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Abstract

Background

Identifying people at risk of cardiovascular diseases (CVD) is a cornerstone of preventative
cardiology. Risk prediction models currently recommended by clinical guidelines are
typically based on a limited number of predictors with sub-optimal performance across all
patient groups. Data-driven techniques based on machine learning (ML) might improve
the performance of risk predictions by agnostically discovering novel risk predictors and
learning the complex interactions between them. We tested (1) whether ML techniques
based on a state-of-the-art automated ML framework (AutoPrognosis) could improve CVD
risk prediction compared to traditional approaches, and (2) whether considering
non-traditional variables could increase the accuracy of CVD risk predictions.

Methods and Findings

Using data on 423,604 participants without CVD at baseline in UK Biobank, we developed
a ML-based model for predicting CVD risk based on 473 available variables. Our ML-based
model was derived using AutoPrognosis, an algorithmic tool that automatically selects and
tunes ensembles of ML modeling pipelines (comprising data imputation, feature processing,
classification and calibration algorithms). We compared our model with a well-established
risk prediction algorithm based on conventional CVD risk factors (Framingham score), a
Cox proportional hazards (PH) model based on familiar risk factors (i.e, age, gender,
smoking status, systolic blood pressure, history of diabetes, reception of treatments for
hypertension and body mass index), and a Cox PH model based on all of the 473 available
variables. Predictive performances were assessed using area under the receiver operating
characteristic curve (AUC-ROC). Overall, our AutoPrognosis model improved risk
prediction (AUC-ROC: 0.774, 95% CI: 0.768-0.780) compared to Framingham score
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(AUC-ROC: 0.724, 95% CI: 0.720-0.728, p < 0.001), Cox PH model with conventional risk
factors (AUC-ROC: 0.734, 95% CI: 0.729-0.739, p < 0.001), and Cox PH model with all
UK Biobank variables (AUC-ROC: 0.758, 95% CI: 0.753-0.763, p < 0.001). Out of 4,801
CVD cases recorded within 5 years of baseline, AutoPrognosis was able to correctly predict
368 more cases compared to the Framingham score. Our AutoPrognosis model included
predictors that are not usually considered in existing risk prediction models, such as the
individuals’ usual walking pace and their self-reported overall health rating. Furthermore,
our model improved risk prediction in potentially relevant sub-populations, such as in
individuals with history of diabetes. We also highlight the relative benefits accrued from
including more information into a predictive model (information gain) as compared to the
benefits of using more complex models (modeling gain).

Conclusions

Our AutoPrognosis model improves the accuracy of CVD risk prediction in the UK
Biobank population. This approach performs well in traditionally poorly served patient
subgroups. Additionally, AutoPrognosis uncovered novel predictors for CVD disease that
may now be tested in prospective studies. We found that the “information gain” achieved
by considering more risk factors in the predictive model was significantly higher than the
“modeling gain” achieved by adopting complex predictive models.

Introduction 1

Globally, cardiovascular disease (CVD) remains the leading cause of morbidity and 2

mortality [1]. Current clinical guidelines for primary prevention of CVD emphasize the need 3

to identify asymptomatic patients who may benefit from preventive action (e.g., initiation 4

of statin therapy [2]) based on their predicted risk [3–6]. Different guidelines recommend 5

different algorithms for risk prediction. For example, the 2010 American College of 6

Cardiology/American Heart Association (ACC/AHA) guideline [7] recommended use of 7

Framingham Risk Score [4], whereas the 2016 European guidelines recommended use of 8

the Systematic Coronary Risk Evaluation (SCORE) algorithm [8]. In the UK, the current 9

National Institute for Health and Care Excellence (NICE) guidelines recommend use of the 10

QRISK2 score to guide the initiation of lipid lowering therapies [9, 10]. 11

Existing risk prediction algorithms are typically developed using multivariate regression 12

models that combine information on a limited number of well-established risk factors, and 13

generally assume that all such factors are related to the CVD outcomes in a linear fashion, 14

with limited or no interactions between the different factors. Because of their restrictive 15

modeling assumptions and limited number of predictors, existing algorithms generally 16

exhibit modest predictive performance [11], especially for certain sub-populations such as 17

individuals with diabetes [12–15] or rheumatoid arthritis [3]. Data-driven techniques based 18

on machine learning (ML) can improve the performance of risk predictions by exploiting 19

large data repositories to agnostically identify novel risk predictors and more complex 20

interactions between them. However, only a few studies have investigated the potential 21

advantages of using ML approaches for CVD risk prediction, focusing only on a limited 22

number of ML methods [16,17] or a limited number of risk predictors [18]. 23

Here, we aim to assess the potential value of using ML approaches to derive risk 24

prediction models for CVD. We analyzed data on 423,604 participants without CVD at 25

baseline in UK Biobank, a large prospective cohort study in which participants were 26

recruited from 22 centers throughout the UK. We used a state-of-the-art automated ML 27

method (AutoPrognosis) to develop ML-based risk prediction models and evaluated their 28

predictive performances in the overall population and clinically relevant sub-populations. In 29

this paper, we do not focus on the algorithmic aspects of the ML methods involved and 30
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rather focus on their clinical application. Methodological details on our automated ML 31

algorithm can be found in our technical publication in [19]. 32

Materials and methods 33

Study design and participants 34

Participants were enrolled in the UK Biobank from 22 assessment centers across England, 35

Wales, and Scotland, during the period spanning from 2006 to 2010 [20]. We extracted a 36

cohort of participants who were 40 years of age or older and had no known history of CVD 37

at baseline. That is, patients with previous history of coronary heart disease, other heart 38

disease, stroke, transient ischaemic attack, peripheral arterial disease, or cardiovascular 39

surgery were excluded from the analysis. The total number of participants who met the 40

inclusion criteria was 423,604. The last available date of participant follow-up was Feb 17, 41

2016. UK Biobank obtained approval from the North West Multi-centre Research Ethics 42

Committee (MREC), and the Community Health Index Advisory Group (CHIAG). All 43

participants provided written informed consent prior to enrollment in the study. The UK 44

Biobank protocol is available online [21]. 45

The UK Biobank dataset keeps track of a large number of variables for each participant, 46

but most of those variables are missing for most patients. In order to include the maximum 47

possible number of (informative) variables in our analysis, we included all variables that are 48

missing for less than 50% of patients with CVD outcomes. This corresponded to a rate of 49

missingness of 85% for the entire population of participants. Our rationale for assessing 50

the missingness rate among patients with CVD is that missingness itself maybe informative 51

(i.e., the chance of a variable being missing may depend on the outcome). By excluding all 52

variables that were missing for more than 85% of the participants, a total of 473 variables 53

were included in our analysis. We categorized all variables in the UK Biobank into 9 54

categories: health and medical history, lifestyle and environment, blood assays, physical 55

activity, family history, physical measures, psychosocial factors, dietary and nutritional 56

information, and sociodemographics [22]. The (categorized) lists of variables involved in 57

our analysis are provided in the supporting information (S1 to S9 Tables). 58

Outcome 59

The primary outcome was the first fatal or non-fatal CVD event. A CVD event was 60

defined as the assignment of any of the ICD-10 diagnosis codes F01 (vascular dementia), 61

I20-I25 (coronary/ischaemic heart diseases), I50 (heart failure events, including acute and 62

chronic systolic heart failures), and I60-I69 (cerebrovascular diseases), or any of the ICD-9 63

codes 410-414 (ischemic heart disease), 430-434, and 436-438 (cerebrovascular disease). 64

Follow-up data was obtained from the hospital episode statistics (a data warehouse 65

containing records of all patients admitted to NHS hospitals), and the equivalent datasets 66

in Scotland and Wales [23]. 67

Models Tested 68

Framingham Risk Score 69

At the time of conducting this study, the UK Biobank had not yet released data on the 70

participants’ total cholesterol, HDL cholesterol and LDL cholesterol, which are used as 71

predictors in various established algorithms, such as Framingham score [4], ACC/AHA [24], 72

QRISK2 [9], and SCORE [5]. The Framingham score, however, provides an incarnation of 73

its underlying model based on nonlaboratory predictors, which replaces lipids with Body 74

Mass Index (BMI) [4]. Since BMI is currently collected for 99.38% of the UK Biobank 75

March 8, 2019 3/17



participants, we compared our model with the BMI version of the Framingham score. We 76

used the published predicting equations (beta-coefficients and survival functions) of the 77

BMI-based Framingham model developed in [4]. (Framingham risk calculator and model 78

coefficients are publicly available in: https://www.framinghamheartstudy.org.) 79

The Framingham score is based on 7 core risk factors: gender, age, systolic blood 80

pressure, treatment for hypertension, smoking status, history of diabetes, and BMI. All of 81

those variables were complete for the participants in the extracted cohort, with the 82

exception of systolic blood pressure (missing for 6.8% of the participants), and BMI 83

(missing for 0.62% of the participants). We used the MissForest non-parametric data 84

imputation algorithm [25] to recover the missing values. Using the MissForest algorithm, 85

we sampled 5 imputed datasets and averaged the model predictions for each participant on 86

the 5 datasets (this is known in the literature as Rubin’s rules [25]). The number of 87

imputed datasets was selected via cross-validation. 88

Cox Proportional Hazards Model 89

We evaluated the performance of two Cox Proportional Hazards (PH) models derived from 90

the analysis cohort: a model that only uses the traditional 7 risk factors used by the 91

Framingham score, and a model that uses all of the 473 variables in the UK Biobank. To 92

fit the Cox PH models, we imputed the missing data using the MissForest imputation 93

algorithm (with 5 imputations). The Cox PH model that uses the traditional 7 risk factors 94

used by Framingham score can be thought of as a variant of Framingham score calibrated 95

to the UK population (the Framingham score was originally derived for a US population). 96

For the Cox PH model that uses all of the 473 predictors, we applied variable selection 97

using the LASSO method [26]. (Variable selection was applied since fitting the Cox model 98

with all variables resulted in an inferior performance due to the numerical collapse of the 99

Cox model solvers in high dimensions.) To apply variable selection, we fit a LASSO 100

regression model (a linear model penalized with the L1 norm) to predict the (binary) CVD 101

outcomes. The fitted model gives a sparse solution whereby many of the estimated 102

coefficients are zero. We select all the variables with non-zero coefficients in the fitted 103

LASSO model and feed those variables into a Cox model fitted on the same batch of data. 104

We optimize the LASSO model regularization parameter via cross-validation. 105

Standard ML Models 106

We considered 5 standard ML benchmarks that cover different classes of ML modeling 107

approaches. The models under consideration are: linear support vector machines 108

(SVM) [27] (a linear classifier), random forest [28] (a tree-based ensemble method), neural 109

networks [29] (a deep learning method), AdaBoost [30] and gradient boosting 110

machines [31] (boosting ensemble methods). (We also attempted to fit a kernel SVM, but 111

fitting such a model was computationally infeasible for the UK Biobank cohort because it 112

entails a cubic complexity in the number of datapoints.) The purpose of including those 113

models in our experimental evaluations is to ensure that AutoPrognosis has automatically 114

selected and tuned the best possible ML model, and that no individually-tuned ML model 115

performed better than the model selected by AutoPrognosis. (We decided to include a 116

Gradient boosting model in retrospect because it was assigned the largest weight in the 117

ensemble formed by AutoPrognosis.) We implemented all these models using the 118

Scikit-learn library in Python programming language [32]. The models’ hyper-parameters 119

were determined via grid search. Data imputation for all models was conducted using the 120

MissForest algorithm (with 5 imputed datasets). (We have attempted other imputation 121

algorithms, such as multiple imputation by chained equations, but MissForest provided a 122

better predictive performance.) 123
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Model Development using AutoPrognosis 124

We developed an ML-based model for CVD risk prediction using AutoPrognosis, an 125

algorithmic framework for automating the design of ML-based clinical prognostic 126

models [19]. A schematic for the AutoPrognosis framework is provided in Fig 1. Given the 127

participants’ variables and CVD outcomes, AutoPrognosis uses an advanced Bayesian 128

optimization technique [33,34] in order to (automatically) design a prognostic model made 129

out of a weighted ensemble of ML pipelines. Each ML pipeline comprises design choices 130

for data imputation, feature processing, classification and calibration algorithms (and their 131

hyper-parameters). (Calibration means that the numerical outputs of a model correspond 132

to the actual risk of a CVD event. That is, an output prediction of 20% means that the 133

patient’s 5-year risk of a CVD event is 20%.) The design space of AutoPrognosis contains 134

5,460 possible ML pipelines (7 possible imputation algorithms, 9 feature processing 135

algorithms, 20 classification algorithms, and 3 calibration methods). The list of algorithms 136

that constitute the design space of AutoPrognosis is provided in Table 1. A detailed 137

technical and methodological description of AutoPrognosis can be found in our previous 138

work in [19]. 139

Fig 1. An illustrative schematic for AutoPrognosis. In this depiction, AutoPrognosis constructs an
ensemble of three ML pipelines. Pipeline 1 uses the MissForest algorithm to impute missing data, and then
compresses the data into a lower-dimensional space using the principal component analysis (PCA)
algorithm, before using the random forest algorithm to issue predictions. Pipelines 2 and 3 use different
algorithms for imputation, feature processing, classification and calibration. AutoPrognosis uses the
algorithm in [19] to make decisions on what pipelines to select and how to tune the pipelines’ parameters.

To train our model, we set AutoPrognosis to conduct 200 iterations of the Bayesian 140

optimization procedure in [19], where in each iteration the algorithm explores a new ML 141

pipeline and tunes its hyper-parameters. Cross-validation was used in every iteration to 142

evaluate the performance of the pipeline under evaluation. The (in-sample) model learned 143

by AutoPrognosis combined 200 weighted ML pipelines, the strongest of which comprised 144

the MissForest data imputation algorithm, no feature processing steps, an XGBoost 145

ensemble classifier (with 200 estimators) [35], and sigmoid regression for calibration. 146

Details of the model learned by AutoPrognosis is provided in the supporting information 147

(S10 Appendix). In the Results Section, we will directly refer to our model as 148

“AutoPrognosis”. 149

Variable Ranking 150

In order to identify the relative importance of the 473 variables used to build our model, 151

we use a post-hoc approach to rank the contribution of the different variables in the 152

predictions issued by the model. The ranking is obtained by fitting a random forest model 153

with the participants’ variables as the inputs, and the predictions of our model as the 154

outputs, and then assigning variable importance scores to the different variables using the 155

standard permutation method in [36]. Using the permutation method, we assess the mean 156

decrease in classification accuracy for every variable after permuting that variable over all 157

trees. The resulting variable importance scores reflect the impact each variable has on the 158

predictions issued by AutoPrognosis. We used the random forest algorithm for post-hoc 159

variable ranking because it is a nonparametric algorithm that can recognize complex 160

patterns of variable interaction while enabling principled evaluation of variable 161

importance [36]. Other variable ranking methods based on associative classifiers (such as 162

the one proposed in [19]) entail a computational complexity that is exponential in the 163

number of variables, and hence are not suitable for our study as it involves more than 400 164

variables. 165

To disentangle the “modeling gain” achieved by utilizing ML-based techniques from 166
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the “information gain” achieved by just using more variables, we created a simpler version 167

of AutoPrognosis that only uses the same 7 core risk factors (age, gender, systolic blood 168

pressure, smoking status, treatment of hypertension, history of diabetes, and BMI) used by 169

the existing prediction algorithms. In addition, we created another version of the 170

AutoPrognosis model that uses only non-laboratory variables in UK Biobank. 171

Table 1. List of algorithms included in AutoPrognosis.

Pipeline Stage Algorithms

Data Imputation • missForest • Median • Most-frequent

• Mean • EM • Matrix completion

• MICE • None

Feature process. • Feature agglomeration • Kernel PCA • Polynomial

• R. kitchen sinks • Fast ICA • PCA

• Select Rates • Nystroem • Linear SVM

Classification • Bernoulli NB • AdaBoost • Decision Tree

• Linear SVM • Gradient Boosting • LDA

• Gaussian NB • XGBoost • Extr. Random Trees

• Multinomial NB • Random Forest • Neural Network

• Light GBM • Logistic Regression • Gaussian Process

• Survival Forest • Bagging • k-NN

• Cox Regression • Ridge Classifier

Calibration • Sigmoid • Isotonic • None

MICE: multiple imputation by chained equations, EM: expectation maximization, PCA: principal

component analysis, ICA: independent component analysis, SVM: support vector machines, NB: Näıve

Bayes, NN: nearest neighbors, LDA: linear discriminant analysis, GBM: gradient boosting machine.

Statistical analysis 172

In order to avoid over-fitting, we evaluated the prediction accuracy of all models under 173

consideration via 10-fold stratified cross-validation using area under the receiver operating 174

characteristic curve (AUC-ROC). In every cross-validation fold, a training sample (381,244 175

participants) was used to derive the Cox PH models, standard ML models, and our model 176

(AutoPrognosis), and then a held-out sample (42,360 participants) was used for 177

performance evaluation. We report the mean AUC-ROC and the 95% confidence intervals 178

(Wilson score intervals) for all models. The calibration performance of our model was 179

evaluated via the Brier score. 180

Results 181

Characteristics of the Study Population 182

A total of 423,604 participants had sufficient information for inclusion in this analysis. 183

Overall, the mean (SD) age of participants at baseline was 56.4 (8.1) years, and 188,577 184

participants (44.5%) were male. Over a median follow-up of 7 years (5th-95th percentile: 185

5.7-8.4 years; 3 million person-years at risk), there were 6,703 CVD cases. The mean age 186

of CVD cases was 60.5 years (60.2 years for men and 61.1 years for women). Because the 187
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minimum follow-up period for all participants was 5 years, we evaluated the accuracy of 188

the different models in predicting the 5-year risk of CVD. At a 5-year horizon, the total 189

number of CVD cases was 4,801. 190

Prediction Accuracy 191

Comparison of Prediction Models 192

The prediction accuracy of the different models under consideration evaluated at a 5-year 193

horizon is shown in Table 2. We used the Framingham score as a baseline model for 194

performance evaluation (AUC-ROC: 0.724, 95% CI: 0.720-0.728). Both the Cox PH model 195

with the 7 conventional risk factors (AUC-ROC: 0.734, 95% CI: 0.729-0.739), and the Cox 196

PH model with all variables (AUC-ROC: 0.758, 95% CI: 0.753-0.763) achieved an 197

improvement in the AUC-ROC compared to the baseline model (p < 0.001). The 198

improvement achieved by the Cox PH model that uses the same predictors used by the 199

Framingham score is due in part to the fact that the Cox PH model is directly derived 200

from the analysis cohort, whereas the Framingham score coefficients were derived from a 201

different population. 202

Table 2. Performance of all prediction models under consideration.

Model AUC-ROC Absolute AUC-ROC Change

Framingham score 0.724 ± 0.004 Baseline model

Cox PH Model (7 core variables) 0.734 ± 0.005 + 1.0%

Cox PH Model (all variables) 0.758 ± 0.005 + 3.4%

Support Vector Machines 0.709 ± 0.061 - 1.5%

Random Forest 0.730 ± 0.004 + 0.6%

Neural Networks 0.755 ± 0.005 + 3.1%

AdaBoost 0.759 ± 0.004 + 3.5%

Gradient Boosting 0.769 ± 0.005 + 4.5%

AutoPrognosis (7 core variables) 0.744 ± 0.005 + 2.0%

AutoPrognosis (369 non-lab. variables) 0.761 ± 0.005 + 3.7%

AutoPrognosis (104 lab. variables) 0.735 ± 0.008 + 1.1%

AutoPrognosis (all variables) 0.774 ± 0.005 + 5.0%

The Framingham score is provided as the reference model for comparative purposes.

With the exception of support vector machines, all the standard ML models achieved 203

statistically significant improvements compared to the baseline Framingham score. 204

Furthermore, when compared to the Cox PH model that uses all variables, neural networks, 205

AdaBoost, gradient boosting, and AutoPrognosis all achieved a significantly higher 206

AUC-ROC. AutoPrognosis achieved a higher AUC-ROC compared to all other standard ML 207

models (AUC-ROC: 0.774, 95% CI: 0.768-0.780, p < 0.001), which suggests that the 208

automated ML system managed to automatically select and tune the ”right” ML model. 209

(The AutoPrognosis model trained on all variables was also well-calibrated, with an 210

in-sample Brier score of 0.0121.) Compared to the most competitive benchmark (the Cox 211

PH model that uses all of the variables), the net re-classification index (NRI) was +12.5% 212

in favor of AutoPrognosis. AutoPrognosis trained only with the 7 conventional risk factors 213

still outperformed the baseline Framingham score (p < 0.001). 214

Most of the variables in the UK Biobank are non-laboratory variables collected through 215
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an automated touchscreen questionnaire about lifestyle, clinical history and nutritional 216

habits. We evaluated the accuracy of AutoPrognosis once when it is trained with 369 217

variables corresponding to the participants’ self-reported information (questionnaires) only, 218

and once when it is trained with 104 variables obtained from blood assays, diagnostic tests, 219

and physiological measurements. As we can see in Table 2, AutoPrognosis with only 220

questionnaire-related variables still achieves a significant improvement over the baseline 221

Framingham score (AUC-ROC: 0.752, 95% CI: 0.747-0.757, p < 0.001), and is superior to 222

the model that only uses laboratory-based variables. 223

We also evaluated the survival prediction accuracy of all models under consideration 224

using the (right censored) time-to-event outcomes rather than the binarized outcomes at 225

the 5-year horizon. In this case, we used Harrell’s C-index for performance evaluation: 226

results are reported in Table 3. As we can see, the performance trends with respect to the 227

C-index resemble those in Table 2. 228

Table 3. Performance of the prediction models under consideration.

Model
C-index Absolute C-index Change

Framingham score 0.746 ± 0.004 Baseline model

Cox PH Model (7 core variables) 0.758 ± 0.004 + 1.2%

Cox PH Model (all variables) 0.777 ± 0.005 + 3.1%

AutoPrognosis (7 core variables) 0.765 ± 0.005 + 1.9%

AutoPrognosis (369 non-lab. variables) 0.781 ± 0.005 + 3.5%

AutoPrognosis (104 lab. variables) 0.756 ± 0.007 + 1.0%

AutoPrognosis (all variables) 0.791 ± 0.004 + 4.5%

Classification Analysis 229

In order to better assess the clinical significance of our results, we compared the 230

AutoPrognosis model with the traditional Framingham score in predicting 7.5% CVD risk 231

(threshold for initiating lipid-lowering therapies recommended by the NICE guidelines [10]). 232

At this operating point, the Framingham baseline model predicted 2,989 CVD cases 233

correctly from 4,801 total cases, resulting in a sensitivity of 62.2% and PPV of 1.5%. Our 234

AutoPrognosis model correctly predicted 3,357 out of the 4,801 CVD cases, resulting in a 235

sensitivity of 69.9% and PPV of 2.6%. This corresponds to 368 net increase in the number 236

of CVD patients who would benefit from receiving a preventive treatment in a timely 237

manner when utilizing the predictions of our model. 238

Variable Importance 239

Table 4 lists the 20 most important variables ranked according to their contribution to the 240

predictions of the AutoPrognosis model (along with their importance scores). Variables 241

related to physical activity (usual walking pace) and information on blood measurements 242

appeared to be more important for the predictions of AutoPrognosis than traditional risk 243

factors included in most existing scoring systems. For women, a remarkable predictor of 244

CVD risk was the measured “ankle spacing width”. This may be linked to symptoms of 245

poor circulation, such as swollen legs, which is predictive of future CVD events [37]. We 246

also found that usage of hormone-replacement therapy (HRT) was on the list of top 247

predictors of CVD risk for women. For men, blood measurements such as haematocrit 248

percentage and haemoglobin concentration, and variables such as urinary sodium 249

concentration were among the most important risk factors. 250
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Table 4. Variable ranking by their contribution to the predictions of AutoPrognosis.

Variable (Men) Score Variable (Women) Score

Age∗ 0.346 Age∗ 0.370

Smoking∗ 0.101 Smoking∗ 0.099

Usual walking pace 0.052 Usual walking pace 0.057

Systolic blood pressure∗ 0.040 Ankle spacing width 0.035

Microalbumin in urine 0.032 Self-reported health rating 0.030

High blood pressure 0.030 Systolic blood pressure∗ 0.026

Red blood cell distribution width 0.025 High blood pressure 0.024

Self-reported health rating 0.019 Red blood cell distribution width 0.023

Haematocrit percentage 0.014 Microalbumin in urine 0.017

Father age at death 0.014 Father age at death 0.017

BMI∗ 0.013 White blood cell count 0.011

Diastolic blood pressure 0.012 Number of Treatments 0.011

White blood cell count 0.012 Mean reticulocyte volume 0.008

Impedance of arm (left) 0.009 Leg predicted mass (right) 0.006

Haemoglobin concentration 0.007 Neutrophill count 0.006

Neutrophill count 0.005 Basal metabolic rate 0.005

Number of Treatments 0.004 Hormone-replac. therapy usage 0.005

Mean reticulocyte volume 0.004 Blood clot in the leg 0.004

Urinary sodium concentration 0.004 Forced expiratory volume 0.004

Monocyte count 0.004 Duration of fitness test 0.004

∗ Risk factors utilized by existing risk prediction algorithms.

Explanations for the different variables in this table are provided in S11 Appendix.

Prediction Accuracy in Individuals with History of Diabetes 251

Among the 423,604 participants included in our cohort, a total of 17,908 participants 252

(4.22%) had a known history of diabetes (either Type 1 or Type 2) at baseline. In Table 5, 253

we show the AUC-ROC performance of AutoPrognosis and the baseline Framingham score 254

when validated separately on the diabetic and non-diabetic populations. As we can see, 255

the baseline Framingham score was less accurate in the diabetic population (AUC-ROC: 256

0.578, 95% CI: 0.560-0.596) compared to its achieved accuracy for the overall population 257

(AUC-ROC: 0.724, 95% CI: 0.720-0.728, p < 0.001). On the contrary, AutoPrognosis 258

maintained high predictive accuracy for the diabetic population (AUC-ROC: 0.713, 95% 259

CI: 0.703-0.723). 260

The variable ranking for the diabetic sub-population is provided in Table 6. We note 261

that the list of important variables in the diabetic subgroup is substantially different from 262

that of the overall population. One major difference is that for diabetic patients, 263

microalbuminuria appeared to be strongly linked to an elevated CVD risk. In the overall 264

population (423,604 participants), the average measure of microalbumin in urine was 27.8 265

mg/L for participants with no CVD events, and 52.2 mg/L for participants with CVD 266

events. In the diabetic population (17,908 participants), participants with no CVD events 267

had an average microalbumin in urine of 61.0 mg/L, whereas for those with a CVD event, 268

the average microalbumin in urine was 128.76 mg/L. (Information on microalbumin in 269

urine was available for 30% of the patients in the overall population, and 50% of patients 270

in the diabetic population.) 271
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Table 5. Performance of AutoPrognosis in the diabetic patient subgroup.

Model AUC-ROC (No diabetes) AUC-ROC (Diabetes)

Framingham score 0.724 ± 0.004 0.578 ± 0.018

AutoPrognosis 0.774 ± 0.005 0.713 ± 0.010

Performance of AutoPrognosis and the Framingham score validated separately on a testing cohort of

diabetic patients (1,790 participants), and a testing cohort of non-diabetic patients (40,570 participants)

via 10-fold cross-validation. AutoPrognosis was trained using the entire training cohort that combines both

diabetic and non-diabetic individuals (381,244 participants).

Table 6. Variable ranking for the diabetic population.

Variable Score

Age 0.207

Microalbumin in urine 0.110

Usual walking pace 0.078

Smoking status 0.064

Systolic blood pressure 0.034

Red blood cell distribution width 0.027

Neutrophill count 0.018

Number of Treatments 0.018

High blood pressure 0.014

Urinary sodium concentration 0.014

Predictive Ability of Individual Variables in UK Biobank 272

In order to evaluate the individual predictive ability of the UK Biobank variables, we 273

exhaustively fitted simple versions of our AutoPrognosis model for each of the 473 variables. 274

For each such model, we use one distinct variable as an input and evaluate the resulting 275

AUC-ROC. Because most variables are correlated with age and gender, we use the age 276

variable as a second predictor for all models, and fit separate models for men and women. 277

The AUC-ROC values of the resulting models are depicted in the scatter-plot in Fig 2. 278

Fig 2. Predictive ability of the UK Biobank variables for men and women. Each point represents a
variable in the UK Biobank ordered by the ability to predict CVD events for men and women. Predictions
based solely on age achieved an AUC-ROC of 0.632 ± 0.003 for men and 0.665 ± 0.002 for women. We
report the AUC-ROC from models trained with individual variables in addition to age, and only display
variables that achieved a statistically significant improvement in AUC-ROC compared to predictions based
on age only. Each color represents a different variable category. Variables deviating from the (dotted gray)
regression line have an AUC-ROC that differs between men and women more than expected in view of the
overall association between the two genders, suggesting a stronger relative importance in one gender group.

As shown in Fig 2, variables related to smoking habits or exposure to tobacco smoke 279

displayed the highest predictive ability. Self-reported health rating was predictive for both 280

genders, but more predictive for women. Existence of long-standing illness was strongly 281

predictive of CVD events for women, and less predictive for men. Variables extracted from 282

the electrocardiogram (ECG) records possessed stronger predictive ability for men. 283
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Discussion 284

In this large prospective cohort study, we developed a ML model based on the 285

AutoPrognosis framework for predicting CVD events in asymptomatic individuals. The 286

model was built using data for more than 400,000 UK Biobank participants, with over 450 287

variables for each participant. Our study conveys several key messages. First, 288

AutoPrognosis significantly improved the accuracy of CVD risk prediction compared to 289

well-established scoring systems based on conventional risk factors and currently 290

recommended by primary prevention guidelines (Framingham score). Second, 291

AutoPrognosis was able to agnostically discover new predictors of CVD risk. Among the 292

discovered predictors were non-laboratory variables that can be collected relatively easily 293

via questionnaires, such as the individuals’ self-reported health ratings and usual walking 294

pace. Third, AutoPrognosis uncovered complex interaction effects between different 295

characteristics of an individual, which led to recognition of risk predictors that are specific 296

to certain sub-populations for whom existing guidelines were providing unreliable 297

predictions. 298

When can ML help in prognostic modeling? 299

The abundance of a large number of informative variables in the UK Biobank (473 300

variables) guarantees an “information gain” that can be achieved by any data-driven 301

model, including the standard Cox PH model, compared to the existing prediction 302

algorithms that use only a limited number of conventional risk factors (e.g., Framingham 303

score). The results in Table 2 show that, in addition to the information gain, 304

AutoPrognosis also attained a “modeling gain” that allowed it to outperform the standard 305

Cox PH model that uses all of the 473 variables. In general, the modeling gain achieved by 306

AutoPrognosis would result from its ability to select among different models with various 307

levels of complexity and numerical robustness in a completely data-driven fashion, without 308

committing to any presupposition about the superiority of any given model. In our 309

experiments, the Cox PH supplied with all of the 473 variables (without variable selection) 310

provided a noticeably poor performance (i.e., an average AUC-ROC of 0.6). This is 311

because the numerical solvers of the Cox PH model collapse when the data dimensionality 312

is very large — this is why a variable selection pre-processing step was essential for fitting 313

the Cox PH model. This implies that, even if the true underlying data model is perfectly 314

linear, fitting standard linear models such as Cox PH or linear regression may not be 315

sufficient for harnessing the information gain, since such models are not numerical robust 316

in high-dimensional settings. AutoPrognosis solves this problem by selecting more robust 317

models that better fit the high-dimensional data — in our experiments, these where 318

tree-based models such as XGBoost and random forests. This observation shows that 319

information gain and modeling gain are inherently entangled: to harness the information 320

gain, we need to consider a more complex modeling space. 321

While the information gain appeared to be more significant than the modeling gain in 322

our experiments, we note that even when provided with the same 7 core risk factors used 323

by the Framingham score, AutoPrognosis was still able to offer a statistically significant 324

AUC-ROC gain compared to the Framingham score and a Cox PH model that uses the 325

same 7 variables. This shows that the modeling gain is not necessarily limited to settings 326

where many predictors are available and numerical robustness, but is rather achievable 327

whenever a small number of predictors display complex interactions. 328

Because not every ML model would necessarily improve over the Framingham score or 329

the simple Cox PH model, our usage of the AutoPrognosis algorithm was essential for 330

realizing the full benefits of ML modeling. As the results in Table 2 demonstrate, some ML 331

models did not improve over the baseline Framingham score, whereas others provided 332

modest improvements. This is because selection of the right ML model and careful tuning 333
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for the model’s hyper-parameters are two crucial steps for realizing the potential benefits 334

of ML. AutoPrognosis automates those steps, which makes ML application easily 335

accessible for mainstream clinical research. The importance of model selection and 336

hyper-parameter optimization have been overlooked in previous clinical studies that applied 337

ML in prognostic modeling [16–18]. Our study is unique in that, to the best of our 338

knowledge, it is the first to carry out a comprehensive investigation of the performance of 339

ML models in a large cohort with such an extensive number of predictors. 340

Risk prediction with non-laboratory variables 341

Individuals in developed countries tend to seek out health information through online 342

resources and web-based risk calculators [38]. In developing countries, where 80% of all 343

world-wide CVD deaths occur [39], there are limited resources for risk assessment 344

strategies that require laboratory testing [39,40]. The results in Table 2 show that 345

AutoPrognosis could potentially provide reliable risk predictions by using information from 346

non-laboratory variables about the participants’ lifestyle and medical history. The most 347

predictive non-laboratory variables included in our model were ages, gender, smoking 348

status, usual walking pace, self-reported overall health rating, previous diagnoses of high 349

blood pressure, income, Townsend index and parents’ ages at death. Inclusion of such 350

variables in web-based risk calculators can help provide reasonably accurate risk predictions 351

when obtaining laboratory variables is not viable. 352

One remarkable finding in Table 2 (and Fig 2) is that apart from the well-established 353

age and gender risk factors, two other non-laboratory variables were found to be very 354

predictive of the CVD outcomes; those are the “self-reported health rating”, and the 355

“usual walking pace”. (Both variables were also found to be predictive of the overall 356

mortality risk in a recent study on the UK Biobank [22].) Neither of the two variables is 357

included in any of the existing risk prediction tools. Walking pace was equally predictive 358

for men and women, but the self-reported health rating was more predictive for women 359

and less for men. This may be explained by either gender-specific reporting bias or true 360

clinical differences. Therefore, prediction tools that would include subjective 361

non-laboratory variables, such as the self-reported health rating, should be carefully 362

designed in such a way that self-reporting bias is reduced. 363

Risk predictors specific to diabetic patients 364

Unlike the Framingham score, AutoPrognosis was able to maintain high predictive 365

accuracy for participants diagnosed with diabetes at baseline (Table 5). This suggests that 366

the AutoPrognosis model has learned diabetes-specific risk factors that were not previously 367

captured by the existing prediction algorithms. By investigating the risk factor ranking 368

within the diabetic subgroup (Table 6), we found that urinary microalbumin (measured in 369

mg/L) is a very strong marker for increased CVD risk among individuals with diabetes. 370

The dismissal of urinary microalbumin in existing risk scoring systems may explain their 371

poor prognostic performance when validated in cohorts of diabetic patients [12,13]. Our 372

results indicate that predictions based on AutoPrognosis can provide better guidance for 373

CVD preventive care in diabetic patients. 374

It is worth mentioning that the microalbumin in urine measures were available for only 375

125,406 participants in the overall cohort (29.6%). In a standard prognostic study, such a 376

variable may get omitted from the analysis because of its high missingness rate. 377

AutoPrognosis automatically recognized that this variable is relevant for diabetic patients, 378

and hence did not omit it in its feature processing stage. 379
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Limitations 380

The main limitation of our study is the absence of the cholesterol biomarkers (total 381

cholesterol, HDL cholesterol and LDL cholesterol) from the latest release of the UK 382

Biobank data repository, which hindered direct comparisons with the QRISK2 scores 383

currently recommended by the NICE guidelines. Furthermore, other blood-based 384

biomarkers have been reported to be associated with CVD risk, but were also not yet 385

released in the UK Biobank data repository, such as triglycerides [41], measures of 386

glycemia [42], markers of inflammation [43], and and natriuretic peptides [44]. Inclusion of 387

such predictors could improve the predictive accuracy of all models tested in this study, 388

and could also alter the risk predictors’ ranking in Table 2, but is unlikely to change our 389

conclusions on the usefulness of ML modeling in CVD risk prediction. 390

Another limitation of our study is that the UK Biobank cohort is ethnically 391

homogeneous: 94% of the participants were of white ethnicity. Hence, assessment of the 392

importance of ethnicity as a predictor of CVD events and the recognition of 393

ethnicity-specific risk predictors was not possible in our study. 394
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S4 Table List of variables on the participants’ dietary and nutritional information. 400

S5 Table List of variables on the participants’ physical measures. 401
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