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Abstract
Understanding the trajectory of the daily number of
COVID-19 deaths is essential to decisions on how to
respond to the pandemic, but estimating this trajectory
is complicated by the delay between deaths occurring
and being reported. In England the delay is typically
several days, but it can be weeks. This causes consid-
erable uncertainty about how many deaths occurred in
recent days. Here we estimate the deaths per day in
five age strata within seven English regions, using a
Bayesian model that accounts for reporting-day effects
and longer-term changes in the delay distribution. We
show how the model can be computationally efficiently
fitted when the delay distribution is the same in multiple
strata, for example, over a wide range of ages.
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1 INTRODUCTION

The first COVID-19 case in the United Kingdom was reported on 30 January 2020, and the first
death was announced on 6 March. Underlying the Government’s response to the COVID-19 epi-
demic is surveillance information on a number of epidemiological indicators. In particular, trends
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in the number of deaths have been crucial to monitoring the burden of COVID-19 as well as to
informing models reconstructing and predicting the pandemic. Information on these trends is
affected by delayed reporting. While the number of deaths in people with laboratory-confirmed
COVID-19 infection peaked on 9 April, the reports of such deaths peaked 13 days later, on 22
April. This is because deaths are rarely reported to the authorities on the day they occur, and some
deaths take weeks to be reported. This reporting delay makes it more difficult to establish the
true pattern of the numbers of deaths occurring over time and to identify quickly any increase in
recent days. The process of estimating the number of deaths that occurred on each day from the
deaths so far reported is called ‘nowcasting’. Here we nowcast the numbers of deaths in people
with COVID-19, for all of England and separately for seven English regions, broken down into
five age strata: 0–44, 45–54, 55–64, 65–74 and ≥75 years.

We use data on deaths in people with a laboratory-confirmed COVID-19 diagnosis reported
to Public Health England (PHE) from three sources. Reports from National Health Service Eng-
land (NHSE) include deaths in hospitals notified by NHS trusts through the COVID-19 Patient
Notification System. Demographics Batch Service (DBS) reports result from the daily tracing of
COVID-19 positive tests reported to PHE through the Second Generation Surveillance System
in the NHS Spine to identify individuals who have died in the previous 24 h in any setting.
Health Protection Team (HPT) reports include deaths notified by PHE HPT during outbreak man-
agement, primarily in non-hospital settings (e.g. care homes). The three data sources are not
independent; duplications are identified daily and only the earliest report date are considered.

In this article we shall illustrate our method using the data available on 29 June 2020. There
were 37529 deaths that occurred after 22 March (the day after the first reports from DBS became
available) and were reported by 29 June. Figure 1a shows the number of deaths that occurred
on each day. The effect of reporting delay is particularly evident in the last 3 days: while there
were 50–100 deaths per day in the week up to 25 June, the numbers for 27, 28 and 29 June were
12, 9 and 0. Figure 1b shows the number of deaths reported on each day. It tends to be lower on
Sundays and Mondays, probably due to some staff not working at the weekend. This is partic-
ularly so in more recent weeks. Also, the number of reports over a single Tuesday-to-Saturday
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F I G U R E 1 Numbers of reported deaths by date of (a) death and (b) report (cross indicates Sunday or
Monday).
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F I G U R E 2 Estimated reporting delay distribution by age. Dotted lines represent 95% confidence intervals.
For ease of viewing, only the first seven days are shown.

period varies considerably from day to day. It is particularly low, for example, on Tuesday
26 May.

Figure 2 shows a simple estimate (see Brookmeyer and Liao (1990) for method) of the report-
ing delay distribution by age stratum, calculated assuming the delay does not depend on date of
death. This distribution is conditional on the delay being at most 42 days. Forty-two was chosen
because only 61 of the 37529 reported deaths had delays longer than 6 weeks. We see that delays
tend to be slightly longer in the ≥75 years stratum and slightly longer still in the 0–44 stratum.

A simple way to adjust for reporting delay is to use the estimates in Figure 2 to weight up the
deaths reported so far. For example, in the ≥75 stratum, nine deaths occurred on 27 June and
were reported by 29 June. The estimated proportion of deaths reported within 2 days in this strata
is 0.60. So, the actual number of deaths can be estimated as 9/0.60 = 15. However, this estimate
does not account for dependence of the delay on date of death. Delays may length or shorten
over calendar time and may depend (as Figure 1b suggests) on the day of the week (henceforth,
‘weekday’) on which the death occurred. Also, while the number of deaths occurring on each day
is likely to change smoothly over time, this estimate does not use information about the numbers
of deaths that occurred on preceding and succeeding days, and so can be very different from the
estimates for those days. In addition, simple confidence interval calculations (Brookmeyer & Liao,
1990) underestimate uncertainty, unless the delay distribution really is the same for all dates of
death.

Accounting for reporting delays is complicated by weekday reporting effects, changes over
calendar time in the delay distribution, and excess variability (overdispersion) in the daily
numbers of reports. Stoner and Economou (2020b) reviewed recent literature on delayed report-
ing, and elaborated a Bayesian model earlier proposed by Höhle and an der Heiden (2014).
Stoner and Economou (2019) further developed this model into a hierarchical model for mul-
tiple strata (e.g. regions), and Stoner and Economou (2020a) used this, together with reports



4 SEAMAN et al.

from NHSE, to nowcast COVID-19 deaths over the period 2 April to 5 May in each of seven
English regions.

The general approach of Stoner and Economou (henceforth, S&E) has several advantages. It
flexibly models weekday reporting effects and longer-term changes in the delay distribution. By
allowing for overdispersion in the daily numbers of reports that cannot be explained by weekday
reporting effects, it prevents any such overdispersion from causing excessive variance in the esti-
mates of the daily numbers of deaths (S&E, 2020b). By modelling the expected number of deaths
per day in each stratum as a smooth function of time, it allows the estimate of number of deaths
that occurred on 1 day to borrow information about the numbers of deaths on the preceding and
succeeding days. Also, information about the delay distribution and pattern of the epidemic in one
stratum informs those quantities in the other strata. Uncertainty can be quantified by posterior
credible intervals (CIs).

Here we build on S&E’s hierarchical model to nowcast in each region, with stratification
by age group. Our model improves on theirs in a number of ways. First, we model weekday
reporting effects more realistically. Second, we account for correlation between the numbers of
reports made on the same day about individuals who died on different days. If, for example,
the data suggest that an unusually low proportion of those deaths that occurred between 2
and 7 days ago have been reported today (compared to what would typical for this day of
the week), then it is likely that few of the deaths that occurred yesterday and today will have
yet been reported. Third, we describe a computationally efficient way to constrain the delay
distribution to be the same in multiple strata. This is particularly useful if the distribution
can be expected to be the same across a wide range of ages. We also illustrate how to use
the model to calculate a posterior probability that the number of deaths has been rising in
recent days.

2 MATERIALS AND METHODS

Denote the first day for which data on reporting delays will be used as day 0 and the most
recent day for which data are available as day T. We restrict attention to deaths that are reported
within D days. We use D = 42 in Section 3. Let Dt denote the longest delay that we could
have observed in individuals who died on day t (t = 0, … , T). So, Dt = D if t ≤ T − D
and Dt = T − t otherwise. Let Zstd denote the number of deaths that occurred on day t in age
stratum s (s = 1, … , S) and are reported with a delay of d days (d = 0, … , D). If d ≤ Dt,
Zstd is observed; otherwise it is unobserved. In Section 3 we used S = 5 strata: 0–44 (s = 1),
45–54 (s = 2), 55–64 (s = 3), 65–74 (s = 4) and ≥75 (s = 5) years. Let Wst =

∑Dt
j=0Zstj be the

(observed) number of deaths reported in stratum s by time T among individuals who died
on day t. Let Yst =

∑D
d=0Zstd be the number of deaths that occurred on day t in age stratum

s. For t ≤ T − D, Yst = Wst is observed. For t > T − D, Yst is unobserved and we seek to
estimate it.

We model the data in a Bayesian framework, specifying three submodels: one for the marginal
distribution of the number of deaths, Yst, occurring on each day in each stratum (Section 2.1);
one for the conditional distribution of the observed numbers of reports, Zstd, given the num-
bers of deaths and the delay distribution (Section 2.2); and one for the delay distribution
(Section 2.3). Figure S1 shows a directed acyclic graph for the model (figures prefixed by ‘S’ are
in the Supplementary Material). We fit this model using a Markov chain Monte Carlo (MCMC)
algorithm.
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2.1 Model for numbers of deaths

For t > T − D, Yst is unobserved. For stratum s = 1, … , S and time t = T − D + 1, … , T,
assume

Yst | 𝜆st, 𝜃 ∼ NegativeBinomial (mean = 𝜆st, variance = 𝜆st(1 + 𝜃)), (1)

where 𝜆s,T−D+1, … , 𝜆sT and overdispersion 𝜃 (≥0) are unknown parameters. If 𝜃 = 0, then
Yst|𝜆st, 𝜃 ∼ Poisson(𝜆st). We shall assume 𝜆st changes smoothly over time t.

So far we have not used the observed data on the numbers of deaths Yst that occurred in the
period before day T − D + 1. Such data may be useful, as they indicate whether the number of
deaths per day was rising or falling over that period. It could reasonably be expected that the
trajectory of deaths per day in the period shortly after day T −D+ 1 would be a continuation of the
trajectory immediately before that day. To exploit this information, we shall assume expression
(1) also holds for t = T0, … ,T − D, where T0 is some time between 0 and T − D. We chose T0 =
T − D − 13, thus using two weeks of data.

We follow S&E in using hierarchical restrictive penalised cubic splines to model the
assumption that 𝜆st changes smoothly over time t and may follow somewhat similar trajec-
tories in different strata s. More precisely, log 𝜆st (t = T0, … ,T) is taken to be the sum of an
unknown stratum-specific intercept term 𝜄s and two restricted cubic splines, one common to all
strata and one specific to stratum s. That is, log 𝜆st = 𝜄s + gM

st , where gM
st = x⊤t−T0+1(𝝁̃ + 𝝁s) (super-

script ‘M’ stands for ‘mortality’). Here, 𝝁̃ | 𝜏 ∼ Normal(0,V𝜏−1), 𝝁s | 𝜏s ∼ Normal(0,V𝜏−1
s ), x⊤j

(j = 1, … ,T − T0 + 1) is the jth row of the design matrix X for the splines, and V is the corre-
sponding variance matrix (Wood, 2016, 2017). The unknown parameters 𝜏 and 𝜏s determine the
smoothness of the splines. If 𝜏s = ∞ for all s, then 𝜆st ∝ 𝜆s′t for all s and s′, that is, the trends in
mortality are the same in all strata.

2.2 Model for observed number of reports

For stratum s = 1, … , S and time t = 0, … , T, assume

(Zst0, … ,ZstD) |Yst, (Pst0, … ,PstD) ∼ Multinomial(Yst, (Pst0, … ,PstD)), (2)

where Pstd is the unknown probability that an individual in stratum s who died on day t is reported
with a delay of d days.

We shall allow Pstd to depend on t through both a smooth function of calendar time and
weekday reporting effects. Even after accounting for these systematic effects, Zstd may be overdis-
persed compared to a multinomial distribution. As S&E (2020a) showed, failure to allow for such
overdispersion can lead to overdispersion in Yst being inferred (i.e. large estimated 𝜃), and thus
to unnecessarily imprecise nowcasts. So, to allow for overdispersion in Zstd, assume, for each
s and t, that (Pst0, … ,PstD) ∼ GD(𝜶st, 𝜷st), where GD is the generalised Dirichlet distribution
(Connor & Mosimann, 1975) and 𝜶st = (𝛼st0, … , 𝛼st,D−1) and 𝜷st = (𝛽st0, … , 𝛽st,D−1) are unknown
parameters, which will be modelled as functions of s, t and d. The GD distribution is a flexible
generalisation of the Dirichlet distribution; it allows, for example, positive correlation between
Pstd and Pstd′ for d ≠ d′, unlike the Dirichlet distribution.
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The marginal distribution of (Zst0, … ,ZstD) (given Yst, 𝜶st and 𝜷st) obtained by integrating
out (Pst0, … ,PstD) is the generalised-Dirichlet-multinomial (GDM) distribution (Connor & Mosi-
mann, 1975). This GDM distribution can be factorised as the product over d= 0, … , D− 1 of con-
ditional distributions Zstd|Zst0, … ,Zst,d−1,Yst,𝜶st, 𝜷st ∼ Beta-Binomial(𝛼std, 𝛽std; Yst −

∑d−1
j=0 Zstj).

This beta-binomial distribution has probability mass function

(
Yst −

∑d−1
j=0 Zstj

)
!

(
Yst −

∑d
j=0Zstj

)
!Zstd!

×
B
(

Zstd + 𝛼std, Yst −
∑d

j=0Zstj + 𝛽std

)

B(𝛼std, 𝛽std)
, (3)

where B(.,.) denotes the beta function (a ratio of gamma functions). Since Zstd is unobserved for
d > Dt, we only need include the likelihood contribution of (Zst0, … ,ZstDt ), that is, the prod-
uct of expression (3) over d = 0, … ,min(Dt,D − 1). By integrating out the unknown variables
Zst,Dt+1, … ,ZstD in this way, the MCMC algorithm used to fit the model is simplified compared
to the algorithm used by S&E, the computational load is reduced, and the mixing of the Markov
chain should be improved. Note the Zstd! term in expression (3) can be ignored when calculating
full-conditional distributions, because it does not depend on any unobserved variable.

2.3 Model for the delay distribution

We reparameterise the GD distribution in terms of parameters (vst0, … , vst,D−1) and
(𝜙st0, … , 𝜙st,D−1), where vstd = 𝛼std∕(𝛼std + 𝛽std) and 𝜙std = 𝛼std + 𝛽std. Now, vstd = E(Pstd∕

∑D
j=dPstj)

is the expectation of the hazard of a reporting delay of d days for an individual in stratum s who
died on day t, and the variance of this hazard is Var(Pstd∕

∑D
j=dPstj) = vstd(1 − vstd)∕(𝜙std + 1) (Con-

nor & Mosimann, 1975). Note that as 𝜙std →∞, this variance tends to zero, which makes the
GDM distribution of (Zst0, … ,ZstD)|Yst reduce to the multinomial distribution of expression (2)
with Pstd = vstd

∏d−1
j=0 (1 − vstj). Correspondingly, the beta-binomial distribution of expression (3)

reduces to a binomial distribution. Thus, the 𝜙std parameters describe the overdispersion of the
numbers of reports relative to a multinomial distribution.

It is easy to show that vstd can be written as vstd = (qstd − qst,d−1)∕(1 − qst,d−1), where qstd =
E
(∑d

j=0Pstj

)
is the expectation of the probability that the delay is at most d days.

2.3.1 Weekday effects

We model weekday reporting effects by assuming for d = 0, … , D − 1 that

logit(vstd) ≡ logit
(

qstd − qst,d−1

1 − qst,d−1

)

= logit

(
q∗std − q∗st,d−1

1 − q∗st,d−1

)

+
7∑

j=1
𝜂sj I{Day(t + d) = j}

+ gW
st I{Day(t + d) = 1 or 7}. (4)

Here, I(.) is the indicator function, and Day(t + d) = 1 if day t + d is Monday, Day(t + d) = 2 if
Tuesday, and so on. q∗std and 𝜂s1, 𝜂s2, 𝜂s3, 𝜂s4, 𝜂s5, 𝜂s7 are unknown parameters; we constrain 𝜂s6 = 0
for identifiability (so, Saturday is baseline). gW

st is a smooth function of t, which describes how the
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Sunday and Monday effects change over calendar time (superscript ‘W’ stands for ‘weekend’). As
with gM

st , we assume gW
st is the sum of two restricted cubic splines, one common to all strata and

one specific to stratum s. Equation (4) means that, given the delay is at least d days, the odds of
a death on day t being reported with delay d is exp{𝜂sj + gW

st I( j = 1 or 7)} times greater when day
t + d is weekday j than it would be if day t + d were Saturday.

2.3.2 Calendar-time effects

To model calendar-time effects, we assume for d = 0, … , D − 1 that

probit(q∗std) = probit(q†sd) + gC
st, (5)

where q†sd is an unknown parameter and gC
st is a smooth function of t. As with gM

st and gW
st , we

assume gC
st is the sum of two restricted cubic splines. To ensure 0 ≤ q†s0 ≤ q†s1 ≤ · · · ≤ q†s,D−1 ≤ 1,

and hence (q∗std − q∗st,d−1)∕(1 − q∗st,d−1) in Equation (4) lies between 0 and 1, we reparameterise q†sd

as q†sd = 1 −
∏d

j=0(1 − 𝜓sj),where 0 ≤ 𝜓sd ≤ 1 (d= 0, … , D− 1). Note that if 𝜂1 = · · · = 𝜂7 = gW
st =

gC
st = 0, then𝜓sd = vstd and q†sd = qstd. In Section 5, we contrast our approach to modelling weekday

and calendar-time reporting effects with S&E’s approach.

2.3.3 Reporting-day random effects

Parameters 𝜂sj and gW
st are reporting-day effects that allow deaths to be more likely to be

reported on certain days of the week. In addition to these systematic weekday effects, there
may be non-systematic reporting-day effects. That is, there may be individual days on which
the numbers of reports are unpredictably higher or lower than would be expected given the
weekday and the number of deaths that have occurred in recent days. Figure 1b suggests
26 May is an example. These non-systematic reporting-day effects would alter the expected
hazard vstd on day t + d for delays of all lengths d, and hence induce correlations between
Pstd,Ps,t+1,d−1,Ps,t+2,d−2,Ps,t+3,d−3, … . Such correlations are not reflected by the GD distribution
introduced in Section 2.1, which instead induces correlations between Pst0,Pst1,Pst2,Pst3, … .
To allow for these non-systematic effects, we introduce i.i.d. random effects 𝛿0, … , 𝛿T ∼
Normal(0, 𝜔2) (where 𝜔 is an unknown parameter) and add 𝛿t+d to the right-hand side of
Equation (4).

2.3.4 Strata with a common delay distribution

We now consider two alternative model adaptations to constrain the delay distributions to be the
same in some set  of strata. The first takes 𝜂sj, 𝜓sd, gW

st , gC
st and 𝜙std to be equal for all s ∈  .

Denote the common values by a dot, so 𝜂sj = 𝜂•j,𝜓sd = 𝜓•d, gst = gW
•t , gst = gC

•t and𝜙std = 𝜙•td. Then
vstd = v•td, and (Pst0, … ,PstD) have the same GD distribution for strata s ∈  .

The second adapted model instead assumes Pstd = P•td for all s ∈  , that is, the delay dis-
tributions (Pst0, … ,PstD) are exactly equal for s ∈  . Let Z+td =

∑
s∈ Zstd, Y+t =

∑
s∈ Yst and

W+t =
∑

s∈ Wst. We show in the Supplementary Material that when Pstd = P•td,
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p({Zst0, … ,ZstD ∶ s ∈ }|{Yst ∶ s ∈ },𝜶•t, 𝜷•t)

∝
min(Dt ,D−1)∏

d=0
p(Z+td |Z+t0, … ,Z+t,d−1,Y+t,𝜶•t, 𝜷•t) × p ({Wst ∶ s ∈ }|{Yst ∶ s ∈ },W+t) .

Assuming (P•t0, … ,P•tD) is drawn from a GD distribution, we have (as in expression (3)),

p(Z+td |Z+t0, … ,Z+t,d−1,Y+t, 𝛼•td, 𝛽•td)

=

(
Y+t −

∑d−1
j=0 Z+tj

)
!

(
Y+t −

∑d
j=0Z+tj

)
! Z+td!

×
B
(

Z+td + 𝛼•td, Y•t −
∑d

j=0Z+tj + 𝛽•td

)

B(𝛼•td, 𝛽•td)
. (6)

and, given {Yst ∶ s ∈ } and W+t, {Wst ∶ s ∈ } has multivariate hypergeometric distribution

p ({Wst ∶ s ∈ } | {Yst ∶ s ∈ },W+t) =
∏

s∈

(
Yst

Wst

)
/
(

Y+t

W+t

)

. (7)

So, for each of t = 0, … , T and each of d = 0, … ,min(Dt,D − 1), the || likelihood con-
tributions of expression (3) are replaced by the single likelihood contribution of expression
(6), and for each of t = 0, … , T, there is the additional single likelihood contribution of
expression (7).

Compared to the first adapted model, the second has the advantage of involving less
computation. This is because each time 𝜂•j, 𝜓•d, 𝛿j or a parameter of the splines underly-
ing gW

•t and gC
•t is updated in the MCMC algorithm the single expression (6) is evaluated,

rather than the || expressions (3). The only time expression (7) is evaluated is when Yst is
updated. Note the Z•td! term in expression (6) can be ignored when calculating full-conditional
distributions.

2.4 Priors and model fitting

The intercept 𝜄s in the model for log 𝜆st was given a non-informative Normal(0, 102) prior. For
precision parameters 𝜏 and 𝜏s of the splines for gM

st , and the corresponding parameters for gW
st

and gC
st, we used the same inverse-gamma prior with shape and rate 0.5 that S&E (2020a) used.

The overdispersion 𝜃 was given an exponential prior with rate 2. This assigns substantial mass
to values close to zero (no overdispersion), while still allowing considerable overdispersion.
For the delay distribution, we used a uniform prior on 𝜓sd, assumed 𝜙std = 𝜙d and, follow-
ing S&E (2020a), gave 𝜙d an exponential prior with rate 0.01. Weekday effects 𝜂sj were given
Normal(0, 102) priors. The prior on the precision, 𝜔−2, of the reporting-day random effects was
gamma with shape 1 and rate 0.005. This implies a prior mean of 0.125 on the standard devi-
ation 𝜔, with 90% prior CI (0.04, 0.31). The value 𝜔 = 0.125 corresponds to 95% of the odds
ratios exp(𝛿t+d) lying between 0.78 and 1.28; 𝜔 = 0.31 corresponds to them lying between 0.54
and 1.84.

The model was fitted by MCMC, using the NIMBLE package in R (de Valpine et al., 2017).
R code provided by S&E (2020a) was used as a template for our code, which is provided in the
Supplementary Material. We generated 300,000 iterations, discarding the first 50,000 as burn-in.



SEAMAN et al. 9

3 RESULTS

Here we describe results from analysing data from all of England, focusing on the ≥75 age stra-
tum, that with the most deaths. Further results, including for other strata and nowcasts obtained
by analysing data from the seven NHS regions separately, are in the Supplementary Material. We
take the delay distribution to be the same in the 45–54, 55–64 and 65–74 strata, using the sec-
ond adapted model of Section 2.3.4. For these analyses, we made two modifications to the model
described in Section 2. First, only 3% of delays are longer than 14 days. We grouped these into
weeks, that is, delays of 15–21 days were grouped together, as were 22–28, 29–35 and 36–42 days.
We also grouped delays of zero and one days, because only 1% of delays were zero days. Second,
when fitting the model by MCMC, we struggled to achieve good mixing of gW

st and gC
st. This may

be due to the small number of groups of strata and large imbalance in deaths in these groups:
461, 10042 and 27020 in the 0–44, 45–74 and ≥75 groups respectively. To improve the mixing, we
removed, for both gW

st and gC
st, the spline specific to the ≥75 stratum.

Weekday reporting effects
Figure 3a shows the posterior distribution of the weekday effects 𝜂5j in the ≥75 stratum. As

expected, the reporting hazard is lower on Sundays and Mondays. It is also somewhat higher on

−1.5 −1.0 −0.5 0.0 0.5

0
1

2
3

4 Sun
Mon
Tue
Wed
Thu
Fri

(a)

−1
.0

0.
0

0.
5

1.
0

1.
5

22/03 13/04 05/05 26/05 17/06

(b)

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

22/03 13/04 05/05 26/05 17/06

(c)

−1
.0

−0
.5

0.
0

0.
5

23/03 14/04 06/05 27/05 18/06

(d)

F I G U R E 3 (a) Posterior distributions of weekday effects (𝜂5j); (b) posterior mean and 95% credible interval
(CI) of change in Sunday/Monday effects (gW

5t ); (c) posterior mean and 95% CI of calendar-time effect (gC
5t); (d)

posterior distributions of random effects (𝛿t+d) (boxes show posterior median and quartiles; whiskers are 95% CI).
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Fridays. Figure 3b shows the posterior for gW
5t , the change in the Sunday and Monday effects over

time. The change is substantial: the posterior mean of gW
5t decreases from around 0.7 at the end

of March to around −0.9 at the end of June. Since the posterior mean of 𝜂57 is −1.2, this means
that the odds ratio of reporting on Sunday relative to Saturday (recall that Saturday is baseline) is
around exp (−1.2 + 0.7) = 0.6 in late March but exp (−1.2 − 0.9) = 0.12 in late June.
Calendar-time reporting effects

Figure 3c shows the posterior for the calendar-time effect gC
5t in the ≥75 stratum. Delays

become shorter until mid-April (the epidemic peak), then lengthen, and finally shorten again.
Reporting day random effects

Figure 3d shows the posteriors for random effects 𝛿0, … , 𝛿T . The largest is for 26 May, with a
posterior mean of −1. This is unsurprising: Figure 1b shows the number of reports on Tuesday 26
May is much lower than the numbers on each of the preceding Tuesday to Saturday and following
Wednesday to Friday. Although it is similar to the numbers on the preceding 2 days, these are
Sunday and Monday, when numbers are expected to be low. The posterior mean of𝜔, the standard
deviation of the random effects, is 0.23, with 95% posterior CI (0.19, 0.29).
Overdispersion parameter 𝜽 for Yst

The posterior mean of 𝜃 is 0.30, with 95% posterior CI (0.08, 0.55). This suggests mild Poisson
overdispersion: the variance of Yst is around 1.3 times as large as its expectation.
Nowcasts

Figure 4 shows the nowcast for the ≥75 stratum. Nine and eight deaths occurred on 27 and 28
June, respectively, and were reported by 29 June. The corresponding estimated numbers of deaths
are 63 and 66. So, an estimated 9/63 = 14% of deaths on Saturday 27 June were reported within
2 days, and 12% of deaths on Sunday 28 June were reported within 1 day. These percentages may
seem low, considering that Figure 2 shows around 26% of deaths are reported within one day and
around 60% within 2 days. There are two reasons for this. First, reporting is lower on Sundays
and Mondays than during the rest of the week, especially more recently. Second, the estimates
for the days before 27 June were all above 60 and it is unlikely that deaths would suddenly drop
far below 60. The 95% posterior CIs for these two days are particularly wide (around 45–90).

20
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F I G U R E 4 Estimated numbers of deaths occurring on each day (black line) in the ≥75 stratum, with
corresponding numbers of deaths reported by 29th June (broken line) and the true numbers (purple line). Posterior
95% credible intervals are shown by shaded region. For ease of viewing, only most recent 21 days are shown.
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By 9 August (i.e. 42 days after 28 June), the true numbers of deaths that occurred on each day
(and were reported within 42 days) were known. Figure 4 shows these true numbers. Of the 21
true numbers, 19 lie within their corresponding 95% CI (and one lies just outside). This is roughly
as expected: 19/21 = 90.5%.
Probability of increase in deaths in recent days

It is useful to be able to detect early signs of an increase in deaths in recent days. Figure S20
shows, for each stratum, the posterior probability that the number of deaths in the most recent x
days was greater than the number in the preceding x days (x = 1, … , 7). There is no evidence of
an increase. However, many of the probabilities are around 0.5, meaning that deaths are as likely
to be increasing as they are to be decreasing.

4 EVALUATION OF PERFORMANCE OF NOWCASTS

As mentioned earlier, 42 days after a nowcast is made, the true numbers of deaths are known.
This enables us to evaluate the performance of our nowcasts. For this purpose, we carried out
a nowcast every 5 days from 29 June 2020 to the end of March 2021, in each of the seven NHS
regions separately and for all of England (a total of 56 × 8= 448 nowcasts). For the nowcast based
on data available on day T we calculated, for each of days t=T − 1, T − 2, … , T − 7, the difference
between the posterior mean of the number of deaths that occurred on day t and the true number.
We also examined whether the corresponding 95% posterior CI included the true value. We shall
refer to the average difference between the posterior mean and the true value as the ‘bias’, and to
the percentage of CIs that include the true value as the ‘coverage’. To prevent computation time
increasing as T increases, the nowcasting model was fitted only to data on the most recent 90 days,
that is, days T, T − 1,… , T − 89. On 12 August 2020, PHE revised its definition of a COVID-19
death to include only deaths within 28 days of a positive test (Public Health England, 2020). So,
for nowcasts after 12 August, we used only those deaths.

Table 1 shows the bias and coverage for each age group and for regional and nationwide now-
casts. The bias is small (<8%) relative to the average true number of deaths per day (the ‘mean’
column of Table 1), with the exception of the nowcasts for day T−1 in the 0–44 age group in the
regions. Here the average true number of deaths is only 0.4, whereas the average nowcast is 0.47,
a bias of 17%. Coverage of 95% CIs is at least 91%, except for nowcasts of the ≥75 age group in
England, where it falls to 88% for nowcasts of four or more days ago. The coverage is higher than
95% when the average true number of deaths is small, that is, for groups 0–44 and 45–54 in Eng-
land and all groups except ≥75 in the regions. This is due to the discreteness of the data. That is,
when the true number of deaths on a day is very low (e.g. zero or one), the 95% and 99% CIs will
often be the same: both equal to [0, 1]. In such cases, it would be expected that more than 95% of
the 95% CIs would include the true value. For groups 0–44 and 45–54 in England and all groups
except ≥75 in the regions, the percentage of days on which the true number of deaths is zero or
one (the ‘low’ column of Table 1) is at least 30% and can be as high as 90%.

5 DISCUSSION

Timely monitoring of the number of COVID-19-related deaths relies on methods that adjust the
observed data for reporting delay. These methods need to be flexible enough to deal with the
peculiar reporting patterns of these data and the way these patterns change over time. Here we
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T A B L E 1 Bias and coverage for nowcasts. Results for pairs of days T − 2 and T − 3, and T − 4 and T − 5, and
T − 6 and T − 7 are averaged, as are results for the seven regions. Bias is mean difference between estimated and
true number of deaths. Coverage is percentage of 95% credible intervals (CIs) that contain true number of deaths

Bias for day T minus Coverage for day T minus

Area Age 1 2∕3 4∕5 6∕7 meana 1 2∕3 4∕5 6∕7 lowb

England 0–44 −0.09 0.01 −0.04 0.05 2.9 96 98 96 98 54.1

45–54 −0.54 −0.54 −0.53 −0.25 6.8 98 96 95 97 30.9

55–64 −0.38 −0.11 −0.19 −0.28 18.4 96 96 94 95 18.1

65–74 −1.21 1.16 0.18 0.44 41.3 91 91 93 94 9.4

≥75 1.37 −0.75 −0.31 −0.74 166.0 93 92 88 88 1.0

Regions 0–44 0.07 0.03 0.00 0.00 0.4 98 98 98 98 90.1

45–54 −0.03 −0.07 −0.07 −0.04 1.0 98 98 98 99 77.0

55–64 0.00 0.01 −0.02 −0.04 2.6 99 99 98 98 57.8

65–74 −0.01 0.22 0.04 0.06 5.9 96 98 97 99 40.7

≥75 0.28 −0.06 −0.02 −0.16 23.7 97 96 96 96 18.5

aThe ‘mean’ column contains the average true number of deaths in the age group.
bThe ‘low’ column contains the percentage of days on which the true number of deaths was zero or one.

built on the approach of S&E and derived age-specific estimates of the number of deaths occurring
in each of the seven English NHS regions.

The modelling of weekday and calendar-time effects described in Sections 2.3.1 and 2.3.2 is
different from the way S&E (2020a, 2020b) modelled them. If weekday effects are removed from
our model, it becomes what S&E (2020b) called a ‘Survivor Model’ with calendar-time effects
but without weekday effects. Figure S19 provides some support for this way of modelling the
calendar-time effect, suggesting that it is indeed additive on the probit scale, at least for delays
of two or more days. Whereas we apply the weekday effects to the hazard in Equation (4), S&E’s
model replaces Equations (4) and (5) with probit(qstd) = probit(q∗sd) + gC

st + hst,where hst is a cyclic
cubic spline with a period of 7 days (i.e. hst = hs,t+7). We believe that applying the weekday effects
in Equation (4) more accurately reflects these effects. Suppose, for example, that deaths are never
reported on Sundays. This would be captured by our model through 𝜂7 = −∞, but would not be
captured by the spline hst, because hts is a function of the weekday on which the individual died,
rather than the weekday on which this death might be reported (see Supplementary Material for
further explanation). That weekday affects hazard of reporting is demonstrated by Figure S21,
which shows the estimated distribution of delay by weekday of death. The probability of reporting
within 1 day is approximately the same for deaths occurring on any of Monday to Friday, but is
lower for deaths occurring on Saturday or Sunday. The probability of reporting within 2 days is
the same for deaths occurring on Monday to Thursday, but lower for those occurring on Friday
and Saturday (and to some extent Sunday). For reporting within 3 days, the probability is the same
for deaths on Monday to Wednesday, but lower for Thursday to Saturday.

An alternative way to model the calendar-time effect would be to apply it, together with
the weekday effect, to the hazard in Equation (4). This would yield what S&E (2020b) call a
‘Hazard Model’. However, S&E (2019, 2020b) argue that the Hazard Model formulation is less
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parsimonious than their Survival Model formulation (and hence our model), because it requires
multiple splines for the calendar-time effect in each stratum: one for each possible delay d.

To generate the results described in Section 3, the computation time required to fit the model
was 5.0 h using one core of a MacBook Pro with a 2.6 GHz 6-core Intel i7 processor. This time
was for the second adapted model of Section 2.3.4 and represents a reduction compared to that
needed for the first adapted model (7.7 h). If computation time were a concern, two measures that
could be taken to reduce it, in addition to the measures already described, would be to decrease
the maximum delay D and to use more grouping of longer delays. We adjusted for delays of up
to D = 42 days, whereas S&E (2020a) used only D = 14. Overall, around 97% of deaths reported
within 42 days are reported within 14 days, and so this restriction may be reasonable. We distin-
guished between delays of d and d+1 days all the way up to d = 14 days, grouping longer delays
into weeks. S&E (2020a) instead grouped together all delays of more than 7 days. This reduces
computation time, but has the drawback of discarding some information. Specifically, data on
deaths that occurred between 8 and 13 days ago and were reported with delays of more than 7
days are ignored. As well as potentially reducing statistical efficiency, this discarding of informa-
tion allows the estimated number of deaths that occurred on any of these days to be lower than
the number so far observed to have occurred on that day. It was for these reasons that we waited
until 15 days before grouping delays and thereafter grouped them into weeks rather than into a
single group.

Several research groups have applied nowcasting methods to COVID-19 deaths or diagnoses
(which are also subject to reporting delays). Bird and Nielsen (2020) nowcasted deaths in England,
using a modification of the chain-ladder approach employed in general insurance. They used only
data from the previous 7 days and estimated numbers of deaths reported within 7 days. Greene
et al. (2021) nowcasted cases (diagnoses) in New York City using a Bayesian method proposed by
McGough et al. (2020). This method, also an adaptation of the chain-ladder approach, assumes
that the number of cases that occur on day t and are reported with delay d has a negative-binomial
distribution with mean equal to the expected incidence of positive tests at time t multiplied by an
effect of d. The expected incidence over time is modelled as a random-walk process, and the effect
of d is assumed constant over the 21-day period from which data are used. De Salazar et al. (2022)
used the same approach to nowcast symptomatic cases by date of symptom onset in two Spanish
regions. Sarnaglia et al. (2021) nowcasted deaths in Brazil, taking a similar approach to Greene
et al. (2021) but allowing the delay distribution to change over time according to a AR1 process.
Abbott et al. (2020) nowcasted cases separately in several countries. They assumed that reporting
delays have a log normal distribution that remains constant over a 12-week period. Sahai et al.
(2022) nowcasted cases in Ohio, using a random forest to predict the proportion of cases reported
thus far. The covariates used by the random forest are functions of the delay, the weekday of the
report, and the number of cases that occurred on each day and were reported with each delay.
The nowcast was calculated as the number of cases reported thus far divided by the estimated
proportion reported thus far. Uncertainty associated with this nowcast was not quantified. Hawry-
luk et al. (2021) nowcasted weekly deaths in Brazil. They aggregated daily data into weeks and
assumed that the number of deaths that occurred in a given week and were reported in another
week has a negative binomial distribution with a mean that follows a Gaussian process with sep-
arable two-dimensional kernel over week of death and number of weeks of delay. Glöckner et al.
(2020) applied the method of Höhle and an der Heiden (2014) to nowcast cases in Japan. This
method is similar to that of S&E (2020a, 2020b), but uses a 14-day moving window to estimate the
delay distribution. Günther et al. (2021) applied a modified version of the same method to now-
cast cases in Bavaria. This assumes a random walk for the incidence of positive tests over time and
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allows both a piecewise-linear effect of test time and a weekend effect on the delay distribution.
However, it uses the more restrictive multinomial distribution for case reports, in place of S&E’s
(and our) GDM distribution. Hildebrandt et al. (2021) described an implementation of Günther
et al.’s method to nowcast cases in Germany at the level of district or state. Bergström et al. (2022)
extended Günther et al.’s method to incorporate additional data on a second event that reflects
an earlier stage in disease progression than the event being nowcasted. In their application to
Swedish data, they nowcasted COVID-19 deaths using additional data on ICU admissions. This
model assumes that the log expected number of deaths occurring on a given day is a linear com-
bination of the log expected number of deaths on the previous day and the log observed number
of ICU admissions a fixed number of days earlier. In principle, this approach could also be used
in our model. The log expected number of deaths (log 𝜆st) would then be equal to the sum of two
spline functions and the lagged log number of ICU admissions.

As mentioned in Section 1, S&E (2020a) used reports from NHSE to nowcast deaths over
the period 2 April to 5 May 2000 in seven English regions (not broken down by age). Using the
same data, Stoner et al. (2020) found that the coverage of their 95% credible intervals was 95% for
days T and T − 1 (i.e. same-day and previous-day nowcasts), 91% for day T − 2 and 84% for day
T − 3. In the comparison with the nowcasting methods of McGough et al. (2020) and Bastos et al.
(2019), they found their method yielded more precise estimates and credible intervals with better
coverage for nowcasts of day T.

More recently, two other groups have adapted S&E’s hierarchical model and nowcasted
COVID-19 cases by region. Jersakova et al. (2021) assume a negative-binomial model for the num-
ber of cases on each day, with expectation described by a random walk with drift modified by
weekend effects. A beta-binomial distribution is used for the number of these cases reported thus
far, with an empirical Bayes approach to choosing the parameters of the beta distribution. Data on
delays from the previous 14 days are used, with the delay distribution assumed constant over this
period. The model is applied to data at the level of English lower-tier local authorities and there
is an element of borrowing of information on delays (but not on numbers of cases) from neigh-
bouring local authorities. Kline et al. (2021) nowcast cases in the counties of Ohio state. They
argue that an autoregressive model is more suitable than S&E’s spline model for the incidence
of cases when temporal trends may be quite different across counties. They assume the expected
number of cases in a county over time follows a semi-local linear trend model modified by a week-
day effect and with an intrinsic conditional autoregressive element to capture spatial correlation
across counties. The delay distribution is modelled (almost) independently in each county and
allowed to change over time according to a AR1 process, although the autoregressive parameter
is common to all counties and a hierarchical structure is assumed for weekday effects. It would
be interesting to explore whether this very flexible model would work when nowcasting deaths,
which are much smaller in number than cases.
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