition of the mTOR pathway following memory retrieval

Rapamycin or its vehicle was administered immediately following the reactivation session, con-

ducted as in Experiment 1. Animals were tested the next day, and 7d after the first test. 3d after

the 2nd PR-LTMT animals underwent a further test (all) having been administered with rapamycin

60 minutes before the test. Because rapamycin treatment resulted in a profound decrease in body

weight all animals were given a soaked diet 6d after drug treatment in an attempt to curtail any

adverse effects resulting from this weight loss.

Experiment 11: Effects of intra-BLA anisomycin following memory retrieval

Animals in Experiment 10 had bilateral cannulae implanted towards the BLA under ketamine and

xylazine anaesthesia as described in General methods. Anisomycin or phosphate buffered saline

(PBS)was infused immediately into the BLA following thememory reactivation session, conducted

as in Experiment 1. The effects of these manipulations on memory expression were tested 24h and

8d after reactivation.

Statistical analysis

Data were analysed using mixed-design analyses of variance (ANOVAs). Freezing during the CS

in the training, reactivation and test sessions was analysed as a repeated-measures factor (Ses-

sion), with drug treatment at reactivation as a between-subjects factor (Drug). In Experiment 9

Pre-training was treated as a between-subjects factor. Freezing during the training sessions and
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the one minute prior to the presentation of the CS was analysed in a similar fashion, in separate

ANOVAs.

Results

Experiment 1: Effects of antagonism of NMDA receptors with MK-801 before memory retrieval

MK-801 was administered before the memory reactivation session (see Figure 7.1A), a treatment

that has previously shown to result in a reduction in fear expression in a later tests (Lee et al.,

2006b; Merlo et al., 2014).

MK-801 treatment had no effect on memory expression acutely, or the day after memory reactiv-

ation session. However, when tested 7 days later animals given MK-801 showed increased fear

expression to the CS (Figure 7.1B). This was indicated by no overall effect of Drug (F1,10 = 4.19,

p= .068) but a significant Drug*Test interaction (F1.3,13.1 = 8.91, p= .007). Pairwise comparison of

this effect showed that animals treated withMK-801 exhibited increased freezing in response to the

CS in comparison to vehicle treated controls at PR-LTMT2 (Figure 7.1B).

The results of the test sessions could not be accounted for by differences in levels of freezing during

training (Table 7.4) or before the CS was presented in reactivation and test sessions (Table 7.5).

Habituation
2h

Training
2xCS + shock

Reactivation
1xCS

PR-LTMT 1
1xCS

PR-LTMT 2
1xCS

VEH/MK-801

24h 24h 24h 7d

A

B

Figure 7.1: MK-801 administered before memory retrieval resulted in an enhance-
ment of subsequent fear expression. A: Schematic of experimental procedures in
Experiment 1. B: Freezing during the CS presentation in long-term memory tests.
N=6 for both groups. Bars represent means +SEM. ** p < .01
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Experiment 2: Effects of antagonism of NMDA receptors with MK-801 after memory retrieval

NMDA receptor antagonism before memory reactivation can prevent not only reconsolidation, but

also destabilisation of an auditory fearmemory (BenMamou et al., 2006). This experiment antagon-

ised NMDA receptors immediately after the session (see Figure 7.2A). This should mean destabil-

isation has already taken place and thememory is labile andMK-801 should only be able to prevent

reconsolidation without affecting destabilisation.

Administration of MK-801 immediately after the reactivation session had no effect on subsequent

freezing. This was indicated by no overall effect of Drug (F1,10 = 0.03, p= .873) and no Drug*Test

interaction (F1,10=0.97, p= .347; Figure 7.2B).

There were no differences in freezing between groups in training (Table 7.4) or before the present-

ation of the CS in the reactivation and test sessions (Table 7.5).

Habituation
2h

Training
2xCS + shock

Reactivation
1xCS

PR-LTMT
1xCS

VEH/MK-801

24h 24h 24h

A

B

Figure 7.2: MK-801 administered after memory retrieval had no effects on fear ex-
pression. A: Schematic of experimental procedures in Experiment 2. B: Freezing
during the CS presentation in long-term memory tests. N=6 for both groups. Bars
represent means +SEM.

Experiment 3: Effects of antagonism of NMDA receptors with CPP before memory retrieval

In order to investigate the specificity of the memory enhancing effect of pre-reactivation MK-801

reported in Experiment 1, a different NMDA receptor antagonist, CPP, was used (see Figure 7.3A).

This drug also has greater affinity for the GluN2A subunit of the NMDA receptor (Feng et al., 2004;

167



CHAPTER 7. FEAR MEMORY RECONSOLIDATION

Feng et al., 2005), which has been suggested to underlie the amnestic effects of NMDA receptor

antagonism at memory retrieval (Milton et al., 2013).

Treatment with CPP had no effect on freezing levels in any of the memory tests, as indicated by no

overall effect of Drug (F1,10 = 0.45, p = .518) and no Drug*Test interaction (F2,20 = 1.88, p = .158;

Figure 7.3B).

Habituation
2h

Training
2xCS + shock

Reactivation
1xCS

PR-LTMT 1
1xCS

PR-LTMT 2
1xCS

VEH/CPP

24h 24h 24h 7d

A

B

Figure 7.3: CPP administered beforememory retrieval had no acute or long lasting
effects on fear expression. A: Schematic of experimental procedures in Experiment
3. B: Freezing during the CS presentation in long-termmemory tests. Bars repres-
ent means +SEM.

There were no differences between groups during training (Table 7.4) or during the pre-CS periods

(Table 7.5).

Experiment 4: Effects of antagonism of NMDA receptors with MK-801 before memory retrieval

in a novel context

One possibility arising from the previous experiments was that the reactivation session was not

able to engage destabilisation and subsequent reconsolidation mechanisms. Given that previous

research has suggested that novel contextual information may be required for reconsolidation to

take place (Jarome et al., 2015; Winters et al., 2009), MK-801 was given before reactivation in a novel

context (see Figure 7.4A).

Administration of MK-801 before the reactivation session resulted an acute decrease in freezing,

but groups did not differ inmemory expression in the PR-LTMTs (Figure 7.4B). This was supported
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by a non-significant effect of Drug on freezing (F1,10 = 2.41, p = .152) but a significant Drug*Test

interaction (F2,20 = 24.72, p < .001). Further analysis revealed a decrease in freezing during the

reactivation session in animals treated with MK-801 but at no other time points (Figure 7.4B).

There were no differences between the prospective groups during training (Table 7.4). Freezing

before the CS was presented in the PR-LTMTs, was, however lower in animals treated withMK-801

at reactivation (Table 7.5), potentially indicating that associations between the context and shock

had been disrupted by NMDA receptor antagonism at reactivation.

Habituation
2h

Training
2xCS + shock

Reactivation
1xCS

PR-LTM 1
1xCS

PR-LTM 2
1xCS

VEH/MK-801

24h 24h 24h 7d

A

B

Figure 7.4: MK-801 administered before memory retrieval in a novel context res-
ulted in an acute, but not long lasting, deficit in freezing. A: Schematic of ex-
perimental procedures in Experiment 4. B: Freezing during the CS presentation
in long-term memory tests. N=6 for both groups. Bars represent means +SEM.
***p < .001

Experiment 5: Effects of antagonism of NMDA receptors with MK-801 after memory retrieval

in a novel context

Asmentioned previously, pre-reactivation NMDA receptor antagonism can prevent destabilisation

(Ben Mamou et al., 2006; Yu et al., 2016). It remained possible that MK-801, when given before

reactivation in a novel context, prevented destabilisation that would otherwise be occurring. In

Experiment 5 MK-801 was administered directly after a reactivation session in a novel context (see

Figure 7.5A).
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MK-801 given immediately after the reactivation session had no effects on freezing in subsequent

sessions, as indicated by no overall effect of Drug (F1,10 = 2.27, p = .163) and a non-significant

Drug*Test interaction (F1,20=0.16, p= .851; Figure 7.5B).

There were no differences in freezing between the groups in training (Table 7.4) or the pre-CS peri-

ods of the reactivation and PR-LTMT sessions (Table 7.5).
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Figure 7.5: MK-801 administered after memory retrieval in a novel context had no
effects of freezing in subsequent tests. A: Schematic of experimental procedures in
Experiment 5. B: Freezing during the CS presentation in long-term memory tests.
N=6 for both groups. Bars represent means +SEM.

Experiment 6: Effects of antagonism of NMDA receptors withMK-801 before a retrieval session

consisting of 2 CS presentations

Whilst the manipulations of contextual information at reactivation were designed to increase the

likelihood that there was sufficient novelty to warrant memory destabilisation it was possible that

this did not deviate sufficiently from training to trigger reconsolidation. With this in mind, in Ex-

periment 7 the reactivation session consisted of twoCS presentations, eachwithout shock. Whether

reconsolidation was taking place was probed with pre-reactivation MK-801 treatment (see Figure

7.6A).

MK-801 treatment decreased freezing to each of the CS presentations in the reactivation session.

However, this treatment had no effect on memory expression in either of PR-LTMTs (Figure 7.6B).

This pattern of results was substantiated by a significant Session*Drug interaction (F3,31.8 = 16.32,
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p< .001), a main effect of Session (F3,31.8 = 8.81, p= .001) but no main effect of Drug (F1,16 = 2.34,

p = .146). Analysis of the significant Session*Drug interaction revealed a decrease in freezing in

MK-801 treated rats at reactivation but at no other time points (Figure 7.6B).

None of the effects, or lack thereof, could be attributed to differences in freezing in the training

sessions (Table 7.4) or before the CS was presented (Table 7.5).
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Figure 7.6: MK-801 administered before memory retrieval consisting of 2 CS
presentations had no effects of freezing in subsequent tests. A: Schematic of ex-
perimental procedures in Experiment 6. B: Freezing during the CS presentation in
long-term memory tests. N=9 for both groups. Bars represent means +SEM.

Experiment 7: Effects of antagonism of NMDA receptors with MK-801 before retrieval of a

weakly trained fear memory

One potential boundary condition for reconsolidation to occur is memory strength (Wang et al.,

2009). In order to investigate whether this was preventing reconsolidation from taking place a

group of animals were trained with a single CS-US pairing (see Figure 7.7A) and whether this

enabled the memory to reconsolidate following a single CS presentation investigated.

Treatment withMK-801 before thememory reactivation session resulted in an acute deficit in freez-

ing but did not affect memory expression in a PR-LTMT the next day (Figure 7.7B). This effect was

substantiated by a significant Session*Drug interaction (F1,10 = 5.29, p= .044), with no main effect

of Drug or Session (both: F1,10<1.82, p>.206).
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It was not possible to directly compare levels of training between groups since only 1CSwas presen-

ted in this session, although baseline freezing to the CS was similar between groups (Table 7.4).

Freezing prior to CS presentation was unaltered by MK-801 treatment before memory reactivation

or test session (Table 7.5).
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Figure 7.7: MK-801 administered beforememory retrieval in animals given a single
CS-US at training did not affect freezing the next day. A: Schematic of experimental
procedures in Experiment 7. B: Freezing during the CS presentation in memory
retrieval sessions. N=6 for both groups. Bars represent means +SEM.

Experiment 8: Effects of antagonism of NMDA receptors with MK-801 during acquisition

Despite parametric manipulation of the reactivation and training conditions, none of the previous

experiments had been able to disrupt memory expression with NMDA receptor antagonism prior

to, or following memory reactivation. With this in mind, Experiment 8 assessed the ability of MK-

801 to prevent memory consolidation, rather than reconsolidation. MK-801 was administered prior

to fear memory acquisition (see Figure 7.8A).

There was no evidence that MK-801 was able to prevent consolidation of an auditory fear memory.

Treatment with MK-801 resulted in an acute deficit in freezing behaviour during the training ses-

sion, with animals treatedwithMK-801 demonstrating similar levels of freezing duringCS1 but this

was decreased during CS2 (Figure 7.8B). These effects were indicated by an overall effect of Drug

(F1,9 = 22.05, p= .001) and a significant Drug*CS interaction: (F1,9 = 31.62, p< .001). There was no
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evidence of decreased freezing in MK-801 treated animals in either of the subsequent LTMTs (Fig-

ure 7.8C). This was indicated by no overall effect of Drug (F1,9< 0.01, p= .951) and no significant

Drug*Test interaction (F1,9 =0.28, p= .607). There was also no effect of drug treatment on freezing

before the CS was presented during these test sessions (Table 7.5).
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Training
2xCS + shock

LTMT 1
1xCS

LTMT 2
1xCS

IP:
MK-801/VEH

24h 24h 7d
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B C

Figure 7.8: MK-801 administered before training of a CS-US association resulted in
acute, but not long lasting effects on fear expression A: Schematic of experimental
procedures in Experiment 8. B: Freezing during the CS presentation during train-
ing. C: Freezing during the CS presentation in memory retrieval sessions. N=5/6
per treatment group. Data are represented as means +SEM. *** p<.001

Experiment 9: Effects of antagonism of NMDA receptors with MK-801 prior to fear memory

acquisition in naïve or pre-trained animals

Experiment 8 demonstrated that administration of the NMDA receptor antagonist MK-801 had no

effect on the acquisition of a discrete fear association in animals that had previously undergone ap-

petitive training. Whether this pre-training was responsible for the insensitivity of consolidation

to NMDA receptor antagonism was investigated in a group of experimentally naïve animals. The

effect of pre-training to modulate the requirement for NMDA receptor activation for memory ac-

quisition was further investigated with a group who were trained to fear a light CS before auditory

fear CS training took place (see Figure 7.9A).
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Freezing to the auditory CS

In the auditory fear memory training sessions treatment with MK-801 resulted in a decrease in

freezing regardless of pre-training, but only naïve animals treated with this drug increased their

freezing betweenCS1 andCS2. These effectswere supported by an overall effect of CS (F1,20=74.72,

p < .001) and this effect differing between pre-training (F1,20 = 5.16, p = .034) and drug (F1,20 =

34.01, p< .001) groups. Crucially, there was also a CS*Pre-Training*Drug interaction (F1,20 = 4.73,

p= .042). Subsequent analyses of this effect revealed that whilst treatment with MK-801 resulted in

a decrease in freezing during training in both pre-trained and naïve animals (t10> 2.24, p< .049),

the only MK-801 treated animals that increased their freezing from CS1 and CS2 were those that

were naïve (naïve: t5=2.81, p= .038; pre-trained: t5=0.86, p= .427; Figure 7.9B).

In the LTMT sessions pre-training increased fear expression occurring as a result of presentation

of the auditory CS. However, the drug treatment administered prior to the pairing of this CS with

shock had no effect on memory expression either 1 day or 1 week following training, suggesting

MK-801 was unable to prevent fear memory consolidation. This was true regardless of whether

animals had undergone pre-training or not. Overall levels of freezing were not affected by drug

treatment (F1,20 = 1.13, p = .302) and this did not vary between pre-trained and naïve animals

(Pre-training*Drug: F1,20 = 0.03, p = .871). Animals that were trained to fear a light CS showed

increased freezing to the auditory CS in the test sessions (F1,20 = 9.69, p= .005). Freezing varied

between the two test sessions (F2,20 = 4.37, p= .050) but this did not interact with any other factor

(all: F1,20<0.77, p>.389, Figure 7.9C).

There was no evidence of altered associations between the context and shock, as demonstrated by

similar levels of freezing before the CS was presented in all both LTMTs consisting of auditory

CS presentation. Drug treatment before (auditory CS) training did not affect subsequent pre-CS

freezing (F1,20 = 0.40, p= .550) and this did not vary between different pre-treatment groups (Pre-

training*Drug: F1,20 = 0.57, p= .458). Finally, pre-CS freezing did not very between test sessions

(F1,20 = 0.53, p = .475) and this was equally true regardless of drug treatment and pre-training

groups (all interactions: F1,20<3.87, p>.063; Table 7.2)
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CS modality Auditory Visual
Group LTMT 1A LTMT 2A LTMT B
Pre-trained:
VEH 0.4 ± 0.42 0.6 ± 0.24 1.4 ± 0.69
MK-801 0.7 ± 0.57 2.4 ± 1.35 13.8 ± 8.76
Naïve:
VEH 0.2 ± 0.15 15.3 ± 13.18 0.7 ± 0.34
MK-801 0.5 ± 0.43 13.2 ± 12.13 1.4 ± 0.46

Table 7.2: Freezing before CS presentation in Experiment 9. Values representmean
values ± SEM to two decimal places.

Freezing to the visual CS

Animals in the pre-trained group successfully acquired the association between the light and shock

delivery, as demonstrated by an increase in freezing to this stimulus in the training and a sub-

sequent LTMT session. Animals (in the pre-trained group) increased their freezing between the

two visual stimulus presentations within the training sessions (F1,10 =34.45, p<.001), providing a

within-subjects measure of learning. Prospective drug treatment groups did not affect acquisition

of this association (CS*Drug: F1,10 = 0.50, p= .826) nor did they affect the overall level of freezing

in the session (Drug: F1,10<0.01, p= .996; Figure 7.9D).

The increase in fear fromCS1 to CS2 in pre-trainingwas not purely the result of post-shock freezing.

In a LTMT session consisting of light CS presentation animals that underwent light-shock condi-

tioning showed increased fear to the visual CS in comparison to those that did not (Pre-training:

F3,20=11.56, p= .003). Freezing during this test was not affected by drug treatment before auditory

fear conditioning (F1,20 = 1.06, p = .317) and this effect was not modulated by pre-training (Pre-

training*Drug: F1,20 = 1.15, p = .297; Figure 7.9E). Differences in freezing in pre-trained groups

could not be explained by increased associations between the context and the shock in these an-

imals; pre-training did not affect freezing before the light CS was presented (F1,20 = 2.19, p= .154)

and this was true regardless of drug treatment (Pre-training*Drug: F1,20 = 1.75, p= .201). Overall

levels pre-CS freezing were not affected by the drug administered before the auditory fear training

sessions (F1,20=2.21, p= .153; Table 7.2).
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Figure 7.9: MK-801 administered before training of a CS-US association resulted in acute, but not long lasting
effects on fear expression, regardless of pre-training. A: Schematic of experimental procedures in Experi-
ment 9. B: Freezing during the auditory CS presentation during training. C: Freezing during LTMTs to the
presentation of the auditory CS.D: Freezing during the light CS during pre-training. E: Freezing during the
light CS presentation in LTMT 1B. N=6 in each treatment group. Data are represented as means +SEM.
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Experiment 10: Effects of inhibition of the mTOR pathway following retrieval

Owing to the failure to prevent both memory reconsolidation and consolidation with NMDA re-

ceptor antagonism subsequent experiments targeted processes downstream of the activation of

these receptors. Rapamycin prevents mTOR signalling, which is required for synaptic plasticity,

is activated downstream of NMDA receptor activation (Hoeffer and Klann, 2010) and is known to

be required for reconsolidation to take place (Blundell et al., 2008; Gafford et al., 2011; Hoffman

et al., 2015). Animals were injected with rapamycin immediately following the memory reactiva-

tion session. In order to investigate the potential state-dependency of the resultant decrease in fear

expression animals also underwent a third memory test, with rapamycin injections being admin-

istered to all animals prior to this session (Gisquet-Verrier and Riccio, 2012; Gisquet-Verrier et al.,

2015; Figure 7.10A).

Animals treated with rapamycin followingmemory retrieval demonstrated equal levels of freezing

during both the reactivation and first PR-LTMT session. However, 8 days after drug administra-

tion animals demonstrated a profound reduction in freezing toward the CS (Figure 7.10B). This

suggested a delay-dependent effect of rapamycin to produce a deficit in fear memory expression.

Treatment with rapamycin prior to a third test session 3d later resulted in a loss of the effect of

rapamycin treatment, suggesting that the deficit detected in PR-LTMT2 was the result of state-

dependent learning. The differential effect of rapamycin during the different test sessions was

qualified by a significant Drug*Session interaction (F1.5,15.4 = 5.00, p = .028) with no main effect

of Drug (F1,10 = 2.34, p = .157) and an overall effect of Session (F1.5,15.4 = 5.30, p = .024). Simple

effects analysis of this interaction only revealed a significant decrease in freezing in the memory

test conducted 7 days after reactivation (Figure 7.10B).

None of the effects occurring in the test sessions could be attributed to pre-existing differences

in freezing during training (Table 7.4) or freezing to the context in the periods before the CS was

presented (Table 7.3).

PR- PR- PR
Group Reactivation LTMT 1 LTMT 2 LTMT 3 Effect of drug Drug*Test interaction
Vehicle 3.1 ± 0.57 6.6 ± 4.59 5.3 ± 1.9 16.5 ± 8.90

F1,10 =2.58, p= .140 F1.3,12.9 =1.40, p= .269RAPA 0.1 ± 0.06 1.7 ± 1.01 1.9 ± 7.16 3.0 ± 2.27

Table 7.3: Freezing during pre-CS periods of test sessions in Experiment 10. All
values represent percentage of the minute before CS presentation spent freezing±
SEM to 2 decimal points.
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Figure 7.10: Rapamycin administered following memory retrieval resulted in
delay-dependent amnesia that is reversed by pre-retrieval administration of this
same drug. A: Schematic of experimental procedures in Experiment 9. B: Freez-
ing during the CS presentation in memory retrieval sessions. N=6 for both groups.
Bars represent means +SEM. * p < .05

Rapamycin treatment caused a considerable reduction in bodyweight (Figure 7.11), consistent with

previous reports (Fifield et al., 2013; Hebert et al., 2014). There was an overall effect of Day on

body weight (F2.2,22.3 = 90.40, p < .001), a significant Day*Treatment interaction (F2.2,22.3 = 52.21,

p<.001) and a main effect of Drug (F1,10 =68.45, p<.001). Separate analyses of the two treatment

groups revealed that whilst bodyweight of both vehicle and rapamycin treated rats’ weights varied

between days (F8,40 > 16.31, p < .001), post-hoc tests revealed that animals treated with vehicle

gained weight between reactivation and the following 4d (p= .004), whilst rapamycin treated rats

lost weight in the same period (p= .008).
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Figure 7.11: Rapamycin treatment resulted in long lasting weight loss. See text for
details. N=6 for both groups. Values represent means ±SEM.

Experiment 11: Effects of intra-BLA anisomycin following memory retrieval

Given that previous experiments were unable to demonstrate any memory impairment with

NMDA receptor antagonism and the deficits occurring as a result of rapamycin treatment appeared

to be caused by state-dependent learning, this experiment attempted to prevent reconsolidation

with intra-BLA infusion of the protein synthesis inhibitor anisomycin (see Figure 7.12A).

Aswith previousmanipulations, post-reactivation anisomycin had no effect on freezing in later test

sessions (Figure 7.12B). This was indicated by no main effect of Drug (F1,18=0.49, p= .466) and no

Drug*Test interaction (F2,36=0.70, p= .503).

The interpretation of the data from the test sessions was not confounded by pre-existing differences

in freezing levels of treatment groups during the training sessions (Table 7.4) or the periods before

the CS was presented (Table 7.5).

Only animals with cannula tips that could be located within the BLA were included in the above

analysis (Figure 7.13).

Power analysis

Whilst the difference in freezing between the two treatment groups during PR-LTMT1 was not

significant, there was a trend for animals infused with anisomycin to show less fear as a result of

CS presentation during this session. In order to investigate whether the failure to detect decreased

freezing in these animals was due to a lack of statistical power, the effect size was calculated for
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Figure 7.12: Intra-BLA infusion of the protein synthesis inhibitor anisomycin im-
mediately following memory retrieval had no effect on subsequent fear memory
expression. A: Schematic of experimental procedures in Experiment 10. B: Freez-
ing during the CS presentation inmemory retrieval sessions. Bars representmeans
+SEM. N=9/11 for each treatment group.

these data. The difference between the two treatment groups at PR-LTMT11 resulted in an effect

size (d) of 0.41, representing a small to medium effect size (Cohen, 1992). In comparison, previous

studies with similar methods have obtained effect sizes of approximately 0.79 (Nader et al., 20002).

Further analysis revealed that Experiment 11 was indeed underpowered (η2 =0.53). A total of 190

rats (95 per group) would be required to achieve 80% power with p value of .05; this would not be

practical and is a much higher n than has been used in previous studies of a similar nature (n=7/8

in Nader et al., 2000, although this study only achieved power of approximately 29%; a total of 50

rats would be required to achieve this with an effect size of 0.41). Thus, whilst the possibility of a

type II error cannot be excluded it does appear that the results obtained in the present experiment

are at least quantitatively smaller than those previously reported (Nader et al., 2000).

1In order to be certain that any differences in freezing are not the result of pre-existing differences between the two
groups it would, in addition to a significant result in comparing these two groups, be necessary to yield a significant
Test*Drug interaction. Conducting power analysis in order to calculate the number of subjects required for a t-test is
a somewhat liberal approach and likely underestimates the number of animals that would be required in order to be
certain any result obtained was due to the amnestic effects of post-reactivation anisomycin.

2Effect size estimated from Figure 2C, trial 1 of Nader et al. (2000).
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B

Figure 7.13: Approximate location of cannula tips for Experiment 11. A: Cannula
tip locations for animals infused with PBS. B: Cannula tip locations for animals
infused with anisomycin. Figure from Paxinos and Watson (1998).
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Exp. Training
Group CS1 CS2 Effect of Drug Drug*CS interaction
1
Vehicle 6.0 ± 1.58 67.1 ± 1.27

F1,10 =0.46, p= .511 F1,10 =0.54, p= .479MK-801 6.0 ± 1.27 72.6 ± 3.61

2
Vehicle 9.8 ± 6.68 66.6 ± 7.39

F1,10 =0.87, p= .374 F1,10 =0.15, p= .707CPP 13.17 ± 8.07 75.6 ± 5.67

3
Vehicle 8.4 ± 5.46 59.1 ± 9.36

F1,10 =0.02, p= .966 F1,10 =0.12, p= .736MK-801 6.4 ± 2.61 61.9 ± 9.20

4
Vehicle 16.6 ± 3.48 59.2 ± 12.89

F1,10 =1.30, p= .280 F1,10 =0.62, p= .451MK-801 3.1 ± 2.41 57.5 ± 4.24

5
Vehicle 8.9 ± 4.22 59.3 ± 13.69

F1,10 =2.65, p= .135 F1,10 =0.00, p= .972MK-801 22.1 ± 8.63 73.2 ± 6.40

6
Vehicle 3.0 ± 1.84 66.9 ± 8.41

F1,16 =0.61, p= .447 F1,16 =0.03, p= .863MK-801 5.0 ± 1.58 68.5 ± 5.87

7
Vehicle 5.2 ± 4.97

F1,10<0.01, p>.999MK-801 2.2 ± 1.46

10
Vehicle 22.2 ± 10.90 75.9 ± 5.90

F1,10 =1.11, p= .316 F1,10 =0.12, p= .733Rapamycin 15.6 ± 10.56 64.4 ± 9.06

11
PBS 12.7 ± 5.63 70.6 ± 3.90

F1,18 =1.28, p= .273 F1,18 =0.12, p= .979ANI 6.7 ± 1.94 64.5 ± 6.45

Table 7.4: Freezing during training in experiments attempting to prevent reconsol-
idation. Exp.: Experiment. All values represent the average percentage of time of
the scored period spent freezing ± SEM to 2 decimal places.
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Exp. Reactivation (PR-) (PR-)
Group session LTMT 1 LTMT 2 Effect of Drug Drug*Test interaction
1
Vehicle 1.1 ± 0.57 1.2 ± 0.60 0.2 ± 0.19

F1,10 =1.38, p= .268 F1.0,10.4 =1.17, p= .306MK-801 2.0 ± 0.63 0.2 ± 0.15 8.1 ± 7.16

2
Vehicle 1.2 ± 0.54 2.2 ± 0.54 1.4 ± 0.89

F1,10 =0.42, p= .532 F1.1,11.5 =1.89, p= .197CPP 5.1 ± 2.81 1.3 ± 1.09 1.1 ± 0.78

3
Vehicle 0.6 ± 0.46 1.1 ± 0.80

F1,10 =0.41, p= .538 F1,10 =0.44, p= .522MK-801 0.4 ± 0.33 3.1 ± 2.83

4
Vehicle 0.6 ± 0.25 5.4 ± 1.82 4.8 ± 1.70

F1,10 =0.98, p= .346 F2,20 =5.75, p= .011MK-801 5.5 ± 2.88 0.7 ± 0.45* 0.9 ± 0.42*

5
Vehicle 1.8 ± 0.70 1.3.± 0.42 2.4 ± 1.74

F1,10 =2.27, p= .163 F2,20 =0.16, p= .851MK-801 7.1 ± 2.49 6.4 ± 4.74 6.0 ± 2.84

6
Vehicle 0.2 ± 0.70 5.3 ± 4.96 3.6 ± 2.69

F1,10 =2.27, p= .163 F2,20 =0.16, p= .851MK-801 1.5 ± 0.43 0.1 ± 0.09 0.5 ± 0.18

7
Vehicle 0.3 ± 0.15 0.9 ± 0.64

F1,10<0.01, p>.962 F1,10 =4.22, p= .067MK-801 0.9 ± 0.35 0.3 ± 0.20

8
Vehicle 1.7 ± 1.12 0.6 ± 0.34

F1,10 =2.27, p= .163 F2,20 =0.16, p= .851MK-801 0.3 ± 0.16 0.4 ± 0.25

11
PBS 0.6 ± 0.26 6.5 ± 3.66 0.7 ± 0.43

F1,18 =0.91, p= .354 F1.2,21.4 =1.15, p= .246ANI 1.3 ± 0.99 2.3 ± 1.29 0.5 ± 0.26

Table 7.5: Freezing during pre-CS periods of retrieval sessions in experiments us-
ingNMDA receptor antagonism to attempt to prevent (re)consolidation. All values
represent percentage of the minute before CS presentation spent freezing ± SEM
to 2 decimal places. *p < .05 compared to vehicle.
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Discussion

Summary of results

It was not possible to disrupt reconsolidationwithNMDA receptor antagonism or protein synthesis

inhibition. Thiswas despite the use of twodifferentNMDAreceptor antagonists, altering the timing

of drug administration, providing novel contextual information during the reactivation session and

altering the number of CSs presented during the reactivation and training sessions. A subsequent

experiment demonstrated that MK-801 was unable to prevent memory consolidation, suggesting

that the failures to block reconsolidationmay have been attributed to a failure in the amnestic agent

to do so, rather than this process not taking place. Protein synthesis inhibition was also ineffective

at preventing memory reconsolidation suggesting that the retrieval conditions used here were also

insufficient to result in memory destabilisation required for reconsolidation to take place.

Relationship to previous work

NMDA receptor antagonism with MK-801 prior to retrieval of a consolidated association between

an auditory CS and footshock has previously been reported to result in decreased fear to the re-

activated CS in subsequent tests (Lee et al., 2006b; Merlo et al., 2014). Using near almost identical

training, reactivation and testing conditions it was not possible to replicate this effect. In fact, when

tested a week after memory reactivation, treatment with MK-801 resulted in increased subsequent

fear expression. The reason for this contradiction of previous literature is unclear but is not the first

report of memory enhancing effects of NMDA receptor antagonism. Pre, but not post-reactivation

treatment with ketamine has previously been reported to result in memory enhancements (Hons-

berger et al., 2015). This effect was speculatively attributed to the lower affinity of ketamine on

NMDA receptors resulting in disinhibition of cortical networks (Murray et al., 2014); treatment with

memantine, anNMDA receptor antagonistwith even lower activity on these receptors, also appears

to enhance the reconsolidation of avoidance memories in the day old chick (Samartgis et al., 2012).

This would suggest that the memory enhancing effects of MK-801 may have been the result of a

reduced affinity of this drug on NMDA receptors in comparison to previous studies.

One possible explanation for the increased freezing in animals treated with MK-801 in Experiment

1 is that this drug was preventing extinction taking place in the retrieval session. It is known this

process is NMDA receptor-dependent, as indicated by increased freezing in drug-treated groups
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the day after extensive presentation of the CS without shock (Lee et al., 2006b; Merlo et al., 2014;

Santini et al., 2001). However, this explanation is unlikely, primarily because there was no evidence

of a decrease in freezing between the memory reactivation and test session, as would be expected

if this were the case. Furthermore, it is unlikely that a single CS would result in extinction; 4 non-

reinforced CS presentations does not trigger this process in memories trained in a similar fashion

(Merlo et al., 2014).

Whilst there is evidence that NMDA receptor antagonism can prevent reconsolidation (Lee et al.,

2006b; Merlo et al., 2014; Milton et al., 2008a), studies have also reported that administration of these

drugs can prevent destabilisation, as indicated by their ability to protect against the amnestic effects

of post-reactivation infusions of the protein synthesis inhibitor anisomycin (BenMamou et al., 2006;

Yu et al., 2016). Although this would not typically be expected to result in memory enhancements

(BenMamou et al., 2006; Lee and Flavell, 2014; Lee et al., 2008; Milton et al., 2013), this might explain

the lack of amnestic effects of MK-801 treatment both in this and previous chapters.

In Experiment 2 MK-801 was administered immediately following reactivation. This should en-

able the memory to become destabilised during the session, but prevent the restabilisation of the

memory trace following it. Whilst the majority of studies preventing reconsolidation with NMDA

receptor antagonists have administered these drugs prior to memory reactivation (e.g. Exton-

McGuinness et al., 2014; Lee et al., 2006b; Milton et al., 2008a), there is some evidence suggesting that

post-reactivation treatment can also prevent restabilisation (Lee and Flavell, 2014; Przybyslawski

and Sara, 1997; Tedesco et al., 2014b). Administration of MK-801 following memory reactivation

was not able to prevent reconsolidation; animals showed equal fear to the CS regardless of drug

treatment.

One issue with post-reactivation administration of NMDA receptor antagonists is that the specific

stage of reconsolidation in which activation of these receptors is required is unclear. NMDA re-

ceptor activation occurs upstream of the expression of zif-268 for reward-related memories (Milton

et al., 2008a) and of ERK expression in fear memory reconsolidation (Merlo et al., in preparation;

also see Cammarota et al., 2000). One possibility is that even in the short time taken to remove the

animal from the chamber, the window inwhichNMDA receptor activation is required for reconsol-

idation to occur had already closed. Further investigation of the destabilisation-preventing ability

of NMDA receptor antagonists has revealed that these effects are likely mediated by the action of

these drugs on the GluN2B subunit of the NMDA receptor, whilst antagonism of the GluN2A sub-

unit prevents reconsolidation (and not destabilisation) (Milton et al., 2013). With this in mind, a
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different NMDA receptor antagonist, CPP, was used. This drug has been shown to have slightly

higher affinity to GluN2A receptors (Feng et al., 2004; Feng et al., 2005), and thus may be less likely

to prevent destabilisation even if given pre-reactivation. Indeed, previous studies have demon-

strated impairments in memory reconsolidation with this compound when it is given at this time

point (Suzuki et al., 2004). This treatment was not effective at preventing memory reconsolidation,

although unlike pre-reactivation MK-801 treatment there was no evidence of a memory enhance-

ment with this drug.

One of the major hurdles in interpreting an inability to produce amnesia whilst attempting to pre-

vent reconsolidation is that it is unclear whether the result is due to a failure of the drug to prevent

reconsolidation, orwhether the retrieval conditions are insufficient to reactivate thememory. Given

the previous literature suggesting that MK-801 prevents reconsolidation (Lee et al., 2006b; Merlo et

al., 2014), it was possible that the pattern of results could be explained by the memory retrieval ses-

sion not resulting in reconsolidation, rather than an inability to prevent this process with NMDA

receptor antagonism. With this in mind, in Experiment 4 the retrieval session was manipulated in

an attempt to increase the likelihood of destabilisation occurring. One of the key determinants of

whether a reactivation session will result in the destabilisation of a memory is prediction error (PE)

(Pedreira et al., 2004; Sevenster et al., 2013) and likely relates to the function of reconsolidation to

integrate new information into existing memories (Lee et al., 2009; Nader and Einarsson, 2010).

The experiments described thus far attempted to generate this with the surprising absence of an

anticipated reinforcer. However, it is possible that this alone was insufficient to result in memory

destabilisation.

Recent experiments in fear memories have demonstrated that only when memory reactivation oc-

curs in a novel context is there an increase in proteasome and GluR2 levels in the BLA (Jarome

et al., 2015), two markers that have been implicated in memory destabilisation (Jarome et al., 2012).

Furthermore, only when reactivation was conducted in a novel context was intra-BLA anisomycin

effective at reducing fear expression in later tests (Jarome et al., 2015). It is possible that the experi-

ence of the CS within a novel context, combined with the absence of a shock, but not the absence of

the shock alone, was sufficient for reconsolidation to take place. With this in mind, in Experiment

4 MK-801 was administered before a reactivation session that was conducted in a similar fashion as

before, but occurred in a context that the animals had not previously experienced. This was appar-

ently ineffective at triggering reconsolidation; MK-801 treated animals demonstrated equal levels

of freezing in all tests conducted after the reactivation session.
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Asmentioned previously, one issue in administeringMK-801 prior tomemory reactivation is that it

may prevent destabilisation (Yu et al., 2016). It was possible that although the shift in context meant

that retrieval conditions were sufficient to trigger reconsolidation, MK-801’s effect on GluN2B re-

ceptors (Wong et al., 1986; Wong et al., 1988) prevented memory destabilisation taking place (Ben

Mamou et al., 2006; Milton et al., 2013). With this in mind, in Experiment 5 MK-801 was given im-

mediately followingmemory reactivation in a novel context. Once again, however, NMDA receptor

antagonism failed to result in any amnestic effect under these conditions.

As previously discussed, a major factor in determining whether a retrieval session results in

destabilisation of the memory trace is the presence of novel information (Lee, 2009; Pedreira et

al., 2004; Sevenster et al., 2013). Whilst prior experiments attempted to maximise this with a shift

in context, Experiment 6 increased the degree of PE by presenting a larger number of CSs (in the

absence of shock delivery) within thememory reactivation session. Reactivations consisting of pro-

longed CS exposure can lead to memory destabilisation where shorter sessions are unable to do so

(Inda et al., 2011; Reichelt and Lee, 2013a; Suzuki et al., 2004). Increasing the number of CSs during

the reactivation session was also ineffective at triggering reconsolidation that was susceptible to

treatment with MK-801.

The strength of a memory can affect its ability to undergo reconsolidation (Inda et al., 2011; Kwak

et al., 2012; Reichelt and Lee, 2013a; Suzuki et al., 2004; Wang et al., 2009). Although the experi-

ments described used similar protocols and shock intensities as has been used in previous studies

(Lee et al., 2006b; Merlo et al., 2014), it was possible that subtle procedural differences resulted in

the formation of a stronger memory. Visual inspection of the mean level of freezing between Lee

et al. (2006b) and the present experiments suggests this may be the case (although similar levels

of freezing as in the present experiments were reported in Merlo et al., 2014). Furthermore, previ-

ous experiments demonstrating fear memory reconsolidation impairments have used a single CS-

shock pairing (albeit at a higher intensity), rather than the two used in the present experiments (e.g.

Duvarci et al., 2005; Milton et al., 2013; Nader et al., 2000). Several studies have shown that stronger

memories are more resistant to reconsolidation, and although in some cases stronger memories

can be destabilised with longer reactivation sessions (Suzuki et al., 2004), this is not always effective

(Wang et al., 2009). With this in mind, Experiment 7 used a weaker training protocol; the CS was

paired with shock once andmemory reactivation sessions conducted as before. Increased memory

strength did not appear to be the factor that was preventing reconsolidation taking place since pre-

treatment with MK-801 prior to the memory reactivation session was without effect on long-term

memory (LTM) expression.
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The majority of the manipulations described up to this point focussed on optimising the behavi-

oural parameters of the reactivation session in order to maximise the likelihood of reconsolidation

taking place. In evaluating the efficacy of these manipulations it was assumed that the amnestic

agent used, MK-801 (in all but Experiment 3), would be effective at preventing reconsolidation,

should it be taking place. Given the numerous parameters of the reactivation and training sessions

that had been manipulated, each apparently without effect, the possibility remained that the tool

used to probe whether reconsolidation taking place was ineffective, rather than the reactivation

conditions themselves.

In order to independently confirm the efficacy of MK-801 to prevent reconsolidation a reactivation

session was required that would, without any uncertainty, result in destabilisation. Since this was

not available, the ability of MK-801 to prevent consolidation was investigated; the increase in fear

between the first time the CS is presented during training and the test session 1 day later provides

direct evidence that memory consolidation is taking place. MK-801 was also ineffective at pre-

venting this memory process. Whilst there was an acute reduction in freezing during the training

sessions in response to MK-801 treatment, likely the result of the effect of this drug to increase

locomotor activity (Frantz and Hartesveldt, 1999), the following day there was no evidence of an

amnestic effect.

It has been previously reported that learning can take place in the absence of NMDA receptor ac-

tivation. This has been reported in contextual fear (Hardt et al., 2009; Sanders and Fanselow, 2003;

Wiltgen et al., 2010), theMorris water maze (Bannerman et al., 1995; Saucier and Cain, 1995) and ex-

tinction of discrete auditory fear associations (Langton andRichardson, 2008; Langton andRichard-

son, 2010). However, in each case this only occurs when there has been prior learning of a similar

association before attempts are made to block subsequent learning with NMDA receptor antag-

onism. Little is known with regard to the similarity of two learning episodes required to render

the second NMDA receptor independent. In Experiment 8 animals had undergone prior appetit-

ive training which may have resulted in subsequent learning occurring in the absence of NMDA

receptor activation. Experiment 9 addressed this issue, using experimentally naïve animals. The

possibility of prior learning affecting the susceptibility of subsequent fear memory acquisition to

NMDA receptor antagonism was also investigated with the inclusion of a group of animals that

were trained to fear a light stimulus before auditory fear conditioning took place. However, it ap-

peared that the prior training was not the sole contributor of the insensitivity of learning to NMDA

receptor antagonism; fear memory acquisition was unimpaired by MK-801 treatment in animals in

Experiment 9, regardless of whether they had undergone pre-training.
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It appeared that NMDA receptor activation was not required for acquisition of fear memories, rais-

ing the possibility that in several of the experiments conducted previously reconsolidation may

have taking place, but without the need for NMDA receptor activation. Several reasons for these

effects, and why there has been an apparent loss of reconsolidation effects once reported are now

discussed.

One possibility was that MK-801 was not effective at antagonising NMDA receptors and it is for

this reason it was unable to prevent reconsolidation. However, this is improbable, since this drug

has been used extensively in reconsolidation studies (e.g. Exton-McGuinness et al., 2014; Lee et al.,

2006b; Merlo et al., 2014; Milton et al., 2008a; Wouda et al., 2010). It is unlikely that the results were

due to quality control issues in the production line of this drug, given that recent studies in the

lab have used two different suppliers of MK-801 with similar effects (Abcam: experiments in this

chapter, Sigma: experiments in prior chapters, Merlo unpublished observations, Cahill unpublished

observations). Studies using higher doses of this drug (0.3mg/kg) are also ineffective at preventing

reconsolidation using conditions once able to result in reconsolidation (Cahill, unpublished observa-

tions, cf. Merlo et al., 2014). It should also be noted that in the majority of experiments conducted

MK-801 treatment resulted in an acute decrease in fear expression, consistent with its ability to in-

crease locomotor activity (Frantz and Hartesveldt, 1999) confirming the injections were successful

and the drug was in solution. It is therefore, highly unlikely the results of this chapter were caused

by a lack of pharmacological efficacy of this drug.

A third possibility is that some subtle aspect of the reactivation sessionswas different fromprevious

studies. This is not likely since the equipment used in the present experiments is the same as

used in previous reports (Lee et al., 2006b; Merlo et al., 2014). The results are unlikely the result of

differences in the way these experiments are conducted since reconsolidation deficits have eluded

researchers once able to produce such effects (Merlo, unpublished reports, cf. Merlo et al., 2014).

This explanation is also unable to explain why NMDA receptor antagonism could not prevent fear

memory consolidation.

This only leaves the possibility that some aspect of the animals themselves is different from be-

fore. For example, some aversive experience may occur before animals were delivered, rendering

subsequent learning NMDA receptor-independent (Hardt et al., 2009; Sanders and Fanselow, 2003;

Wiltgen et al., 2010). Alternatively the use of different ages of rats may alter NMDA receptor ex-

pression (Armentia and Sah, 2003; Monyer et al., 1994; Sheng et al., 1994), resulting in differences in

the sensitivity of manipulations of these drugs. Although subjects used in the present experiments
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were of similar weights to previous studies, potential differences in diet may have meant whilst

they were of a similar mass, the ages may have been different.

Whilst it has not been explicitly tested, it is likely that NMDA receptor independent learning re-

quires the synthesis of new proteins: long-term potentiation (LTP) occurring in the absence of ac-

tivation of these receptors is blocked by anisomycin (Moosmang et al., 2005). It was possible that

whilst reconsolidationwas not sensitive toNMDA receptor antagonism, it would be preventedwith

administration of compounds known to prevent protein synthesis.

Inhibition of the protein kinase mTOR can block reconsolidation (Barak et al., 2013; Blundell et al.,

2008; Gafford et al., 2011; Hoffman et al., 2015; Lin et al., 2014). Experiment 10 attempted to replicate

these findings. Whilst there was no effect of this treatment when animals were tested the day

following reactivation, 7 days later a deficit resembling impaired reconsolidation emerged. There

were several explanations for this delay-dependent deficit. One possibilitywas that the resultswere

the result of state-dependent learning.

Administration of protein synthesis inhibitors results in amnesia when given immediately follow-

ing acquisition of a step-down avoidance memory (e.g. Kameyama et al., 1986). However, recent

investigations have demonstrated that pre-test injections of these drugs reverse this deficit (Gisquet-

Verrier and Riccio, 2012), with similar results being obtained for an apparent amnesia resulting

from post-reactivation injections, or intra-hippocampal infusions of the same compound (Gisquet-

Verrier et al., 2015). Lithium chloride (LiCl) treatment, which does not affect protein synthesis

(Squire et al., 1975), but does result in gastric malaise resulting in a significant shift in the internal

state of the animal, can also render reactivated memories state-dependent (Gisquet-Verrier et al.,

2015). These results have been interpreted to suggest that the deficits in memory expression arising

from these treatments are the result of a mismatch between the internal state at memory encoding

and retrieval. The internal context of the animal at the time of (or just following) memory acquisi-

tion becomes a crucial part of thememory trace such that retrieval can only occurwhen the animal is

in a similar state. Similarly, the internal state can become incorporated into a consolidated memory

via reconsolidationmechanisms, such that a similar state is required for thememory to be retrieved

(Gisquet-Verrier and Riccio, 2012; Gisquet-Verrier et al., 2015; Riccio and Richardson, 1984). It was

possible that treatment with rapamycin resulted in the fear memory becoming state-dependent.

Because the half-life of rapamycin exceeds 24 hours in the rat (Yatscoff et al., 1995) the internal con-

text may have been sufficiently similar between reactivation and test sessions to permit retrieval 24

hours following drug treatment, but not 8 days later, when the drug had been fully metabolised.
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The difference inweight between vehicle and rapamycin treated rats (previously reported in Fifield

et al., 2013; Hebert et al., 2014) or some other related factor, may have somehow contributed towards

the deficit in freezing reported in drug treated animals. In PR-LTMT1 animals were (likely Hebert

et al., 2014) of a similar weight and showed approximately equivalent levels of fear expression. In

PR-LTMT2 when the difference in body weight had emerged, as did the deficit in freezing towards

the CS in the rapamycin treated animals.

Finally, the decreased freezing in rapamycin treated animalsmay have been the result of the protein

synthesis inhibiting properties of this drug resulting in a deficit in reconsolidation that was not

detected 1 day later, perhaps occurring as a result on a reliance of an extended short-term memory

systems at this time point.

In a final test, all animals were given pre-retrieval injections of rapamycin. If the memory deficits

were occurring as a result of state-dependent amnesia, such a treatment should lead to the loss of

the prior amnestic effect of this drug. If the deficits were occurring as a result of the rapamycin

induced weight loss, administration of this drug prior to memory retrieval should have no effect,

since there was still a significant difference in body weight between the two treatment groups at

the time of this test. Similarly, if mTOR inhibition had prevented memory reconsolidation pre-

retrieval rapamycin administration should have no effect. As was the case, this treatment resulted

in the loss of the amnestic effect of post-reactivation rapamycin, suggesting the prior retrieval deficit

was a result state-dependency, although it was possible the deficit was simply the result of passage

of time, since a group that did not receive pre-retrieval rapamycin treatment was not included.

Whilst compelling, the state-dependent amnesia explanation cannot account for all deficits occur-

ring through apparent disruptions of reconsolidation. Although few investigations have been con-

ducted to explore this possibility, reductions in contextual fear expression occurring after post-

reactivation intra-hippocampal disruption of Arc or zif-268 signalling with oligodeoxynucleotides

(ODNs) cannot be restored by pre-retrieval infusion of these compounds (Trent et al., 2015). Whilst

Experiment 9 did appear to demonstrate such a state-dependent effect of rapamycin, this drug has

not been extensively used in reconsolidation research and the present results cannot be used to

refute experiments using different compounds to result in reactivation-dependent amnesia. How-

ever, given that it is known that intra-cranial infusions of thewidely used protein synthesis inhibitor

anisomycin do result in an aversive state (Jonkman and Everitt, 2009; Jonkman and Everitt, 2011) it

is a topic worthy of consideration.
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Experiment 11 aimed to investigate, under the same conditions as had been used in previous ex-

periments, whether post-reactivation infusion of anisomycin could result in impaired memory ex-

pression in a later test. Since used in 2000 to re-ignite the reconsolidation field by Nader et al., intra-

BLA infusions of anisomycin have, for better or for worse (Canal et al., 2007; Qi and Gold, 2009),

frequently been used to probe whether memory reconsolidation is taking place. Post-reactivation

infusions of anisomycin had no effect on memory expression in tests conducted 1 or 8 days after

memory reactivation. This suggested that the retrieval parameters used for the majority of experi-

ments in this chapter were not sufficient to engage reconsolidation.

The reasons for the failure to replicate early demonstrations of blockade of fear memory reconsol-

idation in this chapter were likely two-fold. The NMDA receptor antagonist used was ineffective

at preventing consolidation (Experiment 7 & 8) suggesting it may have also been unable to prevent

reconsolidation, perhaps due to the recruitment of NMDA receptor independent learning mechan-

isms. The reactivation conditions used were also insufficient to result in memory reconsolidation

(Experiment 11).
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Summary of results

The most consistent finding of this thesis was that a memory retrieval session combined with ad-

ministration of an amnestic agent had no effect on subsequentmemory expression. Of the 22 exper-

iments attempting to prevent reconsolidation only in 3 was subsequent memory retrieval impaired

as a result of drug administration.

In Chapter 3 the effects of treatment with the N-methyl-D-aspartate (NMDA) receptor antagonist

MK-801 during instrumental memory reactivation on subsequent context-induced renewal (CIR)

were investigated. Pilot investigations demonstrated that returning animals to a context they had

been trained in, following a period of extinction in a second context, resulted in increased respond-

ing that was sensitive to devaluation with sensory-specific satiety. This suggested this responding

was goal-directed. Treatment with MK-801 prior to a non-reinforced reactivation session inter-

posed between training and extinction did not affect subsequent CIR but did result in an inability

to show a selective decrease in responding in response to devaluation of the reinforcer used in

training. This raised the possibility there was an impairment in the reconsolidation of the action-

outcome (A-O) association underlying the instrumental memory.

Chapter 4 further investigated the potential for disrupting the reconsolidation of A-O memories.

Given that pre-reactivation MK-801 treatment had no effect on CIR in Chapter 3, in these experi-

ments animals did not undergo prolonged extinction sessions before testing took place and all the

tests took place in the same context. Using the same reactivation parameters as before, treatment

with MK-801 had no effect on the expression of A-O associations, now assessed with reinforcer de-

valuationwith lithium chloride (LiCl) induced conditioned taste aversion (CTA) (itwas not possible

to replicate the devaluation effect previously obtained with sensory specific satiety). In these ex-

periments it appeared the reactivation session led to extinction; NMDA receptor antagonism with
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MK-801 in combination with memory retrieval resulted in increased responding at test, suggest-

ing that administration of this compound was preventing extinction. Given that retrieval sessions

that result in extinction do not typically lead to reconsolidation (e.g. Flavell and Lee, 2013; Lee

et al., 2006b; Merlo et al., 2014) subsequent experiments attempted to determine the retrieval ses-

sion parameters (conducted in the absence of reinforcer delivery) that would not lead to extinction.

However, it was shown that instrumental memories rapidly extinguish and this was true when

responding during training was reinforced under variable interval (VI) and fixed ratio (FR) sched-

ules of reinforcement. Whilst the extinction effects reported were fairly modest, there was never

any evidence that MK-801 prevented reconsolidation (or that it was taking place) in these sessions;

animals treated with this drug responded at similar or increased levels in comparison to vehicle

treated controls.

Chapter 5 investigated reconsolidation of pavlovian memories formed during cocaine self-

administration. Animals were trained in a way argued to reflect a ’casual-user’ model of substance

use (e.g. Murray et al., 2012) that has previously been shown to result in the formation of memor-

ies amenable to reconsolidation blockade of the conditioned stimulus (CS)-unconditioned stimu-

lus (US) memory (e.g. Lee et al., 2006a) with NMDA receptor antagonism (Milton et al., 2008a). It

was not possible to disrupt reconsolidation of these memories, despite attempts to maximise the

likelihood of the memory being reactivated with the use of both non-contingent and contingent CS

presentation. The failure to prevent reconsolidation with pre-reactivation MK-801 was replicated

when the conditioned reinforcing properties of the CS were assessed with its ability to maintain

responding in a second-order schedule of cocaine reinforcement. In fact, when assessed with this

method treatment withMK-801 resulted in increased responding in comparison to non-reactivated

controls, suggestive of a memory strengthening effect. A final experiment in this chapter explored

the possibility that the inability to detect an amnestic effect of MK-801 administration was not the

result of the reactivation or testing parameters, but that this drug was unable to prevent reconsol-

idation. To this end, a different NMDA receptor antagonist, CPP, was used. This drug has an in-

creased affinity on GluN2A-containing NMDA receptors (Feng et al., 2004; Feng et al., 2005); studies

in fear memories have demonstrated that activation of this subunit, and not GluN2B-containing re-

ceptors is required for restabilisation (Milton et al., 2013). Treatmentwith this drug prior tomemory

reactivation had no effect on subsequent cue maintained drug-seeking.

The experiments in Chapter 6 attempted to disrupt reconsolidation of responding underlying

reward-related memories, likely governed by both pavlovian and instrumental associations. An-

imals in these experiments had undergone extensive training, likely resulting in the recruitment of
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stimulus-response (S-R) habits, governed by distinct psychological and neuroanatomical substrates

to that of responding having undergone limited training (Balleine and O’Doherty, 2010; Gasbarri

et al., 2014; Giuliano et al., in preparation; Murray et al., 2012; Murray et al., 2015). This was first

investigated in animals extensively trained to respond for intravenous cocaine delivery. Treatment

with MK-801 prior to a memory reactivation session, designed to maximise prediction error (PE)

consisting of both instrumental responding and presentation of the reward-paired stimulus, had no

effect on subsequent responding under these conditions. In a second experiment the use of similar

training and reactivation protocols, now using a food reinforcer, did appear to result in memory

reconsolidation; NMDA receptor antagonism at reactivation decreased food-seeking behaviour the

next day. However, this deficit was short-lived; once both the CS and operant response were again

pairedwith reward animals responded at similar levels regardless of drug treatment at reactivation.

A final experiment in this chapter demonstrated that repeated reactivation sessions, in conjunction

with further drug administration, were unable to ameliorate the fleeting nature of this effect.

In themajority of cases described above it was not possible to disrupt reconsolidation. A final series

of experiments explored the possible reasons for these effects, specifically assessing whether they

were caused by an inability to prevent this process, and/or whether the retrieval sessions were not

resulting in the necessary destabilisation processes required for reconsolidation to occur. Using

fear memories as a tool for investigating these possibilities, owing to the short duration and ease

at which parametric manipulations can be made in these experiments, a sequence of studies used

different memory reactivation procedures and pharmacological tools used to attempt to prevent

reconsolidation. There was not any evidence, however, that NMDA receptor antagonism led to

blockade of this process, despite manipulation of memory strength, novel contextual information

present and extent of PE at reactivation. In fact, MK-801 treatment had no effect on fear memory

acquisition, suggesting that this drug might also be unable to prevent reconsolidation, should it be

taking place. Following experiments therefore prevented protein synthesis in an attempt to block

memory reconsolidation. Whilst pharmacological inhibition of the mammalian target of rapamy-

cin (mTOR) pathway did result in a decrease in subsequent fear expression when given immedi-

ately following a memory reactivation session, this did not appear to be reflective of a disrupted

reconsolidation, but rather the result of thememory becoming state-dependent. This was indicated

by the ability of pre-retrieval administration of rapamycin to reverse the apparent amnestic effect of

post-reactivation treatment with this drug (Gisquet-Verrier and Riccio, 2012; Gisquet-Verrier et al.,

2015). The ability to update the memory with this information despite treatment with rapamycin

suggests that this may have been able to take place via mTOR-independent mechanisms. A final
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experiment used intra-basolateral amygdala (BLA) infusions of the protein synthesis inhibitor an-

isomycin, a frequently used test of whether reconsolidation is taking place (e.g. Ben Mamou et al.,

2006; Merlo et al., 2015; Nader et al., 2000), in an attempt to prevent this process. This manipulation

was without effect on memory expression. Combined with previous results, this suggested that

the reasons for the failure to observe deficits in memory reconsolidation may have been two-fold.

Firstly, the amnestic agent (MK-801) used in many of the experiments, in my hands, was not able to

prevent consolidation, suggesting this drug may have also been unable to prevent reconsolidation.

Secondly, the conditions of retrieval did not appear to be sufficient to result in reconsolidation of

pavlovian fear memories.

It is possible that the failure to prevent reconsolidation was not only the result of the use of an in-

efficacious manipulation to prevent this process, but also that the conditions of retrieval were not

sufficient to lead to reactivation of the memory. In many of the experiments the same procedures,

equipment and pharmacological agents were the same as previous studies (e.g. Lee et al., 2006a; Lee

et al., 2006b; Merlo et al., 2014; Milton et al., 2008a; Nader et al., 2000; Suzuki et al., 2004). Arriving

at a conclusion as to why it was not possible disrupt reconsolidation is, therefore, difficult. Some

possibilities are explored below, alongside discussion of the cases in which it was apparently pos-

sible to prevent reconsolidation and where treatment with MK-801 resulted in increased memory

expression. Considerations for future research are also discussed.

NMDA receptor-independent plasticity

The inability to prevent fear memory acquisition with NMDA receptor antagonism raised the pos-

sibility that in several of the experiments described in this thesis reconsolidation was taking place,

but this process was able to occur in the absence of NMDA receptor activation. This may be sur-

prising, as both memory and postulated plasticity mechanisms (e.g. long-term potentiation (LTP))

are usually demonstrated as being NMDA receptor-dependent. Since its discovery LTP, where re-

peated stimulation of a synapse results in enduring increases in synaptic strength, has been heral-

ded as a possible neural correlate of learning and memory (Bliss and Lømo, 1973; Bliss and Collin-

gridge, 1993; Malenka, 1994; Stevens, 1998). Following fear memory acquisition, processes similar

to LTP take place in the auditory pathways to the lateral amygdala (Rogan et al., 1997) and the

shared ability of NMDA receptor antagonists to prevent both LTP (Collingridge and Bliss, 1987)

and learning in tasks such as the Morris water maze and (Morris et al., 1986), discrete CS (Kim et

al., 1991; Miserendino et al., 1990) and contextual fear (Fanselow, 1994) conditioning has supported
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the possible dependence of learning on this process. However, even if LTP is taken as the cellular

correlate of learning it is important to acknowledge that under some conditions LTP can still take

place without NMDA receptor activation (e.g. Grover and Teyler, 1990; Harris and Cotman, 1986).

ThisNMDA receptor-independent LTP has been shown to take place in the synapses connecting the

amygdala and perirhinal cortex (Perugini et al., 2012), hippocampus (Abe et al., 2003) and thalamus

(Weisskopf et al., 1999), with at least the latter required for acquisition of discrete CS fear memories

(Romanski and LeDoux, 1992).

Like LTP, learning can take place in the face of NMDA receptor antagonism. Whilst initial memory

acquisition does appear to depend on these receptors (e.g. Dalton et al., 2012; Fanselow, 1994; Kim

et al., 1991; Miserendino et al., 1990; Stiedl et al., 2000), subsequent learning episodes involving sim-

ilar outcomes can take place independent of their activation. For example, previous experience

of solving a Morris water mazes renders learning about subsequent water mazes NMDA receptor

independent (Bannerman et al., 1995; Saucier and Cain, 1995) and prior acquisition of contextual

fear associations results in later learning episodes of a similar nature being insensitive to NMDA

receptor antagonism (Hardt et al., 2009; Sanders and Fanselow, 2003; Wiltgen et al., 2010). Ex-

tinction, but not re-extinction of cued fear memories is also NMDA receptor-dependent (Langton

and Richardson, 2008; Langton and Richardson, 2010). It appears, therefore, that learning and re-

learning are mediated by distinct plasticity mechanisms with only the former requiring activation

of NMDA receptors. It is not immediately apparent why learning was able to take place in the

absence of NMDA receptor activation in the naïve animals used in experiments of this thesis. It is

possible that a learning episode was taking place before the experiments began, perhaps during

animals’ delivery, that meant subsequent acquisition was able to occur without NMDA receptor

activation. Little research has been conducted with regard to the similarity between two learning

episodes required to render the second NMDA receptor-independent.

The neurochemical substrates underlying reconsolidation of memories acquired via NMDA

receptor-independent mechanisms has not been explored. Speculatively, one might posit that if

learning has taken place in the absence of activation of these receptors, reconsolidation of these

associations might similarly be able to take place in the presence of their antagonists. It was pos-

sible that in many cases where attempts were made to prevent reconsolidation this process was

occurring independently of NMDA receptor activation; the reactivation conditions described have

previously been demonstrated to result in reconsolidation (Lee et al., 2006b; Merlo et al., 2014).

198



CHAPTER 8. GENERAL DISCUSSION

Investigation of this possibility would first require a retrieval session known to result in memory

destabilisation, likely indicated by its ability to make a given association susceptible to pro-

tein synthesis, but not NMDA receptor activation. Subsequent experiments could then invest-

igate whether reconsolidation of these associations depends similar mechanisms known to un-

derlie NMDA receptor-independent learning, including GluR2-lacking alpha-amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid (AMPA) receptor activation (Wiltgen et al., 2010) and L-type

voltage-dependent calcium channels (Moosmang et al., 2005).

Memory enhancing effects of MK-801 treatment

Several experiments in Chapter 4 showed that MK-801 treatment prior to a reactivation session res-

ulted in an increase in memory expression in comparison to vehicle treated controls. These effects

aremost likely explained by the ability of this compound to prevent extinction; it is well-established

NMDA receptor antagonism can block this process (e.g. Port and Seybold, 1998). Animals in these

experiments that did not undergo reactivation sessions also tended to respond more than those

that did, consistent with notion that these sessions were resulting in the recruitment of extinction

mechanisms. This likely explains why it was not possible to disrupt instrumental memory recon-

solidation; reactivation sessions that result in extinction do not typically lead to reconsolidation of

the retrieved memory (Flavell and Lee, 2013; Fuchs et al., 2009; Merlo et al., 2014). In Chapter 5 pre-

reactivation MK-801 treatment also increased subsequent memory expression, now demonstrated

by an enhanced ability of the retrieved CS to support responding in a second-order schedule of re-

inforcement. Crucially, however, this effect could not be explained by impaired extinction in these

animals, since responding was greater than that of non-reactivated controls, instead suggesting a

memory enhancing effect of MK-801 treatment.

Remarkably, a similar result of MK-801 to enhance subsequent memory expression was reported

for aversive memories; treatment with MK-801 resulted in increased fear expression 8 days after

reactivation. Although in this experiment a non-reactivated group was not included, meaning it

was possible that NMDA receptor antagonism was preventing extinction, this was highly unlikely

as there was no evidence in control animals of a reduction in fear memory expression between

reactivation and test. These results raise the possibility that MK-801 was enhancing reconsolida-

tion, as has previously reported to occur as a result of NMDA receptor agonism (Lee et al., 2006b)

and protein kinase A (PKA) activation (Tronson et al., 2006). However, NMDA receptor agonism

and PKA activation would be expected to result in enhancements in synaptic plasticity, rather than
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NMDA receptor antagonism which should prevent it. The capacity of MK-801 to enhance recon-

solidation was, therefore, unexpected. That said, there are reports of MK-801 enhancing both con-

solidation (Gould et al., 2002) and reconsolidation (Flavell, 2015). The most thorough exploration

of the memory enhancing effects of NMDA receptor antagonism has come from Honsberger et al.

(2015), where it was reported that ketamine (also an NMDA receptor antagonist) enhances sub-

sequent memory expression when administered before, but not after memory reactivation. Like

the effects of blockade of reconsolidation with anisomycin (Ben Mamou et al., 2006; Milton et al.,

2013) this effect was prevented by intra-BLA infusion of the GluN2B receptor antagonist ifenprodil,

potentially suggesting the memory enhancing effects of ketamine may rely on destabilisation of

the original association and that the increased memory expression occurs through reconsolidation

mechanisms (Honsberger et al., 2015). Pre-reactivation ketamine treatments has also been shown

to result in enhancements in fear memory reconsolidation in humans (Corlett et al., 2013).

The opposing results of pre-reactivation MK-801 and ketamine administration to result in memory

impairments (Lee et al., 2006b; Merlo et al., 2015, Chapter 6) and enhancements (Honsberger et al.,

2015), respectively, has been speculatively attributed to a difference in NMDA receptor affinity of

these two drugs (Honsberger et al., 2015). It was suggested that compounds with a decreased bind-

ing to these receptors (e.g. ketamine, memantine) result in disinhibition of cortical networks, whilst

those with a greater activity on NMDA receptors result in their inhibition (Honsberger et al., 2015;

Murray et al., 2014). It is not immediately clear, however, how this cortical disinhibition might res-

ult in strengthening of a reactivated memory, although it would be predicted that local infusion

of NMDA receptor antagonists into the BLA might reconcile some of the memory enhancing ef-

fects of these drugs. It is also possible that the memory strengthening effects of MK-801 are due

to the non-specific actions of this drug; alongside antagonism of NMDA receptors MK-801 also in-

creases dopamine and serotonin metabolite levels across several regions of the brain (Löscher et al.,

1991), increases Fos expression (Sonnenberg et al., 1989), inhibits activity of nicotinic acetylcholine

receptors (Amador and Dani, 1991) and increases acetylcholine levels (Hasegawa et al., 1993). It is

possible that some of these effects may have contributed towards the memory enhancing ability of

administration of MK-801.

Regardless of the pharmacological basis of memory enhancements occurring as a result of MK-801

administration, such increases in memory expression would not be favoured in a therapeutic con-

text. Although MK-801 is not approved for human use, the NMDA receptor antagonists ketamine

and memantine are, and both have memory strengthening effects when administered in combin-

ation with a memory reactivation session (Honsberger et al., 2015; Samartgis et al., 2012). That
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said, both of these compounds have also been reported to have amnestic effects (Alaghband and

Marshall, 2013; Duclot et al., 2016); it is clear both from the results of this thesis and those in the

literature that the effects of NMDA receptor antagonism are inconsistent and can enhance, reduce

or have no impact on memory expression (e.g. Brown et al., 2008; Honsberger et al., 2015; Lee et

al., 2006b; Samartgis et al., 2012; Chapters 3, 4, 5, 6 & 7). Although meta-analysis on the ability of

NMDA receptor antagonists to prevent reconsolidation of reward-related memories suggests these

drugs have a robust effect to do so (Das et al., 2013), taking into account the inconsistent effects

of these drugs in this thesis and those reported for fear memory reconsolidation, future research

should explore the use of alternative amnestic agents in the prevention of memory reconsolidation.

The particular reason for the inconsistent effects of NMDA receptor antagonism is unclear. One

possibility is that age-related changes in availability of NMDA receptors (Armentia and Sah, 2003;

Monyer et al., 1994; Sheng et al., 1994) leads to a reconsolidation process that takes place with dif-

fering dependence on these receptors throughout a lifespan. Exploration of this possibility would

require assessment of the susceptibility of reconsolidation to NMDA receptor antagonism in anim-

als of differing ages, with the view that this will differ between young and old rats. Alternatively,

differences in environmental enrichment (EE) may explain the discrepancies reported in works

conducted to date. Expression of GluN2A messenger ribonucleic acid (mRNA) is increased in re-

sponse to EE (Andin et al., 2007), potentially altering the balance between GluN2A and GluN2B

signalling, hypothesised to be critical in mediating the amnestic effects of broad-spectrum NMDA

receptor antagonism (Milton et al., 2013). Differences between laboratories and development of

legislation/policy requiring EE in the of breeding animals may explain the loss of a once robust

effects, such as those reported in this thesis. One prediction, therefore, is that exposing animals to

differing levels of EE will result in an altered degree of susceptibility of reconsolidation processes

to NMDA receptor antagonism.

Highly specific conditions are required for memory reactivation

Whilst the ability of memory acquisition and reconsolidation to occur in the absence of NMDA

receptor activation may be able to explain some of the results described in this thesis, in Chapter

7 it was shown that protein synthesis inhibition following retrieval of a discrete auditory CS fear

memory also had no effect on the subsequent expression of this association. Given that evenNMDA

receptor-independent learning likely requires protein synthesis (see Moosmang et al., 2005), this
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suggested that the retrieval conditions used were insufficient to result in reconsolidation; the in-

ability of post-retrieval anisomycin administration to reduce subsequent memory expression has

previously been attributed to the associations not undergoing reconsolidation in these sessions

(Jarome et al., 2015). Whilst the effects of post-retrieval anisomycin were not assessed in pavlovian

CS-drug memories formed during self-administration it is possible that the inability to prevent re-

consolidation was not due to the independence of NMDA receptor activation in this process, but

rather that it was not taking place at all (Blaiss and Janak, 2007; Cammarota et al., 2004; Wang et al.,

2009).

Retrieval sessions that do not result in destabilisation and subsequent reconsolidation have previ-

ously been reported for all the different types of memories studied in this thesis. Treatment with

intra-BLA anisomycin only results in impairments in CIR when combined with a reactivation ses-

sion that is neither too long or too short in duration (Fuchs et al., 2009). In context-independent

instrumental responding it has been reported that only sessions that present the reinforcer in such

a way that responses are reinforced in a novel, unpredictable fashion result in reconsolidation of

the underlying memories (Exton-McGuinness and Lee, 2015; Exton-McGuinness et al., 2014, see

Hernandez and Kelley, 2004; Hernandez et al., 2002). Whilst Brown et al. (2008) were not able to dis-

rupt reconsolidation of cue-cocaine associations formed during self-administration, suchmemories

have been shown to undergo reconsolidation (e.g. Lee et al., 2005b; Lee et al., 2006a; Sanchez et al.,

2010) that is susceptible to disruptions with the same compound as used in that paper (Milton et al.,

2008a). This suggests that the inability to disrupt reconsolidation in the Brown et al. studymay have

been the result of insufficient reactivation conditions, rather than these memories not being able to

reconsolidate (although another possibility is that this reconsolidation was taking place independ-

ent of NMDA receptor activation). Food paired pavlovian memories are similarly sensitive to the

number of CS presentations at reactivation (Flavell and Lee, 2013), alongside the presentation of

these cues being contingent upon responding (Lee and Everitt, 2008b). Fear memory reactivation

sessions that are too short (Alfei et al., 2015), consist of too many non-reinforced CS presentations

(Merlo et al., 2014), do not result in PE (Díaz-Mataix et al., 2013) or do not occur in a novel context

(Jarome et al., 2015) have also previously reported to not result in destabilisation of these memor-

ies. Strong or old fear memories also appear resistant to reconsolidation (Inda et al., 2011; Milekic

and Alberini, 2002; Wang et al., 2005), their destabilisation only occurring in prolonged reactivation

sessions consisting of multiple PEs (Suzuki et al., 2004). The repeated finding of this thesis that

retrieval sessions do not always result in memory reactivation is, therefore, not novel.
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What does seem apparent, however, is that the window for disrupting reconsolidation appears

remarkably small, even more so than has been acknowledged to date. Every effort was made to

satisfy as many of the possible boundary conditions of reconsolidation. Despite this, in the vast

majority of cases it was not possible to trigger memory destabilisation, as indicated by an absence

of a reactivation-dependent effect of amnestic agent administration. It is possible that a number of

factors acted in tandem to prevent destabilisation from taking place; typically only one parameter

was manipulated at a time in an attempt to determine which factor was preventing reconsolida-

tion from occurring. It is possible that a combination of numerous different manipulations of the

reactivation sessions may have resulted in memory destabilisation.

If reconsolidation blockade is to offer any promise in the treatment of psychological disorders the

reactivation sessions used during these interventions must result in destabilisation of the malad-

aptive memories. Those arriving in the clinic for the treatment of drug addiction will do so with

drug taking histories varying in duration, frequency and patterns of substance abuse. Similarly, the

trauma(s) that resulted in the formation of post-traumatic stress disorder (PTSD)will have occurred

very differently fromone another and taken placemonths or years prior to seeking treatment. All of

these issues will make determining retrieval parameters that result of destabilisation of memories

underlying psychological disorders likely the most difficult aspect of development of reconsolid-

ation based treatments for these conditions. In this thesis it was frequently not possible disrupt

reconsolidation, despite the tight control over training strength, contingency and memory age that

is possible in preclinical research. If memories cannot be destabilised under these conditions it is,

perhaps, not all too surprising that several clinical studies have been unable to disrupt reconsolida-

tion resulting in long-lasting reductions in clinical symptomatology (Das et al., 2015a; Saladin et al.,

2013; Surís et al., 2013; Wood et al., 2015).

Implications of effects suggesting reconsolidation impairments

Whilst in the majority of experiments it was not possible to disrupt reconsolidation, in some cases

treatment with amnestic agents did result in a decrease in subsequent memory expression. These

results are discussed below and the wider implications of the nature of these effects addressed.

In Chapter 3 pre-reactivation administration of anNMDA receptor antagonist prior to instrumental

memory reactivation subsequently led to a selective impairment in the ability to show a selective

decrease in responding in response to devaluation of the reinforcer used in training. This raised

the possibility that the retrieval session selectively reactivated the A-O memory, leaving only S-R
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associations to govern responding. Whilst there is a wealth of evidence suggesting goal-directed

and habitual responding depend on distinct neural circuitries (Balleine and O’Doherty, 2010; Gas-

barri et al., 2014) less work has been conducted on the consolidation and reconsolidation of these

associations. The fact that treatment with MK-801 impaired the ability of rats to use A-O associ-

ations to guide behaviour supports the notion that A-O and S-Rmemories are governed by discrete

neural networks, but also suggests they are updated and reconsolidated separately. However, it

was possible that this deficit was not due to a disruption of reconsolidation and was instead a res-

ult of treatment with MK-801 alone, rather than administration of this drug in combination with a

memory reactivation session. Furthermore, additional inspection of the data raised the possibility

that the failure to observe a devaluation effect was not due to an A-O specific memory deficit, but

rather a decreased specificity of the pre-feeding treatment. Subsequent experiments using LiCl to

induce a CTA, rather than sensory specific satiety, to devalue the reinforcer were unable to demon-

strate a specific impairment in the ability of MK-801 treated animals to use the current value of the

reinforcer to guide responding. One of the most important criteria for any research, not least re-

lated to reconsolidation, is that it is replicable. The inability to do this in this case indicated that the

findings of the initial result to prevent expression of goal-directed behaviour should be interpreted

with caution.

In Chapter 6 treatment with MK-801 prior to a reactivation session consisting of both instrumental

responding and presentation of the reward-paired stimulus led to a decrease in awell-trained food-

seeking behaviour. Previous studies exploring similar memories have typically used animals that

in which responding is likely goal-directed (Flavell and Lee, 2013; Lee and Everitt, 2008a; Lee and

Everitt, 2008b see Belin and Everitt, 2008; Murray et al., 2012). Whilst Monsey et al. (2017) report

disruption of a cocaine seeking memory in animals having undergone ’extensive’ training (24d),

the subjects in this experiment were trained on an FR1 schedule, unlikely to result in the recruit-

ment of habitual responding (Murray et al., 2012). Whilst Exton-McGuinness et al. (2014) were able

to disrupt instrumental responding for a food reinforcer, shown to be habitual, animals had only

undergone 10 days of training. Animals in Chapter 6 underwent∼33 training sessions, the longest

period of training used in similar studies conducted to date. The ability to disrupt food seeking

memories trained under such conditions provides important proof of principle data for the use of

such manipulations to treat psychiatric disorders characterised by habitual responding, including

drug addiction. However, the decrease in seeking behaviour was transitory and once both the op-

erant response and CS-US pairing were once again reinforced responding was unaffected by prior

drug treatment. This is in contrast to deficits occurring as a result of disrupted reconsolidation
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of memories underlying drug-seeking that are likely goal-directed, which are maintained despite

reminders of the CS-US association (Lee et al., 2006a). The ability of these reinforced sessions to

restore apparent disruptions of reconsolidation has previously been used to support the notion

these deficits are the result of enhanced extinction, rather than disrupted memory reconsolidation

(Fischer et al., 2004; Trent et al., 2015), and may be reflective of a retrieval, rather than storage a de-

ficit (Miller and Springer, 1973). Such effects would not be favoured in a therapeutic context owing

to the ease in which expression of the original memory can be recovered following re-exposure to

drugs of abuse or trauma. Future reconsolidation studies should ensure that deficits in responding

are resistant to such savings effects.

Finally, in Chapter 7 post-reactivation treatment with the mTOR inhibitor rapamycin led to a de-

crease in fear memory expression when tested 8 days later. Previous studies have reported dis-

ruptions of reconsolidation of similar memories with this drug (Blundell et al., 2008; Gafford et al.,

2011; Hoffman et al., 2015; Huynh et al., 2014); a decrease in memory expression as a result of this

treatment was not a novel finding. However, the fact that this effect was only detected 8 days fol-

lowing initial drug administration suggested this result may have been qualitatively different from

those previously reported. Indeed, this deficit was reversedwith pre-retrieval administration of the

same drug. This led to the possibility that the reactivation session resulted in incorporation of the

internal context of drug administration, such that subsequent retrievalwas not possiblewithout the

same contextual cues present (Gisquet-Verrier and Riccio, 2012; Gisquet-Verrier et al., 2015; Riccio

and Richardson, 1984). None of the previous experiments using this compound to prevent recon-

solidation have explored whether the results may have been caused by state-dependency. It might

be argued that such deficits are not entirely unfavourable in a therapeutic context, given that indi-

viduals are unlikely to experience the same interoceptive cues evoked by drug treatment. However,

reminders of the association in the absence of these internal cues might result in the memory no

longer being state-dependent and the association once again expressed. Whilst state-dependent

retrieval deficits can account for some decreases in memory expression occurring as a result of ex-

perimentally induced amnesia (Flint Jr. et al., 2013; Gisquet-Verrier andRiccio, 2012; Gisquet-Verrier

et al., 2015; Hinderliter et al., 1975; Riccio and Richardson, 1984), not all deficits can be explained

as a result of this treatment (e.g. Baratti et al., 2008; Trent et al., 2015). It is also difficult to use this

account to explain memory enhancements occurring as a result of administration of drugs includ-

ing the partial NMDA receptor agonist d-cyloserine (DCS) (Lee et al., 2006b; Lee et al., 2009) or the

adrenergic prodrug dipivefrin (Schramm et al., 2016). However, given that it is known that intra-

cranial infusions of the widely used protein synthesis inhibitor anisomycin do result in an aversive
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state (Jonkman and Everitt, 2009; Jonkman and Everitt, 2011), future research using this compound

should take this possibility into account.

Future research

Themost important consideration for future preclinical researchwill be amore thorough investiga-

tion of the conditions under which reconsolidation occurs. Whilst research has been conducted on

this topic, the results of this thesis suggest there is still significant progress to be made. Emphasis

should be placed on delineation of conditions of retrieval that lead to reactivation that are not so

specific they cannot be easily be replicated. Whilst many fear memory reconsolidation studies have

conducted the reactivation sessions in novel contexts (e.g. Duvarci and Nader, 2004; Jarome et al.,

2012; Nader et al., 2000; Tronson et al., 2006), and Jarome et al. (2015) report that this is necessary for

destabilisation to occur, Lee et al. (2006b) were able to disrupt reconsolidation using a reactivation

session in the same context as training. It is possible that in the Jarome et al. study reactivation

sessions in a familiar context were unable to destabilise the memory because of, for example, the

stronger training protocol than that used by Lee et al.1, although this hypothesis was not tested.

Future investigations should aim to determine the reactivation conditions that are least suscept-

ible to previously reported boundary conditions of reconsolidation. Such knowledge will be likely

be informative in the integration of reconsolidation based treatments for disrupting maladaptive

memories in the clinic.

If preclinical research is to provide insight into the conditions underwhichmemories reconsolidate,

it is of vital importance that procedures used in these studies appropriately reflect relevant psychi-

atric disorders. Gaining a detailed understanding of the parameters that permit reconsolidation of

a conditioned place preference memory, which has undergone 4 drug-pairings with experimenter

administered drug-delivery is unlikely to inform treatments for those suffering from drug addic-

tion, where individuals can undergo an estimated 146,000 drug pairings (Das et al., 2015a) that are

under control of the individual. The experiments in Chapter 6 showed that disrupting reconsol-

idation of a well-established reward-seeking memory resulted in only a short-lasting decrease in

responding. Crucially, it only appears this occurs when reconsolidation underlying well-trained

appetitive memories is disrupted (Lee et al., 2006a), highlighting the importance of consideration

of such factors in preclinical studies. The effects of reconsolidation blockade in drug addicts show a
1The Jarome et al. (2015) study used 4 shock deliveries paired with the CS, 1mA, lasting 1s, whilst Lee et al. (2006b)

used half the number of pairings, shock intensity and duration
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similar pattern of results; disruption of this process leads to a decrease in cue-induced craving that

is lost 1 week after reactivation (Saladin et al., 2013). Future preclinical studies should continue to

strive to model aspects of psychological disorders as closely as possible. The results of disrupting

reconsolidation ofmemories that aremaximally reflective of psychological disorderswill be ofmost

benefit to clinicians in the development of reconsolidation based treatments for these disorders.

Whilst it was possible to disrupt memories formed during extended periods of food-seeking, the

same was not true of memories formed during cocaine self-administration. Although it was pos-

sible this resistancewas unrelated to the extensive training, by virtue of the fact that similarmemor-

ies formed during short periods of drug taking could also not be disrupted, the prolonged periods

of drug-seeking, combined with the increased reinforcing properties of the cocaine US, may have

contributed towards this resistance in destabilisation. Given that ensuring memories are destabil-

ised is of utmost importance in developing reconsolidation based treatments future research should

also focus its efforts on methods that allow strong memories that are resistant to reconsolidation to

destabilise. There is evidence to suggest reactivation sessions conducted multiple times (Robinson

and Franklin, 2010), following a delay from training (Wang et al., 2009) and of a longer duration

(Suzuki et al., 2004) may make well trained memories more amenable to reconsolidation. However,

prolonged reactivation sessions are not always effective at destabilising these associations (Wang

et al., 2009; Chapter 7) and repeated reactivations were not able to ameliorate the ephemeral effects

of MK-801 treatment in Chapter 6. Another possibility might be to pharmacologically enhance

destabilisation. For example, it has been shown that the resistance to reconsolidation that occurs

as a result exposure to a stressful situation can be overcome with pre-reactivation DCS adminis-

tration (Bustos et al., 2010), possibly through activation of GluN2B receptors (Ben Mamou et al.,

2006; Milton et al., 2013). Given the importance of disrupting overly intrusive memories that are

likely strong by nature further research should be conducted investigating the methods that result

in strong memories once again becoming amenable to reconsolidation blockade.

Each of the investigations described above require an amnestic agent that will be effective at pre-

venting reconsolidation. The results of Chapter 7 and others suggest that NMDA receptor antag-

onists may be of limited use in this regard. One possibility is to probe for molecular markers that

reconsolidation is taking place, such as protein ubiquitination (Jarome et al., 2011) or Shank (Lee

et al., 2008), zif-268 (Milton et al., 2008a) or extracellular signal-regulated kinase (ERK) expression

(Krawczyk et al., 2016; Merlo et al., in preparation). However, these markers alone are not sufficient

evidence that reconsolidation is taking place; this can only be confirmed through disruption of

their signalling resulting in a subsequent decrease in memory expression. Attempts to determine
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whether reconsolidation is taking place should, therefore, continue to use pharmacological invest-

igations in order to characterise the conditions under which memories become reactivated.

What next for the paradigm of reconsolidation?

The revival of reconsolidation research over the past 15 years resulted in a true paradigm shift in

memory research. No longer are memories considered stable indefinitely; it is now acknowledged

they can be interfered with and modified following their retrieval, possibly enabling integration of

new information into the association. Given the argued importance of maladaptive memories in

several psychological conditions, PTSD, phobias and drug addiction being the focus of this thesis,

the possibility of targeting reconsolidationmechanisms to lessen the impact of these associations on

behaviour and cognition has great potential. Indeed, some progress has been made in this regard;

such interventions result in an impressive reduction of fear in spider-phobics (Soeter and Kindt,

2015a) and a remarkable decrease in responses to drug-paired cues can occur as a result of an ap-

parently minor alteration in the manner in which a cue-exposure session is carried out, possibly

due to exploitation of reconsolidation mechanisms (Xue et al., 2012). When utilised, it is apparent

that these interventions have great potential in the treatment of psychiatric disorders. Unfortu-

nately, the results of this thesis were, on the whole, unable to offer further support for the use of

this approach in future clinical interventions, nor was it possible to replicate previously published

data from this laboratory and others. Whilst several explanations of these effects have been offered,

ultimately, it must be acknowledged that it was not possible to demonstrate conclusive support for

the notion thatmemories can become amenable to disruption following their retrieval. Whilst some

factor must have precluded the detection of these effects, likely the result of an independence of

memory processes onNMDA receptor activation and/or a subtle factor of thememory reactivation

sessions that prevented reconsolidation taking place, it appears that the blockade of this process

cannot be depended upon. Perhaps it is time to acknowledge that the fragility of reconsolidation

effects warrants exploration of alternative approaches to weaken memories relevant to psychiatric

disorders.
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