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A theory that predicts behaviors of disordered
cytoskeletal networks
Julio M Belmonte1,2 , Maria Leptin1 & François Nédélec2,*

Abstract

Morphogenesis in animal tissues is largely driven by actomyosin
networks, through tensions generated by an active contractile
process. Although the network components and their properties
are known, and networks can be reconstituted in vitro, the
requirements for contractility are still poorly understood. Here, we
describe a theory that predicts whether an isotropic network will
contract, expand, or conserve its dimensions. This analytical theory
correctly predicts the behavior of simulated networks, consisting
of filaments with varying combinations of connectors, and reveals
conditions under which networks of rigid filaments are either
contractile or expansile. Our results suggest that pulsatility is an
intrinsic behavior of contractile networks if the filaments are not
stable but turn over. The theory offers a unifying framework to
think about mechanisms of contractions or expansion. It provides
the foundation for studying a broad range of processes involving
cytoskeletal networks and a basis for designing synthetic
networks.
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Introduction

Networks of cytoskeletal filaments display a variety of behaviors. A

decisive feature for the physiological role of networks is whether

they contract or expand. For instance, actomyosin cortices can

contract, and the tensions thus created determine the morphology of

animal cells (Salbreux et al, 2012; Maı̂tre et al, 2016). Conversely,

the mitotic spindle at anaphase is a network of microtubules that

extends to segregate the chromosomes. Such behaviors are essen-

tial, but we still lack an intuitive understanding of how they come

about, as it is difficult to extrapolate between the microscopic level,

where filaments are moved by molecular motors and restrained by

crosslinking elements, and the level of the entire system.

Cytoskeletal filaments and many of their associated factors are well

characterized biochemically. With sufficient knowledge of the rele-

vant properties of the components of a particular network, it should

be possible to predict the network behavior. Traditional approaches

were particularly successful in predicting passive systems composed

of reticulated polymers (Wolff & Kroy, 2012), and more recent

developments in active gel theories address networks containing

molecular motors (Prost et al, 2015). These latter theories however

cannot explain the contractile or expansile nature of the network, as

it arises from microscopic interactions that are not represented in

these theories. To understand why contractility occurs, one must

describe the system at higher resolution and consider motors and fil-

aments individually (Kruse & Jülicher, 2000; Liverpool & Marchetti,

2003; Liverpool et al, 2009). Small networks can also be studied

with computer simulations (Mendes Pinto et al, 2012; Stachowiak

et al, 2014; Oelz et al, 2015; Ennomani et al, 2016; Hiraiwa &

Salbreux, 2016), but we lack a simpler approach that can make

rapid predictions purely based on analytical deduction. Such a

theoretical framework would be particularly valuable to classify the

different behaviors that are seen experimentally.

In search for such a general theory, we chose initially to concen-

trate on the major factor determining contraction of networks, that

is the force created by molecular motors, although we recognized

that filament shortening could also lead to contractility (Backouche

et al, 2006; Mendes Pinto et al, 2012; Oelz et al, 2015). In vitro

experiments have shown that contractility can arise with stabilized

filaments. In such experiments, the filaments are initially distributed

randomly, and molecular motors or crosslinkers added to the

mixture make random connections between neighboring filaments.

The active motions of molecular motors then drive network evolu-

tion. With microtubules and kinesin oligomers, static patterns such

as asters (Nedelec et al, 1997; Köhler et al, 2011) or dynamic beat-

ing patterns (Takiguchi, 1991; Katoh et al, 1998; Sanchez et al,

2011; Thoresen et al, 2011) can arise. While radial (Backouche

et al, 2006) and other patterns (Köhler et al, 2011) were also

observed with actin, F-actin networks activated with myosin are

predominantly contractile, as demonstrated in various geometries:

bundles (Takiguchi, 1991; Katoh et al, 1998; Thoresen et al, 2011),

rings (Reymann et al, 2012), planar networks (Murrell & Gardel,

2012), spherical cortices (Carvalho et al, 2013; Vogel et al, 2013;

Shah et al, 2014), or 3D networks (Bendix et al, 2008; Koenderink
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et al, 2009). Microtubule networks with NCD or dynein motors are

also contractile (Surrey et al, 2001; Foster et al, 2015). Several inter-

esting mechanisms of contraction have been proposed and reviewed

recently (Murrell et al, 2015), but each of these applies only to a

particular system for which it explains the behavior. We propose

here a general theory that can be applied to both microtubule and

actin systems. We also show that contractile systems become pulsa-

tile if filament turnover is introduced in the model.

Results

A simple theory to predict the behavior of random networks

Let us consider a disorganized set of filaments connected by active

and passive “connectors” made of two functional subunits (Fig 1A

and B). Examples for passive connectors are crosslinkers such as

Ase1, Plastin, alpha-Actinin, or Filamin, whereas active connectors

are oligomeric motors such as myosin minifilaments, dynein

complexes, bifunctional motors such as kinesin-5 or myosin VI, that

are able to connect two filaments at the same time. By walking

along filaments, bridging motors move the filaments relative to each

other and change the network. It is however not obvious a priori

how the sum of their local effects will influence the overall shape

and size of the network. A computer can be used to simulate the

dynamics of a network, but because all biochemical parameters

must be specified in a simulation, only a finite set of conditions can

be tested. We present here an analytical theory that overcomes this

limitation. Active networks have been previously analyzed (Nedelec

et al, 1997; Liverpool & Marchetti, 2003; Ziebert et al, 2007;

Gowrishankar et al, 2012; Lenz, 2014) by considering pairs of fila-

ments with one active connector (Fig 1C). This approach is valid for

sparsely connected networks in which only a few motors are active,

but physiological networks must be well connected to exert force. In

other words, the network should be elastically percolated, and there

must exist continuous paths through which tension can be transmit-

ted between any pair of distant points (Dasanayake et al, 2011).

Specifically, we assumed that filaments are connected to at least

two other filaments of the network. Focusing on one of these fila-

ments (Fig 1D), we see that the section of filament between two

connectors acts as an elementary mechanical bridge between two

points of the network. If the connectors are immobile, or if they
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Figure 1. Elements of active networks.

A Networks are composed of polar filaments that may bend, and connectors containing two subunits through which they can bridge two nearby filaments.
B Subunits may be minus-end- or plus-end-directed motors that can bind anywhere to a filament, or binders that can bind to any location along a filament, or end

binders that attach only at the minus or the plus ends of filaments.
C, D To predict the behavior of a network, previous theories have considered a pair of filaments with a single connector between them, while the theory presented here

is based on the effects that two connectors bound to a single filament have on the rest of the network.
E Pairs of connectors may generate local stress in the network depending on how the subunits move relative to one another on the filament. If the initial distance a0

between the subunits is maintained, the network does not deform. This occurs if the connectors do not move (in static configurations) or if they move in the same
direction at the same speed (in neutral configuration). Local contraction is expected for contractile configuration in which the connectors move toward each other
(a < a0) and expansion may occur for extensile configuration where the connectors move apart (a > a0). If the filament is flexible, however, the expansile stress
can be reduced if the filament buckles.
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both move in the same direction at the same speed, their distance

remains constant, the section of the filament between them does not

change in length, and the bridge is neutral (Fig 1E). By contrast, if

the two connectors move toward each other, the bridge exerts a

contractile stress, whereas if they move apart, this produces an

expansile stress (Fig 1E).

To predict whether the whole network will contract or expand,

we sum up the effects of all elementary mechanical bridges in the

network. To do this, we first list all the possible configurations for

two connector subunits bound to a filament (Box 1). For each con-

figuration, we then determine the distance between the two connec-

tors measured along the filament ai, and how this distance changes

over time: vi ¼ dai
dt . To calculate vi, we only consider the nature of

the bound subunits of the connectors and thus use the unloaded

speed of the motors, rather than their actual speed. We then sum all

the contributions (Box 1B), taking into account the probability pi of

each configuration to occur, which can be calculated from the

concentrations of components in the system, the binding and

unbinding rates of the subunits, and other characteristics of the

network (see Appendix Supplementary Methods). We also distin-

guish the case where the filaments are rigid and can support expan-

sile stress from the case where the filaments are flexible such that

they buckle under compression (Box 1B). In the latter case, filament

buckling spoils part or all of the expansile forces (Fig 1E), and

we thus discard the contribution of these expansile configurations.

The ratio between two sums calculated over all configurations

predicts the network behavior (Box 1C) and can be calculated

algebraically.

Actomyosin networks with motors and crosslinkers

To test and develop the theory, we first applied it to a much stud-

ied model of cytoskeletal activity, that of actomyosin contraction,

which has also been reconstituted in vitro (Takiguchi, 1991; Katoh

et al, 1998; Mizuno et al, 2007; Koenderink et al, 2009; Thoresen

et al, 2011; Murrell & Gardel, 2012; Reymann et al, 2012; Carvalho

et al, 2013; Vogel et al, 2013; Shah et al, 2014). Actomyosin

networks consist of stabilized F-actin filaments and two types of

connectors: bifunctional motors moving at speed v and passive

crosslinkers (Fig 2A). Bifunctional motors are connectors

composed of two motor subunits that bind anywhere on the fila-

ment and move toward one end of the filament, in this case the

plus-end, at a load-dependent velocity. The crosslinker is

composed of two identical subunits that may bind anywhere on

the filaments, and that remain immobile until they detach. There

are four possible ways to arrange the two types of connectors on a

filament (Fig 2A). Their likelihood depends on PM and PC, the

probability of one or more motors, and the probability of one or

Box 1: Analytical prediction of contraction/expansion rate.

The behavior of a disorganized network of filaments can be predicted
analytically following a three-step procedure. (A) A list of all possible config-
urations involving one filament and two connectors is compiled. For each
configuration, the separation ai between the connectors, the speed vi at
which the they move in relation to one another, and the likelihood pi of
finding the configuration within the network are noted. (B) These quantities
are combined into a scalar v, using a function Φ, depending on the nature

of the filaments. For rigid filaments that do not buckle, all contributions are
added (Φ = 1). For flexible filaments that buckle readily under compression,
only contractile configurations (vi < 0) are retained. For a network made of
semi-flexible filaments, expansile configurations above the buckling thresh-
old b are discarded. (C) The scalar v predicts the contraction rate of the
network, depending on its dimensionality, as indicated. The sign of v indi-
cates if the network is contractile (v < 0) or expansile (v > 0).

A  List all possible configurations

B  Combine all contributions

rigid filaments:

semi-flexible filaments:

flexible filaments:

C  Predicted outcome
1D network of length L 2D network of surface S 3D network of volume V

length

probability

speed
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more crosslinkers being bound at an intersection of filaments,

respectively (Appendix Supplementary Methods D). The configura-

tion with two crosslinkers is passive. The one with two motors is

neutral, because the motors move in synchrony and retain their

distance. The other configurations involve a motor and a cross-

linker (Fig 2A). They are active with opposite outcomes. In one,

the motor and the crosslinker approach each other at speed �v,

and in the other, they move apart at speed v. They have an equal

likelihood that is proportional to PMPC (1�PC), reflecting that one

of the crossings should have at least one motor and no crosslink-

ers, with a likelihood PM (1�PC), while the second crossing should

have at least a crosslinker, with or without motors, carrying a

likelihood PC. The net sum over the effects of all configurations in

this example is null, and this predicts that a system made of rigid

filaments that remain straight should neither contract nor expand.

Contractile and expansile configurations cancel each other out, as

found previously in the case where only motors were considered

(Kruse & Jülicher, 2000). If the filament buckles, however, the

expansile configuration will not be able to drive network expansion

(Fig 1E, last panel). Whether a filament buckles depends on the

rigidity of the filament, the amount of force generated by the

motors, and the distance a between the connectors. Under condi-

tions in which the filaments always buckle, there are no expansile

configurations, and the net sum is �PMPC (1�PC) v. In this simple
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Figure 2. Predictions and simulations for actin-like networks of flexible filaments.

A A system composed of flexible filaments and two types of connectors: crosslinkers and bifunctional motors. The table lists the four possible configurations for two
connectors bound to a filament, the relative movement of the connectors (dadt), and the likelihood and the mechanical nature of each configuration. The likelihoods are
combinations of PM and PC, which are the probabilities of having at least one motor or one crosslinker at an intersection of two filaments (see
Appendix Supplementary Methods D).

B The evolution of a simulated random network composed of 1,500 flexible filaments (bending rigidity = 0.01 pN lm2) and 12,000 connectors of each type, distributed
over a circular area of radius 15 lm.

C The contraction rate of a simulated network as a function of the ratio of crosslinkers to motors, with the total number of connectors kept constant. Each symbol
indicates the result of one simulation. The broken line indicates the analytical prediction made by the theory (see Appendix Supplementary Methods D). No
contraction occurs without crosslinkers or without motors, and the maximal contractile rate is obtained here for 8,000 motors and 10,000 crosslinkers.

D Snapshots at t = 10 s of networks similar to (B) containing varying numbers of motors (vertical axis) and crosslinkers (horizontal axis).

Source data are available online for this figure.

Molecular Systems Biology 13: 941 | 2017 ª 2017 The Authors

Molecular Systems Biology Theory of disordered cytoskeletal networks Julio M Belmonte et al

4



case, the sign reveals that the system is contractile. Moreover, the

predicted contractile rate is nonzero if both PM and PC are nonzero,

which is the case when both motors and crosslinkers are present.

The formula also shows that when crosslinkers are added (i.e., as

PC changes from 0 to 1), the contractility increases and eventually

vanishes. Contractility is thus maximal at an intermediate quantity

of crosslinkers.

Contraction rates of networks of semi-flexible filaments

If the filaments are semi-flexible, which is the case for F-actin, with

a rigidity of 0.075 pN lm2, the contribution of expansile configura-

tions may not always be negligible, since a filament may or may not

buckle depending on the length over which it is compressed. There-

fore, to be able to predict the behavior of a network, it is necessary

to know the conditions under which filaments buckle.

For an empirical assessment of this effect, we thus simulated

networks in which the length and density of the filaments, and the

number of crosslinkers and molecular motors were systematically

varied. For this, we used Cytosim, an Open Source simulation

engine that is based on Brownian dynamics (Nedelec & Foethke,

2007). In brief, each filament is represented by a set of equidistant

points, subject to bending elasticity (Box 2A). Crosslinkers and

motors are represented by diffusing pointlike particles, which bind

stochastically to neighboring filaments (Box 2C and D). Connectors

with a stiffness k are formed when motors or crosslinkers are bound

to filaments with each of their two subunits (Box 2E). The move-

ment of motors follows a linear force–speed relationship (Box 2F).

For simplicity, the unbinding rate is constant for this study, and a

motor reaching the end of a filament immediately unbinds

(Box 2G). Given a random network as initial condition, Cytosim

simulates the movement of all the filaments in the system (Fig 2B,

Movies EV1–EV3), and a contraction rate is extracted automatically

(Appendix Supplementary Methods C).

Guided by the results of many simulations, we concluded that

network contraction depends on the threshold distance b above

which buckling occurs, which in turn can be calculated from the

filament rigidity and the maximum force exerted by the motor. If

L1 < b, then any filament segment of length b will be intersected by

b0 = b/L1 filaments, where L1 is the mesh size of the network. If

any of these intersections is bridged by a crosslinker, this fixes the

filament laterally and prevents it from buckling under the force of

the motor(s) and crosslinker positioned at its ends (see

Appendix Supplementary Methods G for more details). From these

considerations, we can calculate the probability for a filament

segment to buckle as PMPC (1�PC)
b0 , where (1�PC)

b0 is the probabil-

ity that all the intersections between the motor and the crosslinker

are free of crosslinkers. With this adjustment, the theory correctly

predicted the dependence of the contraction rate on the number of

connectors for a variety of conditions (Fig 2C and D, Movie EV4). It

also predicts previous results where contraction of in vitro acto-

myosin networks was obtained only in the presence of both

crosslinkers and motors (compare Fig 2D with Fig 2D from Bendix

et al, 2008).

Contraction and expansion of networks of rigid filaments

We next explored systems composed of rigid filaments such as

microtubules. Because some molecular motors are associated with

microtubule ends in nature, we investigated the behavior induced

Box 2: Elements of the stochastic model of cytoskeletal dynamics.

(A) Networks of flexible filaments are simulated using a Brownian dynamics
method. Filaments are polar, thin and have a constant length. Each fila-
ment is modeled with an oriented string of points, defining segments of
equal lengths. The movement of filament points follows Brownian dynam-
ics, with elastic forces such as the bending elasticity of the filament, and
the elasticity of connectors. (B) In the simulations, connecting molecules
are made of two independent filament-binding subunits (a and b, which
can be any one of those defined in Fig 1B). When both subunits are unat-
tached to filaments, the molecule diffuses within the simulation space. (C)

Binding occurs at a constant rate kon to any filament closer to than e.
Attachment occurs on the closest point of the filament. (D) End-binding
follows the same rules as binding, but is restricted to a distance d from the
targeted filament end. (E) Connectors act mechanically as Hookean springs
between two filaments, with stiffness k and zero resting length. (F) Motor
subunits move toward either the plus- or minus-end of the filament with a
linear force–velocity relationship. (G) All connector subunits detach with a
force-independent rate koff, and motors detach immediately upon reaching
a filament end.

A filaments

C binding

B diffusion

fixed length
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plus end

 bending
elasticity

a b
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ε
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δ δ

ε
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E linking

F movement
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by connectors comprised of motors and end-binding subunits

(Fig 3). As predicted by the theory (Fig 3A), the simulations showed

that the system is expansile if plus-end-directed motors are

combined with minus-end-binding subunits (Fig 3B, Movie EV5),

and contractile if plus-end-directed motors are associated with plus-

end-binding subunits (Fig 3C, Movie EV6). A system composed of

these two types of connectors can be either contractile or expansile

depending on the relative concentrations of the connectors (Fig 3D

and E, Movie EV7).

Prediction of the effects of combinations of connectors

To probe the general applicability of the theory, we simulated

networks with mixtures of connectors containing five different types
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Figure 3. Predictions and simulations for microtubule-like networks of rigid filaments.

A A system composed of rigid filaments and two types of connectors. One connector consists of a plus-end-directed motor combined with a minus-end binder, the
other is a plus-end-directed motor combined with a plus-end binder. There are six possible configurations involving these two connectors.

B Three time points during the evolution of an expansile network of 1,500 straight filaments (their bending rigidity is set as “infinite” here) with 1,500 motor/plus-end
binders and 48,000 motor/minus-end binders initially distributed over a circular area of radius 15 lm.

C Three time points during the evolution of a network similar as (B), but with 48,000 motor/plus-end binders and 1,500 motor/minus-end binders.
D The contraction rate of a network as a function of the numbers of the two types of connectors, which are inversely varied. Each symbol represents a simulated

random network of 4,000 straight filaments initially distributed over a circular area of radius 25 lm. Details of methods as in Fig 2C. The broken line indicates the
analytical prediction made by the theory (Appendix Supplementary Methods G).

E Simulations of networks containing varying numbers of connectors. Networks contain 1,500 filaments initially distributed over a radius of 15 lm. Depending on the
concentrations of the connectors, the network can be expansile (top left corner) or contractile (bottom right corner). Snapshots at t = 30 s.

Source data are available online for this figure.
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of subunits (Fig 1B). A subunit can bind, and then either remain

bound at the initial position, or move. Non-moving binders may be

of a type that can bind anywhere on the filament, or they may be

restricted in their binding to a region near the plus or the minus

end. Moving elements (motors) can bind anywhere, but can be of

two types, those moving to the plus and those moving to the minus

end. By combining any two of these subunits, one can make 15

types of connectors. Simulated networks containing any one type of

connector all behaved as predicted by the theory (see examples in

Fig 4A). We also simulated systems containing two different types

of connectors (in equal quantities), both for flexible and rigid fila-

ments. There are 210 possible combinations, and for every one of

them, the simulations closely matched the behavior predicted by the

theory (Fig 4B and C, see Appendix Supplementary Methods F for

details of the calculation). Many types of molecular elements that

are found in nature, such as end-binding proteins, have not been

used in reconstituted networks, but we can now predict what their

effects on a network should be.

Heterogeneous systems composed of different types of filaments

So far, we have considered systems made of one type of filament,

but some networks in vivo contain different types of filaments. A

prominent example are the thick antiparallel “minifilaments” with a

length of 300 nm formed by myosin II motors (Verkhovsky &

Borisy, 1993). Networks such as the actomyosin meshwork of the

cell cortex and the contractile actin cables in cells are thus heteroge-

neous systems in which F-actin filaments are mixed with minifila-

ments, which also harbor the motors driving the system out of

equilibrium. To probe if the theory could hold for such heteroge-

neous systems, we listed all the possible combinations of two

connectors for the two types of filaments (Fig 5A and B). Similar to

the homogeneous case (Fig 2), this analysis predicts that the system

should be contractile if crosslinkers are also present, and neutral

otherwise. We then simulated such a system of actinlike filaments

and minifilaments composed of a rigid backbone of length 0.5 lm
with a motor subunit at each end. The results confirmed the

predicted behaviors (Fig 5C and D), suggesting that the theory can

be applied to heterogeneous networks.

Effect of filament turnover on contractile systems

So far, we have considered systems made of filaments of fixed

length that persist indefinitely. Under these conditions, network

contraction and expansion are non-reversible events, and they occur

only once. This is indeed what happens with most in vitro reconsti-

tuted cytoskeletal networks obtained with stabilized filaments

(Takiguchi, 1991; Katoh et al, 1998; Surrey et al, 2001; Thoresen

et al, 2011; Murrell & Gardel, 2012; Carvalho et al, 2013; Vogel

et al, 2013; Shah et al, 2014; Foster et al, 2015). But how does this

relate to networks in vivo, which manage to avoid such a collapse?

The simulations described above do not correspond perfectly to the

situation in vivo, because cytoskeletal filaments are dynamic, such

that both the length of the filaments, and their abundance are fluctu-

ating quantities that can be regulated. Contractile cortical networks

often do not simply contract monotonically and irreversibly, but can

show dynamic contractile foci, with pulsatile contractions persisting

over extended periods (Munro et al, 2004; Martin et al, 2009; Solon

et al, 2009; He et al, 2010). To test the relationship between this

dynamic behavior and contractility, we extended our simulations to

include filament turnover. Instead of making the filaments shrink

and grow, we modeled turnover by simply taking out individual,

random filaments in toto and replacing them by new ones. To imple-

ment an average lifetime T for the filament, we randomly selected

and deleted one of the N filaments at a rate N/T, and replaced it

with a new one placed at a random position (Fig 5E). However,

circular networks of the type we have considered so far still

contracted into a central focus even with filament turnover. We thus

implemented a model with periodic boundary conditions (PBC). Use

of PBC imposes a constant surface on the system and thereby forces

the network to build up tension. It corresponds best to a network

that is attached at the cell boundaries, without requiring additional

assumptions on the nature of the attachment. Under these condi-

tions, filament turnover had a significant effect on the contractile

behavior. We observed that for 3 s < T < 200 s, most configura-

tions that had been contractile without turnover now displayed

pulsed contractions (Fig 5F, Movie EV8). These results confirm

earlier models that considered filament dynamics (Bidone et al,

2017) or turnover (Hiraiwa & Salbreux, 2016), illustrating that with

filament turnover, a system that was contractile otherwise can be

pulsatile. As suggested by an active gel theory (Kumar et al, 2014),

we wondered whether pulsatility was a general consequence of

turnover. We thus simulated networks that were contractile on

Fig 4B and varied systematically the filament turnover rate. Most

displayed pulsatile behavior for a certain range of values (See

Dataset EV1). Thus, pulsatility appears to be a common conse-

quence of filament turnover, irrespective of the type of connectors

in the network.

Discussion

The theory we present here predicts the initial evolution of a

network from the properties of its connectors. We have confirmed

these predictions with simulations for all tested conditions. The

model implemented in the simulation is intentionally minimalistic,

with subunit binding, unbinding and filament turnover occurring at

constant rates and independently of other events. All simulations

were done in 2D and did not consider steric interactions between

the filaments, which in 2D would induce artifacts. We expect our

theoretical arguments to hold also for other types of networks such

as filament bundles or 3D networks. However, the calculation

presented in the Appendix depends on the geometry of the network

and would need to be revised to apply to different geometries. It

is tempting to think that the approach can also be extended to

anisotropic networks if the probabilities of the configurations are

calculated locally.

For simplicity, we simulated homogeneous networks with a

circular geometry. While this may not represent the usual in vivo

situation, it corresponds precisely to networks made recently

in vitro using light deactivation of the myosin inhibitor blebbistatin

(Linsmeier et al, 2016; Schuppler et al, 2016). Our analytical predic-

tion of network behavior was based on the characteristics of the

connectors but did not include the viscosity of the medium. This is

because we implicitly assumed that the motors were moving at

constant speed, or in other words that they were operating far from
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their stall force and that filament drag forces were insignificant. The

procedure depicted in Box 1 provides the absolute contraction rate

of the network. The formula (Box 1B) is useful even if not all of the

microscopic quantities are known. For example, if the length of the

filaments is unknown, one can still calculate the numerator of

the fraction defining v (Box 1B) to predict how contraction rates are

affected by changes in the connectors (numbers, types, binding

rates, unbinding rates), as done for Figs 2C and 3D. Such a
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Figure 4. Additional predictions of the theory.
The predictions of the theory for the various conditions shown here are represented graphically as sets of green centripetal arrows for contraction, red centrifugal arrows for
expansion, and gray squares for neutral networks.

A Examples of simulations of networks with the indicated types of connectors. The predicted outcomes of network contraction, expansion, or neutrality (symbol at the
top left of each simulation) are confirmed in each case by the behavior of the network in simulations. The networks are composed of 1,500 flexible or rigid filaments,
and 24,000 connectors. Snapshots at t = 20 s.

B Summary of the predictions for random networks with all possible combinations with two types of connectors, either with flexible (bending rigidity = 0.01 pN lm2,
below diagonal) or rigid filaments (infinite rigidity, above diagonal). The networks contain 4,000 filaments and 64,000 connectors, 32,000 of each connector type,
indicated by the labels of the corresponding row and column. These results were generated using Preconfig (Nedelec, 2017).

C Comparison of the contraction rates predicted by the theory (horizontal axis) with the rates obtained by simulation (vertical axis). Each data point indicates one of
the 210 systems considered in (B). Networks are made of 4,000 filaments and 64,000 connectors initially distributed over a circular area of radius 25 lm. In this case,
all the binding parameters of the subunits and the concentration of connectors are always equal, such that the prediction is simplified (Appendix Supplementary
Methods E).

Source data are available online for this figure.
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prediction is immediately valuable, as it can be readily tested experi-

mentally by systematically varying the concentrations of both

motors and crosslinkers in reconstituted in vitro networks. As a

network evolves distinct patterns such as asters, bundles or vortices

can arise which can significantly change the network dynamics. Our

theory does not deal with the formation of such patterns, but

remains valid as long as the evolving network is not strongly aniso-

tropic and remains percolated.

For a system containing crosslinkers and bifunctional motors,

our analysis indicates that the “active” contractile configurations

must contain both a crosslinker and a motor. We thus expect these

two types of element always to be found in a contractile system.

Contractile systems have been reconstituted in vitro to study this

point, but it is important to remember that an assumedly pure

preparation of motors that is added may in fact contain damaged

“dead” motor proteins that act as passive connectors. Thus, a

mixture that is assumed to contain only filaments and motor

proteins may in fact also contain some crosslinkers. Even so, addi-

tion of crosslinkers indeed dramatically enhances the effect of

myosin, a phenomenon observed more than 50 years ago (Ebashi &

Ebashi, 1964). For 2D networks, the theory explains why the maxi-

mum contractility is obtained in vitro with approximately equal

amounts of motors and crosslinkers (Bendix et al, 2008; Köhler &

Bausch, 2012; Ennomani et al, 2016), and why, in the absence of

crosslinkers, networks fail to contract despite the presence of molec-

ular motors, as reported by Bendix et al, 2008. Our theory also

explains that under the action of myosin VI, a branched network

made with Arp2/3, which represents an example of a connector

consisting of an end-binding and a side-binding component, is more

contractile than a network connected by crosslinkers that bind

anywhere along the filaments (Ennomani et al, 2016). Because

myosin VI is directed to the minus (pointed) end, the configuration

containing a crosslinker bound to the minus end (Arp2/3) is always

contractile. Thus, at equal levels of connectivity, a network made

with Arp2/3 and myosin VI is more contractile than a network made

with a non-specific crosslinker, and less contractile than a network

made with only end-to-end crosslinkers. Conversely, we predict that

the effect would be opposite in the presence of plus-end-directed

motors, like myosin II: An Arp2/3 network should be less contrac-

tile than a network of equal connectivity made with non-specific

crosslinkers.

Our finding that introducing filament turnover was sufficient to

induce pulsing in most of the contractile scenarios leads to the

surprising conclusion that pulsatility may be an intrinsic behavior

of contractile networks made of non-stable filaments and that no

other external triggers are necessary. This of course does not mean
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~6% of the simulated space as a function of time. The data with
filament lifetime 21.8 s are from the simulation shown in (A). The
network continues to redistribute, showing irregular variations of the
local filament density, and does not collapse into one spot.

Source data are available online for this figure.
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that in the natural biological situation there may not be regulatory

elements superimposed on the underlying mechanism that

suppress or enhance pulsing (Nishikawa et al, 2017). Pulsing is

seen only over a certain range of filament lifetimes, indicating that

one such regulatory input could be via the stability of filaments:

For example, increasing the stability of filaments should, accord-

ing to our simulations, arrest or reduce pulsing, whereas the abil-

ity of myosin to destroy filaments (Matsui et al, 2011) could lead

to enhanced pulsing. Many parameters of the actomyosin network

can tune the characteristics of the pulses, as has been shown for

myosin (Munjal et al, 2015). While pulses appear to be an inevi-

table consequence of filament turnover, their importance for the

biological functions of cytoskeletal network needs to be clarified.

The theory presented here unifies previously proposed mecha-

nism for a number of biological systems, and we will discuss now

how various contracting or expanding systems can be represented

and their behavior predicted within the new theory (Box 3).

In the sarcomeres found in striated muscles, myosin II minifila-

ments pull on filaments arranged in an antiparallel manner

(Box 3A). This system can be seen as containing two types of

connectors: a passive one linking the barbed (plus) ends of the fila-

ment and a motor directed toward the barbed (plus) end. Three

possible combinations can be made with these two connectors

(Box 3, right column). Because none of these configurations is

expansile, the system is bound always to be contractile. Even if they

are not as highly ordered as a sarcomeric system, less organized

systems made of the same subunits, for example, bipolar filaments

in smooth muscles (Box 3B) are also contractile.

For a system in which the crosslinkers are not restricted to bind-

ing to the filament ends, but can bind anywhere along the length

(Box 3C) both contractile and expansile configurations arise. Follow-

ing the discussion on how buckling promotes contraction of a disor-

ganized actin network (Mizuno et al, 2007; Liverpool et al, 2009;

Lenz et al, 2012), we argued that buckling can spoil some of the

expansile configurations, tipping the balance in favor of contraction.

One mechanism to explain the contraction of microtubule

networks (Box 3D) does not require filament bending, but involves a

motor that can halt at the end of the filaments (Hyman & Karsenti,

1996; Nedelec et al, 1997). Because the motor walks toward the end,

where it may be transiently trapped, configurations are contractile or

neutral, but never expansile, and the entire network itself is there-

fore contractile (Foster et al, 2015). Looking at the set of configura-

tions (Box 3, right column), the similarity of this mechanism with

sarcomeric contractility (Box 3A and B) becomes apparent. In the

case of the end-dwelling motor, however, the same molecular type is

involved in generating the active and neutral end-binding

connections.

Although we did not consider filament disassembly in this study,

the theory can be applied also to this situation. For example, a mole-

cule that tracks and remains bound to the depolymerizing end of a

filament (Box 3E) will reduce the distance between itself and

a connector located elsewhere on the filament, thereby creating a

pulling force. By calculating the likelihood of such a configuration,

one may be able to predict the overall contractility of the network.

We also did not consider filament elongation, which is a prominent

mechanism by which actin networks expand.

A system with expansile configurations can only extend if the fila-

ments are sufficiently rigid to resist buckling, which depends on the

density of the network, and is more likely to be the case for micro-

tubules than for actin. We will discuss two examples of expansile

microtubule systems: the mitotic spindle and the marginal band of

blood platelets. A mitotic spindle evolves throughout the cell divi-

sion cycle, but during metaphase, it usually keeps a constant length.

To maintain this steady state, contractile and expansile forces must

be kept in equilibrium. In Xenopus laevis, contraction is driven by

dynein (Foster et al, 2015) and other minus-end-directed motors,

while expansion is driven by the plus-end-directed motor kinesin-5

(Needleman & Brugués, 2014). When anaphase is induced, the meta-

phase balance is broken and the spindle elongates. Can this be

explained by the theory? For the sake of the argument, let us assume

that the function of dynein ceases completely, and ignore minus-

end-directed motors altogether. We then need to consider only two

types of connectors (Box 3F): passive complexes containing the

protein NuMA, which connect the minus ends of microtubules at the

spindle poles, and plus-end-directed motors kinesin-5 connecting

adjacent, antiparallel microtubules. Since kinesin-5 moves away

from the minus ends, the model indeed predicts that the anaphase

spindle is expansile, using configurations that are symmetric to the

sarcomeric systems (Box 3A). A disorganized network made of the

same connectors would also be expansile.

Other expansile microtubule systems can be found in blood plate-

lets and their progenitor cells, the megakaryocytes. During pro-

platelet generation, the microtubules assemble into bundles that

elongate under the activity of the molecular motors dynein (Patel,

2005). In the mature platelets, microtubules are organized into a

closed circular bundle which must be able to resist contractile forces

as it pushes outward on the plasma membrane. It was recently

reported that the microtubule ring elongates after platelet activation,

in a manner that is dependent on microtubule motors, but the mech-

anism that drives elongation is still unclear (Diagouraga et al, 2014).

Our systematic exploration of random networks (Fig 4) suggests dif-

ferent scenarios that could explain why this system is expansile.

Beyond the relevance to these in vivo systems, it will be exciting to

follow these principles to create expansile networks of microtubules

in vitro, since end binders are available to synthetic biologists.

Figures 3 and 4 suggest exciting avenues for the development of

synthetic materials (Henkin et al, 2014) that could be tuned to be

expansile or contractile, which could be achieved, for example, by

using light-switchable molecular motors (Nakamura et al, 2014).

Finally, in a system where the symmetry provides an equal

number of contractile and expansile configurations, any imbalance

in the probabilities of these configurations may lead to overall

contraction or expansion (Gao et al, 2015). Following this principle,

we can suggest here an explanation for the expansile nature of

in vitro microtubule networks (Sanchez et al, 2012). Particularly, if

the motors are sufficiently processive, they may run a distance that

is comparable to the length of the filament, and in this case, their

distribution along the length of the filament will be non-uniform

(Box 3G). This effect has been called the antenna effect (Varga et al,

2006), and arises as a consequence of the motility, in a situation

where binding has the same probability at every position of the fila-

ment. A plus-end-directed motor would become enriched near the

plus ends of microtubules (Box 3G). In the presence of crosslinkers

(that can be dead motors), such an effect will increase the likelihood

of the expansile configurations, and lower the likelihood of the

contractile configurations, thus promoting expansion. Even if
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Box 3: Review of contractile and expansile mechanisms.

time

mechanisms

A - Sarcomeric

end-binder

crosslinker

motor

motor

C - Dependent on buckling

D - End-dwelling multivalent motors

E - Filament disassembly

B - Bipolar filaments

moving motor: 

halted motor: 

connectors configurations

contractile:

neutral:

static:

neutral:

contractile:

spoiled expansile:

neutral:

static:

neutral:

contractile:

H - Zippering pair of connectors 

time

time

contractile:

static:
crosslinker

end-tracker

Probability densities of location along filament is... contraction is
less probable:

expansion is
more probable:

F - Mitotic spindle elongation

G - Possible extension mechanism for disorganized networks

end-binder

motor

expansile:

neutral:

static:

...uniform ...highest at the plus-end

Previously described mechanisms can be represented in the terms of the
theory by focusing on pairs of connectors present on filaments. The
sarcomeric mechanism (A), and an analogous mechanism involving bipo-
lar filaments (B) each have a plus (barbed)-end-directed multivalent
motor acting on filaments that are connected at their minus (pointed)
ends by molecular complexes that act as connectors. These systems are
always contractile because there are only two active configurations: one
involving two motors, which is neutral, and one with a motor and an end
binder, which is contractile since the motor always moves toward the
end binder. The buckling-dependent mechanism (C) leads to contractility
because the flexibility of the filament spoils the expansile configuration.
Thus, if the filaments are sufficiently flexible, the net effect will be
contractile (see Fig 2). In systems containing only end-dwelling multiva-
lent motors (D), the motors generate contraction without added passive
connectors, because they eventually come to a halt at the end of the fila-
ment and thereby act as end-binding connectors. Configurations involv-
ing a motor halted at the end, and a motor moving toward this end
along the same filament result in contraction. There is no expansile con-
figuration in this mechanism, and the net effect is therefore always

contractile, irrespective of filament buckling. A connector with a subunit
that binds to a disassembling end of a filament (E) generates only one
active configuration, which is always contractile, even in the absence of
motors. In this example, the end-tracker binds to the plus end and moves
toward the minus end by tracking a depolymerizing end (or inducing its
disassembly). (F) A mitotic spindle at anaphase may be considered as a
network held together by multivalent plus-end-directed motors from the
kinesin-5 family, and by factors connecting the microtubule minus ends
at the spindle pole. With these two types of connectors, the configura-
tions involving two connectors are neutral, static, or expansile. (G) A
system can be made expansile by the “antenna effect”, because motors
acquire an asymmetric distribution profile along the filaments. In the
presence of this effect, contractile configurations are less likely than
expansile ones, and the overall system can become expansile as a conse-
quence. (H) Some mechanisms of contraction involve two connectors
acting on more than one filament. In the case depicted here, two crossing
filaments will be “zipperred together”, by a pair of connectors moving
apart. This configuration is able to create a contractile force dipole in a
direction perpendicular to the filaments.
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the motors were directed toward the minus ends of microtubules,

the antenna effect would still lead to a bias in favor of expansion.

The net imbalance will depend on the biophysical properties of the

motors (speed, unbinding rate), and the length of the microtubules,

and could provide tunable expansibility for networks (Sanchez et al,

2012).

In conclusion, our theory offers a framework for elementary

mechanisms of expansion or contraction. It is a starting point for

further exploration, since in its current state, the theory does not

explain all the phenomena observed in simulations. For example, if

two flexible filaments are connected by two connectors with one

moving away from the other, this can contribute to contraction

(Box 3H). The connectors can pull the ends of the filaments, and

therefore the network together, even though the distance between

them is growing. This interesting effect, which is analogous to a

zipper, can only be understood by considering two filaments and

two connectors, whereas our theory considered one filament and

two connectors. In the networks studied here, this mechanism has

only small effects (see Appendix Supplemental Materials G).

From the theoretical framework presented here, with its clear

predictions, perhaps a classification of the different types of active

networks found in nature will emerge. Our approach may also

inspire novel avenues for synthetic filament networks with

enhanced functionalities.

Expanded View for this article is available online.
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