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Abstract

We investigate how the underlying potential energy landscape for a tryptophan

zipper changes as indole rings, peptide bonds, termini and trigonal planar centres are

systematically grouped into local rigid bodies. The local rigid body framework results

in a substantial computational speedup by effectively reducing the total number of

degrees of freedom. Benchmarks are presented for the thermodynamics and folding

mechanism. In general, the melting transition, as well as the precise sequence of fold-

ing events, is accurately reproduced with conservative local rigidification. However,

aggressive rigidification leads to increased topological frustration and a concomitant

slowing down of the global kinetics. Our results suggest that an optimal choice of local

rigidification, and perhaps a hierarchical approach, could be very useful for investigat-

ing complex pathways in biomolecules.
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1 Introduction

Computer simulations continue to improve our understanding of protein folding.1–3 However,

the interplay of hierarchical length- and timescales poses a significant challenge to in silico

investigations. With standard techniques, conformational dynamics of proteins can only be

probed over relatively short timescales, which do not capture important biological processes.

Accordingly, advancements in computing code and hardware,4–6 sampling techniques7,8 and

energy functions9–11 have been actively pursued, to achieve longer spatio-temporal scales.12–14

Alternatively, some of the complexity may be mitigated by developing approaches that reduce

the number of degrees of freedom.15–17

Coarse-graining involves reducing the degree of detail used to describe a system. Nu-

merous coarse-grained (CG) models have been proposed and implemented for biomolecules,

with varying levels of success.18–26 In one approach, amino acid side-chains and α-helices

are represented as spheres and cylinders respectively;18 in elastic network models20,27 amino

acid residues are reduced to beads interacting via inter-residue potentials. Structure-based

potentials, such as Gō models,19,28 lead to smoother landscapes, which may assist structure

prediction. In these models, native-like structures are faithfully represented, while competing

structures on the protein energy landscapes are penalized. Over the last decade, much effort

has been expended on deriving multiscale procedures29–31 for simulating biomolecules. These

methods aim to capitalize on both the efficiency of coarse-graining and the detail present in

fully atomistic computations. However, multiscale procedures rely on extensive statistical

analysis and structural data obtained from ab initio computations and experiments; hence,

success is based on the extent to which the models have been parametrized and optimized.

Consequently, these approaches can be quite system specific and transferability between

unrelated structures may be an issue.

Here we adopt a different route, based on the local rigid body (LRB) framework,32–35 to

address some of the inherent difficulties in modeling biomolecules. This framework has been

benchmarked for structure prediction of model peptides using all-atom potentials34 and, in
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the current contribution, we extend it to explore the global thermodynamics and mechanics

of peptide folding. Local rigidification exploits the separation of timescales15–17,36,37 between

low frequency modes and localized, fast vibrations, which suggests that specific units within

the protein can be described as rigid bodies. As a result of rigidification, the number of sta-

tionary points (minima and transition states) on the potential energy surface is significantly

reduced, resulting in substantial computational speedup.34 Despite the reduction in the total

number of degrees of freedom, local rigidification preserves the full atomistic resolution, and

thus the resulting interatomic interactions. Hence it might be viewed as a coarse-graining of

the energy landscape, rather than the potential energy function.

In the present work, we provide systematic benchmarks for tryptophan zipper 1 at differ-

ent levels of local rigidification. Our results indicate that a suitable choice of local rigidifica-

tion can capture the underlying physics of protein folding, and faithfully represent the global

features of the energy landscape — preserving key aspects of an unconstrained description

of the protein. We believe that this framework will present new opportunities for exploring

the structure, dynamics and thermodynamics of biomolecules.

2 Methodology

Deciphering the folding pathway for large proteins necessitates a detailed understanding of

how elementary structures, such as β-hairpins, are formed. The β-hairpin is the simplest

β-structural element, composed of two hydrogen-bonded antiparallel strands connected by a

short turn. Many of the fundamental characteristics of protein folding are represented in β-

hairpin formation, such as hydrogen-bond and hydrophobic core stabilization, and a distinct

funneled energy landscape.38,39 Therefore, β-hairpins are good candidates for benchmarking

new protein folding simulation methods.
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Figure 1: NMR structure for the tryptophan zipper 1 (TZ1; PDB code: 1LE0) showing the
characteristic stacking of indole rings.

In this study we focus on the tryptophan zipper 1 (TZ1). TZ1 is one of the family of

12-residue β-hairpins designed by Cochran and coworkers.40 The peptides are monomeric

and adopt a well-defined tertiary structure with a unique structural motif termed a ‘trpzip’:

cross-strand tryptophan residues interlock in a zipper-like fashion, resulting in a stable native

state. In addition to their small size, the peptides fold on the microsecond timescale,41

making them accessible in fully atomistic simulations.

The NMR structure for TZ1 is shown in Figure 1. It has a type II′ turn (turn sequence

EGNK) flanked on either side by the WTW triad, and terminated by serine and lysine

residues. TZ1 was represented by the AMBER99SB42 potential energy function and the

GBOBC solvation potential.43 We employ an implicit solvent representation to avoid convo-

lution with explicit solvent degrees to freedom, which would make some of our conclusions

less definitive. Since the peptide is charged, a salt concentration of 0.1 M was maintained to

represent mobile counterions in solution.44 No periodic boundary conditions were imposed

on the system, and no cutoffs were set for non-bonding interactions. For calculation of effec-
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tive atomic Born radii a cutoff of 25 Å was used. The AMBER potential was symmetrized,

as described by Malolepsza et al.,45 so that interconvertible permutational isomers have the

same energy.

2.1 Local Rigid Body Framework

Local rigidification involves grouping sets of atoms into rigid units, each with six remain-

ing degrees of freedom: three translations and three rotations. Rigid body representations

have been exploited in many areas, including molecular dynamics simulations with explicit

water,46 structure prediction of organic compounds47,48 and water clusters,33,35,49 protein-

protein docking50,51 and self-assembly of virus capsids.32,52

2.1.1 Definitions

In the present work, rigid body translational degrees of freedom (XI) are defined by Cartesian

coordinates of the centre of geometry,

XI =
1

nI

nI∑
i∈I

xi, (1)

where the number of atoms in rigid body, I, is given by nI . The orientation of a local rigid

body, relative to a fixed reference structure, is described using angle-axis variables:32–35

pI = θIp̂I , (2)

where pI is a rotation vector, characterizing the angle, θI , and axis, p̂I , of rotation.32,33 Rigid

body reference coordinates are usually obtained from the global minimum of the potential

energy surface, corresponding to the unconstrained representation.34

Using the local rigid body (LRB) approach, the coordinate space for the peptide was rede-

fined in terms of mixed (atomistic and rigid body) coordinates, {x1, ..,xn,X1, ..,XN ,p1, ...,pN};

n is the number of unconstrained atoms in the peptide and xn represents the atomistic co-
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ordinates of the nth free atom; N is the number of LRBs and {XN ,pN} are the rigid body

coordinates of the Nth rigid body. This implementation leaves the potential energy function

unchanged, although there is no need to include terms corresponding to sites in the same

rigid body. To compute the potential energy of the system using an all–atom force field,

we must be able to map the rigid body coordinates to the atomistic ones. Accordingly, the

rotation vector pI is used to construct a rotation matrix (RI),
53 which can be applied to

the reference structure of the rigid body (x0
i∈I) to obtain the atomistic coordinates:

xi∈I = XI + RIx
0
i∈I . (3)

2.1.2 Groupings and Schemes

Suitable LRB groupings can be suggested from principal component analysis,54,55 approaches

developed from graph theory,56,57 or some other metric. In this study, the LRB groupings for

TZ1 were adopted from previous work;34 namely, tryptophan rings, peptide bonds, termini

and trigonal planar centres (Figure 2).

(a) tryptophan ring

(b) peptide
bond

(c) termini
(d) trigonal planar
centres

Figure 2: Local rigid bodies considered for tryptophan zipper 1.

These groupings were used to define several local rigidification schemes, outlined in Figure

3. The TZ1 model peptide contains 220 atoms, and the number of degrees of freedom for

the unconstrained representation is therefore 660. In scheme I, aromatic rings in tryptophan

residues were grouped as LRBs; the benzene and pyrrole components in each indole ring

were treated separately to allow for slight bending motions. Hence, each peptide in this

6



scheme contains eight LRBs (≈ 20 percent of the atoms) and 160 unconstrained atoms

(8 × 6 + 160 × 3 = 528 degrees of freedom). Thus, scheme I represents conservative local

rigidification, since only a small percentage of atoms were constrained. Conversely, scheme

III represents a more aggressive scheme — with about 60 percent of the atoms grouped as

LRBs (25× 6 + 89× 3 = 417 degrees of freedom).

U – unconstrained

?

I —TRP rings

?

II – TRP rings, peptide bonds

?

III – TRP rings, peptide bonds,
termini, trigonal planar centres

Figure 3: Systematic application of local rigidification for trptophan zipper 1. For U no local
rigid bodies were used; for schemes I to III, increasingly larger subsets of the peptide were
locally rigidified.

2.2 Potential Energy Landscapes with LRBs

The local rigidification was applied within the framework of potential energy landscape

theory.58 Conceptually, the potential energy surface (PES) supports the local minima and

the transition states that connect them. Local minima are defined as stationary points

where all the non-zero normal mode frequencies are real, while transition states are defined

as stationary points with one imaginary normal mode frequency.59 These stationary points

constitute a kinetic transition network (KTN), from which the global thermodynamics and

kinetics may be extracted. The complexity of the PES increases as the system size grows.

Hence, a LRB formalism becomes appealing; since this approach effectively reduces the

number of stationary points on the PES, leading to increased computational efficiency.
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2.2.1 Energy Minimizations

Energy minimizations were performed using a customized L-BFGS algorithm,60,61 in the

mixed coordinate space. This approach has the advantage of reducing the number of mini-

mization steps required for convergence.34 Rühle et al.35 have developed a method for com-

puting the energy gradients with respect to generalized coordinates (mixed or atomistic),

hence providing a convenient means of measuring convergence, which is invariant to coordi-

nate transformations, as it should be.35

2.2.2 Building Kinetic Transition Networks

Appropriate initial endpoints for the reactant (A) and product (B) were first chosen. Here,

a denatured peptide (obtained from an MD simulation at 330 K), with a high occupation

probability in the vicinity of the experimental melting temperature,40 was selected as the

reactant. The product was represented by the global minimum of the potential energy surface

(obtained by basin-hopping global optimization)58,62,63 corresponding to the unconstrained

peptide.

Once the endpoints were selected, the LRB scheme provided the rigid body groupings for

the endpoints, which were then represented using mixed coordinates. The doubly-nudged64

elastic band65,66 (DNEB) procedure was then used to locate transition state candidates,

which were converged further using hybrid eigenvector-following (HEF).67,68 Transition states

were subsequently connected to minima by following approximate steepest-descent paths par-

allel and antiparallel to the unique downhill direction. Both the DNEB and transition state

refinement methods have been reformulated for use in the generalized coordinate space.35

Iterative DNEB/HEF searches39,69,70 eventually provided a global survey of the potential en-

ergy surface. All these procedures are implemented in the OPTIM71 and PATHSAMPLE72

programs, which are available for use under the GNU General Public License.
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2.2.3 Depicting Potential Energy Landscapes

Disconnectivity graphs73,74 were used to visualize the potential energy landscapes. At a given

energy threshold, minima are grouped into disjoint sets (‘superbasins’), where members of

can interconvert without exceeding the threshold. Hence, in disconnectivity graphs, ‘state–

to–state’ transitions of reaction pathways are replaced by ‘basin-to-basin’ transitions.

2.3 Thermodynamic Calculations

The partition function for the model peptide, Z(T ), was computed as a sum of contributions

from the basins of attraction of local minima,
∑

α Zα(T ), in the stationary point database.

A harmonic approximation was used to estimate the vibrational partition function of each

minimum,75

Zα(T ) =
nα exp(−Vα/kBT )

(hv̄α/kBT )κ
; (4)

Vα is the potential energy of minimum α, nα is the number of distinct permutational isomers

of α, v̄α is the geometric mean vibrational frequency and κ is the number of vibrational

degrees of freedom.58,75 Equilibrium statistical mechanics was then used to estimate the free

energy, as well as the heat capacities, from the molecular partition function. Vibrational

frequencies were computed using normal mode analysis, and within the local rigid body

framework these are evaluated for the generalized coordinates by including the appropriate

metric tensor.35 Additionally, we can adapt the normal mode analysis to scale favorably with

system size, by utilizing a sparse Hessian approach for larger biomolecules.

Generally, the harmonic approximation holds at low temperatures, and reliable estimates

of the density of states of low-lying minima can be obtained. However, at higher tempera-

tures, where vibrational modes are softer and anharmomic effects become more significant,

corrections are needed. These can be added by employing methods such as the reaction path

Hamiltonian superposition approach (RPHSA).75 Nonetheless, we reckon that a consistent

use of the HSA here is sufficient for comparing the global thermodynamics within the various
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LRB schemes.

3 Results and Discussion

We begin by characterizing the unconstrained TZ1 peptide. Locally rigidified potential en-

ergy landscapes are then constructed, and their resulting topological properties are compared

to those of the unconstrained representation. Next, the effects of local rigidification on the

thermodynamic properties of TZ1 are assessed further by systematically evaluating the heat

capacity corresponding to the various TZ1 models. Finally, we discuss how the predicted

folding pathways are affected by local rigidification.

3.1 Potential Energy Landscapes

Figure 4 illustrates the potential energy landscape corresponding to the unconstrained TZ1

peptide. The landscape exhibits a prominent funnel-like bias towards the global minimum.

Each branch on the potential energy (PE) disconnectivity graph represents a minimum on

the PES and is colored based on the value of two order parameters, L and S. The structural

order parameter L, defined by Snow et al.41 in a previous study on the kinetics of tryptophan

zippers, represents the sum of the inner native hydrogen-bond lengths and the distances

between adjacent TRP rings.41 L therefore measures the degree of compaction and can be

used to distinguish between compact and extended/denatured peptides. We also define an

order parameter S, which describes the orientation of the TRP rings with respect to the

TZ1 backbone. Two dihedral angles d1 (TRP4:CZ2–TRP9:CA–TRP4:CA–TRP9:CZ2) and

d2 (TRP2:CZ2–TRP11:CA–TRP2:CA–TRP11:CZ2) were computed and, based on the sign

of these angles, S was assigned a value of either +1 (d1, d2 positive ) or −1 (d1 or d2

negative). This order parameter was mainly used to identify folded/partially folded states

on the TZ1 landscape with indole rings exhibiting non-native stacking (i.e S–value of −1

for rings on opposite faces of the hairpin or with reversed stacking compared to the native
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arrangement).

m1

m2

m3

m4

m5

m6

2 kcal/mol

Figure 4: Potential energy disconnectivity graph for the unconstrained TZ1 peptide (∆E =
2 kcal/mol). The branches are colored based on order parameters L (the sum of the four
inner native hydrogen-bond lengths and the distances between the CD2 atoms of the three
TRP pairs) and S (the orientation of the TRP rings — refer to text for description). The
three main morphologies are: blue denoted F1 (L < 60 Å, S–value = +1), green denoted F2
(L < 60 Å, S–value = −1), red denoted F3 (all other minima).

The L and S values were together used to visualize the organization of different minima
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on the PE landscape. Three interspersed groups of minima were identified in the graph:

F1 consists of structures with partial or complete hairpin architectures, with all TRP rings

oriented on one face of the hairpin (m2, m6, m5). Several minima in F1 have all four inner

native hydrogen-bonds intact; these structures constitute the bottom of the major funnel and

include the global minimum (m5). F2 corresponds to conformational ensembles exhibiting

some hairpin structure, but with indole rings lying on both faces (m3, m4). These hairpins

can be characterized as competing structures which lead to topological frustration. Yang and

Gruebele demonstrated that such structures act as kinetic traps,76 since the reorientation of

TRP rings requires that existing hydrogen-bonds must be broken and then reformed. These

processes are generally associated with high energy barriers. Consequently, several hairpins

in F2 are arranged in distinct subfunnels on the landscape. The final group, F3, consists

of structures with residual β-hairpin content and minimal native contacts. Members of this

group are located in the higher potential energy regions, where most denatured peptides

reside (m1).

In addition to the main end points (m1 and m5), structures in each of the PE groups

described above provided useful targets for building KTNs with local rigidification. Accord-

ingly, initial folding paths, starting from the unfolded peptide and selected structures in each

of the PE groups, were constructed within each of the LRB schemes. At each level of local

rigidification, the resulting pathways were combined to yield a stationary point database.

Minima and transition states on the unconstrained landscape were also re-optimized at the

appropriate level of local rigidification and added to the corresponding database. Upon con-

vergence of the folding rate constants, each stationary point database was analyzed using

the same metrics as described in Figure 4.
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ΔE

(a) unconstrained peptide

ΔE

(b) I – TRP rings rigidified

12481

ΔE

(c) II – TRP rings, peptide bonds rigidified

ΔE

(d) III – TRP rings, peptide bonds, termini,
trigonal planar centres rigidified

Figure 5: Potential energy disconnectivity graphs for TZ1 (∆E = 2 kcal/mol) at different
levels of local rigidification. The branches are colored based on order parameters L and S, as
in Figure 4. The three main PE conformational groups are: blue — F1 (L < 60 Å, S–value
= +1), green — F2 (L < 60 Å, S–value = −1), red — F3 (all other minima), as described
in the text.
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Comparing the disconnectivity graphs in Figure 5, depicting the PE landscapes of TZ1

from the unconstrained representation up to aggressive local rigidification, reveals several

systematic trends:

• Potential energy range — the PE range for all four graphs is similar, with a differ-

ence of approximately 64 kcal/mol between the highest and lowest transition states

(Supporting Information: Figure 2). Local rigidification does, however, lead to a slight

increase in barrier heights. For example, the highest and lowest transition states on

the unconstrained landscape lie at −390.0 and −453.8 kcal/mol respectively, while the

corresponding transition states on the most rigidified landscape lie at −388.3 and

−452.7 kcal/mol. The range of energies covered by local minima on the various land-

scapes is comparable; on the unconstrained landscape the PE range is 50 kcal/mol,

while local minima on the PE landscape for schemes I, II and III cover a range of 51,

57 and 54 kcal/mol, respectively.

• Structural heterogeneity – a diverse collection of local minima, with varying geometric

rms deviations from the global minimum (Supporting Information: Figure 3), is iden-

tified in each scheme. The three PE groups identified for the unconstrained potential

energy landscape are also present on the locally rigidified landscapes. Hence, we find

that upon reoptimization most local minima on the unconstrained landscape are re-

covered on the rigidified landscapes, and the structural heterogeneity of the folding

subspace is largely preserved with local rigidification. This result supports previous

findings,34 where a strong correlation was found between unconstrained and locally

rigidified local minima for TZ1. This correlation is very important if the approach is

to be useful.
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Figure 6: Surface roughness of the potential energy landscape of TZ1 (∆E = 2 kcal/mol)
corresponding to the unconstrained representation (U), and locally rigidified representations
(I – TRP rings, II – TRP rings and peptide bonds, III – TRP rings, peptide bonds, termini,
trigonal planar centres). The surface roughness is the variation with energy in the roughness
density, defined as the quotient of the percentage of minima that branch off at a particular
energy level and the threshold, ∆E, used for the superbasin analysis.

• Surface roughness – Levy and Becker presented an account of how disconnectivity

graphs may be used to assess surface roughness for energy landscapes.77 In their treat-

ment, the roughness density is taken as the quotient of the percentage of minima that

branch off a given energy level and the energy threshold used for the superbasin anal-

ysis. We computed this property for our disconnectivity graphs (Figure 6). On the

unconstrained landscape and the locally rigidified landscapes corresponding to schemes

I and II, the maximum roughness occurs around 30 kcal/mol above the global minimum.
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The overall surface roughness for scheme II is comparable to the reference landscape;

however, there is a significant increase in the roughness density in the lower energy

region of the disconnectivity graph when only TRP rings are locally rigidified. Con-

servative local rigidification creates a small initial bias to the folded state, which leads

to increased sampling of native-like conformations (most minima around 10 kcal/mol

above the global minimum are in F1). For scheme III, maximum surface roughness oc-

curs closer to the global minimum (about 20 kcal/mol above) and the overall roughness

is somewhat greater than that observed for the other schemes.

• Overall connectivity — as larger subsets of TZ1 are locally rigidified, the number of

prominent subfunnels in the landscape generally increases. The inherent reduction

in local flexibility, which is associated with the LRB framework, leads to decreased

connectivity among structurally dissimilar minima. With aggressive local rigidification,

scheme III, the extensive reduction in local flexibility results in increased frustration

in the landscape and a dramatic change in the connectivity of basins within the F1

group (Figure 5d).

3.2 Thermodynamics of Folding

The free energy (FE) landscape,78,79 computed at 298 K using harmonic vibrational densities

of states, for the unconstrained and locally rigidified systems reveals similar trends to those

observed for the PE surfaces, although there is some difference in the ordering of minima

when entropy is considered (Supporting Information: Figure 4). Here we are considering

free energies for individual potential energy minima, without further regrouping. To gain

further insight into the effects of local rigidification on the folding thermodynamics of TZ1,

we evaluate the heat capacity and compare the predicted melting temperature of TZ1 within

the various LRB schemes (Figure 7).

The melting temperature (Tm) is an important thermodynamic property for proteins, as

it is often used as measure of protein stability. Hence a good model should aim to reproduce
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Tm. The temperature dependent equilibrium occupation probabilities of the folded and

unfolded ensembles should then also be reasonably well reproduced, which translates to

preservation of the main basins of attraction and phase volumes on the energy landscape

when local rigidification is applied.

Figure 7: Constant volume heat capacity curves for TZ1 at various levels of local rigidifica-
tion: unconstrained — no local rigid bodies; I — TRP rings, II — TRP rings and peptide
bonds, III — TRP rings, peptide bonds, termini, trigonal planar centres treated as rigid
bodies. The heat capacities are divided by the appropriate total number of degrees of free-
dom (DOF) and the melting temperature of the unconstrained peptide, TUm , is indicated.
The global minimum structures of the free energy surface, computed at low (0.48 kcal/mol)
and high (0.88 kcal/mol) temperatures, are superimposed on the plot; Key: red (U), green
(I), blue (II), magenta (III).

For the unconstrained peptide, the melting transition is calculated at a temperature

equivalent to 0.68 kcal/mol (experimental value = 0.64 kcal/mol).40 The heat capacity curve
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for scheme I is qualitatively similar to that of the unconstrained peptide and the melting

temperature is accurately predicted. A small positive offset in Tm from the reference value

was observed for schemes II (Tm = 0.69 kcal/mol) and III (Tm = 0.70 kcal/mol). These

shifts in Tm suggest that local rigidification may lead to a small underestimation of the

landscape entropy; hence slightly higher temperatures are needed to stabilize the unfolded

state. However, this effect is minimal, and the Tm for schemes I to III roughly coincides

with that of the unconstrained landscape, implying that the important basins that govern

the phase transition are retained.

We also assessed the convergence of the heat capacity for the individual landscapes,

to ensure that the trends observed were not artifacts of incomplete sampling (Supporting

Information: Figure 5). The heat capacity curves were evaluated as a function of all the

minima in the database lying below a given energy threshold. For all schemes approximately

40% of the minima are sufficient to provide a good estimate of the melting peak and Tm.

Therefore, we are confident that the observable features are well converged.

The global minimum of the FE landscape was computed for each local rigidification

scheme at temperatures below and after the melting transition (Figure 7). At 0.48 kcal/mol,

the overall geometric rmsd values of the FE global minimum for schemes I, II, II with

respect to the unconstrained peptide are 0.47, 0.60, 0.67 Å, respectively. The corresponding

deviations at 0.88 kcal/mol are 3.01, 5.79, 3.00 Å. As expected, there is greater structural

variation among the FE global minima at higher temperatures, due to entropic factors.

However, in general, qualitatively similar minima are responsible for the melting transition

on the unconstrained and locally rigidified landscapes. In addition, the good agreement

between the different FE global minima, especially at low temperatures, demonstrates the

validity of local rigidification in structure prediction.
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3.3 Folding Mechanism

To evaluate the effects of local rigidification on the folding pathways, we compare the indi-

vidual fastest paths from the denatured state to the PE global minimum for each TZ1 model.

The fastest path (A→ B) is the one that makes the largest contribution to the steady–state

rate constant, kSSBA (the sum over all discrete paths with the steady–state approximation

for intervening minima).39,69,70 The main conformational states encountered on each path

were then identified by employing the density–based clustering algorithm80 available within

AMBER tools;81 this approach essentially defines an average structure for different sections

of the path. Figure 8a illustrates the fastest folding pathway corresponding to the uncon-

strained representation of TZ1.

The unfolded state (s1) undergoes initial hydrophobic collapse to yield a compact inter-

mediate (s2), which possess a native-like face-to-face stacking of the TRP4 and TRP9 indole

rings. In the next phase of folding, the zipping process commences with the formation of some

inner native hydrogen-bonds. The TRP2 and TRP11 residues of the frayed–like intermediate

(s3) then rotate to complete the ‘trpzip’ and the final inner native hydrogen-bonds form,

tethering the ends of the hairpin. This mechanism agrees with the hydrophobic–collapse

model for β–hairpin formation proposed by Karplus and coworkers82 and follows the order

of TZ folding events determined by temperature jump fluorescence.41

On the conservatively rigidified landscape (Figure 8b), the first stage of folding is consis-

tent with the unconstrained counterpart. However, the s3–intermediate is not encountered;

rather, in one phase the inner hydrogen-bonds form, concurrently zipping the hairpin. As a

result, the number of transition states on this pathway (16) is significantly less than on the

reference folding path (32). Further local rigidification (scheme II, Figure 8c) leads to an

increase in the relative PE barriers traversed in the early stages of folding, and a short-lived

intermediate (s5) is encountered prior to forming the compact state (s2). The last phase of

folding is comparable to that of scheme I. This path is comparable in length (27 transition

states) to the unconstrained folding pathway.
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(a) unconstrained peptide (b) I – TRP rings

(c) II – TRP rings, peptide bonds
(d) III – TRP rings, peptide bonds, termini,
trigonal planar centres

Figure 8: Variation of the total potential energy (kcal/mol) with the integrated path length
(Å) for the fastest folding path from the denatured TZ1 peptide to the global minimum.
The major conformational ensembles encountered along each path are shown.

With aggressive local rigidification (Figure 8d), there is substantial lengthening of the

folding pathway and the number of transition states (63) encountered doubles relative to the

unconstrained pathway. A significant reduction in the local flexibility of the peptide results

in the formation of many unfavorable non–native contacts, increasing the PE barriers along

the path. Moreover, the peptide revisits the same average structure twice (s7), as it tries to

locate the native state. These results support the the observations in Figure 5d, where the

landscape is noticeably more frustrated.
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Finally we comment on how the folding kinetics may be affected by local rigidifica-

tion. Here we adapt the procedure outlined in a previous study,83 where the number of

rearrangements on the fastest path from a given local minimum to the global minimum is

computed. The distributions for the number of rearrangements can then be used to analyze

the structure-seeking properties of the peptide within the various schemes. For schemes I

and II the distribution is narrower than for the reference (Figure 9), indicating that there is

a general acceleration in the folding dynamics when local rigidification is applied. However,

for the most rigidified system, scheme III, a broader distribution is obtained and the major

mode at 10–20 steps vanishes. This level of local rigidification may be too aggressive for cor-

rectly describing the folding kinetics of TZ1, since the folding is hindered by the significant

loss in local flexibility.

Figure 9: Distribution of the number of steps (transition states) on the fastest paths from a
given minimum to the global minimum for TZ1 at different levels of local rigidification.

21



4 Conclusions

We have investigated how the underlying potential energy landscape for the TZ1 peptide

is affected by local rigidification. The atoms associated with various functional components

of TZ1 were systematically grouped into local rigid bodies and the corresponding landscape

was characterized using the discrete path sampling approach. The predicted melting tem-

peratures corresponding to the unconstrained representation and local rigid body schemes

I (TRP rings) to III (TRP rings, peptide bonds, trigonal planar centres and termini) are

reasonably consistent and in agreement with experiment.40 For the unconstrained peptide,

schemes I and II (TRP rings, peptide bonds), the folding mechanism corresponds to an

initial hydrophobic collapse and subsequent zipping.41,82 However, for the most rigidified

system (scheme III), the peptide visits several structural ensembles that do not appear on

the unconstrained pathway.

These results support the hypothesis that a subset of relevant degrees of freedom are

sufficient to describe protein folding pathways. However, the local rigid body scheme must

be judiciously chosen to preserve the observable properties of interest. Moreover, a repre-

sentation that reproduces the folding thermodynamics does not necessarily reproduce the

mechanism, which tends to be more sensitive to changes in local flexibility of the peptide.

The LRB framework does not alter the atomistic resolution of the peptide, so greater ac-

curacy for of the properties of interest (such as the folding pathways) may be conveniently

obtained by relaxing the rigidified systems to their unconstrained counterparts.

The number of minima on the potential energy landscape scales with system size in a

roughly exponential fashion. However, local rigidification reduces the conformational search

space, by constraining degrees of freedom that fluctuate on a much faster timescale than the

process of interest, decreasing the number of irrelevant minima significantly. Additionally,

since the degrees of freedom within each local rigid body are frozen, corresponding terms

in the potential energy function need not be calculated. In previous work, this formulation

has been shown to result in a significant reduction in the computational effort required to
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locate local and global minima. We anticipate that computational gains will be even more

impressive for larger proteins, where regions might be locally rigidified depending on the

timescale to be probed (for example, in the study of drug/ligand binding, pocket dynamics).

Lastly, since the local rigid bodies implemented in this work constitute the basic building

blocks of proteins, this approach is likely to be transferable between different systems.
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different levels of local rigidification was investigated. Additionally, we studied the variation

in the distribution of the total energies of minima and transtition states with local rigidifi-

cation. The PE landscapes were also compared by constructing disconnectivity graphs and

coloring the branches based on the overall geometric rmsd values from the global minimum.

This treatment was used to assess the structural diversity. Approximate free energy surfaces

were constructed from the PE surfaces using the harmonic superposition approximation75 to

estimate the density of states. Lastly, the convergence of the heat capacity for the individual

LRB schemes was tested, by investigating the variation of the Cv curve as a function of

the number of minima included in the sums. This method provided a robust measure of

how thoroughly the configuration space was sampled for each scheme. This information is

available free of charge via the Internet at http://pubs.acs.org
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