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Abstract

Literature-based Discovery (LBD) aims to discover new knowledge automatically from
large collections of literature. Scientific literature is growing at an exponential rate,
making it difficult for researchers to stay current in their discipline and easy to miss
knowledge necessary to advance their research. LBD can facilitate hypothesis testing
and generation and thus accelerate scientific progress. Neural networks have
demonstrated improved performance on LBD-related tasks but are yet to be applied to
it. We propose four graph-based, neural network methods to perform open and closed
LBD.

We compared our methods with those used by the state-of-the-art LION LBD
system on the same evaluations to replicate recently published findings in cancer biology.
We also applied them to a time-sliced dataset of human-curated peer-reviewed biological
interactions. These evaluations and the metrics they employ represent performance on
real-world knowledge advances and are thus robust indicators of approach efficacy. In
the first experiments, our best methods performed 2-4 times better than the baselines in
closed discovery and 2-3 times better in open discovery. In the second, our best methods
performed almost 2 times better than the baselines in open discovery. These results are
strong indications that neural LBD is potentially a very effective approach for
generating new scientific discoveries from existing literature. The code for our models
and other information can be found at: https://github.com/cambridgeltl/nn for LBD.

Introduction 1

Literature-based Discovery (LBD) aims to discover new knowledge by connecting 2

information which have been explicitly stated in literature to deduce connections which 3

have not been explicitly stated. Its pioneer is Don Swanson who hypothesised that the 4

combination of two separately published results indicating an A-B relationship and a 5

B-C relationship are evidence of an A-C relationship which is unknown or unexplored. 6

He used this to propose fish oil as a treatment for Raynaud syndrome due to their 7

shared relationship with blood viscosity [1]. This hypothesis was later shown to have 8

merit in a prospective study [2] and he continually proposed other discoveries using 9

similar methods [3–5]. LBD comes in two flavours: open and closed discovery. In open 10

discovery, only the A is given and Cs are deduced using the various A-B-C relationships 11

in existence while in closed discovery the A and C are given and the goal is to quantify 12

the existence of relevant Bs. 13

LBD has evolved to involve using computers to discover many such connections 14

automatically from large collections of literature. Thus, it can facilitate both hypothesis 15
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testing and generation to give tangible support to scientific research [6, 7]. Scientific 16

literature is growing at an exponential rate [8], making it difficult for researchers to stay 17

current in their discipline. This, along with the increasing necessity of researchers to 18

specialize has led to an environment where discoveries in one area are not known 19

outside of it [9] and valuable logical connections between disparate bodies of knowledge 20

remain unnoticed [10]. This means there is a very real chance that knowledge which can 21

be combined to form or crystallise breakthrough-inducing hypotheses are dispersed 22

throughout the literature. LBD can help researchers to quickly discover and explore 23

hypotheses as well as gain information on relevant advances inside and outside of their 24

niches and increase interdisciplinary information sharing. Thus as the scientific 25

literature grows, the necessity for LBD as a research tool increases. 26

LBD has already been used to identify new connections between biomedical entities 27

and new candidate genes and treatments for illnesses [6] and to propose treatments for 28

Parkinson’s Disease and Multiple Sclerosis [11, 12]. It has seen use in drug development 29

and repurposing [13,14] as well as predicting adverse drug reactions [15, 16]. It has also 30

been used to propose new potential cancer treatments [17] and identify promising 31

research collaborations [18]. 32

The recently-released LION LBD system [19] reports state-of-the-art results in LBD. 33

It uses PubTator [20] for annotating PubMed scientific articles with concepts such as 34

chemicals, genes/proteins, mutations, diseases and species; as well as sentence-level 35

annotation of cancer hallmarks that describe fundamental cancer processes and 36

behaviour [21]. It uses co-occurrence metrics to rank relations between concepts and 37

performs both open and closed discovery. 38

Neural networks have been successful in related tasks such as Knowledge Discovery 39

and Natural Language Process (NLP) in recent years. Whether they can be used to give 40

improved results in LBD is unexplored (except for recent exploratory work by [22]). In 41

this paper we make two main contributions: four graph-based neural approaches to 42

LBD; and evaluations of them on two real-world biomedical datasets using informative 43

metrics. These datasets tested their ability to rank future published biomedical 44

discoveries: one is the Cancer Discovery dataset used by [19] and the other consisting of 45

human-verified, peer-reviewed biomedical interactions. 46

Related Work 47

Literature-based discovery (LBD) 48

LBD seeks to discover previously unknown associations or hidden links between pieces 49

of existing knowledge by analysing literature in an automated or semi-automated way 50

using various computational approaches and algorithms [23,24]. It has mostly been 51

deployed in the biomedical domain, but it has also been used outside of it as it has been 52

applied to research into developing water purification systems, accelerating development 53

of developing countries and identifying promising research collaborations [18,25,26]. 54

[1] defined the most basic and widespread type of LBD, called the ABC paradigm 55

because it centres around three concepts called A, B and C (e.g. [27–29]). It states that 56

if there is a connection between A and B and one between B and C, then there is one 57

between A and C which, if not explicitly stated, is yet to be explored. The ABC 58

paradigm has two types: open and closed discovery. 59

In open discovery, only A is given. The approach finds Bs and uses them to return 60

possibly interesting Cs to the user, thus generating hypotheses from A. With closed 61

discovery, the A and C are given to the approach which seeks to find the Bs which can 62

link the two, thus testing a hypothesis about A and C. 63

[30] distinguishes between traditional approaches and ’emergent’ paradigms which 64
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will define the field in the future (e.g. [31, 32]). One of the characteristics of these is 65

their use of techniques borrowed from other research fields including link prediction on 66

graphs and machine learning which offer different approaches to LBD and address its 67

problems. This work provides a blend by using the ABC paradigm but harnessing 68

machine learning models inspired by link prediction on graphs. 69

Evaluating LBD Systems 70

Evaluation is difficult in LBD for several reasons: disagreement about the role of LBD 71

systems in research and thus what makes a successful one; difficulty in determining how 72

useful, interesting or actionable a discovery is; and difficulty in objectively defining a 73

’discovery’, which hinders the creation of a standard evaluation set which quantifies 74

when a discovery has been replicated or found. Nonetheless, several methods have been 75

employed in previous work. 76

A popular methods used in LBD is to replicate previous discoveries [28, 33,34]. 77

These are usually LBD-based discoveries as they are relatively easy to quantify 78

compared to other discoveries. This means that there are only a handful of such 79

discoveries and there is a danger of designing approaches which are tuned to perform 80

well on these discoveries but do not generalise. In this evaluation, the literature before 81

the discovery to be replicated is used to generate a ranked list of discovery candidates as 82

target or linking terms. Success is measured by reporting the rank of the term(s) of 83

interest; the higher the rank, the better the approach. 84

Literature- or time-slicing involves splitting the existing literature at a point in time. 85

The approach is then exposed to the literature before the split and is evaluated by how 86

many of the discoveries in the later period it can discover. Unclear definition of a 87

discovery and an inability to determine if a discovery is wrong or simply new are 88

critiques of this approach. In the absence of a perfect gold standard, this approach 89

estimates it by finding instances of the defined relationships in the test set which are 90

not in the training set and can be reasonably inferred from it. This means that 91

evaluation depends on what constitutes a relationship for the given dataset. If a noisy 92

relationship is used, the evaluation will be easy to perform well on. Previous systems 93

have used term co-occurrences [35], relationships from external biomedical resources (e.g 94

SemMedDB) [32] and semantic relationships [36]. A high precision approach would be 95

to get expert opinion to generate the gold standard [37], but this is time-consuming, 96

expensive and tends to produce low recall rates. 97

The advantage of this evaluation is that it produces an indicator of an approach’s 98

performance on a large number of test instances. This raises the need for evaluation 99

metrics which can quantify performance on large, ranked lists. LBD works have used 100

metrics popular in Information Retrieval [38] which include Precision, Recall, Area 101

Under the Curve (AUC), Precision at k, Mean Average Precision (MAP) etc. 102

Proposing new discoveries or treatments goes beyond replicating past discoveries or 103

predicting time-sliced instances of a particular relationship and shows that a system is 104

capable of being used in realistic situations [13,33,39,40]. This is usually accompanied 105

by peer-reviewed publication in the domain or vetting by a domain expert. 106

Neural networks in the biomedical domain 107

While they are yet to be applied to LBD, the versatility of neural networks have been 108

shown in their application to a broad range of biomedical tasks. They have been used to 109

predict mental health conditions from tweets [41], recognise biomedical entities in 110

text [42,43], classify hallmarks of cancer in text [44] and predict links representing 111

Drug-Target Interactions (DTIs) and Protein-Protein Interactions (PPIs) in biomedical 112

graphs [45]. On the biomedical image front, they have been used for classifying 113
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biomedical images [46,47], segmenting 3D biomedical images [48] and segmenting and 114

enhancing cardiac images [49]. 115

An excellent recent overview of the use of neural networks in the biomedical domain 116

is [50]. They point out that beyond the well-known applications to diagnosis, neural 117

networks are increasingly being used to inform healthcare management decisions. 118

Node Representations as Embeddings 119

Graphs encode knowledge and can be processed to extract information which may not 120

be easily seen. For machines to process them, graphs must be represented in a useable 121

format, usually representing nodes as vectors of real numbers. Research on node 122

representation devises methods which can create representations which preserve the 123

original information in the graph. This information relates to the nature of the links 124

and are classified as first or second (or higher) order proximity [51,52]. Given two 125

nodes, first order proximity is concerned with the strength of the direct link between 126

them. Second order proximity compares their neighbourhoods and classes them as 127

similar if their neighbourhoods are similar. 128

The quality of a method depends on its ability to preserve the proximities of a graph 129

when creating representations. The node representations created by recent research 130

represents each node as a vector in a space where similar nodes are located close to each 131

other (node embeddings). There has been a proliferation of methods to create these 132

node embeddings from graphs and it would be unwieldy to include all of them in this 133

work. Comparisons between some of these can be found in [52]. We utilised a popular 134

method whose implementation is freely available online, supported weighted edges and 135

scaled to our large graphs: Large-scale Information Network Embedding (LINE) [51]. 136

LINE explicitly defines two optimization functions to capture the structure of the 137

graph. One captures first order proximity and the other captures second order 138

proximity. [51] report that training their model with each setting then concatenating the 139

outputs gives the best performance. 140

Materials and methods 141

Evaluation 142

Here we discuss the method of preparation of the datasets used for LBD and the metrics 143

used for evaluation. The datasets contain information on the year that each link in the 144

graphs was formed and the graphs were split by year of link formation for training and 145

evaluation. The methods were given the earlier links and asked to predict later links. 146

Cancer Case Discoveries 147

To facilitate direct comparison, we evaluate on the cases used in [19], which describes 148

them at length. For completeness, we provide a summary. They are a set of five triples 149

that represent specific recently-published discoveries (2011-2016) on the molecular 150

biology of cancer that could have potentially been suggested by an LBD system in the 151

past. They were selected and curated by cancer biologists. There are an additional five 152

pairs of discoveries proposed by Swanson. The B connection was not simple in the 153

Swanson cases so it was not possible to create triples to facilitate performing closed 154

discovery on those cases. The details of these can be found in the Supplementary 155

Document (S1 file) which accompanies this paper. 156

Each LBD approach is given a graph constructed only from literature up to five 157

years before the publication date of the discovery and the model is then given the A and 158

C nodes (in closed discovery) and asked to rank the B nodes. In open discovery it is 159
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given only the A node and asked to rank all nodes within two hops (the C nodes). The 160

approach’s performance is quantified using the rank of the gold response in the returned 161

list. 162

Time-slicing 163

The Cancer Discovery cases described above are strong evaluations for biomedical LBD 164

systems because showing how a system would have ranked a discovery later published in 165

a top-tier, peer-reviewed journal is a potent argument for its usefulness for LBD. 166

However, the dataset is unsuitable for machine learning because it does not provide a 167

development set to tune hyperparameters on; neither is it obvious how to create one. 168

This, in addition to its limited size prompt the need for additional evaluation methods 169

to gain a more generalised picture of performance of our approaches and models. 170

For this we choose a dataset which contained human-curated biomedical interactions 171

which were published in peer-reviewed journals (details in ”Datasets” Section). A graph 172

created from the interactions in this dataset is time-sliced. From the post cut-off 173

publication year, development and test sets are constructed. In some senses, this is not 174

as stringent an evaluation and it is not possible to do closed discovery with it, but this 175

provides robust additional evaluation of our open discovery approaches on a larger test 176

set which is more indicative of approach generalizability. 177

Metrics 178

The evaluation metrics are important when analysing the performance of ranking 179

systems. [19] reported median ranks over the groups of cases for the case discoveries. 180

For comparability, we also report this along with the mean over the cancer and Swanson 181

cases separately and combined. 182

For the time-sliced experiments, we additionally report MAP, Mean Reciprocal Rank 183

(MRR) and Mean R-precision. There are 2 reasons for this: there is great variance 184

between the amount of Cs which are ranked for each A so the mean rank can vary 185

widely, distorting the results; and these metrics, especially the latter 2, give higher 186

priority to correct scores ranked highly in the list, which is of importance in any ranking 187

problem but especially so for LBD where investigating each proposal is a costly 188

endeavour. Formal definitions of these evaluations are in Section 2 of the 189

Supplementary Document (S1 File) which accompanies this paper. 190

Baselines 191

The baseline approaches are those used by [19]. They are 8 co-occurrence metrics 192

accompanied by three aggregator functions and two accumulator functions (explained 193

later in this section). We present a condensed version here for completeness (names in 194

brackets are the shorthand they will be referred to going forward). More details can be 195

found in the referred paper: Section 3.3 and full details in its Supplementary 196

Information document. 197

• Co-occurrence count (Count): the number of sentences in which mentions of the 198

entities connected by the edge co-occur. 199

• Document count (Doc-count): the number of documents in which mentions of the 200

entities connected by the edge co-occur. 201

• Jaccard Index (Jaccard): the ratio of the size of the intersection over the size of 202

the union of the sets of sentences in which the entities occur. 203
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• Symmetric conditional probability (SCP): the product of the conditional 204

probabilities of one entity being mentioned in a sentence where another occurs. 205

• Normalized pointwise mutual information (NPMI): a measure of the independence 206

of the mention occurrence distributions, 207

• Chi-squared (χ2), Student’s t-test (t-test) and log-likelihood ratio (LLR) are 208

statistical tests measuring whether the mention distributions are independent of 209

each other. 210

A number of alternatives for the scoring functions operating over the edge weights 211

have also been implemented. For the aggregation function f(g), the alternatives min, 212

avg, and max are used. These functions assign the score for a path the minimum, mean, 213

and maximum respectively of the edge weights on the path. For the accumulation 214

function f(c), the choices sum and max are supported. When multiple paths lead to the 215

same node, the former sums the path score to obtain the node score while the latter 216

simply uses the maximum score. 217

We focus on only the best performing methods for the mean and median metrics and 218

report the relevant accumulator and aggregator functions in each experiment. 219

Neural Approaches 220

Two neural link prediction methods are used for closed discovery and another two for 221

open discovery. All approaches use node embeddings created with LINE with weighted 222

edges, where weights are calculated using Jaccard Index. The embeddings were induced 223

with the portion of the graph used for training, the pre-cutoff year period. The settings 224

used are in Section 3 of the Supplementary Document (S1 File). 225

For each of the approaches described here, five node combination methods are used 226

to determine how the nodes which constitute the link path are combined for input into 227

the model, so models ending in ’-A’ refer to approaches which use Average to do this, 228

’-C’ - Concatenation, ’-H’ - Hadamard, ’-W1’- Weighted-L1 and ’-W2’- Weighted-L2. 229

Closed Discovery neural model and approaches 230

In both of these approaches the model is a Multi-Layer Perceptron (MLP) which was 231

effective in the similar task of neural link prediction on biomedical graphs [45]. The 232

model contains a single hidden layer with ReLU [53] activation which led to a final layer 233

with Softplus activation to allow for unrestricted positive scores. The model is trained 234

as a classifier with the Cross Entropy loss. 235

As we use the model from [45], it is necessary to distinguish that work from this one. 236

That paper presents a neural architecture for classifying whether a link exists between 2 237

nodes using their node embeddings; such an approach is not ABC LBD as is the focus 238

of this paper. To perform ABC LBD the path(s) between A and C must be taken into 239

account, which link prediction as proposed in [45] is unconcerned with. In this paper, 240

the paths are taken into account in 2 different ways as reflected in the 2 approaches to 241

Closed Discovery whose descriptions follow. 242

CD-1: The neural model is used to provide a score for each A-B or B-C link in the 243

path. The scores are then used in aggregator functions as the baseline methods, so the 244

difference here is that a neural network produces a score for the link instead of using 245

one of the metric calculations described in ’Baselines’. 246

CD-2: In this approach, A-B-C embeddings are combined to create a single input 247

to the model which then predicts a score for the entire A-B-C link. This negates the 248

need for an aggregator function as in the baselines and CD-1 approach. This has the 249

additional benefit of making it trivially easy to calculate a score regardless of the length 250
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Fig 1. The Open Discovery 2 model.

of the path between A and C, by simply combining any additional node embeddings as 251

the initial 3 and passing it to the neural network. 252

Open Discovery neural models and approaches 253

The approaches used for open discovery are presented and explained here. 254

OD-1: The same model and a similar approach to CD-1 is used here: the neural 255

model is used to provide a score for each A-B or B-C link in the path from A to each 256

possible C. The scores are then used in aggregator functions. The difference in open 257

discovery is that here the scores are then also used in the accumulator functions to rank 258

different paths which lead to the same C. 259

OD-2: A Convolutional Neural Network (CNN) model is used to implement an 260

approach to open discovery which removes the need for aggregator and accumulator 261

functions. As in CD-2, all the node embeddings of a path are combined into a single 262

vector, however as this is open discovery, there will be many paths that lead to the same 263

C. To obtain a score which uses information from all these paths, the combined vectors 264

are stacked to create a window which we pass into a CNN which outputs a score 265

indicative of the strength of the A-C links. This is analogous to passing an image to a 266

CNN, but here the ’image’ is produced by stacking vector representations of ABC links. 267

The convolutional filter always slides down the stack of links, never across so that it 268

always covers the entire link. The ABC links to be stacked are combined using the same 269

5 link combination methods as mentioned above. 270

The reader will perhaps note that the CNN expects a fixed size input and the 271

amount of paths leading to a C will inevitably vary from case to case, creating varying 272

input sizes which could exceed a fixed window size. To deal with this, we combine 273

multiple windows into a single window using elementwise summation. As the total 274

number of links will not always be a multiple of the window size, zero padding is used to 275

fill any remaining gaps. For example: if a particular case has 175 paths and an input 276

size of 50 is used, we will be able to sum 3 windows of 50 and as there will be only 25 277

paths in the final input 25 more paths will be zero padded to the input to make it 50. 278

In this model, the input layer leads to a batchnormed convolutional layer with ReLU 279

activation units, then a max pooling layer then a fully connected layer before the final 280

layer with Softplus activation. Unlike the other models which are trained as classifiers, 281

this model uses a pointwise approach, employing Mean Squared Error (MSE) loss, to 282

learning the ranking function by using the Jaccard Index score of the AC link as the 283

multi-level ratings (see [54] for a more detailed description of this). The model is 284

depicted in Figure 1. 285

Datasets 286

The graphs we use were created from the following datasets. The graph details can be 287

found in Table 1. 288

Dataset Node Count Link Count Link Type
BioGRID 68,734 1,209,578 Published Interactions
PubTator ∼194,691 ∼12,797,468 Literature Co-occurrences

Table 1. Graph details (undirected link count)
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PubTator: 289

Biomedical entities recognised by PubTator mentioned in the titles and abstracts of 290

PubMed publications from 1873 to 2017 were used to create this dataset. A link exists 291

between two biomedical entities if they co-occur in a single sentence. The annotations 292

were downloaded on June 20th, 2017. Instances of ’hallmarks of cancer’ which identify 293

fundamental cancer processes, identified in text using [44] were also added to the graph 294

as entities. 295

Biological General Repository for Interaction Datasets (BioGRID): 296

This is an open database created from manually curating experimentally-validated 297

genetic and protein interactions that are reported in peer-reviewed publications [55]. 298

The latest release [56] includes over 1 million Genetic and Protein interactions across all 299

major organism species and humans. Links in this graph represent biomedical 300

interactions from published, experimentally-validated genetic and protein interactions. 301

We use version 3.4.167 of this dataset. 302

Experiments 303

As all approaches create ranked lists, the possibility of tied ranks exists. We use the 304

median of the tied range to determine the rank of a gold item with ties, for example a 305

gold ranked 10th with 10 ties is ranked the median of 10-20 range: 15th. 306

Details of neural approaches 307

Unlike the baseline models, the neural approaches need negative examples for training. 308

We create these by selecting either A-B or B-C links which did not form for a given A-C 309

or A-C connections which do not exist for models which operate on the entire link path 310

(i.e. CD-2 and OD-2). 311

All models are trained with batch size 100, training set size 200,000 for 150 epochs 312

with the Adam optimiser [57], but the model is evaluated on the case after every 5 313

epochs and the best performance reported. For the BioGRID experiments, because 314

evaluation is a lot more time-consuming, the models are evaluated every 25 epochs on 315

the development set and the best performing model on MRR is evaluated on the held 316

out test at the end. The CNN uses a learning rate of 10−5 while the MLPs use 10−4. 317

For CD-1, CD-2 and OD-1, there is a single hidden layer with 100 units. For OD-2, the 318

input height is 50 and the width is the size of the combined vector dimensions. The 319

convolution window height is 7 and the convolutional output size is 128. 320

Case Discoveries 321

We use the data from [19] directly, so that our results will be directly comparable. The 322

graphs are cut off at the relevant years before the publication date of the discovery. 323

Closed Discovery on Cancer Discoveries: For CD-1, the model is given the 324

A-B and B-C links and the scores it produces are used in the aggregator functions to 325

rank the Bs. For CD-2 the model is fed all the A-B-C links for the given A and C in 326

each triplet and the score it produces is used to rank the Bs. 327

Open Discovery for Cancer and Swanson Discoveries: For OD-1, the 328

model is given the A-B and B-C links and the scores it produces for each link were used 329

in the aggregator functions to produce a score for each path. The different paths which 330

lead to the same C are used in the accumulator functions to produce a score which is 331
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used to rank the Cs. For OD-2, the model is given all the A-B-C links for the given A 332

and C in each pair and the score it output is used to rank the Cs. 333

BioGRID 334

The graph is split at the year 2016. We randomly split the post-2016 links into 335

development and test sections. The development set is used to determine which epoch 336

has the best trained model for evaluation. Due to computational constraints, we have to 337

restrict the amount of nodes we could evaluate on. We randomly select 1,000 entities 338

from the test set to be A nodes and have the model score each node within two hops as 339

the Cs. The scores are then used to rank the Cs. Like the Swanson cases, it is not 340

possible to perform closed discovery on this dataset. 341

Results 342

The results of the neural approaches are the median ranks and mean ranks averaged 343

over five runs. The standard deviations reported are of the mean ranks. The results of 344

the baselines are simply the means of the method across all relevant cases (they were 345

not run multiple times as the neural approaches were as they are not subject to per-run 346

variances as the neural network methods are) and the standard deviations are over 347

those ranks. 348

The best score for a metric is in bold and the best for an approach is underlined. 349

We sought to determine what methods gave the lowest mean ranks and lowest variance, 350

measured by standard deviation. ’Metric’ refers to mean and median ranks. ’Approach’ 351

refers to the three approaches: Baselines (Jaccard, t-test etc.), neural discovery 352

approach 1 (CD-1, OD-1) and neural discovery approach 2 (CD-2, OD-2). Thus each 353

’metric’ column should have a bolded term and each approach category (delineated by 354

horizontal lines in the tables) should have an underlined term. 355

To increase clarity in the tables, we selected only the best results for each approach 356

to show here. Full experimental results can be found in Section 4 of the Supplementary 357

Document (S1 File). Where applicable, the accumulator and aggregator functions 358

(explained in the ”Baselines” section) are listed in the ”Details” column as ’Acc’ and 359

’Agg’ respectively. 360

Closed discovery on Cancer Discovery cases 361

The results for closed discovery performed on the five Cancer Discovery cases used to 362

evaluate LION are in Table 2. 363

Approach Mean Rank Std. Dev. Median Details
Jaccard 214.8 256.9 81.0 Agg: min
t-test 262.0 341.8 56.0 Agg: min
CD-1-A 86.3 52.0 93.8 Agg: min
CD-1-C 94.5 80.0 36.4 Agg: min
CD-2-C 48.7 19.5 42.0 -

Table 2. Closed discovery: Mean and Median ranks on the Cancer Discovery cases
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Open Discovery on Cancer Discovery and Swanson cases 364

Open discovery on Cancer Discovery cases 365

The results for open discovery performed on the five Cancer Discovery cases used to 366

evaluate LION are in Table 3. 367

Approach Mean Rank Std. Dev. Median Details
NPMI 60.2 54.4 36.0 Acc: sum, Agg: max
Count 367.4 553.3 15.0 Acc: sum, Agg: min
OD-1-C 93.4 145.8 31.4 Acc: sum, Agg: min
OD-1-A 218.3 368.7 26.8 Acc: sum, Agg: min
OD-2-H 31.1 11.9 12.2 -

Table 3. Open discovery: Mean and Median ranks on the Cancer Discovery cases

Open discovery on Swanson cases 368

The results for open discovery performed on the five Swanson cases used to evaluate 369

LION are in Table 4. 370

Approach Mean Rank Std. Dev. Median Details
Doc-Count 2,199.8 4,216.7 31.0 Acc: max, Agg: avg
t-test 3,956.4 7,899.3 5.0 Acc: max, Agg: avg
OD-1-H 3,558.3 7,930.7 19.2 Acc: sum, Agg: min
OD-1-C 3,721.4 8,306.7 4.0 Acc: sum, Agg: min
OD-2-H 1,013.4 167.9 17.6 -

Table 4. Open discovery: Mean and Median ranks on the Swanson cases

Open discovery on Cancer Discovery and Swanson Cases 371

The results for open discovery performed across the five Cancer Discoveries and five 372

Swanson cases combined are in Table 5. 373

Approach Mean Rank Std. Dev. Median Details
Jaccard 1,634.4 4,733.9 21.0 Acc: sum, Agg: min
Count 1,925.8 5,171.3 11.5 Acc: sum, Agg: min
OD-1-C 1,907.4 5,859.4 18.2 Acc: sum, Agg: min

OD-2-H 522.2 89.9 14.9 -

Table 5. Open discovery: Mean and Median ranks on all open discovery Cases

Open discovery on BioGRID published interactions 374

Results for open discovery performed on the BioGRID dataset. Performance across the 375

4 metrics explained in the ”Metrics” Section are in Table 6. 376

Discussion 377

Closed discovery on Cancer Discovery cases 378

The results of this experiment can be found in Table 2. The neural approaches 379

performed much better than the existing methods in these experiments. Rows 3 and 4 380
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Approach MR MRR R- Prec. MAP Details
Jaccard 1,197.3 2.19 2.47 2.86 Acc: sum, Agg: min
LLR 1,132.9 1.34 1.38 1.9 Acc: sum, Agg: max

OD-1-H 1,907.5 0.92 0.96 1.25 Acc: sum, Agg: max
OD-1-C 1,913.4 0.94 1.01 1.23 Acc: sum, Agg: max
OD-1-W2 1,908.3 0.92 0.98 1.26 Acc: sum, Agg: max
OD-2-C 1,113.1 3.42 4.73 5.46 -

Table 6. Open discovery on time-sliced BioGRID.

show that the performance doubled, by halving the mean ranks, simply by replacing the 381

baseline scoring metrics with a small neural classifier to provide the scores instead. It 382

almost doubled again by replacing the aggregation of individual path scores with 383

combining the vectors of the nodes involved in the path (row 5). Performance on the 384

median also increased though not as drastically. 385

Of note here is that the neural approach which dispelled with the aggregator 386

functions, instead opting to combine the inputs and obtaining a score for the entire 387

path, was the best performer on mean ranks and the second best performer on median 388

(row 5). This indicates that the information which the aggregator functions seek to 389

provide to an approach is better provided by combining the vector representations of 390

the nodes in the path. 391

Open Discovery on Cancer Discovery and Swanson Cases 392

Open discovery on Cancer Discovery cases 393

The results of this experiment can be found in Table 3. Despite the strong 394

improvements seen in closed discovery by simply replacing the baseline scoring metrics 395

with a neural classifier, that was not the case here for either mean or median rank (rows 396

3-4). However, the more complex CNN approach was able to produce results which 397

approximately doubled performance on mean rank from a strong baseline (row 5). It 398

also performed the best on median rank. 399

Analogous to the closed discovery experiments, the approach which dispelled with 400

aggregators and accumulators outperformed on mean ranks (row 5). Additionally, it 401

was the best median performer here, further validating it. 402

Open discovery on Swanson cases 403

The results of this experiment can be found in Table 4. A similar trend to the cancer 404

cases was shown here: simply replacing the baseline scoring metrics with a neural 405

classifier decreased performance on mean rank, although one such approach did perform 406

the best on median rank (rows 3-4). The strong performance of the CNN continued as 407

it again doubled performance on mean rank although it was only the third best on 408

median rank (row 5). The trend of the approach which dispelled with aggregators and 409

accumulators outperforming on mean ranks also continued. 410

Open discovery on both Cancer Discovery and Swanson cases 411

The results of this experiment can be found in Table 5. Given the results of the subset 412

experiments, it is not surprising that the CNN was the best performer across all open 413

discovery cases (row 4). Its performance on mean rank was approximately three times 414

better than that of the best baseline and it was the second best on median, although 415

the simple count baseline approach was the best. 416
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General open discovery 417

In addition to its strong performance across the cases (Tables 3, 4 and 5), the OD-2-H 418

approach is also the most stable as it showed the lowest variation in performance over 419

multiple runs of the best performing methods as measured by the standard deviation 420

shown in those tables. 421

A point in favour of the neural approaches over the baselines is their apparent 422

consistency in performance over the subsets of the cancer and Swanson cases. The 423

baseline methods which performed the best, shown in Tables 3, 4 and 5, varied while 424

the best neural approaches recurred, demonstrating their invariability to the vagaries of 425

the case subsets. 426

General case discoveries 427

Whether to use mean or median as average for these experiments is a valid question. [19] 428

reported median and we do the same to allow for comparison, but also report the mean 429

because we believe that it is better suited to this situation. The median is robust to 430

outliers and can give a more accurate picture of a system’s performance when an outlier 431

can radically affect the mean, as is the case with the Swanson cases used. However, the 432

aim of this research is to find an approach which will aid researchers on totally novel 433

data, so the worst-case performance of the system (even if it is rare) is of importance 434

and the aim should be to use methods which give the best results across all cases. Thus, 435

evaluating accurately should involve looking at performance in all available cases. 436

Median ignores not only outliers, but effectively all performances beyond the median 437

(approximately half the use cases). The argument can thus be made that the median 438

does not give an accurate reflection of an approach’s performance. 439

Taking mean as a preferable metric to median, the case of the neural methods is 440

strengthened as they were the best performers across all the case experiments. 441

Additionally, there was low variance among the best neural approaches. It was also 442

pleasing to find that approaches which dispelled with the cumbersome aggregator and 443

accumulator functions were the best. This indicates that when given the full path 444

information, the neural models are able to discern how best to use it to improve 445

performance. 446

It is also noteworthy that although methods which concatenated the node 447

representations performed well, there were other approaches whose performance were 448

comparable or better than it across these experiments. This is significant because unlike 449

the concatenate combination method, which increases the input size linearly with the 450

path length, the other node combination methods keep a fixed input size which makes 451

them indifferent to the amount of hops between A and C. This feature makes them 452

amenable to approaches to LBD beyond the simple two-hop ABC paradigm to the 453

n-hop AB1B2...BnC paradigm which it is generally agreed must be overcome for LBD 454

to reach its true potential. 455

Time-sliced BioGRID 456

The reasons for undertaking these experiments were explained in the ”Time Slicing” 457

Section and the reasons for the multi-faceted evaluation in the ”Metrics” Section. We 458

will make use of and expand on these here. 459

The data used in this experiment represent experimentally-validated, human-curated 460

interactions which were published in peer-reviewed publications. Thus the knowledge 461

proposed by using it is of high quality. Additionally, the evaluation is time-sliced which 462

is reflective of how knowledge discovery progresses in the real world and involves far 463
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more evaluation instances than a handful of cases, notwithstanding the very high 464

quality of the cases. 465

LBD across a large amount of possible positives is a ranking problem because its 466

proposals are usually costly to investigate. Thus priority should be given to approaches 467

which can rank correct new associations at the very top of the list even if they rank 468

more of them lower; the classic precision-recall trade-off. Performance too far down the 469

list can effectively be ignored: when experimentally validating new knowledge proposals, 470

whether it is ranked 200th or 900th is likely of little concern to a user; it is too far down 471

the list. 472

Metrics like MAP, MRR and R-precision place value on higher ranked true positives 473

but they do not do so equally. MAP and MRR are concerned with the entire list but 474

MRR punishes lower-ranked correct items more when the retrieval space is large as it 475

tends to be in LBD, especially open discovery. R-precision literally discards most of the 476

returned results and reports results only on the best. Thus performance on metrics like 477

R-precision and MRR give a better idea of the practical worth of an LBD system, 478

especially on open discovery. 479

The results of this experiment can be found in Table 6. The OD-2-C method we 480

introduce here performs approximately 1.5-1.9 times as good the baseline approaches on 481

these metrics, in addition to strong performance on MAP and mean rank (row 6). It is 482

a variant of the OD-2-H method which showed vastly better performance on the cases 483

experiments. The results here thus validates the OD-2 (CNN) approach to open 484

discovery we presented in the Section ”Open Discovery neural models and approaches”. 485

The role of the node embeddings in the superior performance of the neural network 486

methods may be difficult to isolate but we can surmise how they can contribute. The 487

node embeddings utilise both first order and higher order proximities which incorporate 488

information from a node’s wider neighbourhood than the baseline scoring methods 489

would. This additional information can aid in ranking a node and lead to improved 490

performance. 491

While there is still lots of room for improvement, these results are dependable and 492

demonstrate the potential for using neural networks to perform even traditional open 493

and closed discovery within the ABC paradigm. 494

Conclusion 495

LBD aims to discover new knowledge automatically from large collections of literature. 496

Scientific literature is growing exponentially, making it difficult for researchers to stay 497

current in their discipline. LBD can solve this problem by facilitating hypothesis testing 498

and generation to give tangible support to scientific research. 499

We proposed four neural network-based approaches to open and closed LBD. We 500

compared our methods with those used by a state-of-the-art LBD system to replicate 501

recently published findings in cancer biology and also applied them to a time-sliced 502

dataset of human-curated, peer-reviewed biological interactions. In both cases, our 503

methods showed a notable and significant improvement over the existing methods on 504

metrics adapted to the situation. 505

Although there is scope for much improvement, these results strongly demonstrate 506

the potential of using neural networks to perform open and closed LBD well within the 507

ABC paradigm and in some cases using only sentence-level co-occurrence relationships. 508

Combined with previous work on the viability of using neural link prediction for LBD, 509

they indicate that neural networks can significantly improve performance on the 510

increasingly important task of LBD. Immediate future work includes using the pairwise 511

approach to learning the ranking function for the CNN approach, using more advanced 512

graph embedding techniques to better capture the information present in graphs and 513
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applying attention to the neural approaches to determine which paths are contributing 514

the most to its performance. 515

Supporting information 516

S1 File. Supplementary Document Contains additional results and formal 517

definition of evaluation metrics which were left out of the paper in pursuit of conciseness. 518
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