Comment on: "Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry"

Judy Hirst, Edmund R. S Kunji & John E. Walker

The Medical Research Council Mitochondrial Biology Unit University of Cambridge Cambridge UK

e-mail: jh@mrc-mbu.cam.ac.uk; ek@mrc-mbu.cam.ac.uk; walker@mrc-mbu.cam.ac.uk

Abstract

Chorev et al. (1) describe mass spectrometry on mitochondrial membrane proteins ionized directly from their native environment. However, the assignments made to measured masses are incorrect or inconclusive, and lack experimental validation. The proteins are not in their 'native' condition: they have been stripped of tightly-bound lipids, and the complexes are fragmented or in physiologically irrelevant oligomeric states.

Main text

Native mass spectrometry has been applied extensively to analyze membrane proteins in detergent solutions. In Chorev et al. (1), Robinson and co-workers describe a technical breakthrough that enables proteins and complexes to be ionized directly from their native membrane environments. They present examples from bacterial and mitochondrial biology, and propose that physiologically relevant insights can be obtained. Here, we investigate the claims Robinson and co-workers have made from their analyses of mitochondrial membranes.

Robinson and co-workers (1) assigned masses of 809 and 782 kDa to complex I, a 975 kDa enzyme with known composition and structure (2-4). To match their masses to two fragments of complex I they summed masses of subsets of the enzyme's subunits, then augmented the combined masses with the masses of substrates and phospholipids, to thus rationalize the measured values. We thank the authors for publishing an Erratum to their manuscript, to correct many errors in the subunit masses used in their original calculations. Although minor inaccuracies still remain (see Supplementary Tables), they do not affect the subunit compositions of the two revised fragments proposed in the Erratum. Nevertheless, as Figure 1 shows, these two revised complex I fragments do not constitute functional or physiologically relevant forms of the enzyme. Furthermore, by using a flexible combinatorial approach to calculating masses it is possible to rationalize any mass value, and so there is little direct evidence to support the claim that the two observed masses arise from complex I at all.

For complex III, two masses of 169 and 339 kDa were assigned to the monomeric and dimeric states. However, complex III is a 468 kDa functional dimer in which the Rieske subunit in each monomer acts across the dimer interface in the other monomer (5). In other words, monomers are neither functional nor native. Here, the subunit masses used by Robinson and co-workers largely agree with published data (6) although the masses of some cofactors and post-translational modifications were omitted (see Supplementary Tables). Then, subunits were subtracted to provide a fit between

measured and expected masses but without clear rationale, resulting in structurally impossible fragments (see Figure 1). Therefore, without additional evidence, the assignment of these fragments to complex III must be questioned. For complex IV, two incorrect isoforms were used (the correct isoforms in heart are COX6A2 and COX7A1) and cofactors and modifications were again omitted (see Supplementary Tables). However, the calculated mass, including one cardiolipin and one phospholipid, is within error of the 208 kDa mass assigned to the monomeric form. A mass 'twice as big' was assigned to the dimeric form, but it was not specified and so we cannot evaluate this assignment. However, the existence of dimeric complex IV in the membrane is disputed, and previous results from Robinson's group indicate that about six tightly-bound phospholipids or cardiolipins are required to stabilize the dimer interface (7). Finally, many of the masses used by Robinson and coworkers did not agree with the experimentally determined masses of the subunits of ATP synthase (2) but, by good fortune, they obtained a value close to the correct total of 583 kDa (see Supplementary Tables). By comparison to an observed mass of 581 kDa, they propose that mammalian ATP synthase exists as a monomer. However, it is well established in a large number of species that native ATP synthase is a dimeric complex that is localized in long rows of dimers along the tips of cristae, defining their ultrastructure (8). Furthermore, the mass assigned to monomeric ATP synthase contains no contributions from bound phospholipids or cardiolipins. It is especially remarkable that no lipids occupy the internal cavity of the c8-ring in the enzyme's rotor, detected previously by Robinson and co-workers in purified c-rings (9).

Finally, Robinson and co-workers assigned masses to monomeric and dimeric species of adenine nucleotide translocase (ANT1). First, their expected mass of 33,187 Da is incorrect. Amino acid sequencing and mass spectrometry have shown that native ANT1 lacks Met1, has an acetylated Ser2 and trimethylated Lys52, and is not succinylated (10, 11). The correct mass (32,921 Da) does not match the measured mass (33,195 Da) within experimental error and no control experiments with tight-binding inhibitors were performed to confirm the assignment. Second, the observed mass does not account for the three tightly-bound cardiolipins (37,271 Da) that stabilize the native carrier by bridging its domains and cannot be removed even by extensive detergent washes (12). The monomer has all the elements required for function and there is no robust experimental evidence that it forms dimers (13). To transport adenine nucleotides, ANT1 cycles back and forth between cytoplasmic and matrix states, both of which have been characterized structurally (12, 14), showing profound changes in shape that are incompatible with a stable dimerization interface.

Robinson and co-workers provide no confirmatory evidence for any of their assignments of masses to proteins and protein complexes. This inadequacy is especially evident in cases where measured masses do not match expected masses, so, in order rationalize the data, the expected masses have been adjusted by poorly justified subtractions of subunits and/or additions of modifications, substrates and phospholipids. But, even if the mass assignments of Robinson and co-workers had been confirmed, they would only have demonstrated that their methods have torn complexes I and III apart, broken the functional ATP synthase dimer, and removed tightly bound cardiolipins from ANT1. Thus, their methods are not 'more mild' than detergent extraction — a procedure that has supported extensive, long-standing and sophisticated structural, biochemical and physiologically-relevant studies on all these systems. The harsh and inadequately described pre-treatments of the membranes devised by Robinson and co-workers have not been validated for their ability to retain either native structure or function of protein complexes, and together with the ionization processes applied, they have damaged the proteins extracted from the membranes. Therefore, the work of Robinson and co-workers does not define the native states of any of the extensively characterized proteins present in mitochondria, and offers no new insights into mitochondrial biology.

The authors are supported by the Medical Research Council (grant numbers MC_U105663141 and MC_UU_00015/2 (JH), MC_UU_00015/1 (ERSK) and MR/M009858/1 and MC_UU_00015/8 (JEW)).

<u>References</u>

- 1. D. S. Chorev *et al.*, Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry. *Science* **362**, 829–834 (2018).
- 2. J. Carroll, I. M. Fearnley, Q. Wang, J. E. Walker, Measurement of the molecular masses of hydrophilic and hydrophobic subunits of adenosine triphosphate synthase and complex I in a single experiment. *Anal Biochem.* **395**, 249-255 (2009).
- 3. J. E. Walker *et al.*, Sequences of 20 subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria. Application of a novel strategy for sequencing proteins using the polymerase chain reaction. *J. Mol. Biol.* **226**, 1051-1072 (1992).
- 4. J. Zhu, K. R. Vinothkumar, J. Hirst, Structure of mammalian respiratory complex I. *Nature* **536**, 354-358 (2016).
- 5. S. Iwata *et al.*, Complete structure of the 11-subunit bovine mitochondrial cytochrome *bc*₁ complex. *Science* **281**, 64-71 (1998).
- 6. A. Musatov, N. C. Robinson, Subunit analysis of bovine cytochrome bc1 by reverse-phase HPLC and determination of the subunit molecular masses by electrospray ionization mass spectrometry. *Biochemistry* **33**, 10561-10567 (2002).
- 7. I. Liko *et al.*, Dimer interface of bovine cytochrome *c* oxidase is influenced by local posttranslational modifications and lipid binding. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 8230-8235 (2016).
- 8. K. M. Davies *et al.*, Macromolecular organization of ATP synthase and complex I in whole mitochondria. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 14121-14126 (2011).
- 9. C. Schmidt *et al.*, Comparative cross-linking and mass spectrometry of an intact F-type ATPase suggest a role for phosphorylation. *Nature Commun.* **4**, 1985 (2013).
- H. Aquila, D. Misra, M. Eulitz, M. Klingenberg, Complete amino acid sequence of the ADP/ATP carrier from beef heart mitochondria. *Hoppe Seylers Z Physiol. Chem.* 363, 345-349 (1982).
- 11. V. R. Smith, I. M. Fearnley, J. E. Walker, Altered chromatographic behaviour of mitochondrial ADP/ATP translocase induced by stabilization of the protein by binding of 6'-O-fluorescein-atractyloside. *Biochem. J.* **376**, 757-763 (2003).
- 12. J. J. Ruprecht *et al.*, Structures of yeast mitochondrial ADP/ATP carriers support a domainbased alternating-access transport mechanism. *Proc. Natl. Acad. Sci. U. S. A.* **111**, E426-E434 (2014).
- 13. E. R. S. Kunji, P. G. Crichton, Mitochondrial carriers function as monomers. *Biochim. Biophys. Acta* **1797**, 817-831 (2010).
- 14. J. J. Ruprecht *et al.*, The molecular mechanism of transport by the mitochondrial ADP/ATP carrier. *Cell* **176**, 435-447 (2019).
- 15. A.-N. A. Agip *et al.*, Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states. *Nat. Struct. Mol. Biol.* **25**, 548-556 (2018).

Figure 1

The degraded fragments of complexes I and III proposed by Robinson and co-workers (1). Subunits are colored according to how much of the contact area between the subunit and the rest of complex is retained in the proposed fragment: red, 0 to 25% retained; orange, 25 to 50%; pale orange, 50 to 75%; wheat, 75 to 100%; white 100%. The outlines depict the intact complexes. Created from 6G2J.PDB (15) and 1BGY.PDB (5).

COMPLEX I

Subunit	Alternative	Protein mass	Known modifications	Calculated	Chorev mass	Difference in	Comments on Chorev mass
	nomenclature	(∆import)		native mass		Chorev mass	
ND1		35,670	N-formyl-Met	35,698	35,699	1	
ND2		39,254	N-formyl-Met	39,282	39,284	1	
ND3		13,055	N-formyl-Met	13,083	13,082	0	
ND4		52,099	N-formyl-Met	52,127	52,130	3	
ND4L		10,797	N-formyl-Met	10,825	10,825	0	
ND5		68,287	N-formyl-Met	68,315	68,320	5	
ND6	5410	19,078	N-tormyl-iviet	19,106	19,107	1	
NDUFV1	51 KDa	48,499	FMIN, [4FE-45]	49,306	48,503	-803	FMIN, [4Fe-45] not included
NDUFV2	24 KDa	23,815	[2Fe-25]	23,988	23,815	-1/4	[2Fe-25] not included
NDUFV3	10 KDa	8,437		8,437	8,438	0.05	
NDUFSI	75 KDa	76,961	2 X [4Fe-45], [2Fe-25]	//,834	76,969	-805	2 X [4Fe-45], [2Fe-25] hot included
NDUF52	49 KDa	49,175	Dimetnyi-Arg	49,203	49,199	-4	
NDUF53	30 KDa	26,432		26,432	26,434	2	
NDUF54	18 KDa 15 kDa	15,337		15,337	15,338	2	
NDUF55	15 KDa	12,668	۵۱۷۱et, 2 x 55 ۲۳	12,532	12,534	2	Zn missing
NDUFSO		10,530		10,599	10,534	-05	ZII IIISSIIg
NDUF57	P351	20,078	nyuroxyi-Arg, [Fe-45]	20,445	20,094	-350	
NDUF58		20,196	2 X [4Fe-45]	20,896	20,194	-702	2 X [4Fe-45] not included
NDUFAI		8,105		8,105	8,100	0	
NDUFAZ	BO	11,080		10,991	10,990	0	
NDUFAS	B9 B12	9,349		9,200	9,201	1	
NDUFAS	B13	13,316		13,227	13,226	0	
NDUFA6	B14	15,054		14,964	14,965	1	
NDUFA7	B14.5a	12,677		12,587	12,586	-1	
NDUFA8		20,091		19,952	19,959	/ דכד	NADDU missing
NDUFA9	39 KDa	39,115	NADPH	39,800	39,123	-/3/	NADPH IIISSIIg
NDUFA10	42 KDa	36,707	PI	36,787	36,705	-82	PI missing
NDUFAI1	B14.7	14,758		14,669	14,008	-1	
NDUFA12	B17.2	17,090		17,132	17,151	0	
NDUFA15	6 T O'O	10,074	∆iviet, N-acetyi	10,584	10,564	0	
	SDAP	10,110	4 -phosphopantethine + 3-hydroxyundecanoate	10,676	10,674	-2	
	SDAP	10,110	4 -phosphopantetnine + 5-hydroxyundecanoate	10,676	10,674	-2	
	NINLL	7,097	Awet	0,900	0,900		
	AGGG	0,495	AMot N acotul 2 x Mo	0,495	0,495	40	without N acatul
	B12 B15	11,141		15,080	11,038	-42	without N-acety
		15,104		16 726	16 728	0	
NDUERG	B17	10,720	AMet N-acetul	15/20	15/27	2	
NDUEB7	B17 B18	15,524	AMet myristoyl 2 x SS	16 / 73	16,478	5	
NDUEBS		18 737		18 737	18 738	1	
NDUEBO	R77	21 789	AMet N-acetul	21 700	21 699	-1	
NDUEB10		21,705	AMet 2 x SS	21,700	21,000	3	
NDUEB11	FSSS	14 453		14 453	14 452	-1	
NDUEC1	KEYI	5 829		5 829	5 829	-	
NDUEC2	B14 5h	14 096	N-acetyl	14 138	14 096	-43	without N-acetyl
FMN	014.00	14,000	it accept	456	456		
[2Fe-2S]				172	178	6	
[4Fe-4S]				348	356	8	
Total	for occortial and	nononto of and	av l	074.007	072.000	4.007	Above plus incorrect EqC (should be 2 w [25 - 26] and 6 w [45 - 46])
Total mass for essential components of complex I					973,800	-1,067	Above plus incorrect FeS (should be 2 x [2Fe-25] and 6 x [4Fe-45])
Total mass for complex Lminus NDUEV1, NDUEV2, NDUEV3, NDUEV3, NDUEV3, NDUEV1				804,311 777 880	003,364 776 773	-927	Above plus incorrect FeS (should be 3 x [4Fe-45])
lotal mass	for complex I min	US NDUFVI, NDU	FV2, NDUFV3, NDUFA2, NDUFS1, NDUFS3	///,880	//6,//2	-1,107	Above plus incorrect FeS (should be 3 x [4Fe-45])
NADH				663	663	0	
Ubiquinone	-10			863	836	-27	Typographical error?
CDL				1421	1421	0	
Total mass	for complex I plus	NADH, UQ10 and	d 3 x CDL	980,657	979,563	-1,094	980,986 calculated by Chorev et al from the same masses
Total mass for first subcomplex plus UQ10 and 3 x CDL					808,484	-954	809,728 calculated by Chorev et al from the same masses
Total mass for second subcomplex plus UQ10 and 3 x CDL					781,872	-1,134	783,116 calculated by Chorev et al from the same masses

References Carroll, J., Fearnley, I. M., Skehel, J. M., Runswick, M. J., Shannon, R. J., Hirst, J. & Walker, J. E. (2005) The post-translational modifications of the nuclear encoded subunits of complex I from bovine heart mitochondria. Mol. Cell. Proteomics 4, 693-699. Carroll, J. Fearnley, I. M., Wang, Q. & Walker, J. E. (2009) Measurement of the molecular masses of hydrophilic and hydrophobic subunits of ATP synthase and complex I in a single experiment. Anal. Biochem. 395, 249-255. Hirst, J., Carroll, J., Fearnley, I.M., Shannon, R.J., Walker, J.E. (2003) The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim. Biophys. Acta 1604, 135-150. Walker, J.E. (1992) The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Qu. Rev. Biophys. 25, 253-324. Walker, J.E., Carroll, J., Altman, M.C. & Fearnley, I.M. (2009) Mass spectrometric characterization of the thirteen subunits of bovine respiratory complexes that are encoded in mitochondrial DNA. Meth. Enzymol. 456, 111-131. Zhu, J., Vinothkumar, K. & Hirst, J. (2016) Structure of mammalian respiratory complex I. Nature 536, 354-358.

COMPLEX III

Subunit	Protein mass	Known modifications	Calculated	Chorev mass	Error in Chorev	Comments on Chorev mass
	(∆import)		native mass		mass	
UQCRC1	49,212		49,212	49,212		
UQCRC2	46,524		46,524	46,523		
CYB	42,591	2 x b-haem, N-formyl-Met	43,845	42,591	-1,254	2 x b-haem, N-formyl-Met missing
CY1	27,287	c-haem	27,902	27,987	85	Unexplained error
UQCRFS1 (Δ 1-78)	21,610	[2Fe-2S], SS	21,781	21,609	-172	[2Fe-2S], SS missing
UQCRB	13,476	∆Met, N-acetyl	13,387	13,345	-42	N-acetyl missing
UQCRQ	9,720	ΔMet	9,589	9,589		
UQCRH	9,175		9,175	9,175		
UQCRFS1 (1-78)	7,955	N-acetyl, SS	7,995	7,955	-40	N-acetyl, SS missing
UQCR10	7,458	ΔMet	7,326	7,326		
UQCR11	6,520		6,520	6,520		
Total mass for com	plex III monomer		243 257	241 832		
Total mass for com	nlex III dimer		486 514	483 664		
	prex in uniter		400,514	405,004		
Total mass for com	plex III monomer r	ninus UQCRC1, UCCRH, UQCRFS1 (1-78), UQCR11	170,355	168,970		
Total mass for com	plex III dimer minu	us UQCRC1, UCCRH, UQCRFS1 (1-78), UQCR11	340,709	337,940		

Notes:

Uniprot codes identified from structure of cytochrome bc1 complex from bovine heart mitochondria (1BGY.PDB)

References

Iwata, S., Lee, J.W., Okada, K., Lee, J.K., Iwata, M., Rasmussen, B., Link, T.A., Ramaswamy, S. & Jap, B.K. (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281, 64-71. Musatov, A. & Robinson, N.C. (2002) Subunit analysis of bovine cytochrome bc1 by reverse-phase HPLC and determination of the subunit molecular masses by electrospray ionization mass spectrometry. Biochemistry 33, 10561-10567. Walker, J.E., Carroll, J., Altman, M.C. & Fearnley, I.M. (2009) Mass spectrometric characterization of the thirteen subunits of bovine respiratory complexes that are encoded in mitochondrial DNA. Meth. Enzymol. 456, 111-131.

COMPLEX IV

Subunit	Protein mass	Known modifications	Calculated	Chorev mass	Error in Chorev	Comments on Chorev mass
	(∆import)		native mass		mass	
COX1	57,033	N-formyl-Met, haem a3, H2O, haem a, CuB, OH-	58,839	58,744	-95	N-formyl-Met, CuB missing
COX2	26,022	N-formyl-Met, Y240-H244 link, CuA, Mg	26,195	26,021	-174	N-formyl-Met, Y240-H244 link, CuA, (Mg) missing
COX3	29,933		29,933	29,933		
COX4I1	17,153		17,153	17,152		
COX5A	12,436		12,436	12,433	-3	Unexplained error
COX5B	10,670	Zinc	10,734	10,670	-64	Zinc missing
COX6A2	9,533		9,533	9,538	5	Incorrect isoform
COX6B1	10,156	Δ Met, N-acetyl, 2 x SS	10,063	10,025	-38	N-acetyl, 2 x SS missing
COX6C	8,610	∆Met, N-acetyl	8,521	8,478	-43	N-acetyl missing
COX7A1	6,674		6,674	6,609	-65	Incorrect isoform
COX7B	6,357		6,357	6,357		
COX7C	5,441		5,441	5,441		
COX8B	4,962		4,962	4,961		
		Total monomer mass	206,840	206,362		
		Total dimer mass	413,679	412,724		
Cardiolipin (CDL)			1,448	1,448		
Phosphatydiletha	nolamine (PE)		760	760		
		Total monomer mass	209,048	208,570		
		Total dimer mass	418,095	417,140		
		Total monomer mass reported in Chorev et al.		208,299		

Notes:

The mass of Mg has been added to COX2; it is shared between COX1 and COX2

Uniprot codes identified from structure of cytochrome c oxidase from bovine heart mitochondria at 1.5 A (5B1A.PDB)

References

Musatov, A., Carroll, C.A., Liu, Y.C., Henderson, G.I., Weintraub, S. T., Robinson, N.C. (2002) Identification of bovine heart cytochrome c oxidase subunits modified by the lipid peroxidation product 4-hydroxy-2-nonenal. Biochemistry 41, 8212-8220. Walker, J.E., Carroll, J., Altman, M.C. & Fearnley, I.M. (2009) Mass spectrometric characterization of the thirteen subunits of bovine respiratory complexes that are encoded in mitochondrial DNA. Meth. Enzymol. 456, 111-131. Yano, N., Muramoto, K., Shimada, A., Takemura, S., Baba, J., Fujisawa, H., Mochizuki, M., Shinzawa-Itoh, K., Yamashita, E., Tsukihara, T., Yoshikawa, S. (2016)

The Mg2+-containing water cluster of mammalian cytochrome c oxidase collects four pumping proton equivalents in each catalytic cycle. J.Biol.Chem. 291, 23882-23894.

ATP synthase

Subunit	Protein mass	Known modifications	Calculated	Multiplied by	Chorev mass	Multiplied by	Error in Chorev	Comments on Chorev mass
	(∆import)		native mass	${\it stoichiometry}$		stoichiometry	mass	
α	55,264	N-pyro-Glu, ADP, Mg	55,698	167,094	55,263	165,789	-435	N-pyro-Glu missing
β	51,705		51,705	155,116	51,563	154,689	-142	Unexplained error
γ	30,141		30,141	30,141	30,256	30,256	115	Unexplained error
δ	15,065		15,065	15,065	15,065	15,065		
3	5,783	ΔMet	5,652	5,652	5,793	5,793	141	Unexplained error
а	24,816		24,816	24,816	24,788	24,788	-28	Unexplained error
b	24,669		24,669	24,669	24,669	24,669		
с	7,608	TriMe-Lysine	7,650	61,200	7,608	60,864	-42	TriMe-Lysine missing
d	18,693	∆Met, N-acetyl	18,603	18,603	18,692	18,692	89	Met remaining, N-acetyl missing
e	8,321	ΔMet	8,190	8,190	8,321	8,321	131	Met remaining
f	10,297	Δ Met, N-acetyl	10,208	10,208	10,297	10,297	89	Met remaining, N-acetyl missing
g	11,418	Δ Met, N-acetyl	11,328	11,328	11,417	11,417	89	Met remaining, N-acetyl missing
A6L	7,965		7,965	7,965	7,973	7,973	8	Unexplained error
F6	8,958		8,958	8,958	8,958	8,958		
6.8PL	6,834		6,834	6,834	6,834	6,834		
DAPIT	6,435	ΔMet	6,303	6,303	6,453	6,453	150	Unexplained error
OSCP	20,930		20,930	20,930	20,930	20,930		
Total mass for ATP synthase monomer				583,071		581,788		
Total mass for ATP synthase dimer				1,166,142		1,163,576		
Total mass for ATP synthase monomer reported in Chorev et al.						581,948		

Reference

Carroll, J. Fearnley, I. M., Wang, Q. & Walker, J. E. (2009) Measurement of the molecular masses of hydrophilic and hydrophobic subunits of ATP synthase and complex I in a single experiment. Anal. Biochem. 395, 249-255. Walker, J.E., Carroll, J., Altman, M.C. & Fearnley, I.M. (2009) Mass spectrometric characterization of the thirteen subunits of bovine respiratory complexes that are encoded in mitochondrial DNA. Meth. Enzymol. 456, 111-131.